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Abstract In this report we present a new algorithm for detecting single stuck-at
faults in combinational circuits. This algorithm is based on a I5-valued system
and introduces several new concepts to make test generation more efficient. This
15-valued system allows us to impose all the constraints that must be satisfied in
order to sensitize a single path. Consequently all deterministic implications are
fully considered prior to the enumeration process. The resulting ability to identify
inconsistencies prior to enumeration improves the possibility of quicker identifica
tion of redundant faults. Instead of sensitizing a single gate at a time, we sensitize

subpaths by sensitizing all gates lying between successive fanout stems and then
consider the deterministic implications of such a sensitization. We have introduced
several speed-up techniques that effectively combine the information provided by
the deterministic path sensitization and that obtained from the circuit topology.
These techniques improve the efficiency of the enumeration phase by substantially
pruning the search space.
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1 Introduction

The generation of test patterns for combinational circuits has been long recognized

by researchers as a well defined mathematical problem which belongs to the class of

NP-complete problems [9,11]. Several Automatic Test Pattern Generation (ATPG)

algorithms for detecting stuck-at-faults in combinational circuits exist in the literature

[5,6,8,10,12,14,15]. Most researchers characterize test pattern generation as a search

problem and address strategies to make this search process efficient. For realistic cir

cuit sizes the search space is prohibitively large and, to make matters worse, a solution

is not always guaranteed to exist. However, as PODEM [10] first demonstrated, it

is not necessary to explicitly search the entire space - sometimes a partial search

can determine a test pattern or the fact that none exists. In fact the huge amount of

backtracking computation that is sometimes required before recognizing that a test

cannot be generated for a particular fault (such faults are termed redundant faults)

proves to be a major bottleneck in any ATPG algorithm. In order to overcome this

difficulty different strategies have been developed by researchers. These strategies

vary from making use of unique implications to using circuit topology information.

In spite of the improvements achieved by these strategies test pattern generation still

remains a complex problem and the possibility of further improvements a viable one.

In this report we present an ATPG algorithm, for detecting single stuck-at-faults

in combinational circuits that contain NOT, AND, NAND, OR, NOR, XOR and

XNOR gates. This algorithm is based on a 15-valued logic system and introduces

some novel approaches to make test pattern generation more efficient.

Test generation involves considering the value of a net in the good and the faulty

circuit. This can be done by representing the value of a net as an ordered pair (by, bJ)

where bg(bJ) is the value of the net in the good (faulty) circuit [13]. Thus the value

of a net can be one of the elements of the set U = {(O,O), (0,1), (1,0), (1, I)}. In the

process of generating tests it might not be possible to uniquely specify the value of a

net as one of the elements of U. However, we may already know that a net cannot
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assume one or more of these values. We incorporate this information by defining the

value of a net as one of the 15 non-empty subsets of U. We denote these 15 sets

as 0, 1, D, D, 0/1, OlD, liD, OlD, liD, D/D, O/l/D, O/l/D, O/D/D, l/D/D,

and Oil/DID where 0 = {(O,O)}, 1 = {(l,l)}, D = {(I,D)}, D= {(O,l)} and

"/" denotes set union. Note that U =0/1/D/ D. These 15 values are equivalent to

the elements of the logic system developed by Akers [3] to provide a tool for test

generation. Tables 1, 2 and 3 represent the AND, NOT, and XOR functions in our

IS-value system for the values 0, 1, D, and D. The complete table for all 15 values

can be easily constructed from the given tables by using the set union operation. The

tables for all other logic functions can be obtained from these three tables.

Using this notation we will define a sensitized net as one whose value is either D,

D, or D / D. Furthermore, if all the nets along a path in the circuit are sensitized,

then the path is said to be sensitized. As will be seen later on, this 15-valued system

exploits the linearity of XOR/XNOR gates during test generation. It also allows us

to characterize all restrictions that are imposed by a fault and the particular circuit

path chosen in order to propagate its effect.

There are three distinct phases in the algorithm presented here:

(i) Pre-processing phase (§2). In this phase we construct a set of trees based on

the interdependence of circuit nets. Among other things this forest will be used to

easily identify which circuit nets must be sensitized to derive a test. We also compute

the token vectors which keep track of the parity of inversions between nets. This

information is useful because it can identify which inputs of a gate mayor may not

be simultaneously sensitized.

(ii) Propagation phase (§3). In this phase we deliberately sensitize a single path

from the fault site to a primary output (PO) and find all the resulting deterministic

forward and backward implications. In the process other paths may get sensitized.

Path selection is the only choice made in this phase-implications are based on all the

constraints that must be satisfied in order to sensitize the chosen path. This is possible

because of the completeness of the I5-valued system and the use of deterministic
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implication rules.

(iii) Enumeration phase (§4). In general, the test cube constructed by the prop

agation phase will not yield a test-particularly because no arbitrary choices were

made. Thus there may be gates whose input net values contain combinations capable

of desensitizing the chosen path. In this phase we use an enumeration procedure to

choose values for the primary inputs (PIs) so that such combinations can never occur.

To illustrate the above phases of our algorithm we will consider the fault net 3

s - a - 0 in the circuit of Fig. 1.

In order to make the last two phases more efficient we have developed some speed

up techniques (§5). One is the extension of the contrapositive procedure presented

in SOCRATES [15] for backtracking 0 and 1 values. However, our procedure not

only generates the contrapositive assertions for all 15 values of our system, but also

requires less computation and storage than SOCRATES. TOPS [12] extended the

concept of headlines introduced in FAN [8] by using circuit topology to identify more

nets that have the same independence property and thus their value justification can

be postponed till the last stage of test generation. We will present a procedure, that

not only takes into account the circuit structure but also how it gets modified by

the constraints imposed by the values of a test cube, in order to potentially identify

a larger set of nets whose value justification can be postponed till the end because

they are guaranteed not to cause contradictions. Furthermore, we will show how

backtracking of the values that desensitize the chosen path can help in the selection

of PI values during the enumeration phase.

2 Pre-processing Phase

2.1 Construction of Dominator Forest

The importance of identifying nets that must be sensitized for a fault to be detected

was first highlighted by Akers [3] and later by Fujiwara and Shimono [8]. As pointed

out in TOPS [12], the concept of graph dominators [16] can be used to identify the
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nets which must be sensitized to detect a fault. In the context of test generation we

term the set of dominators of a net m as the set of all nets in the circuit which lie

on every path from net m to any PO. By definition, net m is a dominator of itself;

however, for ease of notation we define D(m) as the set of all dominators of m except

m itself. To account for multiple output circuits the concept of dominator tree can

be extended to that of a forest. We present here a procedure to construct this forest

for a given circuit. This forest will not only be used to compute the dominators for a

particular fault site; but also for the sensitization of subpaths, selection of PIs in the

enumeration phase and generation of the initial list of target faults.

We construct a set of trees such that every net of the circuit corresponds to a

node in one of the trees in the forest. We start by creating as many trees as there are

POs such that each PO corresponds to a root of a tree. However, new trees may be

created during the procedure. Thereafter, each node which has not been marked as

a leaf is inspected and the tree construction is continued as follows:

(i) If the node mi being considered corresponds to the output net of a logic gate G

in the circuit, then every input net of G becomes a child of this node mi- Furthermore,

if the input net is a PI it is marked as a PI leaf. If the input net is a fanout branch

(FOB), then it is marked as a FOB leaf.

(ii) If the node mi being inspected is a fanout stem (FOS), then wait until all the

FOBs corresponding to this FOS have been marked as FOB leaves. Then find the

immediate ancestor of all these FOB leaves. If such an ancestor exists, then make mi

a child of this ancestor node. If it does not, then start a new tree with mi as a root.

In either case, mark mi as an FOS node-if it is also a PI, then it must be marked

as a PI leaf also.

The above procedure is continued until every net of the circuit becomes a node in

some tree of the forest.

The forest construction is based on the following properties:

1. The dominance relation is transitive

2. IT a FOS net mi has ni FOB nets denoted by mil, mi2, . .. ,min" then
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i0, [}d [D(mij) U {mij}] - D(mi)] ·

To prove the above assertion consider a net ml E U7=1 [Uj~l [D(mij) U {mij}] - D(mi)]'

Thus there must exist i and j, 1 ~ i ~ k and 1 ~ j ~ ni, such that ml E

D(mij) U {mij} and ml fI. D(mi). In other words ml is influenced by a FOS net

mi all of whose fanout branches do not reconverge prior to net mi. Thus ml is not

a basis node. Conversely if ml is not a basis node then it must be influenced by

some FOS net(s) all of whose fanout branches do not reconverge prior to net mt.

(a) D(mi) ~ D(mij) Vj = 1,2,. · · ,ni

(b) D(mi) = nj~l D(mij)

3. The output net of any gate G is a dominator for every input net of G

The root of any tree in the constructed forest is either a PO or a FOS. If any tree has a

single node, then this node must either correspond to a PI which is also a FOS net or

a PO which is also a FOB net. The leaves of the trees in the forest correspond to the

checkpoints, i.e., the PIs and the FOBs. Thus our initial list of target faults consists

of all leaves of the trees of the dominator forest and the output of all XOR/XNOR

gates [4]. However, in case any of these target faults are undetectable additional

target faults must be considered [1,7].

The set D(m) contains all the nodes encountered when traversing the tree (in

which m is anode) from m to the root. Recall that m rt D(m).

The "basis nodes," as defined in TOPS [12J, can also be identified easily from

the dominator forest. However, keeping in mind that a node cannot be a basis node

unless all FOS nets that influence it have completely reconverged prior to it, we adopt

a simpler approach of identifying which nodes are NOT basis nodes. Thus, instead

of inspecting each node to verify whether it is a basis node or not, we pick one FOS

net at a time to generate the set of nodes which are NOT basis nodes. Let there be

k FOS nets denoted by mi, i = 1,2, ... , k. Furthermore, let the FOS net mi have

ni FOB nets denoted by mil, mi2, . · . ,mini. The set of nodes which are NOT basis

nodes is given by
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Tracing back paths from net ml to the PIs let mi (1 ::; i ::; k) be the first such

FOS net (i.e. those whose branches do not reconverge prior to net ml) encoun

tered. If there are any other FOS nets between mi and ml then they must totally

reconverge prior to mi. Thus there must be a FOB net mij (1 ::; j ::; ni) corre

sponding to the FOS net mi such that mi E D(mij) U {mij} and mi f/; D(mi). Thus

ml E U7:1 [Uj~l [D(mij) U {mij}] - D(mi)].

