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Substrate rigidity deforms and polarizes active gels
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PACS 87.10.Pq – Elasticity Theory
PACS 87.17.Rt – Cell adhesion and cell mechanics

Abstract –We present a continuum model of the coupling between cells and substrate that
accounts for some of the observed substrate-stiffness dependence of cell properties. The cell
is modeled as an elastic active gel, adapting recently developed continuum theories of active
viscoelastic fluids. The coupling to the substrate enters as a boundary condition that relates the
cell’s deformation field to local stress gradients. In the presence of activity, the coupling to the
substrate yields spatially inhomogeneous contractile stresses and deformations in the cell and can
enhance polarization, breaking the cell’s front-rear symmetry.

Introduction. – Many cell properties, including cell
shape, migration and differentiation, are critically con-
trolled by the strength and nature of the cell’s adhesion to
a solid substrate and by the substrate’s mechanical prop-
erties [1]. For instance, it has been demonstrated that
cell differentiation is optimized in a narrow range of ma-
trix rigidity [2] and that the stiffness of the substrate can
direct lineage specification of human mesenchymal stem
cells [3]. In endothelial cells, adhesion to a substrate plays
a crucial role in guiding cell migration and controlling a
number of physiological processes, including vascular de-
velopment, wound healing, and tumor spreading [4]. Fi-
broblasts and endothelial cells seem to generate more trac-
tion force and develop a broader and flatter morphology
on stiff substrates than they do on soft but equally adhe-
sive surfaces [5, 6]. They show an abrupt change in their
spread area within a narrow range of substrate stiffnesses.
This spreading also coincides with the appearance of stress
fibers in the cytoskeleton, corresponding to the onset of a
substantial amount of polarization within the cell [6]. Fi-
nally, such cells preferentially move from a soft to a hard
surface and migrate faster on stiffer substrates [7]. The
mechanical interaction of cells with a surrounding matrix
is to a great extent controlled by contractile forces gener-
ated by interactions between filamentary actin and myosin
proteins in the cytoskeleton. Such forces are then trans-
mitted by cells to their surroundings through the action
of focal adhesions that produce elastic stresses both in the
cell and in the surrounding matrix. Cells in turn are ca-
pable of responding to the substrate stiffness by adjusting

their own adhesion and elastic properties, with important
implications for cell motility and shape [1, 8].

In this letter we present a simple model of the coupling
between cells and substrate that accounts for some of the
observed substrate-stiffness dependence of cell properties.
The cell itself is modeled as an elastic active gel, adapting
recently developed continuum theories of active viscoelas-
tic fluids [9–11]. In these models the transduction of chem-
ical energy from ATP hydrolysis into mechanical work by
myosin motor proteins pulling on actin filaments yields
active contractile contributions to the local stresses. The
continuum theory of such active liquids has led to several
predictions, including the onset of spontaneous deforma-
tion and flow in active films [12,13] and the retrograde flow
of actin in the lamellipodium of crawling cells [11]. Active
liquids cannot, however, support elastic stresses at long
times, as required for the understanding of the crawling
dynamics of the lamellipodium and of active contractions
in living cells. Models of active elastic solids on the other
hand have been shown to account for the contractility
and stiffening of in-vitro actomyosin networks [14–16] and
the spontaneous oscillations of muscle sarcomeres [17,18].
Very recently a continuum model of a one-dimensional po-
lar, active elastic solid has also been used to describe the
alternating polarity patterns observed in stress fibers [19].
In all these cases the elastic nature of the network at low
frequency is crucial to provide the restoring forces needed
to support deformations and oscillatory behavior.

