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A Generalized Expression Optimization Hook for C++ onHigh-Performance ArchitecturesDavid J. EdelsohnNortheast Parallel Architectures CenterSyracuse UniversitySyracuse, NY 13244AbstractC++ has gained broad acceptance as an object-oriented evolutionary extension to the C language, butit severely constrains methods for operating on classobjects by forcing all data manipulation through an in-terface which assumes that all basic operations can beimplemented as they are written: as unary or binaryoperators. C++ allows great exibility in the creationof complex data structures which can perform the samefunctionality as built-in types of many other languages,but unfortunately it does not allow an equivalent levelof exibility so that operators acting on those datatypes can achieve the same level of e�ciency as theircounterparts in language-level implementations. Thislimitation becomes even more pronounced on high-performance computers whose advanced features re-quire considerable cooperation between the algorithm,the compiler, and the architecture for maximum per-formance. This paper describes a language enhance-ment proposal: a special member function which in-teracts with overloaded operators as complete expres-sions.1 IntroductionThe evolving generation of object-oriented lan-guages such as C++ provide a marvelous tool forclearly describing complicated algorithms in simpleways. User-written data classes and operators neatlyencapsulate the interfaces for manipulating problem-dependent information as easily as a native languagetype. Hierarchies of interrelated objects frequently areconstructed, such as the now classic examples of draw-ing a shape on a graphics output device, or arrays ofobjects manipulated as single, aggregate objects, suchas array and matrix class libraries[5, 15, 8], which canprovide the functionality described by Golub[10]. The

C++ language provides for the creation of compli-cated, composite objects automatically by implicitlycalling the necessary constructors for the object andall of its constituent pieces in the appropriate order,and a symmetric reverse process available to decom-mission the object.While all basic operators such as '++', '*' and '%'act in a unary or binary fashion, e�cient implementa-tions may require collecting the operations into largergroups. Unfortunately, C++ currently constrains alloperators to implementations which correspond totheir language context. In the case of aggregate data,this can preclude various optimizations such as vectorchaining (pipelining multiple scalar or vector arith-metic operations such as multiply-add) or other spe-cial instruction modes in addition to causing the cre-ation of aggregate temporary variables which defeatdata caching.[6]As an example, assume that A, B, C, D and E areconformable arrays. A standard array class library'simplementation of an expression such asA -= B*C + ++D/E;would perform a separate loop over all of the ele-ments in each array for each of the �ve operators in-volved. Up to �ve temporary array variables mightbe created reecting each of the intermediate resultsand architectural features such as special add-multiplyor vector-chaining instructions could not be utilized.Languages such as Fortran 90[11] and High Perfor-mance Fortran[9], both with native array types, canrecognize an expression or multiple expressions as asingle, related entity which only requires one outerloop, scalar temporaries, and the application of spe-cial instruction modes.C++ operators act upon objects either singly orpairwise. In the case of iterating over the elementsof an array, the compiler dispatches to each operatorspeci�ed in the parse tree in turn, possibly inserting



the code inline instead of as function calls. Inlining re-moves the function call overhead and allows for someadditional optimizations such as common subexpres-sion elimination, but dispatching self-contained op-erators prevents e�cient memory utilization and se-quentially operating on elements in pairs of arrays se-verely taxes memory bandwidth and produces contin-ual cache misses. The distinct arithmetic instructionsare not adjacent which disallows further architecture-speci�c optimization by the compiler such as vectorchaining, better register and memory cache utiliza-tion, and combining instructions into speci�c multiple-issue instructions such as multiply-add or Very LongInstruction Word (VLIW) operations.A considerable amount of e�ort has been devotedto addressing some of these problems through betterpolicies on the reuse of temporary variables and specialoptimizations, such as loop jamming, which try to rec-ognize related, adjacent loops and merge them into asingle outer loop to provide more opportunities for theother optimizations listed above [4, 13]. C++ makesthis very di�cult, though, because of the considerableuse of pointers and references which hide the e�ect ofmany operations and prevent the compiler from mak-ing important assumptions allowing code motion andmerging. Loop jamming to permit chaining requiresC++ to inline loops instead of generating functioncalls; rearranging the code so that memory alloca-tion and deallocation are segregated from the loops,which itself requires allocation/deallocation with nei-ther side e�ects nor memory aliases, and then chainingthe loops on vector architectures[6]. Unless the com-piler merges the loops, chaining on scalar architecturesstill is not accomplished. C++ provides a programmerwith great expressive freedom which leads to many dif-ferent ways to describe identical functionality | notall of which the compiler can recognize and optimize.The fundamental problem stems from C++'sbottom-up, hierarchical approach to building objectsand methods (functions for accessing and modifyingobjects). Most compilers internally develop a com-plete parse tree and basic-block structure which isthe essential information necessary to implement de-ferred expression and/or block evaluation producingthe expected performance improvement[1]. One ap-proach to circumvent the language's limitations cre-ates libraries which contain compilers that generatee�cient machine code at runtime (Runtime Code Gen-eration or RTCG)[12]. Unfortunately this requires du-plicating much of the work performed during the ini-tial compilation phase without having access to addi-tional knowledge in the original source code. Another