Explicit evaluation of the above expression is, however, not necessary. We can

keep track of the basis nodes while constructing the dominator forest. Recall that we

have to identify the immediate ancestor of all the FOB nets corresponding to a FOS

net in order to determine the position of the latter in the forest. If such an ancestor

exists then all nets, excluding the immediate ancestor, that are encountered when

traversing the trees from every FOB net to the immediate ancestor belong to the set

of NOT basis nodes. If such an ancestor does not exist, then all nets encountered

when traversing the trees from every FOB net to the root of its tree belong to the

set of NOT basis nodes. Note that in either case all the FOB nets are also included

in this set. Consequently, all nodes not belonging to this set are basis nodes under

the assumption that there is no net in the good circuit which has a constant value

independent of the PIs.

The dominator forest for the circuit in Fig. 1 is shown in Fig. 2. Note that the

only basis nodes for this circuit are the PIs.

2.2 Selection of Prilllitive D-cube of the Failure

The D-algorithm [14] is initialized by selecting a primitive D-cube of the failure

(pdcf). However, depending on the nature of the fault (s-a-O or s-a-l) and the type

of faulty gate, there could be more than one pdcf. In such a situation an arbitrary

choice has to be made to initialize the algorithm. At this stage we do not want to

make any arbitrary choices because they may result in mistaken decisions causing

costly backtracking and re-computation. We avoid this problem by introducing a

fictitious gate GJ at the site of the fault. If the fault is at net n we introduce GJ
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between net n and a newly created net n f as shown in Fig. 3. We now connect n f to

all nets which were previously connected to n. Accordingly, the unique pdcf depends

only on the kind of stuck-at fault.

n s-a-O

n s-a-l

1 D

o D

Thus in our example we will modify Fig. 1 to include the gate shown in Fig. 4.

2.3 Token Assignment

The goal of this stage is to identify which circuit nets can or cannot be affected by

a fault. In order to convey this information we associate with every net a boolean

token. This token will be TRUE if and only if there exists a path from nf to any PO

which passes through this net. These tokens can be computed by a single forward

pass through the circuit. Table 4(a) shows the boolean token assignment for our

example.

Consider a gate G (not an XOR/XNOR gate) which lies on the path Pi that \ve

deliberately sensitize. Evidently one input of G, say net ml, lies on path Pi and must

have a sensitized value. If this value is D (or D) then our deterministic implication

procedure would eliminate the value D (or D) from the set of values of the other

inputs of G. Consider the situation where net me has the value D/ D and the value

of another input, say net mk, of G contains both D and D. Also let the D and D

at nets mt and mk be due to the value D / D at some FOS net mj that influences

both ml and mk. Furthermore assume that a D (D) at net m( requires a D (D)

at net mj and that a D (D) at net mk requires a D (D) at net mj. Thus net mk

cannot be sensitized. However since the value of net mj contains both D and D \ve

would not be able to arrive at this conclusion using the implication rules alone. This

motivates the introduction of the concept of "sensitization parity" which will help us

in identifying such relationships amongst the sensitized values of different nets. For

ease of explanation we introduce the following definitions:
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Definition 1 Net mj is said to be the sensitization source for net mt with respect

to the fault site n if and only if all paths from net n to net mt pass through net mj.O

Note that the above definition does not necessarily imply that ml E D(n) or that

mt E D(mj).

Definition 2 The path parity of a path Po, not containing any XOR/XNOR gates,

is the parity of the number of inverting gates along Po. 0

As far as XOR (or XNOR) gates are concerned, the count of inversions is depen

dent on the exact inputs and not just circuit structure. Thus the path parity cannot

be uniquely determined by circuit structure alone. The concept of path parity was

effectively used in [2J for fault simulation purposes.

Definition 3 The inversion parity of net mt with respect to net mj is b if and

only if the path parity of all paths from net mj to net ml is b. 0

Definition 4 The sensitization parity of net mt. with respect to net mj is b if and

only if net mj is a sensitization source for net ml and the inversion parity of net ml

with respect to net mj is b. 0

Let us consider again the gate G (not an XOR/XNOR gate) which lies on the

path Pi that we deliberately sensitize. As before let the value of the input net mt

of gate G that lies on path Pi be D/ D and the value of another input, say net mk,

contain both D and D. If the sensitization parity of net ml with respect to net mj is

b and that of mk with respect to net mj is b then net mk cannot be sensitized when we

are trying to sensitize path Pi. Hence we can eliminate both D and D from the value

of net mk. Note that we have excluded G to be an XOR/XNOR gate because the

output of such a gate is sensitized only if it has an odd number of sensitized inputs

which may include both D and D.

In order to take advantage of the information provided by the sensitization parity

we introduce the concept of a token vector of the form [m, b]. If the token vector of net

mh is (mj, b], then b is the sensitization parity of net mh with respect to net mj. To

explain the assignment of token vectors we divide gates (which are not XOR/XNOR

gates) which have at least one input with a token vector and whose output token
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vector has not been assigned into two categories:

(i) Type I: gates for which all inputs with the TRUE token have token vectors.

(ii) Type II: gates for which there is at least one input with a TRUE token but

no token vector.

In our procedure the token vector of the output net of a gate will be defined in

terms of the input token vectors only when all the inputs with the TRUE token have

identical token vectors. Otherwise we will restart the sensitization parity count at

the output net.

Thus the following rules will be used for assigning token vectors for outputs of Type

I and Type II gates:

(Rl) If all the input token vectors of a Type I gate G are identical (say, [m, b]),

then its output is assigned [m, b] if G is noninverting or [m, bEB 1] if G is inverting.

(R2) If a gate G is of Type II or it is a Type I gate such that all its input token

vectors are not identical, then the output net mg of G is assigned [mg,O].

Accordingly, the algorithm for assigning token vectors consists of the following

steps:

Step 1: For every XOR/XNOR gate that has a TRUE token at the output find (us

ing the dominator forest) the first FOS net (say net m s ), if any, that this XOR/XNOR

gate influences.

Step 2: The token vector for every net rna generated by Step 1 is set to [ma,O].

Step 3: If a net which was assigned a token vector in the previously executed step

is an FOS net, then all its FOB nets are assigned the same vector.

Step 4: If there exists a gate of Type I, then assign its output token vector

according to Rl or R2 (as appropriate) and go to Step 3. Otherwise, continue..

Step 5: IT there exists a gate of Type II, then assign its output token vector

according to R2 and go to Step 3. Otherwise, the assignment is complete.

The token vectors generated by the above algorithm, for our example, are given

in Table 4(b).

Note that when the above procedure terminates (termination is due to the finite-
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ness of the number of gates), all the gates (not XOR/XNOR gates) whose output nets

do not have an assigned token vector are those for which no input has an assigned

token vector.

There are two ways in \vhich token vectors can provide information which a deter

ministic implication alone may not. If several inputs of a gate G (not an XOR/XNOR

gate) have identical token vectors, then we may simultaneously sensitize any number

of these inputs. Furthermore, we can never simultaneously sensitize two inputs of G

whose token vectors differ only in their second component.

Note that we initialize the algorithm by assigning token vectors to only the first

FOS net that is influenced by an XOR/XNOR gate ,vhich has a TRUE token. This is

because only an XOR/XNOR gate can introduce a D / D on the sensitized path and

until we reach a FOS net the question of comparing the sensitization parity of t,vo

nets with respect to a common net does not arise.

We will show in Appendix A that our algorithm for assigning token vectors satisfies

the following properties:

Property 1 If the proposed algorithm assigns the token vector [mj, b] to net ml then

b is the sensitization parity of net mt with respect to net mj. 0

Property 2 If the sensitization parity of net mi with respect to net mj is bl and the

algorithm assigns the token vector [m, b] to net mj then it would assign the token

vector [m, b E9 bl ] to net mi. 0

Not all the token vectors generated by the above procedure will be useful-however

their computation was necessary in order to compute the useful token vectors. The

token vector of a net ml may be useful only if it is the input to a gate G (where G is

not an XOR/XNOR gate) which has at least one more input, say net m2, such that

the first component of the token vectors of ml and m2 are identical. Accordingly the

token vector of any net that does not satisfy the above condition can be deleted.

The remaining token vectors after this deletion, for our example, is shown in Table

4(c).
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3 Propagation Phase

In this phase we sensitize a single path from net nf to a PO, however, other paths

may also get sensitized. In a manner analogous to DALG [14] we use test cubes whose

entries reflect the current values of all nets during any stage of test generation. The

entries of any test cube, tCk, are elements of our 15-valued system.

We initialize this phase by constructing tCl in the following manner:

1. Set nets nand nJ to the values specified by the pdcf.

2. Assign D/ D to all nets belonging to the set D(n).

3. Set all nets with FALSE tokens, except net n, to 0/1.

4. Assign 0/1/D / D to all unassigned nets of the test cube.

In our example D(3) = {31, 36, 45}, and the resulting tel is given in Table 5 where

only nets \vhose entries are different from 0/1 and O/l/D/D are shown.

For each test cube tCk generated at any stage of our algorithm we find its corre

sponding "deterministic" test cube, d(tck). We define a d(tck) as one in which no

entry can be changed without making some arbitrary choice(s) in one or more net

values. That is, all unique implications of the net values must be considered. Rules

for forward and backward implication procedures to be used in constructing d(tck)

from tCk are given in Appendix B. If in any d(tcj) we have a sensitized path Pi from

the fault site to any PO, then the enumeration phase is invoked. This test cube,

d{tcj), is denoted as TJ{Pi). The d(tc 1 ) for our example is shown in Table 5. Only

the entries for nets whose values are different from those in tCl are listed. In fact, for

each cube listed in Table 5 only the entries whose values are different from those in

the preceding one are shown.

