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Abstract. We consider a plasma of point ions in the presence of a non-uniform neutralising
background. This background. the source of an external field, may have some of its par-
ameters (density, form of surface profile, etc) modified, as long as the total charge is
maintained. By considering such modifications in the context of the density-functional
formalism for the ions, we prove sum rules giving the first and second moments of the ion
density p(z) in terms of other properties (bulk pressure and temperature derivative of surface
tension).

The Poisson-Boltzmann functional is considered in detail. We show that the first and
second moment conditions on p(z) are verified. We calculate p(z) exactly for this system,
and also perform variational calculations: comparison shows the importance of respecting
the asymptotic behaviour of p(z). Variational calculations have been performed, using the
density-functional formalism in the square-gradient approximation, for systems with plasma
parameter I from 1 to 10. For I > 3, important oscillations appear in the profile, as shown
by recent Monte Carlocalculations. The profiles calculated variationally also show increasing
oscillations, but are not in good agreement with the Monte Carlo results. The surface
energies are poor even for I' = 1 showing the inadequacy of the square-gradient expansion
for this system.

1. Introduction

There has been a growing interest in the past few years in the surface properties of
Coulombic systems such as molten salts, electrolyte solutions and liquid metals. The
one-component plasma (ocPp) is a simple and useful prototype of such Coulombic
systems, whose bulk properties are now well established over a wide domain of tem-
perature and concentration. The density profile and other surface properties, such as
surface energy and surface tension, have recently received great attention (Ballone et al
1981a, Evans and Hasegawa 1981, Jancovici 1982, Badiali and Rosinberg 1982) and
Monte Carlo computations are now available (Badiali et a/ 1983). In the case where the
OCP is in contact with an impenetrable wall, comparison has been made with predictions
of analytical methods such as the mean spherical approximation and the hypernetted
chain equation (Badiali er a/ 1983). In this paper we calculate, for small values of the
plasma parameter, the density profile, the surface tension, and the surface energy of the
ocCP in a non-uniform background. This is done using the free-energy density functional
formalism (FDFF). In § 2 we give several general thermodynamic relations for systems of
this type which can be derived quite simply in the FDFF. They follow from the fact that
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certain parameters of the background can be modified arbitrarily. Two of these are the
classical analogues of the sum rules derived by Vannimenus and Budd (1974) for the
jellium mode! of a metal surface: one is for the surface potential and the other for the
rate of change of surface tension with bulk density.

These theorems are valid for any functional of the free-energy and this is illustrated
in § 3 by the behaviour of the exact solution of the Poisson-Boltzmann equation for the
semi-infinite ocp. In § 4, we consider variational calculations in the FDFF; instead of
solving the equation for the profile directly, one may seek an approximate solution in
the form of a parametrised trial function. We discuss the implications of our theorems
for such an approach. The variational calculations are done by minimisation of the
free-energy density functional in the square-gradient approximation. We calculate the
surface density profile, the surface tension and the surface energy. Comparison with
Monte Carlo results and concluding remarks are givenin § 5.

2. General theorems

We consiser a classical fluid of point ions with charge Ze and bulk density p, at temper-
ature T, embedded in a non-uniform neutralising background of density n(z) such that
n(z) — ny, (bulk density, n, = Zpy,) for z— —« and n(z) = O for z— + . This system
is characterised by the plasma coupling parameter I = (Ze)?/ak T where k is the Boltz-
mann constant and a = (477p,/3) "¥* is the ion sphere radius. Following the pioneering
work of Hohenberg and Kohn (1964) and Mermin (1965) one can show that the free
energy of the system can be obtained from the functional

Qo) = Glol + 5 | ar g(r(Zotr) = () - u [ dr ot 1)

where a separation has been made (Evans and Sluckin 1980) between Coulombic and
non-Coulombic contributions to the free energy. ¢(r) is the electrostatic potential
related to p(r) and n(r) by the Poisson equation. The functional G[p] is a unique
functional of p(r) and u is the position-independent chemical potential of the particles.
The minimum of Q[ p] is the grand potential of the system and the equilibrium density
satisfies the Euler-Lagrange equation (Evans and Hasegawa 1981)

u=08G[pl/6p(r) + Zeg(r). )

We now consider general theorems which are consequences of this approach. Since
this model is quite similar to the uniform background model in the inhomogeneous
electron-gas theory, some of these will be analogous to the sum rules derived in this case
by Vannimenus and Budd (1974). However, one here considers changes in the free
energy of ions instead of changes in the internal energy of electrons.

