
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

5-1990

A Neural Network Simulator for the Connnection Machine A Neural Network Simulator for the Connnection Machine

N. Asokan

Ravi V. Shankar
Syracuse University

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

Kishan Mehrotra
Syracuse University, mehrtra@syr.edu

Sanjay Ranka
Syracuse University

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Asokan, N.; Shankar, Ravi V.; Mohan, Chilukuri K.; Mehrotra, Kishan; and Ranka, Sanjay, "A Neural Network
Simulator for the Connnection Machine" (1990). Electrical Engineering and Computer Science - Technical
Reports. 53.
https://surface.syr.edu/eecs_techreports/53

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/53?utm_source=surface.syr.edu%2Feecs_techreports%2F53&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-10

A Neural Network Simulator for the
Connnection Machine

N. Asokan, Ravi Shankar, Chilukuri K. Mohan,
Kishan Mehrotra, and Sanjay Ranka

May 1990

School of Computer and Information Science
Syracuse University

Suite4-116
Center for Science and Technology

Syracuse, New York 13244-4100

A Neural Network Simulator for the
Connection Machine 1

N Asokan

Ravi Shankar

Chilukuri Mohan

Kishan Mehrotra

Sanjay Ranka 2

School of Computer and Information Science

Syracuse University, Syracuse, NY 13244-4100

1This work was conducted using the computational resources of the Northeast Parallel

Architectures Center (NPAC) at Syracuse University, which is funded by and operates

under contract to DARPA and the Air Force Systems Command, Rome Air Development

Genter (RADC), Grifiss Air Force Base, New York under contract # F 306002·88·C·0031

2 Author for correspondence. e-mail address: ranka@top.cis.syr.edu

Abstract

In this paper we describe the design, development, and performance of a

neural network simulator for the Connection Machine (CM)3 • The design

of the simulator is based on the Rochester Connectionist Simulator(RCS).

RCS is a simulator for connectionist networks developed at the University

of Rochester. The CM simulator can be used as a stand-alone system or

as a high-performance parallel back-end to RCS. In the latter case, once

the network has been built by RCS, the high-performance parallel back-end

system constructs an equivalent network on the CM processor array and

executes it. The CM simulator facilitates the exploitation of the massive

parallelism inherent in connectionist networks. It can also enable substantial

reduction in the training times of connectionist networks.

3 Connection Machine is a registered trademark of Thinking Machines Corporation.

1 Introduction

1.1 Connectionist Networks and RCS

Studies of the behavior of animal brains have inspired the use of massively

parallel computational models of intelligent behavior, called connectionist

models. Connectionist models assume that the processing takes place through

a large number of simple processing elements, or units. Each unit can be con­

nected to some or all of the other units via excitatory or inhibitory weighted

links. Such connections, taken together with any external inputs, determine

the level of activation for each unit. The network of units update their lev­

els of activation, either synchronously or asynchronously, depending on their

inputs.

In recent years, there has been a flurry of activity in the area. Conse­

quently, mechanisms for the specification and simulation of such networks

have become necessities. Rochester Connectionist Simulator is a tool that

provides such mechanisms. RCS is designed to run on sequential machines.

It provides a library of functions and a user-interface. The network can be

built either by writing a program that calls the appropriate library functions

or by issuing relevant commands from the user interface. It can then be

executed via the user-interface. A variety of user commands allow the user

to examine and set various attributes of the network.

1

1.2 Motivation and scope of parallelism

The representation of a sizable connectionist network for a typical application

like image processing may have thousands of units and tens of thousands of

interconnections. On a sequential machine, each iteration in the execution

of the network amounts to a complete traversal of the representation graph.

Thus the execution is necessarily slow.

However, the operation of the original connectionist model itself is inher­

ently parallel. The sequential operation is forced by the machine on which

the simulator is being implemented. Each iteration of execution consists of

a large number of updates which can be performed simultaneously and in­

dependently. This makes a strong case for performing the execution on a

parallel machine which does not impose any "sequentialism".