If d(tc l ) cannot be constructed because contradictions were encountered, then

there exists no test for the fault. Otherwise we have a sensitized path from nJ to all

the FOB nets corresponding to the first FOS node (could be n itself!) encountered in

traversing the appropriate tree of the dominator forest from n to the root. If there is
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no FOS encountered, then we have a sensitized path from n / to the PO corresponding

to the root of the tree.. In our example, since net 3 is an FOS we have sensitized paths

only until its FOB nets, i ..e.. , 14, 15, and 16 ..

At this point we have to select one of the FOB nets, say ml, to extend the

sensitized path .. To obtain tC 2 we should sensitize all nets belonging to the set D(ml)

D(n) by intersecting their values in d(tc l ) with D / D. If any empty intersection

results, then the sensitized path cannot be extended through ml and alternate paths

should be investigated. Note that this step is implicitly performing the equivalent

of the X-path check [10] while setting up which gate outputs should be sensitized.

As stated earlier, we would then construct d(tc 2 ). If contradictions occur while

constructing d(tc 2 ), then an alternate path must be selected. Otherwise we have a

sensitized path from n f to at least the FOB nets corresponding to the next FOS net

or some PO. Assume that we extend the sensitized path in our example through net

16. We use D(16) - D(3) = {21} to construct the tC-;J and d(tc~) shown in Table 5.

We now have sensitized paths till the FOB nets 37, 38 and 39.

The process of extending the sensitized path by selecting a FOB net, constructing

a tCk and its corresponding d(tck) is continued until we reach some PO and have con

structed Tj(Pi). If contradictions occur, then alternate paths should be investigated.

If all possible paths give contradiction, then no test exists. Note that all possible sin

gle paths need not be explicitly investigated to arrive at this conclusion-for example,

if all paths from net n to any net m E D(n) gives contradictions, then we can conclude

that no test exists. Proceeding ,vith our example, let us extend the sensitized path

through net 39. Since D(39) - D(36) = {42, 43}, the tCa shown in Table 5 results.

Since the token vectors of nets 40 and 43 are [36,0] and [36,1], respectively, these nets

can never be simultaneously sensitized. Thus net 40 must be set to 1. However, the

attempt to construct d(tc3 ) fails as shown in Table 5. Thus we go back to d(tc-;J) and

choose another path-say through net 37. The resulting tC4 and d(tc4 ) are shown in

Table 5. Note that we could set the required value 1 at net 43 in d(tc4 ) only because

of the use of token vectors. We now have a sensitized path (say PI) from 3/ to a PO,
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and thus d(tc4 ) is Tj(Pl).

Note that Tf(Pi) represents all the constraints that must be imposed to sensitize

path Pi. Since the backward implication rule does not make any arbitrary choices,

there may be gates where the output value is a proper subset of the value implied

by the input values, i.e., the input values include combination(s) that will desensitize

path Pi. In view of this fact we introduce the following definition. If, in a deterministic

test cube d(tCk), the value of the output net m of a gate G is a proper subset of the

value implied at the output by the input values, in d(tck), of G then net m is said

to be a variant net in d(tck). If a net is not variant it is defined to be invariant in

d(tck). In our example the only variant net in Tj(Pl) is net 30.

If all the nets in the circuit are invariant nets in Tj(pi) then the specified primary

inputs in Tj(Pi) represent all the requirements that must be satisfied by any input

pattern that detects the fault f by sensitizing path Pi. In general, however, not all

nets in Tj(pi) will be invariant. In such a situation there exists an assignment of

the unspecified primary inputs (i.e., inputs with the 0/1 value) in Tj(Pi) which will

desensitize path Pi. In order to obtain a test from Tj(Pi) we must convert all variant

nets to invariant ones by specifying one or more of these primary inputs. Moreover,

the new deterministic test cube obtained by specifying these primary inputs in Tj(pi)

should result in net values that are subsets of their corresponding values in Tj(Pi) for

all the nets of the circuit. This condition is required to prevent the setting of primary

inputs in such a way as to result in a disallowed value at a net that was variant in

Example 1. Consider the circuit of Fig. 5 with a s-a-O fault at net 3. Denote

by Pl the unique path from the site of the fault to the primary output. The resulting

Tj(Pl) is shown below.

I 1

0/1

2 3 31 4 5 I
a/lID 0 D

Note that net 4 is a variant net in Tj(Pl). If the unspecified primary inputs in

Tj(Pl) (i.e., nets 1 and 2) are both set to 1, then the path from the fault site to the
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output is desensitized. 0

We re-emphasize that conversion of variant nets to invariant ones will always

involve some arbitrary choice(s). This is because all deterministic choices have been

taken care of by the forward and backward implication rules. Different approaches

can be adopted to make choices that will convert all variant nets in TJ(Pi) to invariant

ones with values that are subsets of the corresponding net values in Tf(Pi) for all the

nets of the circuit, provided there exists an input pattern that sensitizes path Pi.

In this report we will follow an enumeration procedure, to be discussed in the next

section, to make these choices in order to derive a test. In Appendix G we will present

an alternate procedure which is similar to line justification of DALG [14].

4 Enumeration Phase

The goal of this phase is to obtain a test by specifying the unassigned PIs in T/(Pi)

such that all nets are invariant in the resulting deterministic test cube and have values

that are subsets of their corresponding values in TJ{Pi).

We choose an unspecified primary input lit in TJ(Pi) and assign a logic value (0 or

1) to it, thereby creating a new test cube which we denote by tCJ(Pi, 1). Now we find

its corresponding deterministic test cube d(tCJ(Pi' 1)) and update its list of variant

nets (note that new variant nets may be created). However if d(tCJ(Pi, 1)) cannot be

obtained due to some contradiction, then we complement the entry for III in tCJ(Pi' 1)

and construct its corresponding d(tCJ(pi' 1)). IT this also leads to a contradiction,

then there exists no test corresponding to TJ(Pi). IT we are successful in constructing

d(tCJ(Pi' 1)), we assign a logic value to some other unspecified primary input 112 ,

thereby creating tCf(pi' 2). As before we must construct d(tCJ(Pi' 2») and update

its list of variant nets. This procedure is continued and we traverse the decision tree,

in a manner analogous to PODEM [10], until one of the following two conditions

occur:

• The list of variant nets corresponding to some d(tCJ(Pi,j)) becomes empty.
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• The decision tree is exhausted, i.e. no test exists.

If the procedure is terminated because the former condition is satisfied, then the

values of the PIs in d(tc j(Pi' j)) represent test(s) for the fault. To derive test patterns

for the fault we would then assign either 0 or 1 to those PIs in d(tCj(pi,j)) which

have the value 0/1.

We now continue with our example for the fault net 3 s - a - 0 in the circuit of

Fig. 1. As stated earlier, net 30 is the only variant net in T f (P1). By inspecting the

dominator forest we notice that nets 7 and 8 are the PIs which are "closest" to net

30. We thus start by setting net 7 to O-however, this does not change the value of

any other net. We continue by setting net 8 to O--once again no new changes result.

We now use the dominator forest to reach the FOS net 24 and thus determine that

nets 2 and 5 are the next "closest" PIs. We could, for example, set net 2 to O-the

only resulting change is a 0/D at net 22. Net 30 is still the only variant net, so we

now set net 5 to o. This changes the value of net 23 to 0 and that of nets 24, 25, 26,

27, and 28 to 0/D. Also, all nets are verified to be invariant and have values that are

subsets of their values in Tj(Pl)' thus a test has been generated.

Since the conversion of variant nets to invariant ones is the key to generating a

test from Tf(pi) it is useful to keep track of nets which are variant in the process

of constructing Tj(pi). This would avoid the unnecessary checking of every net as

variant or invariant after Tj(Pi) has been constructed. Note that if a net is invariant

at some stage of generating a test for a fault it will not become variant unless a new

backward implication (with a value which is a proper subset of the existing value) is

made for the net.

We will show in Appendix C that the test generation procedure presented in this

report is an algorithm.

The algorithm described so far can be substantially improved by the introduction

of several speed-up techniques which we discuss in the next section.
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5 Speed-up Techniques

5.1 Use of the Contrapositive

In this subsection we will discuss how checking for contrapositive assertions during

the pre-processing phase can be used as an effective speed-up technique. The use

of the contrapositive to reduce the search space was first suggested by Schulz, et.

al., in SOCRATES [15]. However, the procedure presented in SOCRATES can only

be used to backtrack the value a or 1. We present here a procedure that can not

only generate the contrapositive assertions for all 15 values of our system, but also

requires less computation and storage than SOCRATES. The contrapositive of the

logic expression P ===} Q is the equivalent expression ,...., Q ===}'" P. Referring to

the circuit of Fig. 6 we notice that X3 = 0 ===} Z = O. Hence the contrapositive

would yield Z = 1 ===} X 3 = 1. However, if we require the value 1 at Z given that

all other nets have the value 0/1, no deterministic change would be implied by the

back,vard implication procedure alone. Note, however, that in some cases a backward

implication will yield the information provided by the contrapositive property. For

example, X3 = 0 ===} Y4 = 0 yields Y4 = 1 ===} X 3 = 1. However, a backward

implication of Y4 = 1 yields a 1 at X 3 , X 4 , and Xs. Hence it is useful to identify the

conditions under which a backward implication cannot yield the information provided

by a contrapositive assertion. In such cases we may store this information for possible

use later in the test generation process.

In our 15-valued system, assume that the forward implication of a value L 1 at net

fit with 0/1/D/D at all other nets yields the value L2 at net m2. Thus when we

require a value L~ <;;((O/1/D/D)-L2 ) at net m2, then the value of net ml cannot

contain any element of Lt. To obtain the implications for all possible values of L1 we

only need to perform implications for each individual element of 0/1/D / D. Thus the

procedure to obtain the implications for the I5-valued system, henceforth referred to

as 15-VP, would be to set the value of net m1 to each of the values 0, 1, D and D,

one at a time and with 0/1/D/ D at all other nets, and observe the implied value at
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net m2. Each such implication is referred to as a 15-VP "experiment." We will show

that the information yielded by 15-VP can be obtained from a simpler procedure

that utilizes a 3-valued (0, 1,0/1) logic system. In this procedure, which we denote

as 3-VP, we set the value of net ml to each of the values 0 and 1, one at a time

and with 0/1 at all other nets, and observe the implied value at net m2. Each such

implication is referred to as a 3-VP experiment. For ease of explanation we define the

values 0 and 1 as "singleton" values. Table 6 shows the nine possible combinations of

values obtained by 3-VP at net m2 when the values a and 1 are applied at net mt.