Consider an infinitesimal modification én(r) of the background profile such that the
total number N of particles is unchanged. The modification dn(r) will cause a change in
ionic density 8p(r) and possibly a shift in the chemical potential du. To first order, the
change in the grand potential is

6Q = f%%; dp(r)ydr+ e J' dr o(r)[Z6p(r) — on(r)] — Néu (3)

where N is the total number of ions, N = [ p(r) dr.
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Using the equilibrium condition (2) and the fact that [ 6p(r) dr = 0 we get

Q= —e J dr @(rydn(r) — Nou. 4)
In addition, at the minimum of Q[ p] one has
Q=Fy+yA~uN (5

where Fj is the free energy for the homogeneous N-particle system, A is the surface
area, and ythe surface tension. For any change holding A and N constant, we have

8Q = 8Fy + Ady — Néu. (6)

One can now compare this expression for 8 with the expression of the form (4) to
deduce interesting relations.

Consider first the case of the semi-infinite ocp: the neutralising background of our
system is a slab of density n, extending from z = — L to z = 0 with the faces normal to
the z axis each having area A (i.e. in the limit L — o« n(z) = n,6(—z) where 6(z) is the
Heaviside function). The area is supposed to be large enough so all properties are
uniform in the x and y directions. Following Budd and Vannimenus we consider the
change 8Q associated with stretching the slab so that it extends fromz = —Ltoz = 8L
while holding A, T and N constant. It is straightforward to show that the electrostatic
term in (4) becomes

—efdr @(r)én(r) = ——ALénb(e[cp(O) - @(—L/2)]

-2 e -w-Lie) )

where the new background density is n, — n such that to first order Lény, = n,6L, and
@(—L/2) is the potential in the centre of the slab. On the other hand, equation (6)
becomes (with A = 2A since there are two surfaces)

8Q = —(3Fo/dps)rdpy — 2A(8Y/8pv) 0P, — Nou

where 8py is dny/Z and (dy/dpy )1 is the derivative of surface tension with bulk ion
density. Since

05(8Fo/8ps) 7= NP/py

where P is the bulk thermodynamic pressure, we get

. P 2 /dy
6Q = —~ALZ™'6 {—+—(—-> ]—Né 8
e py L \dpy/T # ®)
where AL p, = N has been used.
Then, inserting (7) in (4), and comparing the expression for 62 with that of (8), we
have
0 _JLP 3y
Lelo(0) - p(-L/D)] = 2¢ | [92) = o(-1/D)] e =27 [==+2( L) |
-L7 Pb dpu/ T
Each member consists of a ‘volume’ term (proportional to L ) and a surface term, which
must be separately equal, so that

P = pyZe[@(0) — p(—=)] (9a)

C22—1L
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vy j ’ (-
(apb)r Ze | [9(z) —g(==)]dz (9b)
where it has been assumed that @(—L/2) tends toward its asymptotic value ¢(—x)
faster than 1/L. Equation (9a) has been already given by Ballone et al (1981b) and
provides an exact relation between the potential difference [¢(0) — ¢(—2=)], which is
a surface property, and the bulk quantity P. This relation can also easily be derived by
a direct integration of the first equation of the BGY hierachy. As noted by Ballone et a/
(1981a) the total potential drop for this system, [@(*) — ¢(—)], is divergent because
of the z ™2 asymptotic behaviour of p(z) in the absence of a finite background density for
z > 0 (the density p, of the vapour phase is strictly O in our system; in a real system,
where p, is small but not vanishing, the total potential drop of course remains finite).

On the other hand, equation (96) is a new result and can also be written, after
insertion of the Poisson equation and partial integration, as

9y 2 [0 2
(L), =2n(z0)* | _2pta) - pol e (10)
pr T —-%

This equation, at least theoretically, provides a way of calculating the surface tension
directly from the density profile p(z). It relates the change of y with bulk density to the
second moment of the ionic distribution. By comparison, equation (9a) is a condition on
the first moment since integration of the Poisson equation gives

0
9(0) - p(—=) = 4n(Ze) | 2[(z) — pe] . ()

Note that the relations (9) are valid when n(z) is a step function. However, from (4) and
(6), similar results can be derived when the background profile has a more general shape.