We model a cell as an elastic active film anchored to a
solid substrate and study the static response of the film
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to variations in the strength of the anchoring. Although
in the following we refer to our system as a cell, we stress
that, on different length scales, the active elastic gel could
also serve as a model for a confluent cell monolayer on a
substrate. The coupling of the cell to the substrate enters
via a boundary condition controlled by a “stiffness” pa-
rameter that depends on both the cell/substrate adhesion
as well as the substrate rigidity. The description is macro-
scopic and applies on length scales large compared to the
typical mesh size of the actin network in the cell lamel-
lipodium (or large compared to the typical cell size in the
case of a cell monolayer). By solving the elasticity and
force balance equations in a simple one-dimensional ge-
ometry we obtain several experimentally relevant results.
First, in an isotropic active gel substrate anchoring yields
stresses and contractile deformations. The stress and de-
formation profiles for an isotropic active elastic gel are
shown in the top frame of Fig. 1. The stress is largest at
the center of the cell. Interestingly, a very similar profile
of tensile stresses has been observed in confluent mono-
layers of migrating epithelial cells [20], where the stress
increases as a function of the distance from the leading
edge of the migrating layer and reaches its maximum at
the center of the cell colony. Although our model considers
stationary active elastic layers (and the resulting stresses
are contractile as opposed to tensile), in both cases these
stresses originate from active processes in the cell, driven
by ATP consumption. The deformation of the active layer
is largest at the cell boundaries (see Fig.1, top frame),
as seen in experiments imaging traction forces exerted by
cells on substrates [21] and its overall magnitude increases
with cell activity. The density of the active gel layer is
concentrated at the boundary, where the local contractile
deformations are largest. The net deformation of the cell
over its length is shown in the bottom frame of Fig. 1 and
it increases monotonically with decreasing substrate stiff-
ness, in qualitative agreement with experiments on fibrob-
lasts showing that these cells are more extended on stiff
substrates [6]. Finally, if the cell is polarized on average,
the coupling to the substrate generates a spatially inho-
mogeneous polarization profile inside the cell. The mean
polarization is enhanced over its value in the absence of
substrate anchoring and it is a non-monotonic function of
substrate stiffness (see Fig. 4). This result is in qualita-
tive agreement with recent experiments that have demon-
strated an intimate relation between the matrix rigidity
and the alignment of cell fibers within the cell, suggesting
that maximum alignment may be obtained for an optimal
value of the substrate rigidity [22].

The active gel model. – The cell is modeled as an
active gel described in terms of a density, ρ(r, t), and a
displacement field, u(r, t), characterizing local deforma-
tions. In addition, to account for the possibility of cell
polarization as may be induced by directed myosin motion
and/or filament treadmilling, we introduce a polar orien-
tational order parameter field, P(r, t). Although we are

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

0.0

0.2

0.4

0.6

0.8

x�L

Σ
Hx
L,

u
Hx
L

0 1 2 3 4 5

0.0

0.2

0.4

0.6

0.8

1.0

Λ�L

B
D

l
�
Ζ
D
Μ

Fig. 1: Top: stress σ(x)/ζ∆µ (dashed line) and deformation
u(x)B/ζ∆µ (solid line) profiles as functions of the position x
inside a cell of length L for λ/L = 0.25. Bottom: the cell’s
total deformation ∆` = u(0) − u(L) as a function of λ/L. In
the plot the deformation ∆` is normalized to its maximum
value ζ∆µ/B.

describing a system out of equilibrium, it is convenient to
formulate the model in terms of a local free energy density
f = fel + fP + fw, with

fel =
B

2
u2kk +Gũ2ij , (1a)

fP =
a

2
|P|2 +

b

4
|P|4 +

K

2
(∂iPj)(∂jPi) , (1b)

fw =
w

2
(∂iPj + ∂jPi)uij + w′(∇ ·P)ukk , (1c)

Here fel is the energy of elastic deformations, with B and
G the compressional and shear elastic moduli of the gel,
respectively, uij = 1