Note that cases (ii) and (iii) show that net m2 has a constant value independent of

the circuit inputs. As a consequence, at least one of the stuck-at faults at net m2 is

undetectable. Cases (iv) and (v) simulate a wire and an inverter between nets ml

and m2, respectively_

The following theorems, whose proofs appear in Appendix F, establish the rela

tionship between the results of a 3-VP experiment and the corresponding 15-VP

experiment.

Theorem 1 If a 3-VP experiment yields a singleton value at net m2, then the

corresponding 15-VP experiment yields the same singleton value at this net.

o

Theorem 2 IT a 3-VP experiment yields the value 0/1 at net m2, then the corre

sponding 15-VP experiment yields the value 0/1/D/ D at this net.

o

Consequently Table 7 is obtained from Table 6 when a 0 and 1 implication is

performed in 15-VP. We now show that the information yielded by 15-VP can be

obtained from that yielded by 3-VP. We do this by illustrating how Table 7 can be

used to obtain the implications due to a D or a D at net mI- Note that a D at net

ml corresponds to a change in value of net ml from a 1 to a o. Thus, to obtain the

implied value at net m2 due to a D at net ml we only need to know the value at net

m2 due to a 1 and a 0 at net ml in 15-VP.
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Consider the situation where a 1 and a 0 at net ml yields a 0 and 0/1/D / D,

respectively, at net m2. Thus, with a 0 at net mt we can obtain both 0 and 1 at net

m2. Therefore, with a D at net ml we can only obtain a 0 or a D at net m2. Under

the same conditions, by similar reasoning, a D at net ml can only yield a 0 or a D

at net m2. Analogously, we can inspect the other cases to generate the implications

of a D or D at net mI. Table 8 summarizes our results and shows how the 15-VP

table can be obtained from the 3-VP table.

We now discuss the conditions under which the information yielded by a contra

positive assertion cannot be obtained by a deterministic backward implication alone

and hence should be stored for future use. We will first derive these conditions for

the 3-VP implications and then discuss what additional information from the 3-VP

experiments need to be stored in order to obtain the contrapositive assertions for our

15-valued system.

Consider the situation where a singleton value L1 at net ml yields, using 3-VP, a

singleton value L 2 at the output net m2 of a gate G. The corresponding contrapositive

assertion should be stored if and only if the value L2 can be obtained at the output of

G by setting all its inputs to non-controlling values. Consequently, Table 9 shows the

L 2 and G combinations for which this implication should be stored for future use. In

general, for the cases that satisfy the (L 2 , G) combinations given in Table 9 we ,viti

not be able to drop £1 from the set of all possible values at net ml when we require the

value L2 at net m2 by using only the backward implication procedure. We now sho\v

that the stored contrapositive assertions in 3-VP and the deterministic backward

implications rules would yield all the other contrapositive assertions in 3-VP.

From the given condition if a 3-VP implication is not stored, then the value L 2 can

be obtained at the output of G by setting at least one of its inputs (say net mj) to a

controlling value. From Lemma 3 of Appendix F we know that this 3-VP experiment

creates a path (say PI) of singleton values from net mt to net mj. Furthermore, if

the singleton value of any net on this path is a non-controlling value for the gate Gi

it drives, then this experiment sets all inputs of Gi to non-controlling values. Let us
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consider the two possible ways this could happen:

(i) in path Pl all nets have values that are controlling values for the gates they

drive. Thus when we require L 2 at net m2 we can, by backward implication, change

the value of all these nets to non-controlling values for the gates they drive. This

would set the value of net mt to Lt.

(ii) In pa~hPI there exists gates Gi such that the value L1 at net ml sets all inputs

of these gates to non-controlling values. Thus using Table 9 the implication of the

value obtained at the output of G i due to the value L 1 at net ml would be stored for

future use. When we require L 2 at net m2 we can, by backward implication, change

the value of all the nets on path Pl to non-controlling values for the gates they drive

until we reach one of the gates Gi . However, we can use the contrapositive assertion

from the stored implication for gate Gi to conclude that net mt must be set to L1 •

We now present a procedure which, when incorporated into the pre-processing

phase, can derive all the contrapositive assertions for our 15-valued system.

1. Construct two test cubes tcoo and teO! in which the values of all nets of the

cireuit are set to 0/1.

2. In tcoo (tCOl ) change the value of net ml, where ml is a FOS net , to the

singleton value Lt (L1 ) and perform a forward implication of this value.

Let L2 (L 3 ) be the implied value at the output net m2 of gate G.

3. If both L2 and L3 are singleton values, then both these implications (L t at

ml ===} L 2 at m2 and L l at mt ===} L3 at m2) need to be stored.

4. If only one of the values (say L2 ) is singleton and this value L2 and the gate G

happen to be one of the combinations listed in Table 9, then this implication

(L1 at mt ===} L2 at m2) should be stored.

5. Repeat steps 1-4 for all FOS nets.

The "learning procedure" presented in SOCRATES [15] performs the 0 and 1

implications for all nets of the circuit. However, we have reduced the amount of
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computation and storage requirements by performing the implications for only FOS

nets. It is easy to show that the information for all other nets can be derived from

this because of the deterministic nature of our backward implication procedure.

The contrapositive assertions in the 15-valued system corresponding to the impli

cations stored by the above procedure can be generated using Table 8. So, it has to

be shown that if any implication was not stored by the above procedure, then either

its corresponding contrapositive assertion yields no information or the information

yielded can be derived by using the stored contrapositive assertions and the back

ward implication rules. The former situation refers to the trivial case when both L2

and L3 are 0/1. The latter situation refers to the case where only one of L2 or L3

(say L2 ) is singleton and (L 2 , G) is not one of the combinations listed in Table 9. We

will prove this by discussing one possible (L2 , G) combination-all other cases can be

proved analogously.

Consider the particular case where a 0 at net ml implies the value 0 at the output

net m2 of an AND gate G and a 1 at net ml implies the value 0/1 at net m2. Thus

if we had stored this implication we could have generated the implications (D at net

ml ===? 0/D at net m2) and (D at net ml ===? 0/D at net m2) using Table 8 (see

Case (vi)). Consequently, if \ve had, for example, required the value 1/D at net m2,

then by the contrapositive of the assertions (0 at net ffil ===> 0 at net m2) and (D

at net ml ===? 0/D at net m2) we would update the set of values L of net ml to

L' = (L-(O/ D)). We will show that L' can be obtained by the stored contrapositive

assertions and the backward implication rules. Since the required value at net m2

does not include 0, then from Theorem 1 and the argument presented to justify what

values should be stored by 3-VP we would eliminate the value 0 from the set L. Note

that a D at net m2 implies a change in the value of net m2 from 0 to 1. This value

of 1, by the stored contrapositive assertions and the backward implication rules, will

imply that the value of net ml cannot include a 0 or a change to o. Thus the values

o and D (which represent a change from 1 to 0) will be eliminated from the set of

values of net ml by the backward implication procedure and the stored contrapositive
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assertions. Hence we will obtain L' = (L-(O/D)).

5.2 Conditional Headlines

TOPS [12] extended the concept of headlines introduced in FAN [8] by using circuit

topology to identify more nodes whose value justification can be postponed until the

last stage of test generation because they are guaranteed not to cause any contradic

tions. However, none of these schemes take advantage of the additional restrictions

imposed by a particular fault. These restrictions might identify a potentially larger

set of circuit nets whose value justification may also be postponed.

Let the output net ml of a gate G have the value 0/1 or be a variant net with a

singleton value in d(tCJ(Pi' k)) (a deterministic test cube obtained at some stage of

the enumeration phase). Consider the tree T which is a subgraph of the dominator

forest and whose root is net ml. From T construct another tree T1 by deleting all

the subtrees of T whose roots mk, mk =I ml, correspond to FOS nets. Note that T1

corresponds to the largest fanout-free subcircuit whose output is net ml and whose

inputs are FOBs and/or PIs. Net ml is defined to be a conditional headline if and

only if all the nets corresponding to the FOB nodes in T1 have singleton values in

d(tcf(Pi' k)).

We now show that if net ml is a conditional headline, then it can be set to either

of the singleton values 0 or 1, subject to the condition that the values, as required

by d(tCJ(Pi,k)), of all the FOB nodes in T1 can be satisfied. Note that if ml is a

conditional headline, then T1 satisfies the following properties:

(i) The values in d(tcf (pi, k)) of the nodes in T1 can only be 0, 1, or 0/1. This is

because if the value of any node includes either D or D, then this must be due to a

fault at node mt which belongs to T1 since all FOB nodes have singleton values. But

ml E D(mt), and hence ml would have a sensitized value.

(ii) At least one leaf of T1 is a PI net whose value in d(tcJ(pi, k)) is 0/1. This is

because either ml is a variant net or has the value 0/1.

Consider a node mj in T1 which has a singleton value and whose parent node has
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the value 0/1 in d(tcf(Pi' k)). Note that the value of mj is a non-controlling input

value for the gate Gj it drives since d(tCJ{Pi' k)) is a deterministic test cube. If we

delete from T1 all the subtrees which have any such mj as a root, then the remaining

tree corresponds to a fanout free circuit whose output is net ml and whose inputs

have the value 0/1 in d{tCJ{Pi' k)). (Note that if Gj is an XOR/XNOR gate, then

we must complement the function performed by Gj if an odd number of inputs of Gj

with the value 1 were deleted from T1 .) Thus any required singleton value of net m1

can be satisfied by specifying the unassigned PIs in T1 subject to the condition that

the values of the FOB nets in T1 can be satisfied. Note that this assignment does not

interfere with the requirement of other variant nets since ml is a dominator for all

these PIs.