approach creates specialized class operators which in-ternally optimize multiple operations in their imple-mentation. This, of course, simply provides inele-gant, manual optimization in the C++ environment,requiring considerable additional e�ort and attentionfrom the programmer[6]. Yet another technique whichsomewhat combines the previous two pre-computescanonical tables of mixed operators up to an arbi-trary depth, intercepts expressions at runtime, andmaps appropriate combinations of operators to the op-timized table[14]. The arbitrarily large and static ta-ble can pose signi�cant constraints on this approach.Deferred expression evaluation implementations ofthe operators construct a parse tree at runtime in-stead of directly performing the actual operation[7].The assignment operation implementation then eval-uates the parse tree and performs each of the opera-tions with the additional optimizationmanually codedinto the function using full knowledge of the semanticsfor the objects' operators. RTCG essentially modi�esthe semantics of the language to handle a global op-timization which cannot be expressed using C++ byimplementing portions of a compiler/assembler in theruntime library thereby providing a brute-force op-portunity to tailor language enhancements to the pro-gram at hand. All of these optimizations fail withoutthis additional e�ort because C++ does not allow theprogrammer to adequately describe the implementa-tion of the operators. Instead the programmer mustshift the burden to a time when a di�erent but equallyawed view of the problem is available.2 Language Modi�cation ProposalThe language needs to provide a communicationpath for use between the programmer and compiler sothat the programmer can make best use of the compil-er's knowledge and assumptions about the source codeand the compiler can best utilize additional hints fromthe programmer about the intent of the algorithm,objects, and methods. The compiler simply needs toprovide a exible hook at the expression level so thatthe programmer can describe how to operate on anexpression instead of looking at expressions simply assequences of independent operators.One would like to utilize the knowledge alreadyavailable to the compiler to provide this functional-ity, but C++ must provide a way to describe merginginlined functions | di�erentiating between the cen-tral operations and the details of the implementation.In other words a function to add two array variables



together primarily provides a description of adding el-ements of an array together and secondarily uses aloop over the elements to implement that functional-ity. Providing the compiler with a clear distinction be-tween the algorithm and its implementation, i.e. bet-ter facilities with which to describe an algorithm, canbest solve this limitation.C++ essentially needs an equivalent to the data ob-ject constructor and destructor at the expression level.As mentioned above this can be accomplished at run-time by modifying the operators so that they generateparse tree builders which then are evaluated by theassignment operator. A superior environment shouldallow the development of operators in the context ofan expression. A compiler could determine the ex-tent of the expression as usual, possibly merging mul-tiple statements, but then emit code to automaticallywrap an operator constructor and destructor aroundthe entire grouping which would provide the neces-sary initialization and termination for aggregate ob-jects such as arrays requiring iteration. The de�nitionof the data objects, operators, initiators, and termi-nators all would be de�ned by the user allowing forcomplete coordination of private information betweenclass member functions.It appears su�cient to encapsulate the expressioninitiator and terminator into a single, user-writtenfunction associated with each class. Whenever thecompiler would emit code for a statement or expres-sion involving that class, the compiler would substi-tute the code for the expression member function. Thefunction would receive a key or tag to the as yet un-emitted instructions generated by the compiler to im-plement the expression in the form of a synthetic func-tion pointer, i.e. a pointer to the function generatedby the compiler itself representing the �nal, optimizedexpression. The programmer can provide any initial-ization, call the synthetic function pointer as manytimes as necessary, and then perform any necessarycleanup. The program's control ow does not auto-matically pass through the function representing theexpression; the expression is executed only throughthe explicit call via the synthetic function pointer.This provides a mechanism for wrapping the opera-tions implementing the expression inside a functionwhich can coordinate its interaction with the class op-erators. The compiler can generate the code for theexpression member function and the expression itselfas instructions which explicitly branch to functionsemitted elsewhere in the instruction stream or gener-ate code to implement the function calls inline.A cooperative expression and set of operators clar-