2 (∂iuj + ∂jui) the symmetrized strain
tensor, with ũij = uij − 1

dδijukk and d the dimensionality.
The first two terms in Eq. (1b), with b > 0, allow the on-
set of a homogeneous polarized state when a < 0; the last
term is the energy cost for spatially inhomogeneous de-
formations of the polarization. We have used an isotropic
elastic constant approximation, with K a stiffness param-
eter characterizing the cost of both splay and bend defor-
mations. Finally, the contribution fw couples strain and
polarization and is unique to polar systems [13, 19]. It
describes the fact that in the active polar system consid-
ered here, like in liquid crystal elastomers, a local strain
is always associated with a local gradient in polarization.
Such gradients will align or oppose each other depending
on the sign of the phenomenological parameters w and w′,
which are controlled by microscopic physics. A positive
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sign indicates that an increase of density is accompanied
by positive splay (or enhanced polarization in one dimen-
sion). In active actomyosin systems filament polarity can
be induced by both myosin motion and by treadmilling.
If the polarization is defined as positive when pointing to-
wards the plus (barbed) end of the filament, i.e., the direc-
tion towards which myosin proteins walk, the forces trans-
mitted by myosin procession will yield filament motion in
the direction of negative polarization, corresponding to
w < 0 [23]. In contrast, treadmilling, where polarization
occurs at the barbed end, corresponds to w > 0. Density
variations δρ = ρ− ρ0 from the equilibrium value, ρ0, are
slaved to the local strain according to δρ/ρ0 = −∇ · u.
The stress tensor is written as the sum of reversible and
active contributions as σij = σrij + σaij , where σrij = ∂f

∂uij
.

The two contributions are given by

σrij = δijBukk + 2Gũij +
w

2
(∂iPj + ∂jPi) + w′∇ ·Pδij ,

(2a)

σaij = ζ(ρ)∆µδij + ζα∆µ PiPj . (2b)

Active stresses arise because the gel is driven out of equi-
librium by continuous input of energy from the hydrolysis
of ATP, characterized by the chemical potential difference
∆µ between ATP and its products. For simplicity, we as-
sume here ∆µ to be constant, although situations where
inhomogeneities in ∆µ may arise, for instance, from in-
homogeneous myosin distribution within the actin lamel-
lipodium are also of interest. The experimentally observed
contractile effect of myosin corresponds to positive values
of the coefficients ζ and ζα, that characterize the isotropic
and anisotropic stress per unit ∆µ, respectively, due to
the action of active myosin crosslinkers [10, 24, 25]. In
polar gels there are also active stresses proportional to
∆µ(∂iPj + ∂jPi) [13, 26]. We neglect these terms here as
terms of similar structure already arise from the coupling
terms in fw. By letting ρ = ρ0 − ρ0∇ · u, we can write
ζ(ρ)∆µ ' ζ0∆µ − ζ1∆µukk. The second term describes
active renormalization of the compressional modulus B
of the gel and can yield a contractile instability [17, 18].
These effects have been described elsewhere [18] and will
not be discussed here, where we will assume we are in
a regime where the gel is elastically stable. Finally, we
note that the parameters a, w and w′ may also in general
depend on ∆µ as cell polarity is induced by ATP-driven
processes. For simplicity we keep these parameters fixed
below.

Force balance requires

∂jσij = 0 . (3)

The coupling to the substrate (assumed for simplicity
isotropic) is introduced as a boundary condition [27] by
requiring [σij n̂j ]rs = Eui(r = rs), where n̂ is a unit nor-
mal to the substrate and both sides of the equation are
evaluated at points rs on the substrate. Although in the
following we will often refer to the parameter E as the

substrate stiffness, it is important to keep in mind that
E is controlled not only by the substrate rigidity, but
also by the properties of the cell/substrate adhesions [28].
Anisotropic substrates are not considered here, but can be
described by a generalized boundary condition where E is
a tensor quantity and will be discussed in a later publica-
tion. Finally, variations in the polarization are described
by the equation

∂tP + β (P ·∇)P = Γh , (4)

with β an advective coupling arising from ATP driven pro-
cesses, such as treadmilling [13, 26], Γ an inverse friction,
and h = − δf

δP the molecular field, given by

hi = −
(
a+ b|P|2

)
Pi +K∇2Pi +w∂juij +w′∂iukk . (5)

Here β is an active velocity and is controlled by the activity
∆µ. In the following we write β/(LΓ) = ζβ∆µ, with L the
typical size of the active gel.