5.3 Backtracking Desensitizing Values

In this subsection we discuss how backtracking the desensitizing value from variant

nets may help speed-up the enumeration process. Consider the output net ml of a

gate G1 which has the value L1 and is a variant net in d(tCJ(Pi' k)), a deterministic

test cube obtained at some stage of the enumeration phase. Let L~ be the value

implied at net ml by the values in d(tCJ(Pi' k)) of the inputs of G1 . We construct

a new test cube d'(tcf(Pi, k)) which is identical to d(tcf(Pi' k)) except that net ml

has the value L~ - Lt. Note that the value L~ - L1 at net ml desensitizes path Pi.

Using d' (tcJ(Pi, k )) we backtrack the value L~ - L1 at net ml by applying only the

backward implication rules and the stored contrapositive assertions and observe the

nets whose values change in the process. Let mj, 2 ~ j :5 J, be the nets where this

backtracking terminates. Note that mj is either a PI or the output of a gate whose

input values do not change during this process. Also, let Lj,2 :5 j :::; J, be the new

value obtained at net mj by the above procedure.

Since the value L~ - L 1 at net ml implies that the value of net mj is Lj, we know

from the contrapositive principle that, for any j, 2 ~ j $ J, if the value of net mj

does not contain any of the values in the set Lj, then the value at net ml will not
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contain any of the values in the set L; - L 1 and hence ml will become an invariant

net. A sufficient condition to make ml an invariant net without interfering with the

requirements of other variant nets is that there exists some mj such that ml E D(mj)

and mj is a basis node. If mj is not a basis node but is a conditional headline in

d(tCj(pi' k)), then net ml can still be made invariant by removing the value Lj from

the set of values of net mj, provided the conditions that make net mj a conditional

headline are satisfied.

5.4 Selection of Alternate Sensitizing Paths

Suppose that it is not possible to generate a test from Tj(Pi). This means that there

exists no test for the given fault f that sensitizes path Pi. We now have to select

some Tj(pj), if any exists, to generate a test for the fault. The following theorem

may be helpful in deciding whether there exists a test for the fault that sensitizes

path Pj.

Theorem 3 . If the value of every net in Tf(pj) is a subset of the corresponding value

in Tj(pi) (denoted by Tj(Pi) ~ TJ(Pi)) and there is no input pattern that sensitizes

path Pi, then there is no input pattern that sensitizes path Pi.

Proof. (By contradiction.) Assume that there is an input pattern I that sensi

tizes path Pj. Since Tj(pj) imposes only those restrictions that must be satisfied by

any input pattern that sensitizes path Pj, then values of all the nets of the circuit in

the presence of input I must be subsets of their corresponding values in TJ(pj). Since

T/(pj) ~ Tj(Pi), then the values of all the circuit nets in the presence of input I must

be subsets of their corresponding values in TJ{Pi). Thus I satisfies all the restrictions

imposed by TJ(Pi) and hence it sensitizes path Pi, which is a contradiction. 0
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6 Examples

Example 2. Let us reconsider the circuit of Fig. 1 with the fault net 3 s - a - 0

to highlight the improvements obtained by the speed-up techniques. The resulting

test cubes are shown in Table 10. Notice that tCl is identical to that in Table 5.

However, the ne\v d(tc l ) is different because the use of the contrapositive assertion

and the value of net 30 drops the value 1 from net 24 which has further deterministic

implications. When the sensitized path is extended through net 16 further use of the

contrapositive drops D from the value of net 24 and more deterministic changes occur.

Since net 42 has the value 1 in d(tc2 ) the attempt to sensitize the path through net 39

leads to a contradiction in the construction of tC3 and the unnecessary computation

for the construction of d(tc3 ) is avoided. As before, we now extend the sensitized

path through net 37 and obtain d(tc4 ) as shown. The only variant net is net 30 and

its desensitizing value is 1. Using the procedure explained in §5.3 we backtrack the

value 1 at net 30 to get the value 1 at nets 7 and 8. Since both nets 7 and 8 are

basis nodes and 30 E (D(7) n D(8)), then removing the value 1 from either net 7 or

8 would give a test for the fault. 0

Example 3. Consider the class of circuits shown in Fig. 7 with the fault net 3

s - a - o. Note that the ECAT circuit considered by Goel to illustrate the efficiency

of PODEM [10] is an element of this class. Using D(3) = {5,7} we construct tel as

shown below where all other nets have the value 0/1.

1

0/1

2

0/1

3

1 D

4

0/1

5

DID

6

0/1

7

DID

The deterministic test cube d(tc l ), corresponding to tCl' is then constructed and the

values for nets 1 through 7 are shown below. The values of all other nets remain

unchanged at 0/1.

1

1

2

1

3

1 D

4

0/1

24

5

D/D

6

0/1

7

DID



The only nets whose values change in the construction of d(tel) are 1 and 2.. Since

we have a sensitized path from 3f to the PO and there are no variant nets, a test has

been generated .. Note that the algorithm specifies only the value of PI nets 1 and 2

because it takes full advantage of the linearity of XOR gates.. 0

Example 4. In this example we illustrate the use of conditional headlines .. Con

sider the circuit in Fig .. 8 whose only basis nodes, other than the PO, are the PIs ..

The only possible Tj(Pl) for the fault net 2 s - a - 0 is shown below where all other

nets have the value 0/1 ..

1

1

2

1 D

3

1

11

1

12

1

23 32

D

34

o
35

D

Net 34 is the only variant net and its desensitizing value is 1. Thus we backtrack

the value 1 from net 34 which sets nets 31 and 33 to the value 1.. The use of the

contrapositive sets the value of nets 20 and 24 to 1.. It can now be verified, using the

procedure of §5.2, that net 24 is a conditional headline and net 20 is not .. Furthermore,

the only condition required for net 24 to have the same independence property as a

headline is that the value 1 at net 12 be satisfied. This condition is already met

because net 3 is a PI. Thus the required value 0 at 24, which makes net 34 an

invariant net with the value 0, can be met by specifying the PI nets 4, 5 and 6. 0

7 Conclusions

We have presented a 15-valued ATPG algorithm that introduces several new concepts

to make test generation more efficient. It is the only algorithm that takes into account

all the deterministic implications of sensitizing a path prior to the enumeration pro

cess. The resulting ability to identify inconsistencies prior to enumeration improves

the possibility of quicker identification of redundant faults. Instead of sensitizing a

single gate at a time, we sensitize subpaths by sensitizing all gates lying between suc

cessive FOS nets, thereby reducing the number of times deterministic test cubes have

to be constructed .. OUf algorithm exploits the linearity of the XOR/XNOR gate and
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also shows how use of the sensitization parity can speed-up test generation for circuits

containing such gates. The speed-up techniques introduced are based on both circuit

topology and the net values that must be satisfied to sensitize the chosen path. We

have also shown how use of the desensitizing values can guide the selection of PIs in

the enumeration phase. The contrapositive assertions for our 15-valued system was

obtained from a simple procedure that uses a 3-valued system and performs impli

cations for FOS nets only. We emphasize that the different aspects of the algorithm

discussed above owe their efficiency to the strength of the 15-valued system used.

We have also shown how the dominator forest of a circuit can be effectively used in

several phases of test generation.

Since we allow D/ D as a possible sensitized value we can perform sensitization

of subpaths starting from different FOS nets in parallel. Parallelism can also be

exploited in the enumeration phase because the conditional headlines will identify

subcircuits that can be processed independently.
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Appendix

A Proof of Properties in §2.3

In this appendix we will prove the properties of the algorithm, for assigning token

vectors, that were presented in §2.3.

Proof of Property 1 This property is a consequence of the following features of

the algorithm for assigning token vectors:

(i) The token vector of all nets on any path between nets mj and mt must have

been assigned using Rl. As a consequence any path from net n to net mt must pass

through mi.

(ii) Consider a path between nets m q and m r such that for all gates lying on this path

the only input with a TRUE token is the input that lies on this path. If the token

vectors of two nets lying on this path are [mt, bl ] and [mt, b2 ] respectively then the

path parity of the subpath between them is b1 EB b2 •

o

Proof of Property 2 Since the sensitization parity of net mi with respect to net

mj is b and net mj has an assigned token vector, then all nets on any path from net

mj to net ml must have TRUE tokens and there exists no XOR/XNOR gate on any

of these paths. Thus the algorithm will assign a token vector to net mi. lvVe no\v

show by contradiction that the algorithm assigns the token vector [m, b E9 bt ] to net

mi. Assume that the first component of the token vector assigned by the algorithm

to net ml is different from m. Thus there exists at least one gate G on a path from

net mj to net ml whose token vector at the output is [m', b'] where m' =f m and

which has at least one input with a token vector whose first component is m. Thus

the algorithm must have assigned the token vector at the output of G using R2. This

can only happen in one of three ways listed below:

(i) The first component of the token vector of some input of G is different from m.

(ii) There is an input of G which has a TRUE token but no t.oken vector (i.e. the
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algorithm identifies G as a Type II gate).

(iii) The algorithm identifies G as a Type I gate in which all inputs with TRUE tokens

have token vectors whose first component is m but not all second components are

identical.

Case (iii) above implies the existence of two distinct paths, Pa and PP, from net

m to net ml with different path parity. Since net mj is a sensitization source for net

ml, then these paths must pass through net mj. Since the token vector of net mj is

[m, b], all paths from net m to net mj must have the path parity. Hence there exists

two distinct paths from net mj to net mt which have different path parity. This is a

contradiction because the sensitization parity of net ml with respect to net mj is b.

"Ve now show that Case (ii) cannot occur. Select the input of G which has a

TRUE token but no token vector. Thus there exists a path from net mj to this input

such that all nets on this path have TRUE tokens but no token vector. (This is

because the assignment of token vectors to output of Type I gates have priority o\'er

that for Type II gates.) This is a contradiction because net mj has a token vector.

Thus it remains to be shown that even Case (i) cannot occur. Select the input

of G whose first component of the token vector is different from m. Since we have

shown that Case (ii) and (iii) cannot occur, then there must exist a path from net

mj to this input such that the first component of the token vectors of all the nets on

this path are different from m. This is a contradiction because the token vector of

net mj is [m, b].