i�es the distinction between the two facets of the im-plementation problem and completes the symmetrybetween member data and member functions. If noexplicit expression member function exists, the com-piler would emit the instructions to implement the ex-pression as usual which is equivalent to an expressionmember function which evaluates the function pointeronce and returns, i.e. \*func(); return;". This alsomaintains compatibility with all current C++ classlibraries.As with all member functions, the expression func-tion provides a member variable, in this case an arbi-trary, representative member variable, for determina-tion of speci�cs about the expression call such as thenumber of elements in an array over which to loop.Because all of the objects in a expression must be con-formable for the expression to have any meaning, thespeci�c member is irrelevant. The choice of object canbe left to the compiler as an implementation speci�cdecision.By allowing the de�nition of an expression to re-main exible, the compiler has considerable room foroptimization. The compiler can choose to invoke theexpression function with each pairwise operator inturn which is equivalent to the current approach todiscrete operators. Greater e�ciency results if thecompiler collects entire multi-operator statements orcombines multiple statements into basic blocks beforegenerating the synthetic function.Most operators contain code speci�c to each opera-tor but not central to the computation, such as check-ing that two array arguments are conformable. In-stead of the expression somehow learning about everyargument to every operator, the compiler simply canhoist the code outside of the expression function asconstant. This also provides an e�cient, central loca-tion to place \monitors" and pre- & post-conditionsfor synchronization of data access.The determination of invariant code is subtle, so anextension to this proposal allows operators to acceptan identical number of additional, optional argumentswhich correspond to arguments used when calling thefunction pointer. In other words, the user-writtenexpression member function calls the synthetic func-tion pointer with arguments and these arguments arepassed as additional arguments to each and every op-erator invoked; the operators expect the additional ar-guments and act upon them accordingly. This allows adirect path for communication between the expressionmember function and the operators for informationsuch as the iteration index. This clearly delineates ac-tive variables in each operator and allows segments of



code not involving those variables, and other variablesnot de�ned as volatile, to be moved if the compiler sochooses. Compilers might allow #pragma's to specifysections of code integral to the algorithm and sectionsproviding secondary functionality, which could act ashints to the compiler during code movement optimiza-tions, but the compiler-dependent nature of #pragma'sdiminishes the bene�t. Not moving the invariant codeand not calling the expression function with the largestexpression only impacts performance, not functional-ity or results.Expressions are called in the order that they arereferenced. A set of objects composed of other objectsall involved in an expression (such as a hash tableentry which includes a string) are handled as expres-sions are encountered. The expression involving thehash entries is implemented and then when the stringobjects are acted upon, the string expression is called.Hierarchical classes which utilize base class operatorsare handled from the outside in as well, though thismore likely is a question of merging common classesand performing operations in the correct dependenceorder.2.1 ExampleA traditional matrix class implementation mightde�ne the addition operator as follow:Matrix Matrix::operator+ (Matrix m) const {EnsureConformance(*this, m);Matrix t(rows(), cols());for (int i = 0; i < rows(); i++)for (int j = 0; j < cols(); j++)t(i,j) = elem(i,j) + m.elem(i,j);return t;} Whereas with the use of an expression memberfunction, one would write the above addition opera-tor as follows:Matrix Matrix::operator+(Matrix m, int i, int j) const {EnsureConformance(*this, m);Matrix t(rows(), cols());t(i,j) = elem(i,j) + m.elem(i,j);return t;}void Matrix::expression(void *MatrixFunc(int,int)) {for (int i = 0; i < rows(); i++)