Some work was done in developing a parallel version of RCS to run on

the BBN Butterfly Multiprocessor[!). In this work, we have attempted to

develop a similar simulator for the Connection Machine. The Connection

Machine is a parallel computer system with a SIMD architecture, comprising

up to 65,536 bit-serial processing elements. Each processor has up to 65,536

bits of local memory. Each group of 16 processors is equipped with a router

node which provides highly optimized inter-processor communication.

2

2 Representation

2.1 Data structures in the serial version

The network paradigm used in RCS is depicted in Figure 1. Each unit has

a number of sites where incoming links terminate. Each link originates from

a unit. During execution, the link function is applied to the output of the

source unit and the result is presented at a site in the destination unit. At

each site in a unit, all inputs presented by the incoming links are collected

and the associated site function is applied to them. Finally, at each unit, the

outputs of its sites are gathered and the associated unit function is applied

to them. The result is adapted as the current level of activation/output of

the unit.

Units, sites and links are declared as records with the various fields. Units

are kept in an array. Each unit has a pointer to a list of sites. Each site, in

turn, has a pointer to a list of links. It must be noted that the pointers are

uni-directional. Figure 2 shows the representation adapted in the sequential

implementation.

2.2 Data structures in the parallel version

In the parallel implementation, each record is assigned to a processor. There­

fore, we may imagine that each unit, site and link has processing power of

its own. All steps mentioned in the previous section can now be performed

in parallel. For instance, all links can now read the outputs of their source

units in parallel. Similarly, all links can perform a random-access-write with

3

Unit2

Figure 1. The RCS Network Paradigm

4

flags flags fla_gs
type* type* type*

unit f unit f unit f
name* name* name*

imt_pot init_pot init_pot
potential potential potential
output output output

Unit init state init state Imt_state
state state • • • state
sets sets sets
data data data

no sites no sites no_sites
site* ~ site* site*

j_ 1 i
next* next* t-- next* t-- next* I--!

name* name* name* name*
no inputs no inputs no_inputs no _inputs Site
value value value value
data data data data • • •
site f* site f* site f* site f*
Link* I- Link* ~ Link* r--- Link* f--

! !
next* next* next* r-- ne:Ai* ,_......

link f* link f* link f* link f*
weight weight weight weight L ink
value* value* value* value* • • •
data data data data

from_unit*ll from_unit*l1 from_unit*h from unit* - r}
Figure 2. Data structure used in sequential version

5

an appropriate combining function to propagate their values to the sites.

This implementation has the following requirements:

• Each link has a pointer to its source unit.

• Each link(site) has a pointer to its parent site(unit).

• Each link(site) knows the function corresponding to the parent site(unit),

so that the appropriate combiner for the random access write can be

identified.

Figure 3 illustrates the representation of the paradigm for the parallel imple­

mentation. The reversal of the site and link pointers is due to the require­

ments listed above.

3 Building the network

The simulator provides a library of functions to construct and execute the

network. In this section, we describe the parallel versions of the library

functions.

Parallel structures of the appropriate type are declared to hold the compo­

nents(units, sites, links) of the network. A parallel structure has an instance

in every processor in the array. Thus, a parallel structure can be vie\ved as

a layer4 that spans across the processor memories. A particular layer begins

at the same address in the local memory of each processor.

4This use of the term layer is not to he confused with a level of units in a neural net

6

flags flags flags
type type type

unit f unit f unit f
name name name

init_pot mit _pot init_pot
potential potential potential
output output output • • • •

init state init state init_state

state state state Units

sets sets sets
data data data

t f

!parent unit~J Jparent unit~LJ !parent unit~ ,_
• • •

parent unitf parent unitf parent unitf
name name name
value value value

name
value Sites

data data data data
site f site f site f site f

1

parent site~W parent site~W parent site>~ J • • •

parent sitef parent site1 parent site1
link f link f link f

weight weight weight Links
value value value value
data data data data

from unit* from unit* from unit* from_unit*

Figure 3 - Data structure in the parallel version

7

3.1 Making a unit

The function CMake Unit makes a unit for the parallel back-end. The function

is prototyped as shown below:

CMakeUnit(type, func, ipot, pot, data, out, istate, state)

This is fully compatible with the RCS version. Each new unit is assigned an

instance of the same parallel structure. 'When all the instances of a parallel

structure are used up, a new parallel structure is created. A front-end list of

pointers, called uniLlist, keeps track of the addresses of the parallel structures

used to hold units. C11fakeUnit returns a unique index for each unit. The

address of the parallel structure and the address of the processor can be

extracted from this index.