Thus the algorithm assigns m as the first component of the token vector of net mi

The fact that the algorithm assigns b EB hI as the second component is a consequence

of Property 1. 0

B Construction of Deterministic Test Cubes

In a d(tCk) all deterministic implications (no arbitrary choice) of all entries of the

test cube tCk are fully considered. For example, if the output of an AND gate is
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0/1/D / D and one of its inputs changes to 0/D, then, irrespective of the other inputs,

the output is changed to 0/D.

To construct d(tel) from tel we perform backward and forward implications of

all nets whose values in tel are different from 0/1 and 0/1/D / D and all other nets

whose values change during this implication process. In the general case, when ,ve

are constructing d(tCk) from tCk, we start by considering the forward and backward

implications of the nets whose values in tCk are different from those in the last suc

cessfully constructed deterministic test cube and that of all other nets whose values

change during this implication process. During the construction of d(tck) from tCk,

if a backward or forward implication request results in a new value L~ for any net mj

of the circuit, then we should update the corresponding net entry L j by setting it to

Lj n L~. If this intersection yields the empty set then d(tck) cannot be constructed.

In order to obtain d(tck) the process of forward and backward implications should

be continued until no more changes occur in the values associated with any net. Note

that this process ,viII terminate in a finite number of steps because we are performing

set intersection on finite sets.

The rules for constructing deterministic test cubes must include the provision for

appropriately handling the values of nets associated \vith fanout points and should

also take into account the information provided by the token vectors. We now present

the rules for forward and backward implication.

B.l Forw-ard IInplication

The process of forward implication of the values associated with every net is done

with the help of Tables 1, 2 and 3. These tables are a generalization of the truth tables

of the respective gates. For gates with more than two inputs the method adopted is

similar to that used by Akers [3]. We view every gate as being constructed out of 2

input gates and use the existing values at the inputs of a gate to generate a new value

for the output. Depending on the gate in question, appropriate tables are used. Note

that the three tables are sufficient because OR, NOR, and NAND functions can be
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derived by appropriately using Tables 1 and 2, whereas Tables 2 and 3 can be used

to generate the XNOR function.

Suppose we are performing forward implications due to change(s) in input(s) of a

gate G whose output is net m. Let Lo be the set of values associated with net m in

the test cube prior to forward implication being performed. Also let LN be the value

obtained at net m by using the ne\v values of the inputs of G. Net m will then be set

to Lo n LN unless Lo n LN = 0 which implies a contradiction. Four other situations

are possible:

1. Lo = LN. No further action is needed for this forward implication.

2. LN C Lo (proper subset). We now have to consider the forward implication of

the value of LN at net m on all gates driven by G.

3. Lo C LN - We now have to perform a backward implication of the value La at

net m. This may result in further changes in the inputs of gate G.

Example 5. An example of the situation where Lo C LN is shown in Fig. 9.

If input A of gate G is changed from 0/1 to 1, then forward implication using

Table 1 would yield L N = 0/1. Since L o C LN , we now perform a backward

implication of the value 0 at the output of gate G. It will be clear from Appendix

B.2 that this backward implication yields a 0 at input B. 0

4. Lo ~ LN and LN ~ La. Both forward and backward implications of the value

Lo n L N at net m should be performed.

Example 6. An example of the situation where La ~ LN and LN ~ Lo can

be seen from the incompletely specified circuit of Fig. 10. Assume that at some

stage of test generation we have the following d(tck).

9

1

0/1

10

2

D

11

3

D

4

D

12

5

0/1

13

6

0/1

14

7

0/1

15

8

liD

16

OlD 0/1 OlD DID
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The value at net 14 is Lo = 0/D. If we now extend the sensitized path through

net 4 by setting nets 5, 6 and 7 to 1 then forward implication would yield the

value LN = 1/D at net 14. Hence Lo n LN = D, Lo %LN and LN %Lo. 0

B.2 Backw-ard IIllplication

The process of backward implication involves determining the changes required at

the inputs of a gate in order to satisfy a requested change at the output. A change

in the value of a net will mean that one or more possible values associated with the

net has been deleted. In that sense an input change can be made only if the deleted

value can never be used with the existing values at the other inputs to generate any

of the requested output value(s).

Example 7. Consider a t\vo-input AND gate whose values at inputs and output

is 0/D. If we require that the output be changed to 0, we cannot change any of the

inputs because all the input values can be used in some input pattern to generate a

o at the output. 0

A general set of backward implication rules can be derived in terms of the input

values and the requested output value. However, in a manner similar to that presented

in [3] we consider each multiple input gate as a cascade of two input gates. The

backward implication rules for a two-input AND gate is shown in Table 11. Note

that the element 0 has been included in this table to detect an unsatisfiable backward

implication request. The complete table for all 15 values is obtained by the set

union operation. The resulting table is equivalent to that proposed by Akers [3]. To

perform back\vard implication for a two-input AND gate ,ve reference the table using

the requested value at the output and the existing value at one input to generate

the value of the other input. Since the XOR gate is linear, Table 3 can be used for

backward implication also. Thus Tables 2, 3 and 11 can be used to perform back,vard

implication for any two-input gate. Irrespective of the gate in question, the value

generated by the appropriate table must be intersected with the existing value of the

input to generate the new value of the input. Analogously, the new value of the input
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and the requested value of the output must now be used to generate the new value of

the other input. For example, consider a 2-input gate whose input values are L1 and

L2• If the requested value of the output of the gate is La, then we use La and L1

to determine the new value L; of the second input and then L; and LG to determine

the new value L~ of the first input.

Example 8. Consider the two-input AND shown in Fig~ lI(a). Initially, input

A has the value 0/D / D, input B has the value 0/1/D, and the output has the value

0/D / D. If we require a D at the output, then the backward implication process using

Table 11 and values of C and A would yield a 1/D at B. That, intersected with its

existing value of 0/1/D, yields 1/D~ (See Fig~ 11(b).) Now a backward implication

of a D at C with a 1/D at B yields 1/D at A~ This value of A intersected with the

existing value ofO/D/D results in a D at input A. (See Fig. 11(c).) 0

As stated before, any gate with more than two inputs will be represented as a

cascade of two-input gates. Consider an n-input gate G represented as a cascade of

(n-l) two-input gates G1 , G2 , ••• , Gn - 2 and Gn - 1 , with net numbers as shown in Fig.

12~ Assume that the values at nets 1,2, ... , n are Xl, X 2 , ••• ,Xn respectively. vVe

first use forward implication of these values to compute Yi, Y2, . .. ,Yn-2, the values

of nets n + 1, n + 2, ... ,n + (n - 2) respectively. Then using the value Z, which

is the required value at the output of gate G, we apply the backward implication

rules for gate Gn - 1 to obtain Zn-2 and X~, the new values of nets n + (n - 2) and

n respectively. Having done that, we proceed backwards and apply the backward

implication rules for all the gates, one at a time, ending with gate G t . Since the

binary operation represented by any logic gate is associative, the order in which the

inputs Xi are cascaded is irrelevant.

It will be shown in Appendix D that the above procedure will stabilize in a single

pass, unlike the approach followed in [3] which may require several passes.

Example 9. Consider the 3-input XOR gate G shown in Fig. 13(a) with

associated net values. Assume that we request the value D at net 5. We now view

gate G as constructed out of 2-input gates Gt and G2 as shown in Fig. 13(b). The
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values of nets 1 and 2 are first used to compute the value 0/1/D / D at net 4. By

using Table 3 and the requested value D at the output of G2 we obtain the value 0/1

at net 4, but the value of net 3 remains unchanged. By requesting a 0/1 at net 4 we

obtain a D/ D at input net 2, and the value of net 1 remains unchanged (See Fig.

13(c)). 0

Note that in Example 9 the value of the intermediate net 4 does not have to be

sensitized in order that the overall gate output be sensitized. This can only happen

for XOR/XNOR gates.

From the discussion on backward implication it should be clear that it is not

always possible to make changes at the inputs of a gate G such that the new value

of the inputs yield exactly the requested value at the output of the gate (in Example

9 the new values of the inputs produce a D / D at the output of G). In Appendix D

it is shown that the requested value LG at the output is always a subset of L'a, the

value at the output implied by the new values of the inputs obtained by the backward

implication procedure.

C Proof of Algorithm

We will now sho,v, in two stages, that the proposed procedure is an algorithm.

(i) Assume that the input pattern I is a test for the fault f. Thus we can al,vays

find a path Pi, from the fault site to a primary output, such that in the presence of

input I all nets along path Pi have different values in the normal and faulty circuit.

We now apply our procedure with Pi being the path we deliberately try to sensitize.

The following are consequences of the fact that our procedure imposes only those

restrictions that must always be satisfied in order that Pi is sensitized.

• No contradictions can occur in the construction of TJ(Pi) ..

• If there are primary inputs which have been assigned values in Tj(Pi) (i.e. their

values are different from 0/1) then these inputs have the same value in I.
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• Changing the unassigned primary inputs in Tj(Pi) to their values specified by I

will convert all variant nets in T/(Pi) to invariant ones whose values are subsets

of their corresponding values in TJ{Pi).

Hence any procedure, that enumerates all the possible choices that convert all

variant nets in Tj(Pi) into invariant ones such that their values are subsets of their

corresponding values in Tj(Pi), will generate a set of input patterns of which I is a

member.

(ii) Consider any input pattern I generated by our enumeration procedure. Since

I is obtained from d(tC/(pi,j)), a deterministic test cube in which there are no

variant nets, then applying I to the good circuit and that with the fault f will result

in different values for all nets along path Pi. Thus I is a test for the fault f.

D Properties of the Backward Implication Pro

cedure

In this appendix \ve discuss some useful properties of the backward implication pro

cedure. For ease of explanation we will use the following notation in this appendix.

Let G be a two-input gate. If A and B are the set of values of the inputs of G, then

the set of values of the output, implied by these inputs, is denoted by G(A, B). Also,

let (Lo/ Li ) denote the set of values at one input that can produce Lo at the output

of the gate, given that the other input is Li .