In addition to (10), there exists a relation between (3¥/dps, ) r and vy itself. One can
show easily by scaling arguments that the surface tension can be written

y=apukTf(T, &) (12a)

where &= aa, with « representing the parameters a,...a, specifying the
background profile. For a step profile one has simply

y = appkT f(T) (12b)
so that, using the definition of I, one finds by direct differentiation
v=po(8Y/0po) 1+ 3T (87/8T) (13a)

Consider now the case of an arbitrary background profile n(z) depending on a
parameter «: (13a) no longer holds, but, differentiating (12a) with « constant, we find

— o _I<_6_V> -z<61nf‘

v pb(apb)r 3\6T/» 3 alnix)r‘ (13b)

Let us consider the effect on the surface tension of a change of the parameter «,
keeping A and N constant. According to (6) and (4)

.6_FO+A.6_}/_

]
n(r) _au
o oo

au __f an(r)
aaN e fdren da da
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If the parameter a affects n(z) only in the region of the surface, Fy and pare unchanged,
so that

Jo

9y _ —efa”(z) o(z) dz. (14)

The effect of a non-Coulombic interaction between the ions and the background can
also be considered. Suppose that we have in the RHs of (1) the extra term

fdr dr’ p(ryn(r'Y U(r,r', 4)

where A represents a set of parameters {4; ... A,}. If A is modified, the condition of
minimisation of Q and (6) gives (n is unchanged)

oFy .8y _ J’ SU(mr; 1)
=3 + A YR dry dryp(ri)n(rs) —

For example, if A is the radius of the Ashcroft pseudopotential, U = Ze*r™! (4 — r),
dFy/ A is easily calculated and one finds

— = (Ze)zjdz dr'[n(2)p(z") — ropeB(=2) ) lr=r' |710(|r—r'| = 4).

Finally, the effect of a non-Coulombic external potential can be investigated; it adds to
Qaterm

fdr O(PYVWexi (r; Ar. .. Ap).

If the parameters A;can be varied, e.g. to change the ‘softness’ of a wall, we have

avext(r )"1 )Ln)
aA fd FrS . (15)

The relations (9) and (13)-(15) are exact regardless of the form of the functional, so
do not provide a test of its validity. Note that P and (3y/dpy )7 are supposed to be
calculated with the same functional as the moments of the profile in (9) and (10). To test
the functional, one requires an alternative route to the quantities considered, such as a
calculation of (8y/dpy)r from the Hamiltonian of the system that the functional is
supposed to describe. It may also be noted that the theorems require for their proof an
arbitrarily modifiable external field. For a metal, where both electrons and ions can
rearrange simultaneously, such theorems do not exist. Indeed, in this case, one has to
consider a functional which depends both on p(z) and n(z) (Evans and Hasegawa 1981).
Q must be a minimum with respect to these two profiles, hence 6Q = 0. Equation (3) no
longer holds and the theorems cannot be derived.

In the remainder of this work we are principally concerned with the relations (9) and
(13). We shall use them as a test of a correct minimisation of the functional Q.

3. The local approximation and the Poisson-Boltzmann equation

The local approximation consists of taking G [ p] in equation (1) to be given by

Glol = [ a(p(n) or (16)

where g (p(r) ) depends on p(r) and represents the free-energy density of ahomogeneous
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ocp of density p(r). The surface tension may be defined as the surface excess free energy
(Q-Qy)/A,ie.

v= 180 - s(on0-2) & + £ [ (Zp - me(2) . a7

After integration by parts and use of the Euler-Lagrange equation (2) we get

v=c|o@:La - [ (20-me@) & (18)

Thus ¥ can be calculated without explicit reference to the nature of g(p); p(z) is,
however, determined from (2), in which g plays a role. When n(z) is a step, the first
integral in (18) vanishes.

The simplest local approximation, which should be valid for low densities, is obtained
when one supposes that g(p(r)) in (16) is given by the free energy of a non-interacting
gas. Then one gets (Sluckin 1981, Ballone et al 1981a) immediately from (2)

p(z) = pyexp[—(Ze/kT) @(2)] (19)
where the origin of the potential is at z = —. Equation (19), together with the Poisson
equation, yields the Poisson-Boltzmann equation which, if n(z) is a step, is

d (p’(2)> K2<p(2) >
—|—= ) =K|—"—-8(—:z 20
&\ p(2) o 902 (20)

where p'(z) = dp(z)/dz, and k = (47p, Z%€*/kT)"? is the reciprocal Debye—Huckel
length.
In terms of the reduced length = kxz and p(u) = p(u)/py, (20) simply reads

d/p (u)> a

— = - 6(—u).

5 (2) = ) ~ =) e1)
For u > 0 this equation can be solved analytically (Ballone er a/ 1981a) to give

p(u) = 2/[u + (2/p(0)) 2 (22)

The value of 5(0) can readily be obtained after some simple manipulations. From (21)
we have

up’(y)iM =lp_’(_u)_2= p(u)—1-1np(u) u<0
-« P(v) dv(ﬁ(v)) dv 2<ﬁ(u)> {ﬁ(u) ~1-1np(0) u>0 (23)
so that
16/ (0)/4(0))* = A(0) = 1 = In p(0). (24)

Using (22) to evaluate p'(0), since p and p" are continuous at u = 0, we get the exact
result

p(0) = 1/e (e=2718...). (25)

With this value it is clear that equation (9a) is satisfied since in the Poisson-Boltzmann
theory P = pykT and from equation (19) ¢(0) = —(kT/Ze) In[p(0)/p,] = (kT/Ze) Ine.
In fact, (9a) could have been used to find p(0).