3.2 Adding a site

The function CAddSite adds a site to a unit that has been already made. It

is prototyped as follows:

CAddSite(unit, name, func, data)

As before, this is fully compatible with the RQS version. The front-end

list of pointers to parallel structures is called site_list. In addition, to the

parameters passed to the function, the sites need to know the unit-functions

of their respective parents. Since, each site has a pointer to its parent-unit,

this assignment can be performed by a random-access-read. This is done in

parallel at the end of network building phase in the-function Csi._finish_make.

8

3.3 Making a link

The function CJVIakeLink makes a link between two units. The function is

prototyped as:

CMakeLink(from, to, site, veight, ~ata, func)

This too is fully compatible with the RCS version. The front-end list of

pointers is called link_list. Each link needs to know the location and site

function of its parent site. This information is extracted using the address of

the target unit and the name of the parent site. Note that the name of the

parent site is not unique.

The parallel representation of a connectionist network can now be built

by writing a program that makes appropriate calls to these functions.

4 Execution

The execution is carried out by calling the function CStep. CStep takes

the number of iterations as argument. The algorithm appears in figure 4.

Computations are performed in all selected processors. Initially all processors

are selected.

9

for step_ct := 1 to NoSteps do
Initialize values of all active sites.
for lc := 1 to NoLinkLayers do

Select active links in link layer 'lc'
for uc := 1 to NoUnitLayers do

Read output of the source unit into value field

for fc := 1 to NoLinkFunctions do
Select links holding link-fn 'fc'
Apply link-fn 'fc' to value field and

set data field to the result
endfor fc

endfor uc
Initialize outputs of all active units.
for sc := 1 to NoSiteLayers do

Select active links pointing to active sites in site layer 'sc'
for fc := 1 to NoSiteFunctions do

Write value field to parent-site using site-fn 'fc'
as combiner

endfor fc
endfor sc

endfor lc
Initialize values of all active sites.

for sc := 1 to NurnSiteLayers do
Select active sites in site layer 'sc'

for uc := 1 to NurnUnitLayers do
for fc := 1 to NumUnitFunctions do

Select active sites with 'fc' as parent-unit-fn
Write value field to parent-unit using unit-fn 'fc'
as combiner

endfor fc
endfor sc

endfor lc
endfor step_ct

Figure 4. Network Execution Algorithm

10

In the initialization step, the link data and site values are always initial­

ized to zero. The unit output is initialized to the initial potential iniLpotential.

Thus the user could choose between sustained input presentatio:..1 and mo­

mentary input presentation by setting the iniLpotential field accordingly.

5 Interfacing with RCS : The Bridge

The parallel functions developed are sufficient to build and execute a simu­

lated network. However, configuring them as a back-end and interfacing with

RCS is desirable for several reasons. RCS has a well-developed user-interface

and a graphics package. Besides, the Connection Machine is an expensive

resource, whereas RCS can run on ordinary sequential machines.

The bridge between RCS and the CM simulator has been realized by

adding three commands to the RCS user interface. The command cdump

dumps the current network representation in RCS onto a set of front-end

files. The command ego builds the equivalent network on the Connection

Machine, executes the number of iterations specified in the command line

and dumps the results back on to the front-end files. The command cload

reads the information from the front-end files and sets the appropriate fields

of the network representation.

The additional commands were inserted into the RCS user-interface by

including the appropriate functions into the RCS source code file.

11

6 Load Balancing

I.oad balancing is a desirable attribute of parallel programs. In the system

described so far, no restrictions have been imposed on the kinds of com­

ponents (units, links, sites) present in any layer. As a result, during each

step of the execution, hvo kinds of iterations are involved - first, the itera­

tion through layers, and then the iteration through all possible component

functions for each layer. Iterating through all the combining functions is

unavoidable since the Connection Machine has an SIMD architecture.