for (int j = 0; j < cols(); j++)*MatrixFunc(i,j);return;} The stages taken by a conventional optimizingC++ compiler are as follows:� Parse expression or basic block using class oper-ators.� Optimize expression.At this point current C++ compilers simply emitthe instructions for each unary or binary class operatorinline or as subroutine calls; however, a compiler im-plementing the proposal described in this paper con-tinues as follows:� If the function representing the expression is notinlined, emit the instructions representing the ex-pression with an internal label; and when the ex-pression member function (which itself may ormay not be inlined) calls the internal expres-sion function using the synthetic function pointer,jump to the internal label.� If the function representing the expression isinlined, when the expression member function(which also is emitted inline) calls the internalexpression function using the synthetic functionpointer, emit the internal expression code directlyinto instruction stream as well.3 Architecture-DependentApplicationsAllowing object-oriented languages to address en-tire expressions as single entities instead of implement-ing each operator in an isolated environment providesbene�ts for many di�erent types of high-performancearchitectures. Advanced architectures, such as vectorand parallel machines, can achieve dramatic perfor-mance increases because complex objects can be im-plemented with methods which more closely resemblethe treatment of builtin types. Simpler processors canbene�t from this proposal because this change not onlya�ects the utilization of processor instructions by thecompiler optimizer, but improves register and mem-ory utilization as well. In a high-performance imple-mentation, the compiler is expected to optimize thecombined expression member function and synthetic



expression function as appropriate for a particular ar-chitecture.Traditional sequential architectures bene�t frombetter memory utilization because temporary valuescan revert back to their basic scalar types instead ofthe entire complex object under consideration. Thetemporaries also can be placed into processor regis-ters more easily because the operator can act on con-stituent pieces of the object. Data caching naturallyreceives improvement because all objects within an ex-pression can be active at one time, instead of singly orin pairs, so that one is not repeatedly cycling throughthe same memory references. A collection of large dataobjects, such as an array of complex numbers, may notall �t into the cache at one time. Strided accesses alsomay repeatedly overwrite the cache, not only becauseof the source array, but because of poorly designedstorage for intermediate results.Expressions producing operations on basic scalartypes become even more important to superscalar andVLIW architectures where more than one operationalunit can work in parallel. Many architectures haveseparate addition and multiplication sections in theirarithmetic units which can work simultaneously andeven feed results directly from one sub-unit to another.Performing all array operations one operator at a timeprevents utilization of this feature while expression-level descriptions more easily allow a compiler to moveand combine instructions to utilize this capability.Vector architectures can obtain similar results bystrip mining (possibly through explicit coding) the al-gorithm to utilize vector registers and vector instruc-tion chaining. The compiler will transform the outerloop into a series of chained vector operations becausethe relationships among operators comprising the ex-pression are clear. Current object classes and meth-ods rarely allow vectorizing compilers to recognize in-stances where the output of one vector unit can di-rectly feed the input of another vector unit. This se-verely impacts the performance of, say, a C++ arrayclass library compared to the performance of the For-tran 90 builtin array type.Distributed memory parallel computers also canbene�t by more e�ciently managing locality whileproviding \virtual shared memory" or a \virtual sin-gle address space" which is proving very useful fordescribing parallel algorithms. Problems similar tolocal memory data caching mentioned above can beavoided by allowing data fetching, including e�cientpre-fetching of strided data, to the local system foroperation and then updating any remote information.Single messages can be expressed and generated at an

appropriate time and without extraordinary e�orts todetect opportunities for caching requests and replies.4 AnalysisThis language modi�cation does not provide a com-plete optimization system for C++ as it does not allowthe language to modify the behavior of the compiler.Systems which train the compiler about speci�c opti-mization patterns for each library through additional\meta-language" features have a di�erent role to play.Professional, commercial libraries need not be writtenin C++ and a good case can be made for compiler ven-dors providing a private or public back-door into thecompiler to better handle these cases[2]. This, how-ever, clearly creates a two-tiered system preventing theaverage user from generating highly e�cient librarieswithout learning about language grammars and op-timization patterns described by this essentially newlanguage, assuming that the compiler allows publicaccess to this knowledge.By providing a hook into code generated for eachexpression, one can implement many of the same op-timizations without straying so far from the originallanguage, e.g. C++. Describing cooperative functions(the expressions member function called by the com-piler and the associated operator member functions)provides a much simpler user model while still re-balancing the language by allowing the user to de-scribe the implementation of member functions tomanipulate class objects from a higher perspective.This proposal addresses the problem near the end-programmer's regime, where C++ has allowed librarydevelopment to shift, as opposed to the higher-endvendor supplied library limit. Many di�erent methodsalong this continuum should be explored and imple-mented together to give the programmer a variety ofchoices so that the appropriate solution to �t both theclass library and the programmer is available.The above proposal also can be implemented withmultiple passes or source-to-source transformation ofthe application, such as through Sage++[3]. How-ever this approach greatly lengthens the compilationphase, duplicates much of the work performed by thelatter compilation, and possibly removes optimizationinformation which could be utilized by the later com-pilation. On the other hand this has the substantialadvantage of providing the bene�ts of optimized ex-pressions without requiring modi�cation to all existingcompilers (similar to the AT&T Cfront C++ compilerwhich produces C as its portable output so that it mayutilize the local optimizing C compiler).