Let us now consider the verification of equation (9b). Within the Poisson-Boltzmann
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approximation, the surface tension for a step background profile is simply

N de\?
which can be written, with the help of equation (19), as
k (kT\? (= p’(u)>2
=—-—|= du{—=].
Y 4Jr<Ze> f-x u(ﬁ(u) 27)

By integrating equation (23) we get

2L (p(v)> fo [5(v) - 1] dv— fi In 5(v)dy + fo B(v)dv
=—fo In p(v) dv (28)
where we have used equation (25) and the overall electroneutrality condition. Hence
( 7> Llnp(u)du 2(‘;’ )]sz I p(u) du (29)

Therefore we get, using the definition of x,

(&) - ()5 mpwan=5]" (- Zew)w (30)

which clearly satisfies equation (9b).

For z < 0, the profile can be obtained only numerically. A method for generating it
is given in Appendix 1. By inserting our solution into (29) we get y (compare Ballone et
al (1981a)) in the form of (12b):

v
apokT

= —2.164 (3T) 2, )

The excess surface energy Uk is given by the thermodynamic relation
Us=y~ T(3y/6T)y=y— T(8y/0T)p,= =2y + 3pu(37/3ps) . (32)

The use of (3y/8T),, instead of (8y/aT)yis discussed after (36). Equation (13a) has been
used in deriving the second part of equation (32). It follows from the form (12b) with f
proportional to I' "2 that (Ballone et al 1981a).

U=~y (33)

which can be also obtained by the direct definition of the surface energy.

More generally equation (9a) can be used in order to get the exact value of 5(0) in
the local approximation, for any free energy density g(p). According to equation (2) we
have

_ dglp(2)]
dp

and hence, using (9a),
(dg/dp).-0 == Ze®(0) = = P/py. (34)

+ Ze(2)
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For the homogeneous sytem, z— —x
do' \
u=<j.) and _P__pbi@@) |

dp ookT dp \ pkT
Inserting these formulas into (34) we find
(dg/dp):=0 = g(0s)/po. (35)

If g is known for the homogeneous system as a function of p or I', both sides of the
equation are calculable. Then one inserts the bulk density in the expression g(p)/p and
finds the density for which dg/dpis equal to it. This is the value of p(z) for z = 0.

Forexample, when1 <T = 160, Slattery er a/ (1980) have given an expression which
fits very well the Monte Carlo results for the free-energy density of the bulk ocp

g(p)/pkT = —0.89752 T + 3.78176 T¥* - 0.71816 T'V*

+2.199511InT — 3.30108. (36a)
In the weak-coupling limit 0.1 = I’ < 1 we have derived
g(p)/pkT = —0.64986 — 0.33676 T — 0.19797 ['2 + 0.04929 T + 3.012285InT  (36b)

by numerical integration for the internal energy (for 0.1 =T = 0.6 we have used the
HNC results and for 0.6 < T < 1 the Monte Carlo results). With the use of equations (36)
in equation (35) we find, for a given value of I'; = ['(z— —), ['(z = 0) and hence
p(0). Results are shown in table 1. The decrease of p(0) with T, corresponding to a
displacement of the ion profile into the jellium and implying oscillations for z < 0, is to
be noted.

Table 1. Exact values of p(0) for ocp profile with no gradients.

r p(0)
<1 0.368
1 0.354
2 0.329
3 0.276

Asnoted after equation (32), the thermodynamic formula for Usin terms of yrequires
the temperature derivative of y with V constant, whereas we have taken the derivative
at constant py. To justify this, we note that we consider a system of N positive ions in a
volume V (N— ®, V— =, but N/V finite) and in the presence of a neutralising back-
ground whose rigidity is maintained by some external constraint. When the temperature
T varies the background is not affected and hence the bulk value n, remains unchanged.
Since electrostatic considerations require that p, = Zn,, py, is also constant. It may be
noted that in the recent Monte Carlo computations (Badiali et al 1983) the thermodyn-
amic limit of the finite physical system is supposed to be taken as follows: Consider N
ions in a spherical volume V = 47R*/3, at the centre of which is a sphere of radius Ry
containing neutralising charge at density ny, so 47R3n,/3 =ZN . Then, as V and N
become infinite, the ratio Ry/R is to be held constant. With the constancy of N/V this
implies the constancy of ZN/Rj and hence n,. On the other hand, if the profile of the
neutralising background is not a step, ambiguities arise.
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In the local approximation it is easy to verify that y — T(8y/4T),, correctly gives U
since the surface tension is given by (17). Now g(p), the free-energy density of the
homogeneous system of density p, is related to the energy density of such a system u(p)
by

u(p) = g(p) — T(3g(p)/oT). (37)

Therefore
v~ T(/sT)n = [ [u(p) ~ u(pn) 0(-2)) & = 5 [ (2o - m) ¢(2) e

which is clearly U,. Although there is a T dependence through p, terms in
(8p/3T)( 6K/ 8p) vanish because the minimisation process makes 6Q/dp vanish.

