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Abstract 

In this paper we describe the design, development, and performance of a 

neural network simulator for the Connection Machine (CM)3 • The design 

of the simulator is based on the Rochester Connectionist Simulator(RCS). 

RCS is a simulator for connectionist networks developed at the University 

of Rochester. The CM simulator can be used as a stand-alone system or 

as a high-performance parallel back-end to RCS. In the latter case, once 

the network has been built by RCS, the high-performance parallel back-end 

system constructs an equivalent network on the CM processor array and 

executes it. The CM simulator facilitates the exploitation of the massive 

parallelism inherent in connectionist networks. It can also enable substantial 

reduction in the training times of connectionist networks. 

3 Connection Machine is a registered trademark of Thinking Machines Corporation. 



1 Introduction 

1.1 Connectionist Networks and RCS 

Studies of the behavior of animal brains have inspired the use of massively 

parallel computational models of intelligent behavior, called connectionist 

models. Connectionist models assume that the processing takes place through 

a large number of simple processing elements, or units. Each unit can be con­

nected to some or all of the other units via excitatory or inhibitory weighted 

links. Such connections, taken together with any external inputs, determine 

the level of activation for each unit. The network of units update their lev­

els of activation, either synchronously or asynchronously, depending on their 

inputs. 

In recent years, there has been a flurry of activity in the area. Conse­

quently, mechanisms for the specification and simulation of such networks 

have become necessities. Rochester Connectionist Simulator is a tool that 

provides such mechanisms. RCS is designed to run on sequential machines. 

It provides a library of functions and a user-interface. The network can be 

built either by writing a program that calls the appropriate library functions 

or by issuing relevant commands from the user interface. It can then be 

executed via the user-interface. A variety of user commands allow the user 

to examine and set various attributes of the network. 
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1.2 Motivation and scope of parallelism 

The representation of a sizable connectionist network for a typical application 

like image processing may have thousands of units and tens of thousands of 

interconnections. On a sequential machine, each iteration in the execution 

of the network amounts to a complete traversal of the representation graph. 

Thus the execution is necessarily slow. 

However, the operation of the original connectionist model itself is inher­

ently parallel. The sequential operation is forced by the machine on which 

the simulator is being implemented. Each iteration of execution consists of 

a large number of updates which can be performed simultaneously and in­

dependently. This makes a strong case for performing the execution on a 

parallel machine which does not impose any "sequentialism". 

Some work was done in developing a parallel version of RCS to run on 

the BBN Butterfly Multiprocessor[!). In this work, we have attempted to 

develop a similar simulator for the Connection Machine. The Connection 

Machine is a parallel computer system with a SIMD architecture, comprising 

up to 65,536 bit-serial processing elements. Each processor has up to 65,536 

bits of local memory. Each group of 16 processors is equipped with a router 

node which provides highly optimized inter-processor communication. 
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2 Representation 

2.1 Data structures in the serial version 

The network paradigm used in RCS is depicted in Figure 1. Each unit has 

a number of sites where incoming links terminate. Each link originates from 

a unit. During execution, the link function is applied to the output of the 

source unit and the result is presented at a site in the destination unit. At 

each site in a unit, all inputs presented by the incoming links are collected 

and the associated site function is applied to them. Finally, at each unit, the 

outputs of its sites are gathered and the associated unit function is applied 

to them. The result is adapted as the current level of activation/output of 

the unit. 

Units, sites and links are declared as records with the various fields. Units 

are kept in an array. Each unit has a pointer to a list of sites. Each site, in 

turn, has a pointer to a list of links. It must be noted that the pointers are 

uni-directional. Figure 2 shows the representation adapted in the sequential 

implementation. 

2.2 Data structures in the parallel version 

In the parallel implementation, each record is assigned to a processor. There­

fore, we may imagine that each unit, site and link has processing power of 

its own. All steps mentioned in the previous section can now be performed 

in parallel. For instance, all links can now read the outputs of their source 

units in parallel. Similarly, all links can perform a random-access-write with 
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Unit2 

Figure 1. The RCS Network Paradigm 
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flags flags fla_gs 
type* type* type* 

unit f unit f unit f 
name* name* name* 

imt_pot init_pot init_pot 
potential potential potential 
output output output 

Unit init state init state Imt_state 
state state • • • state 
sets sets sets 
data data data 

no sites no sites no_sites 
site* ~ site* ...... site* .... 

j_ 1 i 
next* next* t-- next* t-- next* I--! 

name* name* name* name* 
no inputs no inputs no_inputs no _inputs Site 
value value value value 
data data data data • • • 
site f* site f* site f* site f* 
Link* I- Link* ~ Link* r--- Link* f--

! ! 
next* next* next* r-- ne:Ai* ,_...... 

link f* link f* link f* link f* 
weight weight weight weight L ink 
value* value* value* value* • • • 
data data data data 

from_unit*ll from_unit*l1 from_unit*h from unit* - r} 
Figure 2. Data structure used in sequential version 
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an appropriate combining function to propagate their values to the sites. 