IBM RISC System/6000 53HXL C/6000 1.3.0.80.64 0.36GCC 2.5.80.91 0.39DECstation 5000/200Mips CC 2.102.61 1.69GCC 2.3.32.52 1.33Sun SPARCServer 4/690GCC 2.5.61.53 0.72Table 1: Architecture (System), Compiler, Inner andOuter Loop Duration (seconds).Table 1 shows the striking e�ect of loop scope bycomparing the same test algorithm performed using\inner" loops | loops for each operator; or \outer"loops | a single loop around the entire expression.A performance increase of between 35% and 57% wasobtained depending on the computer architecture andcompiler. This variation shows that C++ matrix classlibraries must address this e�ciency problem to com-pete as a language for numerically-intensive calcula-tions.5 ConclusionC++ cannot address the problem of optimizing ex-pressions without providing a distinction between op-erators and expressions thereby allowing a cooperativeformulation for the problem. Describing operators inisolation does not give compilers for object-orientedlanguages su�cient information to generate optimalcode. One cannot hope that compilers with nearlyclairvoyant capabilities can make all of the interveningsteps from operators to expressions and blocks with-out some additional guidance. Explicitly providingaccess to the expression generation stage of the com-piler | the stage where the additional information canproduce the most bene�t | is the natural choice andan explicit expression function appears to provide thenecessary environment.Both computers with vector processors and withsuperscalar processors can bene�t from improved im-plementations of vector operations allowing for chain-

ing. Both types of processors can be viewed by anoptimizer in a similar way: the limited size vector reg-isters are similar to the limited size data cache. Col-lecting expressions on aggregate objects such as arraysinto the large blocks allows both e�ective data mem-ory cache management and utilization of vector chain-ing and multiple-issue instruction modes of operationincreasing performance.AcknowledgmentsI would like to thank Dennis Gannon for extremelyhelpful discussions. This research was supported byan IBM Corporation Graduate Fellowship in Com-putational Science and IBM Joint-Study Agreement24680056.References[1] A.V. Aho, R. Sethi, and J.D. Ullman. Compil-ers: Principles, Techniques, and Tools. Addison-Wesley, Reading, 1986.[2] I. Angus. Applications Demand Class-Speci�cOptimizations: The C++ Compiler Can DoMore. In The Object Oriented Numerics Con-ference, Sunriver, Oregon, April 25-27 1993.[3] F. Bodin, P. Beckman, D. Gannon, et al.Sage++: A Class Library for Building Fortran90 and C++ Restructuring Tools. Technical re-port, Indiana University, 1994.[4] P. Brezany, M. Gerndt, V. Sipkova, and H.P.Zima. SUPERB Support for Irregular Scienti�cComputation. In Proceedings of the Scalable HighPerformance Computing Conference, pages 314{321. IEEE Computer Society Press, April 1992.[5] K.G. Budge. PHYSLIB: A C++ Tensor ClassLibrary. Technical Report SAND91-1752, SandiaNational Laboratory, Sandia, New Mexico, 1991.[6] K.G. Budge, J.S. Peery, and A.C. Robinson.High-Performance Scienti�c Computing UsingC++. In USENIX C++ Technical ConferenceProceedings, pages 131{150, Portland, Oregon,August 1992. USENIX Association.[7] R.B. Davies. Notes for the Library WorkingGroup of WG21/X3J16. Presented at C++ Stan-dards Committee Meeting, March 1991.
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