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Abstract

Building on research carried out in the Parallel Compiler Runtime
Comnsortium (PCRC) project, this article discusses a language model that
combines characteristic data-parallel features from the HPF standard with
an explicitly SPMD programming style. This model, which we call the
HPspmd model, is designed to facilitate direct calls to established libraries
for parallel programming with distributed data. We describe a Java-based
HPspmd language called HP Java.

1 Introduction

Data parallel programming languages have always held a special position in the
high-performance computing world. The basic implementation issues related
to this paradigm are well understood. However, the choice of high-level pro-
gramming environment, particularly for modern MIMD architectures, remains
uncertain. Six years ago the High Performance Fortran Forum published the
first standardized definition of a language for data parallel programming [13, 15].
In the intervening period considerable progress has been made in HPF compiler
technology, and the HPF language definition has been extended and revised in
response to demands of compiler-writers and end-users [11]. Yet it seems to
be the case that most programmers developing parallel applications or envi-
ronments for parallel application development do not code in HPF. The slow



uptake of HPF can be attributed in part to immaturity in the current gener-
ation of compilers. But it seems likely that many programmers are actually
more comfortable with the Single Program Multiple Data (SPMD) program-
ming style, perhaps because the effect of executing an SPMD program is more
controllable, and the process of tuning for efficiency is more intuitive.

Of course SPMD programming has been very successful. There are countless
applications written in the most basic SPMD style, using direct message-passing
through MPI [16] or similar low-level packages. Many higher-level parallel pro-
gramming environments and libraries assume the SPMD style as their basic
model. Examples include ScaLAPACK [4], PetSc [2], DAGH [19], Kelp [10],
the Global Array Toolkit [17] and NWChem [3]. While there remains a prej-
udice that HPF is best suited for problems with very regular data structures
and regular data access patterns, SPMD frameworks like DAGH and Kelp have
been designed to deal directly with irregularly distributed data, and other li-
braries like CHAOS/PARTTI [8] and Global Arrays support unstructured access
to distributed arrays.

These successes aside, the library-based SPMD approach to data-parallel
programming certainly lacks the uniformity and elegance of HPF. All the en-
vironments referred to above have some idea of a distributed array, but they
all describe those arrays differently. Compared with HPF, creating distributed
arrays and accessing their local and remote elements is clumsy and error-prone.
Because the arrays are managed entirely in libraries, the compiler offers little
support and no safety net of compile-time checking.

This article discusses a class of programming languages that borrow cer-
tain ideas, various run-time technologies, and some compilation techniques from
HPF, but relinquish some of its basic tenets. In particular they forgo the prin-
ciples that the programmer should write in a language with (logically) a single
global thread of control, and that the compiler should determine automatically
which processor executes individual computations in a program, then automat-
ically insert communications if an individual computation involves accesses is
to non-local array elements.

If these assumptions are removed from the HPF model, does anything useful
remain? We argue “yes”. What will be retained is an explicitly MIMD (SPMD)
programming model complemented by syntax for representing distributed ar-
rays, and syntax for expressing that certain computations are localized to cer-
tain processors, including syntax for a distributed form of the parallel loop. The
claim is that these features are adequate to make calls to various data-parallel
libraries, including application-oriented libraries and high-level libraries for com-
munication, about as convenient as, say, making a call to an array transforma-
tional intrinsic function in Fortran 90. Besides their advantages as a framework
for library usage, the resulting programming languages can conveniently ex-
press various practical data-parallel algorithms. The resulting framework may
also have better prospects for dealing effectively with irregular problems than
is the case for HPF.



2 HPspmd language extensions

We aim to provide a flexible hybrid of the data parallel and low-level SPMD
paradigms. To this end HPF-like distributed arrays appear as language primi-
tives. But a design decision is made that all access to non-local array elements
should go through library functions—either calls to a collective communication
library, or simply get and put functions for access to remote blocks of a dis-
tributed array. Clearly this decision puts an extra onus on the programmer; but
making communication explicit encourages the programmer to write algorithms
that exploit locality, and simplifies the task of the compiler writer.