We achieve load balancing by grouping components(units, links, sites)

with the same parent-component function in a separate layer. By balancing

the load in this manner, iteration through the layers is combined with the

iteration through functions.

7 Performance

A Hopfield Net[3] was simulated using CM simulator and RCS. The results

are summarized in figure 5.

12

Number Execution time(seconds)

of 10 Steps 100 Steps 1000 Steps

units RCS 8K 32K RCS 8K 32K RCS 8K 32K

50 0.15 0.34 0.34 1.55 3.67 3.44 15.52 34.62 34.50

100 0.65 0.65 0.41 6.47 6.51 4.05 65.10 66.91 40.49

150 1.63 1.11 0.44 16.09 11.36 4.36 160.55 112.09 43.09

200 2.91 2.20 0.78 29.18 24.79 7.77 290.21 217.09 77.67

250 5.39 2.60 0.85 52.95 26.22 8.47 534.89 292.94 84.84

300 7.67 3.68 1.29 75.77 37.37 12.86 755.11 370.70 127.70

Figure 5. Comparison of the performance of RCS with the CM simulator

RCS was run on a VAX-8800 running ULTRIX. The ClVI simulator was

run on the Connection Machine (Model CM-2) at the Northeast Parallel

Architectures Center. The CM simulator timings represent timings taken

after load balancing, with 8192 and 32768 processors. It must be noted that

the VAX-8800 processor (rated at 6 MIPS[4]) is much more powerful than a

single bit-serial CM processor.

8 Related Issues

\Ve have striven to ensure compatibility with RCS as far as possible. But at

times, this concern did undermine the elegance and efficiency of the parallel

functions. For instance, even though a network may have a large number

of units and interconnections, they usually follow some underlying coarse-

13

grained pattern. It would be possible to write functions to build several

components that belong to the same coarse-grained pattern simultaneously.

This direction may be worth pursuing because one of the major bottlenecks

of RCS is the time taken to build a large network. It is however necessary

to systematically identify the common coarse-grained patterns.

vVe have so far assumed that the nP.twork being built is completely spec­

ified. In each step of the execution, the output of the units are computed

using random-access-write within each level of the network, and random­

access-read between levels. However, when the weights along the links of

the network are not available a training procedure like back-propagation has

to be used. The present Connection Machine representation of the network

is quite suited for implementing back-propagation. Back propagation of er­

rors is done using random-access-read within each level of the network, and

random-access-write between levels.

9 Conclusion

vVe have designed and implemented a neural network simulator for the Con­

nection l\'lachine. The performance of the Cl\1 simulator was compared with

the performance of simulators running on sequential machines. The system

designed is expected to be very useful for designing connectionist networks for

applications such as speech analysis and image processing, where the num­

ber of iterations before convergence is likely to be very high. Once training

algorithms are added, the system can be used as a training ground for large

networks which can be ported back to sequential machines .

14

References

[1) Feldman, Jerome A. et. al. 'Computing with Structured Connectionist

Networks', GAGA!·, February 1988,Vol 31 #2,170-187.

[2] Goddard, Nigel H. et. al. 'Rochester Connectionist Simulator',Technical

Report, 1\Iarch 1988.

[3] Lippman, Richard 'An Introduction to Computing with Neural Nets',

IEEE ASSP, April1987.

[4] Digital Equipment Corporation, VAX Systems and Options Catalog, Jan­

uary 1989.

15

	A Neural Network Simulator for the Connnection Machine
	Recommended Citation

	SU-CIS-90-10_001c
	SU-CIS-90-10_002c
	SU-CIS-90-10_003c
	SU-CIS-90-10_004c
	SU-CIS-90-10_005c
	SU-CIS-90-10_006c
	SU-CIS-90-10_007cc
	SU-CIS-90-10_008c
	SU-CIS-90-10_009c
	SU-CIS-90-10_010c
	SU-CIS-90-10_011c
	SU-CIS-90-10_012c
	SU-CIS-90-10_013c
	SU-CIS-90-10_014c
	SU-CIS-90-10_015c
	SU-CIS-90-10_016c
	SU-CIS-90-10_017c
	SU-CIS-90-10_018c