Isotropic cell. – We begin by considering the case of
an isotropic cell and neglect the coupling to polarization.
For simplicity, we consider a quasi-one-dimensional model
where the cell is a thin sheet of active gel of thickness
z extending from x = 0 to x = L, with L >> h. The
substrate is flat and located at z = 0. Although this is
of course a gross simplification, we will see below that it
captures the substrate-induced stresses and deformations
and their dependence on substrate stiffness. More realistic
planar or thin film geometries will be discussed in a future
publication. Force balance yields ∂xσxx + ∂zσxz = 0. In-
tegrating over the thickness of the film, using σxz(x, z =
h) = 0 and σxx(x, z = 0) = Eux(x, 0), and letting

σ = 1
h

∫ h
0
dzσxx(x, z), we obtain ∂xσ = Eux(x, 0)/h. In

the limit h << L, we neglect all z dependence and as-
sume that the only component of the displacement field
is ux(x, 0) ≡ u(x). Combining then the expression for the
mean stress, σ = B∂xu+ ζ0∆µ with the boundary condi-
tion we obtain

σ = λ2
d2σ

dx2
+ ζ0∆µ , (6)

where λ =
√
Bh/E is a length scale controlled by the

interplay of cell and substrate stiffness. The solution of
this equation with boundary conditions σ(x = 0) = σ(x =
L) = 0 is

σ(x) = ζ∆µ

(
1− cosh [(L− 2x)/2λ]

cosh (L/2λ)

)
. (7)

The deformation field is then given by

u(x) =
ζ∆µλ

B

sinh [(L− 2x)/2λ]

cosh (L/2λ)
. (8)

A finite activity ∆µ generates stresses and deformations
in the cell, as shown in the top frame of Fig. 1. In an
isotropic gel, both the stress and the displacement profiles
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Fig. 2: The stress σ(x)/ζ∆µ (dashed line) and displacement
u(x)B/ζ∆µ (solid line) profiles of a cell on a substrate a con-
stant stiffness gradient, described by E(x) = E0x/L are shown
as functions of the position x inside the cell for λ/L = 0.25.
The profiles are asymmetric and the stress is localized near
x = L where the stiffness is largest.

are symmetric about the cell’s mid point and the cell is
uniformly contracted. The deformation is localized near
the cell’s boundaries. The length scale λ determined by
the ratio of cell to substrate stiffness controls the pen-
etration of the deformation to the interior of the cell. If
λ ∼ L, corresponding to a substrate rigidity EL ∼ Bh/L2,
the active stresses and deformation extend over the entire
cell. For a cell layer of length 10 µm, thickness 1 µm and
elastic modulus B ∼ 100 kPa, the substrate rigidity pa-
rameter EL can be estimated to be ∼ 1 kPa/µm. The
total deformation ∆` = u(0) − u(L) grows with activity
and is shown in Fig. 1 (bottom frame) as a function of
λ/L ∼ 1/

√
E. The contraction decreases with increasing

substrate stiffness and saturates to a finite value for soft
substrates.

It is also interesting to consider a substrate of varying
stiffness, as such substrates can be realized in experiments.
We consider a constant stiffness gradient, corresponding to
E(x) = E0x/L. In this case Eq. (6) becomes

σ =
λ2L

x

(
d2σ

dx2
− 1

x

dσ

dx

)
+ ζ0∆µ (9)

A closed solution can be obtained in terms of hyper-
geometric functions. The corresponding stress and dis-
placement profiles are now asymmetric and are shown in
Fig. 2. The stress is largest in the region of stiffest sub-
strate, with a correspondingly smaller cell deformation.
In other words, the largest cell deformation is obtained
in the boundary region where the substrate is softest. In
real cells the region where the substrate is softer and the
resulting stresses in the cell are smaller may correspond
to region of reduced focal adhesions. Hence the gradi-
ent stiffness may yield a gradient in the strength of cell-
substrate adhesion, providing a possible driving force for
durotaxis, the tendency of cells to move from softer to
stiffer regions [5, 29,30].