This implementation has the following requirements: 

• Each link has a pointer to its source unit. 

• Each link(site) has a pointer to its parent site( unit). 

• Each link( site) knows the function corresponding to the parent site( unit), 

so that the appropriate combiner for the random access write can be 

identified. 

Figure 3 illustrates the representation of the paradigm for the parallel imple­

mentation. The reversal of the site and link pointers is due to the require­

ments listed above. 

3 Building the network 

The simulator provides a library of functions to construct and execute the 

network. In this section, we describe the parallel versions of the library 

functions. 

Parallel structures of the appropriate type are declared to hold the compo­

nents( units, sites, links) of the network. A parallel structure has an instance 

in every processor in the array. Thus, a parallel structure can be vie\ved as 

a layer4 that spans across the processor memories. A particular layer begins 

at the same address in the local memory of each processor. 

4This use of the term layer is not to he confused with a level of units in a neural net 
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flags flags flags 
type type type 

unit f unit f unit f 
name name name 

init_pot mit _pot init_pot 
potential potential potential 
output output output • • • • 

init state init state init_state 

state state state Units 

sets sets sets 
data data data 

t f 

!parent unit~J Jparent unit~LJ !parent unit~ ,_ 
• • • 

parent unitf parent unitf parent unitf 
name name name 
value value value 

name 
value Sites 

data data data data 
site f site f site f site f 

1 

parent site~W parent site~W parent site>~ J • • • 

parent sitef parent site1 parent site1 
link f link f link f 

weight weight weight Links 
value value value value 
data data data data 

from unit* from unit* from unit* from_unit* 

Figure 3 - Data structure in the parallel version 
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3.1 Making a unit 

The function CMake Unit makes a unit for the parallel back-end. The function 

is prototyped as shown below: 

CMakeUnit(type, func, ipot, pot, data, out, istate, state) 

This is fully compatible with the RCS version. Each new unit is assigned an 

instance of the same parallel structure. 'When all the instances of a parallel 

structure are used up, a new parallel structure is created. A front-end list of 

pointers, called uniLlist, keeps track of the addresses of the parallel structures 

used to hold units. C11fakeUnit returns a unique index for each unit. The 

address of the parallel structure and the address of the processor can be 

extracted from this index. 

3.2 Adding a site 

The function CAddSite adds a site to a unit that has been already made. It 

is prototyped as follows: 

CAddSite(unit, name, func, data) 

As before, this is fully compatible with the RQS version. The front-end 

list of pointers to parallel structures is called site_list. In addition, to the 

parameters passed to the function, the sites need to know the unit-functions 

of their respective parents. Since, each site has a pointer to its parent-unit, 

this assignment can be performed by a random-access-read. This is done in 

parallel at the end of network building phase in the-function Csi._finish_make. 
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3.3 Making a link 

The function CJVIakeLink makes a link between two units. The function is 

prototyped as: 

CMakeLink(from, to, site, veight, ~ata, func) 

This too is fully compatible with the RCS version. The front-end list of 

pointers is called link_list. Each link needs to know the location and site 

function of its parent site. This information is extracted using the address of 

the target unit and the name of the parent site. Note that the name of the 

parent site is not unique. 

The parallel representation of a connectionist network can now be built 

by writing a program that makes appropriate calls to these functions. 

4 Execution 

The execution is carried out by calling the function CStep. CStep takes 

the number of iterations as argument. The algorithm appears in figure 4. 

Computations are performed in all selected processors. Initially all processors 

are selected. 
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for step_ct := 1 to NoSteps do 
Initialize values of all active sites. 
for lc := 1 to NoLinkLayers do 

Select active links in link layer 'lc' 
for uc := 1 to NoUnitLayers do 

Read output of the source unit into value field 

for fc := 1 to NoLinkFunctions do 
Select links holding link-fn 'fc' 
Apply link-fn 'fc' to value field and 

set data field to the result 
endfor fc 

endfor uc 
Initialize outputs of all active units. 
for sc := 1 to NoSiteLayers do 

Select active links pointing to active sites in site layer 'sc' 
for fc := 1 to NoSiteFunctions do 

Write value field to parent-site using site-fn 'fc' 
as combiner 

endfor fc 
endfor sc 

endfor lc 
Initialize values of all active sites. 

for sc := 1 to NurnSiteLayers do 
Select active sites in site layer 'sc' 

for uc := 1 to NurnUnitLayers do 
for fc := 1 to NumUnitFunctions do 

Select active sites with 'fc' as parent-unit-fn 
Write value field to parent-unit using unit-fn 'fc' 
as combiner 

endfor fc 
endfor sc 

endfor lc 
endfor step_ct 

Figure 4. Network Execution Algorithm 
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In the initialization step, the link data and site values are always initial­

ized to zero. The unit output is initialized to the initial potential iniLpotential. 