4. The square-gradient approximation

The simplest improvement to the local approximation is to add a square-gradient term
to the expression for G{p]:

Glo) = | drlg(p(r) = g:(p(r)) (Vp(r) ) (38)

In the limit where the ionic density varies slowly and exhibits only small departure from
the bulk value p, it can be shown (Evans 1979) that the quantity g,(p(r)) is determined
by the second moment of the direct correlation function ¢(r) of the homogeneous ocp.
More precisely

g2(p) = —4kT a(p)

where a(p) is the coefficient of ¢ in the expansion of the non-Coulombic part of ¢(g),
the Fourier transform of c(r). Following the scheme used by Evans and Sluckin (1981)
to calculate ¢(q) it can be shown that

-Ta&?

264

pa(p) = x5(T) (39)

where k(') is a dimensionless parameter determined by fitting the isothermal com-
pressibility of the ocp. Using the fits of (36) we have
k3(T) = —0.0246 + 0.89802 T + 1.31982 % - 0.59154 T3 0.1sT=1

K3(T) = 2.3934 — 2.0484 T =¥ — 0.32916 T ~5* + (1.6008/T) 1<T < 160.

(40)

Although the fits (36b) and (40) are strictly valid for I' > 0.1 we shall use them even
for [ < 0.1, since we can verify from (38) that the region of very small I' (when
p(z) < py) does not give any significant contribution to the free energy when I’y = 1.

The truncated gradient approximation is now fully specified and the problem is to
solve the non-linear differential Euler-Lagrange equation (2). This is a difficult task and
one usually prefers to assume some parametrised form for the profile and choose the
parameters to minimise the surface excess free energy per unit area (Q — Q,)/A.

We first considered a three-parameter class of trial functions

) 1-[a/(B+ a)] expla(z — zo)] cos ¥(z — zg) z<2z
p(z) ={

(41)
[o/(B+ a)] exp[—B(z = 20)] z>2zq
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with

e _B-od-y
DB+ B (E+ V)

With this value of zg, the profile satisfies the overall electroneutrality condition. To test
the variational method, we first consider the Poisson-Boltzmann limiting case where
Q[ p] is the functional corresponding to the equation (19). In figure 1 we compare the
exact solution of this equation with the profile obtained by minimisation for an arbitrary

plkz)/py

Figure 1. Density profile in the Poisson-Boltzmann approximation: Full curve, exact solution
{integration of equation (21)); broken curve, variational function (41); chain curve, varia-
tional function, imposing exact sotution for z > 0.

value of I'. The agreement with the exact profile seems qualitatively correct even for
z > Obut we get for the reduced surface tension y/ap, kT the value ~1.76 (3T')~ V2instead
of the exact value —2.164 (3T')~2 (cf equation (31)). Of course, (41) does not behave
like the exact solution for z — + . One can impose the correct behaviour by taking (cf
equations (22) and (25)) p(z) = 2(kz + (2¢)?) " for z > 0 and the first part of (41) for
z < 0, demanding that p be continuous, have continuous slope, and satisfy electroneu-
trality; the remaining free parameter is chosen variationally. The profile obtained is
much better (figure 1) and y/ap kT = —2.157 (3T) 2. This shows the importance, at
least for small T, of taking into account the z 2 asymptotic behaviour. We then consider
the second class of functions:

3(2) = {1 — Aexp[afz — zg)] cos y(z — zp) z<2zg

~ 2/38(z + B)? z>zg (42)

where A, B and 2, are calculated as functions of «, fand yin order to satisfy continuity
of pand p’ at z = 2z and the electroneutrality condition, so (42) is, like (41), a three-
parameter trial function. The optimised value of 8 may be compared with the exact
asymptotic value I (since x? = 3T if we take the ion radius as a length unit).