Polarized cell. – We now consider the case of a po-
larized cell, described by the full free energy f . The cell is
modeled again as a thin film of length L in the quasi-1d ge-
ometry described earlier. We are interested in steady state
configurations. In the chosen geometry these are given by
the solutions of the equations

dσ

dx
=
E

h
u (10a)

σ = B
du

dx
+ ζ0∆µ+ ζα∆µ p2 + 2w

dp

dx
(10b)

ζβ∆µLp
dp

dx
= K

d2p

dx2
+ 2w

d2u

dx2
−
(
a+ bp2

)
p (10c)

where P = p(x)x̂ and we have let w′ = w and β/(LΓ) =
ζβ∆µ. In the following we scale lengths with the cell’s
length L and stresses with the cell’s compressional modu-
lus B. By combining Eqs. (10a)-(10c), we can eliminate u
and rewrite them as coupled equations for σ̃ = σ/B and
p as

σ̃ =
λ2

L2
σ̃′′ + ν0 + ναp

2 + w̃p′ (11a)

(νβ + 2ναw̃) pp′ = K̃p′′ + w̃σ̃′ −
(
ã+ b̃p2

)
p (11b)

where the prime denotes a derivative with respect to x/L,
ν0,α,β = ζ0,α,β∆µ/B, w̃ = 2w/BL, ã = a/B, b̃ = b/B,

and K̃ = K/(BL2) − w̃. Thermodynamic stability re-
quires K̃ > 0. As discussed in Ref. [19] there could be
possible active contributions to the coupling w, which at
high activity leads to an alternating polarity pattern in
the gel. Here we restrict ourselves to K̃ > 0.

In the absence of activity (∆µ = 0) Eqs. (11a) and (11b)
have two homogeneous solutions that satisfy the boundary
condition σ(0) = σ(L) = 0, corresponding to an isotropic
state for a > 0, with p(x) = u(x) = 0 and to a polarized
state for a < 0, with p(x) = p0 =

√
−a/b and u(x) = 0.

In both cases σ(x) = 0.
For finite activity (∆µ 6= 0), we find two qualitatively

different solutions, depending on the boundary conditions
used for the polarization. When Eqs. (11a) and (11b) are
solved with boundary condition p(0) = p(L) = 0, consis-
tent with an isotropic state in the limit ∆µ = 0, the stress
is an even function of x, as shown in the top frame of Fig. 3.
It exhibits a maximum at x = L/2 and is symmetric about
the mid point of the cell. Both the displacement and the
polarization vanish at x = L/2 and are odd functions of x
about this point. For a < 0 we solve the nonlinear equa-
tions with boundary condition p(0) = p(L) =

√
−a/b,

consistent with a polarized state in the limit ∆µ = 0. In
this case the stress, deformation and polarization profiles
are all asymmetric, as shown in the bottom frame of Fig. 3.
The sign of the anisotropy is controlled by the sign of the
polar coupling w. The figure displays the case w > 0, cor-
responding to filament convection towards the direction of
positive polarization.

To quantify the different properties of these two states,
we define an excess mean polarization averaged over the
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Fig. 3: Stress σ(x)/B (dashed line), deformation field u(x)/L
(solid line), and polarization δp(x) = p(x) − p0 (dotted line)
profiles obtained by numerical solution of Eqs. (11a) and (11b)
for two sets of boundary conditions on the polarization: p(0) =
p(L) = 0 (top frame) and p(0) = p(L) = 1 (bottom frame).
Both plots are for λ/L = 0.25, w̃ = 4, ν0 = να = νβ = 1,
ã = b̃ = 1, K̃ = 1.

cell as 〈δp〉 =
∫ L
0

dx
L [p(x) − p0]. The excess polariza-

tion 〈δp〉 is zero for the symmetric polarization profiles
obtained with the boundary condition p(0) = p(L) = 0,
whereas 〈δp〉 obtained for the boundary condition p(0) =
p(L) =

√
−a/b is a non-monotonic function of substrate

stiffness, as shown in Fig. 4 for three values of activity.
The excess polarization is largest at a characteristic sub-
strate stiffness, suggesting that enhancement of stress fiber
and resulting cell polarization may be obtained for an op-
timal substrate rigidity, as reported in [22]. The excess
polarization 〈δp〉 vanishes in the absence of activity and
its maximum value increases with activity.