Thus the user could choose between sustained input presentatio:..1 and mo­

mentary input presentation by setting the iniLpotential field accordingly. 

5 Interfacing with RCS : The Bridge 

The parallel functions developed are sufficient to build and execute a simu­

lated network. However, configuring them as a back-end and interfacing with 

RCS is desirable for several reasons. RCS has a well-developed user-interface 

and a graphics package. Besides, the Connection Machine is an expensive 

resource, whereas RCS can run on ordinary sequential machines. 

The bridge between RCS and the CM simulator has been realized by 

adding three commands to the RCS user interface. The command cdump 

dumps the current network representation in RCS onto a set of front-end 

files. The command ego builds the equivalent network on the Connection 

Machine, executes the number of iterations specified in the command line 

and dumps the results back on to the front-end files. The command cload 

reads the information from the front-end files and sets the appropriate fields 

of the network representation. 

The additional commands were inserted into the RCS user-interface by 

including the appropriate functions into the RCS source code file. 
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6 Load Balancing 

I.oad balancing is a desirable attribute of parallel programs. In the system 

described so far, no restrictions have been imposed on the kinds of com­

ponents (units, links, sites) present in any layer. As a result, during each 

step of the execution, hvo kinds of iterations are involved - first, the itera­

tion through layers, and then the iteration through all possible component 

functions for each layer. Iterating through all the combining functions is 

unavoidable since the Connection Machine has an SIMD architecture. 

We achieve load balancing by grouping components(units, links, sites) 

with the same parent-component function in a separate layer. By balancing 

the load in this manner, iteration through the layers is combined with the 

iteration through functions. 

7 Performance 

A Hopfield Net[3] was simulated using CM simulator and RCS. The results 

are summarized in figure 5. 
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Number Execution time(seconds) 

of 10 Steps 100 Steps 1000 Steps 

units RCS 8K 32K RCS 8K 32K RCS 8K 32K 

50 0.15 0.34 0.34 1.55 3.67 3.44 15.52 34.62 34.50 

100 0.65 0.65 0.41 6.47 6.51 4.05 65.10 66.91 40.49 

150 1.63 1.11 0.44 16.09 11.36 4.36 160.55 112.09 43.09 

200 2.91 2.20 0.78 29.18 24.79 7.77 290.21 217.09 77.67 

250 5.39 2.60 0.85 52.95 26.22 8.47 534.89 292.94 84.84 

300 7.67 3.68 1.29 75.77 37.37 12.86 755.11 370.70 127.70 

Figure 5. Comparison of the performance of RCS with the CM simulator 

RCS was run on a VAX-8800 running ULTRIX. The ClVI simulator was 

run on the Connection Machine (Model CM-2) at the Northeast Parallel 

Architectures Center. The CM simulator timings represent timings taken 

after load balancing, with 8192 and 32768 processors. It must be noted that 

the VAX-8800 processor (rated at 6 MIPS[4]) is much more powerful than a 

single bit-serial CM processor. 

8 Related Issues 

\Ve have striven to ensure compatibility with RCS as far as possible. But at 

times, this concern did undermine the elegance and efficiency of the parallel 

functions. For instance, even though a network may have a large number 

of units and interconnections, they usually follow some underlying coarse-
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grained pattern. It would be possible to write functions to build several 

components that belong to the same coarse-grained pattern simultaneously. 

This direction may be worth pursuing because one of the major bottlenecks 

of RCS is the time taken to build a large network. It is however necessary 

to systematically identify the common coarse-grained patterns. 

vVe have so far assumed that the nP.twork being built is completely spec­

ified. In each step of the execution, the output of the units are computed 

using random-access-write within each level of the network, and random­

access-read between levels. However, when the weights along the links of 

the network are not available a training procedure like back-propagation has 

to be used. The present Connection Machine representation of the network 

is quite suited for implementing back-propagation. Back propagation of er­

rors is done using random-access-read within each level of the network, and 

random-access-write between levels. 

9 Conclusion 

vVe have designed and implemented a neural network simulator for the Con­

nection l\'lachine. The performance of the Cl\1 simulator was compared with 

the performance of simulators running on sequential machines. The system 

designed is expected to be very useful for designing connectionist networks for 

applications such as speech analysis and image processing, where the num­

ber of iterations before convergence is likely to be very high. Once training 

algorithms are added, the system can be used as a training ground for large 

networks which can be ported back to sequential machines . 
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