For instance, for I’ = 1, (still for the Poisson-Boltzmann case) we find after minim-
isation the parameter values (in units of @): a = 1.347, y = 0.255, = 1.006, B = 1.365
and zo = —0.151. The value of pat z = 0is 0.3555, to be compared with the theoretical
value of 1/e = 0.3679. The surface tension in units of ap, kT is —1.250, to be compared
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with —2.16/V3 = —1.249, from solution of the differential equation. This indicates that
the trial functions (42) should be adequate for the present kind of problem. We may
note that the moment integrals [%..[4(u) —1]&/ du for j=1 and 2 are 0.3275 and
—0.4527 instead of the theoretical values (cf Appendix 1) of 3 and —0.4165, reflecting
their sensitivity to the behaviour of p(u) for large negative u.

We now use these trial functions with the more general density functional including
gradients (cf equations (1), (36) and (38)). We show in Appendix 2 that in this case too
the parametrisation (42) correctly describes the asymptotic behaviour of p(z) for z > 0.
The surface tension may be written

v=5[(Zo-n) o) &z + [ [8(6) - 809 6(-2)] a2 + [ g0 (Vp) ez

SYes T Vit Yy (43)

where v, is the electrostatic contribution, y; comes from the non-gradient term and y;
from the square-gradient correction. Minimised density profiles are given in figures 2
and 3, and numerical results in tables 2 and 3. We have verified that the trial functions

Figure 2. Density profile for I' = 1. Full curve, Monte Carlo results (Badiali er a/ 1983);
broken curve, variational function (42). p(0)/p, = 0.338.
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Figure 3. Density profiles obtained from variational calculation with the class of functions
(42) for various values of the plasma parameter T = 1, p(0)/p, = 0.338; T =2, p(0)/p» =
0.321;,T = 3, p(0)/p, = 0.298; T = 5, p(0)/p = 0.251.
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(41) give higher values of y (for instance, y/ap,kT = —0.806 for I’ = 1). This point shows
that the class of function (42) remains better far from the Poisson-Boltzmann limiting
case (this is not a general statement, as we shall seein the case I = 10). As expected, the
square-gradient contribution y;increaseswithI'. ForT' = 1and I = 2,itgivesanegligible
or very small contribution for the surface tension but, because g(p) for the ocp is
different from the Poisson-Boltzmann expression kT[p In(A3p) — 1], surface tensions
are quite different from the Poisson-Boltzmann values. Similarly, U is quite different
from —} vy (see below for calculation of Us). For ' = 3, oscillations become significant in
the profile and y; is no longer negligible. For I = § the gradient term becomes 80% of
the non-gradient one and twice the value of y, as important oscillations in the profile
appear. These effects can also be seen from the value of the profile at z = 0, in comparison
with the local approximation results given in table 1.

On the other hand, when I' increases the behaviour of p(z) for z > 0 differs more
and more from the Poisson-Boltzmann behaviour, as we can see from the variational
parameter § which takes the values 1.097, 2.475, 4.225 and 8.209 forT' =1, 2,3, 5
instead of the asymptotic value 8 =T (at the same time z; remains in the vicinity of
z=0).

One can compare our surface tensions with those calculated by Ballone e al (1981a)
who have solved the differential equation (2) in the local approximation, using for g(p)
amean spherical approximation result. Asshownintable 2, the agreementis satisfactory
as long as there is no significant contribution coming from the gradient correction. This
comparison tends to prove that our minimisation process is correct (at least for I' < 3)
which means that the class of trial functions (42) permits a good approximation of the
exact profile.

We can also use other tests. The first one is the balance between the various contri-
butions ¥.s, ¥:, ¥y, to the surface tension in the density functional formalism.

Starting from (43) and making explicit the relations between the different contri-
butions to y implied by the differential equation (2), it is possiblie to show (Evans and
Sluckin 1980) that

y==e [ (Zo-m) g(2) @z +2 [g2(p) (V) & = 2=7e 1) (44)
Comparing with (43) we get
Yi = Vi = 3es. (45)

The results of table 2 satisfy (45) quite well. We must note, however, that (45) is a
necessary but not sufficient condition for a good minimisation since a single-parameter
profile (for instance a single exponential form) can be easily shown to satisfy (45),
although this one-parameter profile is not at all the exact solution. As indicated in § 2,
the two sum rules (9) can also be used as a test of minimisation since they are valid for
any approximation of Q[p] as long as the true minimum is obtained. The sum rules are
checked in table 3. To evaluate the left-hand side of (9b) we require the isothermal
derivative of y with respect to the bulk density p,. The derivative (3y/9py)r (or
(3y/8T),,) has been calculated by changing py, (or T) by a small amount, while holding
constant the parameters of the profile (since 6Q/8p = 0 for the equilibrium density
profile, variations of the optimal parameters accompanying infinitesimal changes in
Py or T can be neglected in first order). The accuracy of the numerical differentiations
can be checked by the relation (13a) which gives a thermodynamical link between vy,
(8v/8T)pand (3y/8ps )1, valid whenever Q is minimised within a given class of functions.
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Table 2. Variational results for square-gradient functional.