We have presented a minimal continuum model of the
interaction of a cell adhering to an elastic substrate. The
cell is described as an active elastic gel and the coupling to
the substrate enters as a boundary condition. The model
shows that the interplay of substrate coupling and activity

Fig. 4: Excess mean polarization 〈δp〉 as a function of L/λ ∼√
E obtained from averaging the numerical solutions of Eqs.

(11a) and (11b) for three different values of activity ν = ν0 =
να = νβ : ν = 0.5 (dashed line), ν = 1.0 (dotted line) and
ν = 1.5 (solid line). The plots are for w̃ = 4, ã = b̃ = 1 and
K̃ = 1.

yields contractile stresses and deformation in the cell and
can enhance polarization, breaking the front/rear symme-
try of the cell. The model provides a simple, yet powerful
continuum formulation for the description of cell-substrate
interactions and can be extended in various directions by
considering more realistic two-dimensional cell geometries
and anisotropic and deformable substrates. The possibil-
ity of cell migration will also be incorporated in future
work. Finally, the continuum model can be used to de-
scribe the interaction of confluent layers of epithelial cells
with substrates. In this case a direct comparison with re-
cent experiments that have imaged the stress distribution
in migrating cell layers [31] may be possible.
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Sekimoto K., Phys. Rev. Lett., 92 (2004) 78101.

[10] Kruse K., Joanny J.-F., Jülicher F., Prost J. and
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[11] Jülicher F., Kruse K., Prost J. and Joanny J.-F.,
Phys. Rep., 449 (2007) 3.

[12] Voituriez R., Joanny J.-F. and Prost J., Europhys.
Lett., 70 (2005) 118102.

[13] Giomi L., Marchetti M.C. and Liverpool T.B., Phys.
Rev. Lett., 101 (2008) 198101.

[14] Mizuno D., Tardin C., Schmidt C.F. and MacKin-
tosh F.C., Science, 315 (2007) 370.

[15] MacKintosh F.C. and Levine A.J., Phys. Rev. Lett.,
100 (2008) 018104.

[16] Liverpool T.B., Marchetti M.C., Joanny J.-F. and
Prost J., EurPhys. Lett., 85 (2009) 18007.

[17] Günther S. and Kruse K., New Journal of Physics , 9
(2007) 417.

[18] Banerjee S. and Marchetti M.C., Soft Matter, 7
(2011) 463.

[19] Yoshinaga N., Joanny J.-F., Prost J. and Marcq P.,
Phys. Rev. Lett., 105 (2010) 238103.

[20] Trepat X., Wasserman M.R., Angelini T.E., Mil-
let E., Weitz D.A., Butler J.P. and Fredberg J.J.,
Nature Physics, 5 (2009) 426.

[21] Lima J.I., Sabouri-Ghomia M., Machacek M., Wa-
terman C.M. and Danuser G., Exp. Cell Res., 316
(2010) 2027.

[22] Zemel A., Rehfeldt F., Brown A. E.X., Discher
D.E. and Safran S.A., Nature Physics, 6 (2010) 468.

[23] Liverpool T.B. and Marchetti M.C., Phys. Rev. Lett.,
90 (2003) 138102.

[24] Aditi Simha R. and Ramaswamy S., Phys. Rev. Lett.,
89 (2002) 058101.

[25] Hatwalne Y., Ramaswamy S., Rao M. and Simha
R.A., Phys. Rev. Lett., 92 (2004) 118101.

[26] Ahmadi A., Marchetti M.C. and Liverpool T.B.,
Phys. Rev. E, 74 (2006) 061913.

[27] Kruse K., Joanny J.-F., Jülicher F. and Prost J.,
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