Property 1. Let G be a two-input gate with inputs A and B. Consider a

backward implication of the value Z, where Z ~ G(A,B), at the output of G. If

this backward implication causes the inputs to be changed to A' and B', respectively,

then

z ~ Z'

where Z' = G(A',B').

34



Proof. Let z E Z. Since Z ~ G(A, B) there exists a E A and b E B such that

{z} = G({a},{b}). Since z E Z, after a backward implication of Z at the output of

G is performed using the given tables, the new values of the inputs A' and B' are

such that a E A' and b E B'. Thus z E G(A', B'), i.e., z E Z'. Therefore Z ~ Z'. 0

Note that the above property can be extended to gates which have more than two

inputs.

Consider a two-input gate whose input values are L 1 and L 2 and the requested

value at the output is La. The new values of the inputs after one pass of the backward

implication procedure will be

and

L~ = L1 n (LG / L~).

If L~ ~ (LG / L~) then another pass of the backward implication procedure is unnec

essary because L~ n (L G / L;) is going to yield L~-implying no further changes at the

input.

Property 2. L~ ~ (La/ L~)

Proof. Select any 12 E L~. Thus 12 E (LG / L1 ). Hence there exists 11 E L1 such

that {lg } = G({11},{12}) where Ig E L G · Since 12 E L~ and G({11},{12}) ~ La then

11 E (L G / L~) and consequently 11 E L~. Therefore 12 E (Lo/ L~) since 11 E L~ and

G({11},{12}) ~ LG • This proves that L~ ~ (LG/L~). 0

As a consequence of Property 2, every new application of the backward implication

procedure requires only a single pass to determine the new values of each input of the

gate in question.

E Properties of Variant and Invariant Nets

We now discuss some properties of circuit nets that characterize them as being variant

or invariant. These properties would be useful in their identification which in turn is
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necessary in the test generation process. The properties will be discussed in terms of

the values of the input and output nets of a gate as given by their corresponding entries

in any deterministic test cube, d(tck). Some of these properties are straightforward

and will be stated without proof.

Property 1. Consider an n input gate G. If in any d(tck) the set of values

associated with n - 1 of its inputs have cardinality equal to 1, then the output of G

is an invariant net in d(tck). 0

Property 2. Let G be a two-input XOR/XNOR gate. H in any d(tck) one input

and the output of G have the value DID, then the output net is invariant in d(tck).

o

In Property 2, note that the set of values at the other input of G cannot contain

D or D because they desensitize the output.

Property 3. Let G be a gate \vhich is not an XOR/XNOR gate. If, in any d(tck),

one input of the gate has the value D or D, but not both, and the output is either D

or D (depending on whetller G is non-inverting or inverting), then the output of G

is an invariant net with respect to d(tck). 0

Proof of Property 3. Assume that G is an AND gate whose output and one

input has the value D. As a result of the backward implication of a D at the output,

the value of the other inputs of G in d(tCk) can never contain 0 or D because these

values can only produce at 0 at the output, given that one input is D. Since all other

input combinations produce a D at the output of the gate, the output is an invariant

net. The proof for the other cases are analogous. 0

The next property is a consequence of Property 3.

Property 4. Consider a single path Pi from nJ to a primary output. Recall that

nf has the value D or D but not both. If there are no XOR/XNOR gates on path Pi,

then all the nets on this path are invariant with respect to their values in TJ(Pi). 0

Analogous to Appendix DIet G(/l' /2, ... , 1m ) be the resultant set of values at

the output of an m-input gate G when the sets 11,12 , ••• , 1m are applied at its inputs.

Recall the procedure for performing a backward implication for a multi-input gate
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G by using a cascade of 2-input gates G1 , G2 , ••• , Gn - l as described in Appendix

B.2. As stated earlier the values Xl, X 2 , ••• , X n - l of nets 1, 2, ... , n - 1, are first

used to compute Yi, Y;, ... , Yn-2, the values of nets n + 1, n + 2, ... , n + (n - 2)

respectively. Then using the requested value of Z at the output of gate G, we apply

the backward implication rules to obtain the values X~, X~, ... , X~ at nets 1, 2, ... , n

and the values Zl, Z2, ... , Zn-2 at nets n +1, n +2, ... ,n + (n - 2) respectively. For

the ease of notation let us denote the value Z at net n + (n - 1) as Zn-l and the

value X~ at net 1 as Zo. Note that by using Property 1 of Appendix D we obtain

Zi ~ Gi(Zi-l, XI+l) for i = 1,2, .. · , n - 1.

Property 5. Consider the backward implication procedure for a n-input gate.

In terms of the notation outlined above G(X~, X~, . .. ,X~) = Z if and only if

Gi(Zi-l,XI+l) = Zi for i = 1,2, ... ,n -1. Stated in words, the output of the

composite gate G is an invariant net if and only if the output nets of all the 2-input

gates Gi are also invariant. 0

Proof of Property 5.

(i) We prove that G(X~,4Y~,... ,X~) = Z implies that Gi(Zi-l,XI+l) = Zi for i =
1, 2, ... , n -1 by contradiction. Assume that there exists a j, 1 ~ j ~ n -1, such

that Gj(Zj-l, Xi+l) # Zj. By Property 1 of Appendix D, Zj C Gj(Zj-l, Xi+l).

Thus there exists Zj E (Gj(Zj-l,Xj+l) - Zj). Moreover by the determin

istic nature of the backward implication procedure we can state that there

exists Zj+l E (Gj +1({Zj},Xj+2) - Zj+l). This is because Zj cannot produce

any of the required values at the output of gate Gj+l, given that the other

input has the value Xi+2, and was thus not included in Zj. Using an in

ductive procedure we can state that with Zj, Xj+2, Xi+3' ... ,X~ at the inputs

of gates G j +1 , Gj +2 , ..• , Gn - 1 we can obtain a value Zn-l, at the output of

gate Gn - 1 , that does not belong to the set Zn-l. Since Zj E Gj(Zj-l,Xj+l)

there exists Zj-l E Zj-l such that Zj E Gj ({Zj-l}, Xj+l). Therefore with

X~,X~, ... ,Xj at the inputs of gates G t ,G2, ••• ,Gj - 1 we can obtain a value

Zj-t at the output of gate Gj - t because of the deterministic nature of the
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backward implication procedure that was used to obtain Zj-l. This implies

that with X~, X~, ... ,Xj+l at the inputs of gates Gl , G2 , ••• ,Gj we can ob

tain Zj at the output of gate Gj • Consequently with X~,X~, ... ,X~ at the

inputs of gates G1 , G2 , ... ,Gn - l we can obtain the value Zn-l at the output of

gate Gn - l . Thus Zn-l E G(X~,X~, ... ,X~). But Zn-l ~ Zn-l = Z; therefore

G(X~,X~, ... ,X~) :f Z, which is a contradiction.

(ii) The fact that Gi(Zi-l,Xt~+l)= Zi for i = 1,2, ... ,n -1 implies that

G(X~,X~, . .. ,X~) = Z follows from the associative property of all the logic

gates we are considering.

o

The above property may useful in determining whether the output net of a gate

is variant or not.

F Proof of Theorems in §5.1

In this appendix we will always denote the net at which we apply a value (either in

3-VP or 15-VP), to observe the implications at other nets, as net ml- In order to

prove the theorems stated in §5.1 we will make use of the following lemmas. The

proofs of the first three lemmas are straightforward and will not be presented.

Lemma 1 The value of every net in a 3-VP experiment is a subset of the value of

this net in the corresponding 15-VP experiment. 0

Lemma 2 In a 3-VP experiment, if we traverse backwards along any path of sin

gleton values from net mj which has a singleton value, then we will always reach net

o

Lemma 3 If a 3-VP experiment yields a singleton value at net mj, then this exper

iment yields a path of singleton values from net ml to net mj. Furthermore, if this

experiment yields a singleton value at the output net of any gate G, then it either
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sets one or more of its inputs to controlling values or all its inputs to non-controlling

values. 0

Lemma 4 If the output of a gate G has a singleton value in a 3-VP experiment

and additional value(s) in the corresponding 15-VP experiment, then there exists at

least one input to this gate which has a singleton value in this 3-V experiment and

additional value(s) in this 15-VP experiment.

Proof (i) Assume that in the 3-VP experiment the singleton value at the output

of G was obtained due to a controlling value at one or more inputs of G. In this

situation all these inputs must contain additional value(s) in the corresponding 15

VP experiment. Otherwise, we ,viii obtain the singleton value at the output as given

by the 3-VP experiment.

(ii) From Lemma 3, the only remaining alternative is that the singleton value at

the output of gate G in the 3-VP experiment was obtained by setting all its inputs to

non-controlling values. Thus it is obvious that at least one input must contain addi

tional value(s) in the corresponding 15-VP experiment in order to produce additional

value(s) at the output. 0

Proof of Theorem 1 Let G be the gate whose output is net m2 or whose output

is a FOS net with m2 as a FOB net. Let L 2 be the singleton value yielded at net m2

by the 3-VP experiment. Let the corresponding 15-VP experiment yield the value

L~ at net m2. By Lemma 1, L2 ~ L~. Assume that L2 C L;. Then, by Lemma 4,

at least one input of G must contain a singleton value in this 3-VP experiment and

additional value(s) in this 15-VP experiment. This input must either be net ml or

be connected to the output of some gate. If the latter is true, then this gate must

also possess at least one input that has a singleton value in this 3-VP experiment

and additional value(s) in this 15-VP experiment. Proceeding backwards in this

manner we must, by Lemma 2, eventually conclude that net ml has a singleton value

in this 3-VP experiment and additional value(s) in this 15-VP experiment. This is

a contradiction. Thus, L2 = L~. 0
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Proof of Theorem 2. Let G be the gate whose output is net m2 or whose output

is a FOS net with m2 as a FOB net. Since net m2 has the value 0/1 in the 3

VP experiment, then at least one input of G must also have the value 0/1 in this

experiment and all the values of all other inputs must include the non-controlling value

for gate G. The input with the 0/1 value is either a primary input or is connected to

the output of some gate which in turn must have at least one input with the value