r Yes Y Yy Y 1 <2\> U
apkT appkT apkT apkT appk \dT/ o apuk
1 0.512 —1.559 0.003 -1.044 —1.825 0.781
(—1.04)% (1.309)%
2 0.285 —0.848 0.020 -0.543 —1.220 0.677
(-0.56)t
3 0.179 -0.502 0.047 -0.275 -0.927 0.651
(=0.31)*
5 0.103 -0.175 0.136 0.064 -0.632 0.696

+ Results of Ballone et a/ (1981a).
+ Monte Carlo result (Badiali er al 1983).

Table 3. Verification of sum-rules (9):

P o
TkT=3I‘L‘ [p(u) — 1)u du (9a)
1 [dy 3_ (o . ,
m(d_pb,)T =—2F[x [p(u) — 1]u* du u=zla. (9b)
r P fo . 3 fo ) dyy 1
£ ~1]ud 2 ~1]u gry L
T Ll -teae 5T pw -t () o
1 0.809 0.858 -0.532 —0.443
2 0.560 0.523 -0.030 -0.070
3 0.296 0.279 0.021 0.010
5 -0.251 -0.209 0.041 0.085

From table 3 we see that, while sum rule (9a) is rather well satisfied, the agreement
is much worse for the sum rule (9b). We have noted that these sum rules are related
respectively to the first and second moment of the profile for z <0, so (9b) is more
sensitive to the asymptotic behaviour for z < 0. Because of this sensitivity, it is unfor-
tunately not possible to calculate (87/80y ) r from the Monte Carlo profile p(z) obtained
by Badiali et al (1983). Note that in the Poisson-Boltzmann case, the precision on the
sum rule (9b) was only 8% while the minimised value of ywas better than 0.1%.

Unlike equation (45), sum rules (9) can be shown not to be satisfied by the minimi-
sation of a single exponential type profile.

5. Comparison with Monte Carlo results and concluding remarks

Monte Carlo computations for the profile and the surface energy of the ocp are now
available for T’ = 1, 10 and 30 (Badiali et a/ 1983). For I' = 1 the comparison with the
FDFF results (figure 2 and table 2) shows that the agreement is only qualitative for the
profile and rather poor for the surface energy (note that since both profiles satisfy global
electroneutrality they must cross each other at large positive z). For this value of T the
width of the ion profile is large compared with the radius of the sphere in which Monte
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Carlo computations are performed and one could have some doubts about the N
dependence of the Monte Carlo results. Recent Monte Carlo computations by Levesque
(private communication) with a greater number of particules (N = 679 instead of 329)
show that within statistical errors this dependence is negligible. On the other hand, the
discrepancies between Monte Carlo and density functional results are not due to inad-
equacies in the trial functions since the Monte Carlo profile can be satisfactorily fitted
within the class (42). The problem indeed seems to be that the truncated gradient
expansion itself is incorrect even for this small value of I'. As noted by Alastuey and
Levesque (1983) for the two-dimensional ocP, the non-local terms neglected in the
square-gradient expansion (38) may have the same order in I as the first terms
considered.

We have also done the minimisation work for I' = 10 keeping the same functional
and the two classes of functions (41) and (42). The class (41) appears to give the lowest
minimum for the free-energy (the asymptotic tail for z > 0 is now making small contri-
butions) but disagreement is important with Monte Carlo results as we can see from
figure 4 and table 4. It is possible to increase the oscillations by multiplying the gradient
term by an adjustable parameter:

Glo) = [ arla(p) + kg:() (Vo)

If the value of k is chosen in order to get the Monte Carlo results for the surface energy,
we find k = 0.535. We see in figure 4 that the agreement with the Monte Carlo profile
becomes satisfactory now. But if the background profile becomes of exponential form
(characterised by a width A) we observe again important deviations in the surface
energies (table 4). This fact may show the inadequacy of the ad hoc correction, although
there may be also a problem in the definition of the thermodynamic limit for the Monte
Carlo computations when the background profile is not a step (Badiali et al 1983).
Anyway the adjustable parameter k is I dependent.

This failure of the truncated gradient expansion, even when no oscillations are
present in the profile, is of great importance since this approximation has been used in

plz)lpb

| | oo~ "= 1 1
2 1 0 -1 -2 -3
zla

Figure 4. Density profile for I = 10 when the background has a step profile (4/a = 0). Full
curve, Monte Carlo results (Badiali et al 1983); broken curve, variational calculation; chain
curve, variational calculation with corrected gradient term (k = 0.535).
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Table 4. Values of ¥.., ¥, ¥, yand U, in units of apkT for T = 10.