0/1 and the value of all other inputs must include the non-controlling value for this

gate. Proceeding in this manner we will reach some primary input, say II, in a finite

number of steps. Thus there is a path Pl from 11 to net m2 such that all nets on

this path have the value 0/1 in this 3-VP experiment. Furthermore, the value of

all inputs of every gate on this path Pi must contain the non-controlling value. By

Lemma 1, in the corresponding 15-VP experiment, the value of all inputs of every

gate along path PI must contain the non-controlling value.. Thus a 0/1/D / D from

input 11 will propagate through every gate along path PI yielding a 0/1/D/ D at net

m2. 0

G Line Justification Approach

In this appendix \ve present a procedure which can be used instead of the enumeration

procedure in order to derive tests from Tj(Pi). The approach followed here is similar

to line justification in DALG [14]. Recall that a gate whose output is a variant net

is characterized by having inputs, specified in T/(Pi), that can produce values at the

output of this gate which do not appear in TJ(Pi). So we must restrict the inputs

of this gate in several ways-multiple choices exist because it is a variant net-such

that these disallowed values cannot appear at its output. When making these input

restrictions, care must be taken to see that every input pattern from TJ(Pi) that

yields permissible output values is accounted for in at least one of the choices. If

the constraints imposed by a particular choice cannot be met, then another choice is

selected. If there is no input combination that converts all variant nets into invariant

40



ones, then there exists no test pattern that sensitizes path Pi- Different heuristics can

be used to decide the priority among different choices_ For the sake of efficiency we

would like to minimize both the number of choices and the overlap between different

choices_

Example 10. Assume that the entries corresponding to a two-input AND gate

(with input nets mt and m2, output net mg ) in Tj(Pi) is as follows:

I ml m2 my I
O/D/D OIl/DID 0

Note that net mo is variant in Tj(Pi) since its value, as implied by nets ml and

m2, is 0/D/ D_ All the permissible input combinations that convert net m g into an

invariant one are covered by the following three input patterns:

mt m2 mg

(i) 0 O/l/D/D 0

(ii) D OlD 0

(iii) D OlD 0

0

We now give a procedure that can be used to obtain the different choices that can

be made to convert a variant net to an invariant one_ Only a 2-input AND gate and

a 2-input XOR gate need to be considered because, as stated earlier, all other cases

can be derived from these_ Consider a 2-input gate G with input nets ml and m2

and output net mg _ Let Lt , L2, and La be the set of values in Tj(Pi), associated

with mt, m2, and m g ) respectively. Since m g is a variant net, IL1 1> 1 and IL2 1 > 1.

Without loss of generality, assume that IL21 ~ IL11 and let L1 = {f11 ,i12,---,ilm}

With LG as the requested output value and .eli E L 1 as the value of one input we use

either Table 11 (if G is an AND gate) or Table 3 (if G is an XOR gate) to obtain the

set L2i - The allowable value at net m2, with iIi at net mt, is given by L~i = L2i n L2

This procedure is repeated for all the elements of L1 - This yields the following choices:
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Net m g is an invariant net for any of the above choices because net ml has a value

whose cardinality is equal to 1. We may reduce the number of choices by combining

values of input mI. This can be done only when L~i = L~j. In this situation the i th

and jth choices can be replaced by the input pattern that has {fIi,llj} at ml and L~i

at m2. The same procedure can be used to combine three choices if possible.

Example 11. Consider a 2-input AND gate (input nets ml, m2; output net mg )

whose net entries in Tj(pi) is shown below:

I fit m2 fig I
a/D/D Oil/DID OlD .

Thus net m g is a variant net in Tj(Pi). The procedure described above yields the

following choices:

Net ml 0 D D

Net m2 Oil/DID OIl/DID OlD

Since the value of m2 is identical for the first two choices they can be combined

to yield:

Net ml OlD D

Net m2 Oil/DID OlD

o

Whenever we choose input values of a gate in accordance with the procedure de

scribed above, we must find the resultant deterministic test cube. The whole proce

dure has to be repeated as long as there are variant nets in the resulting deterministic

test cube.
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0 a 0 0 0

1 0 1 D I5

D 0 D D a
D 0 D 0 D

Table 1. AND table

I varibe~

ICommmen~

Table 2. NOT table

0 0 1 D 15
1 1 0 D D

D D 15 0 1

75 75 D 1 a

Table 3. XOR table

Nets with 3f , 14, 15, 16, 19,20,21, 22, 23,24,25,26, 27,

TRUE Token 28,30,31,36,37,38,39,40,41,42,43,45

Nets with 1,2, 3,4,5,6,7,8,9, 10, 11, 12, 13, 17, 18,

FALSE Token 29,32,33,34,35,44,46

(a) Boolean token assignment

Net 36 37 38 39 40 41 42 43 45

Token Vector [36,0] [36,0] [36,0] [36,0] [36,0] [36,1] [36,1] [36,1] [45,0]

(b) Token vector assignment

Net 40 41 42 43

Token Vector [36,0] [36,1] [36,1] [36,1]

(c) Reduced set of token vectors

Table 4. Token assignment for net 3 s - a - 0 in Fig. 1
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31 36 45 I
DID DID DID

15 16 19 20 21 22 23 30 37 38 39 40 41 42 43 I
D D OlD OlD OlD O/l/D O/l/D O/D/D DID DID DID l/D/D l/D/D l/D/D l/D/D

tel: \ 3 3/

1 D

d(tc1 ): 1"""-1_4 -..l

D

( I6 30 31 I
1 DID D

tc3 : I 42 43 I
D/D DID

Steps in d(tc3 ) construction:

(i) 40
1

---+
35932
111

("") 29 4 17 18 20 23 24 25 26 27 28 30
(Contradiction)~I - ---+ ---+

D
---+ --+ ---+

1 000 l/D liD liD liD liD liD (1/D) n (OJD) =0

tC4:~
DID

d( ):; 4 9 11 17 18 20 23 24 25 26 27 28 29 32 35 41 42 431
1 0 0 1 1 0 0/1 O/l/D O/l/D O/IID O/l/D O/lID 0 0 0 1 1 1

Table 5. Test cubes for faulty net 3 s - a - 0 in Fig. 1
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Value applied hnplied value at net m2

at net ml (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

0 0/1 0 1 0 1 0 1 0/1 a/I
I 0/1 0 1 1 0 0/1 0/1 0 1

Table 6. Implications in 3-VP

Value applied Implied value at net m2

at net ml (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

0 Oil/DID 0 1 0 1 0 1 O/l/D/D O/l/D/D
1 O/l/D/l5 0 1 1 0 Oil/DID O/l/D/D 0 I

Table 7. Implications of a aand 1 in 15-VP

Value applied Implied value at net m2

at net ml (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) (ix)

3-VP 0 0/1 0 1 0 1 a 1 0/1 0/1

1 0/1 0 I 1 0 0/1 0/1 0 1

15-VP 0 O/l/DID 0 I 0 I 0 1 OIl/Din O/I/DID
1 O/I/D/D a I 1 0 O/l/D/B o/I/Dljj 0 1

D O/l/D/D 0 I D D O/D liD OlD liD

D OIl/DiD 0 1 D D O/D liD OlD liD

Table 8. Relationship between 3-VP and 15-VP

L2 G

0 OR NAND XOR XNOR

1 NOR AND XOR XNOR

Table 9. (L 2 , G) combinations that yield useful contrapositve assertions
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tCl: I 3 3/ 31 36 45
1

1 D DID DID D/D

d(tc1 ): I2 5 14 15 16 19 20 21 22 23 24 25 26 30 37 38 39 40 41 42 43 I
0 0 D D D O/D O/D OlD O/D OlD O/D/D O/D/D O/D/D O/D/D D/D D/D DID l/D/D IID/D l/D/D l/D/D

tc2 :~
D

d(tc2 ): 14 6 17 18 20 23 24 25 26 27 28 29 30 31 42 1
1 1 1 1 0 0 OlD OlD OlD O/IID O/l/D 0 OlD D 1

Steps in tC3 construction:

42

In(DID)=0 (Contradiction)

tC4:~
DID

d(tc4): 19 11 32 35 41 43
1

0 0 0 0 1 1

Table 10. Test cubes for Example 2
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o

0 O/l/DID 0 0 0

1 0 1 D D

D OlD 0 liD 0

D OlD 0 0 liD

* Requested Output

** Existing value at one input

Table 11. Backward implication for a 2-input AND gate
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18 29

Fig.1 An example circuit



KEY:

o
o
D

6

Fanout Stem

Fanout Branch

Primary Input

10

Fig.2 Dominator forest for circuit of Fig.l
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n... --- • • •
••• __n__~ • • •

Fig.3 Introduction of fictitious gate

14 14
• • • • • •

3 15
• • •

3 15
• • •

16
• • •

16
• • •

Fig.4 Fictitious gate for net 3 s-a-O in
circuit of Fig.l

5

4

3
f

2 -----I

3 -----I

1 -------I

Fig.5 Circuit for Example 1
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X
1

X~--I
2

X
3

X -----I

4

X
5

Fig.6

r--Z

Use of the Contrapositive

1-----.

2----1

•
•
• 6

5

7

Fig.7 Circuit for Example 3
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1----------------------

2 -----~Gf

23

32

Fig.8 Circuit for Example 4



0/1
A ---...---t

B -i

0/1

L = 0
o

D

Fig.9 Circuit for Example 5

Fig.lO Circuit for Example 6
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Fig.l1

O/D/D
DO/D/D~DA

B
O/l/D

( a)

O/D/D

DA D C

B

(lID) n (O/l/D)
== l/D

(b)

(l/D) n (0/0/0)
= D

A D D
C

B
l/D

(c)

Circuit for Example 8
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1

2

G
1

1

2

3

• G n+(n-l)

•
•
n

n+1

3 -----------'1

•
•
•

G
2

n+2

n+ (n-2)

G n+ (n-I)
n-l

n------------------------t

Fig.12 Gate decomposition
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DID
1

O/D/D
2

DID
3

O/l/D/ D
.....-----5

(a)

DID
1-----+'

0/0/0
2----#-1 4

0/1/0/ If

D/D
3------------------f

(b)

01 D
1

DID D
2 5

D/D
3

(c)

5

O/I/D/ D --+ D

Fig.13 Circuit for Example 9
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