1 ]
ko Ma ve  m Y R <_i’> U,
! appk \3T/ o

Our results MC resultst

1 0 0.112  0.065 0.406 0.587 -0.270 0.857 0.481+
0535 0 0.140 -0.100 0.323 0.363 -0.118 0.481 0.481+
0.535 0.345 0.148 0.162 0.211 0.521 -0.302 0.823 2.589+
0.535 0.439 0.099 0390 0.150 0.635 -0.481 1.120 4.644+
0.535 0.690 0.071 0.808 0.086 0.965 -0.886 1.851 7.430+

+ Monte Carlo results (Badiali et al 1983).

other Coulombic systems such as liquid metals in order to obtain the surface tension.
We see that the discrepancies between theory and experiment, which have been attri-
buted to an oversimplified treatment of the electron-ion interaction (Evans and Hase-
gawa 1981, Goodisman and Rosinberg 1983), may come also from the truncated gradient
expansion itself.
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Appendix 1. Solution of the Poisson—Boltzmann equation

In reduced units, the equation to be solved is

d ()Y _ ooy <
a(m) = p(u) 1 u=<o0 (All)

with the condition p— 1 for u — — . If we make the transformation
f=Ing and u=Inx

equation (Al.1) becomes

& df o [

22 1= D Al.2
T ,21 i (A1.2)
Now we take for fa power series

and substitute into (A1.2). The coefficient of each power of x must vanish, which gives
ao = 0 and relates all the a; (k > 1) to a;. The boundary condition 5(0) = 1/e implies
Za, = —1, which becomes an algebraic equation for a; . This may be solved on truncating
the series for f at any k. The convergence of this process is shown by the results of table
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Table Al. Values of coefficients in In p = < g, e*“ for various truncations.

Series . .
s . ,

fruncated c2ja X2

= a as as aq as €i=1 =17
1 -1 -0.36788 -1
2 -1.26795 0.26795 ~0.26931 —1.13398
3 -1.15902 0.22389 —0.06487 —-0.33324 -1.06870
4 —1.18991 0.23598 -0.07020 0.02413 —0.30609 -1.08929
5 —-1.17960 0.23191 -0.06839 0.02331 -0.00723 -0.31780 -1.0821

Al. We give the values of the first g; calculated from various values of &, as well as the
slope at 0, calculated as

dp\ d_f) 1y,
(du>u=o~ (xefdx x=1 e;;]a"
The exact value of this quantity, from the solution for u > 0, is —4(2e) %% = —0.3155.

The convergence is quite satisfactory. We can then use the solution to compute the

integral needed for the dimensionless part of the surface tension y, equations (27) and
(28). Thus

0 .
f dulnp=2%
- ]

becomes —1.08206 using the last line of table A1, and y = —2.1641 ap, kT (3T) 2,

Appendix 2. Asymptotic behaviour in the gradient approximation

When the square-gradient approximation (38) is used for G[p], the Euler-Lagrange
equation (2) becomes

_9%(p) _ds:(p) (dp\? _ d%p |
~ dp dp (dz) 2820p) g2 + Zep(2). (A2.1)

Consider now the region z— +x,i.e. p(z) — 0. From (34b) we see that the leading
termin g(p) comes fromIn T

g(p) ~ pkT In p(z)/py

hence
dg/dp ~ kT In p(z)/ps. (A2.2)
From (39) and (40) we get
Ze? (4m\ -3 . i
8:00) = 5 () P2 x(T) ~ Ap(2) (A23)

where A is a constant. Hence

dg:(p)/dp~ —4Ap(z) 7"
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The asymptotic equation for p(z) is then
u=kTIn p(z)/py + $Ap(2)"7(dp/dz)* — 2A p(z) " d*0/dz? + Ze ¢(2). (A2.4)
In the Poisson-Boltzmann limit, (A2.1) simply becomes

u=kTInp(z)/ps + Ze@(z)

and we know (see equation (22)) that the asymptotic behaviour of the solution is p(z)
~ z72, We argue that we have the same algebraically decay for the solution of (A2.4).
Indeed when p(z) ~ z72

kTlIn p(z)/py~ @(z) ~ Inz

and it is easy to check that the two gradient terms have a faster decay, in z7*°.

We can also look at the asymptotic behaviour of p(z) in the bulk phase, i.e. when
z— —«, Differentiating (A2.1) twice in order to introduce the Poisson equation and
linearising with respect to h(z) = p(z) — py, it is clear that we get a linear differential
equation with constant coefficients. The general solution is then

p(z) ~ constant e* cos(yz + ). (A2.5)
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