For the newcomer to HPF, one of its advantages lies in the fact that the effect
of a particular operation is logically identical to its effect in the corresponding
sequential program. Assuming programmers understand conventional Fortran,
it is very easy for them to understand the behaviour of a program at the level
of what values are held in program variables, and the final results of procedures
and programs. Unfortunately, the ease of understanding this “value semantics”
of a program is counterbalanced by the difficulty in knowing exactly how the
compiler translated the program. Understanding the performance of an HPF
program may require that the programmer have rather detailed knowledge of
how arrays are distributed over processor memories, and what strategy the
compiler adopts for distributing computations.

The language model we discuss has a special relationship to the HPF model,
but the HPF-style semantic equivalence between the data-parallel program and
a sequential program is abandoned in favour of a simple equivalence between the
data-parallel program and an MIMD (SPMD) program. Because understanding
an SPMD program is presumably more difficult than understanding a sequential
program, our language may be slightly harder to learn and use than HPF. But
understanding performance of programs should be much easier.

The distributed arrays of an HPspmd language should be kept strictly sep-
arate from ordinary arrays. They are a different kind of object, not type-
compatible with ordinary arrays. A property of the languages we describe is
that if a section of program text looks like program text from the unenhanced
base language (Fortran 90 or Java, for example), it is translated exactly as
for the base language—as local sequential code. Only statements involving the
extended syntax are treated specially. This makes preprocessor-based imple-
mentation of the new languages straightforward, allows sequential library code
to be called directly, and gives programmers good control over the generated
code—they can be confident no unexpected overhead have been introduced into
code that looked like ordinary Fortran, for example.

We adopt a distributed array model semantically equivalent to to the HPF
data model in terms of how elements are stored, the options for distribution and
alignment, and facilities for describing regular sections of arrays. Distributed
arrays may be subscripted with global subscripts, as in HPF. But an array
element reference must not imply access to a value held on a different processor.



We sometimes refer to this restriction as the SPMD constraint. To simplify the
task of the programmer, who must be sure accessed elements are held locally, the
languages can add distributed control constructs. These play a role something
like the ON HOME directives of HPF 2.0 and earlier data parallel languages [14].
One special control construct—a distributed parallel loop—facilitates traversal
of locally held elements from a group of aligned arrays.

A Java instantiation (HPJava) of this HPspmd language model has been
described in [6]. A brief review is given in section 4. In [5] we have outlined
possible syntax extensions to Fortran to provide similar semantics to HP Java.

3 Integration of high-level libraries

Libraries are at the heart of our HPspmd model. From one point of view, the
language extensions are simply a framework for invoking libraries that operate
on distributed arrays. Hence an essential component of the ongoing work is
definition of a series of bindings from HPspmd languages to established SPMD
libraries and environments. Because the language model is explicitly SPMD,
such bindings are a more straightforward proposition than in HPF, where one
typically has to pass some extrinsic interface barrier before invoking SPMD-style
functions.

We can group the existing SPMD libraries for data parallel programming into
three categories. In the first category we have libraries like ScaLAPACK [4] and
PetSc [2] where the primary focus is similar to conventional numerical libraries
providing implementations of standard matrix algorithms (say) but operating
on elements in regularly distributed arrays. We assume that designing HPspmd
interfaces to this kind of package will be relatively straightforward. ScaLAPACK
for example, provides linear algebra routines for distributed-memory computers.
These routines operate on distributed arrays specifically, distributed matrices.
The distribution formats supported are restricted to two-dimensional block-
cyclic distribution for dense matrices and one-dimensional block distribution
for narrow-band matrices. Since both these distribution formats are supported
by HPspmd, using ScaLAPACK routines from the HPspmd framework should
present no fundamental difficulties.

In a second category we place libraries conceived primarily as underlying sup-
port for general parallel programs with regular distributed arrays. They empha-
size high-level communication primitives for particular styles of programming,
rather than specific numerical algorithms. These libraries include compiler run-
time libraries like Multiblock Parti [1] and Adlib [21], and application-level
libraries like the Global Array toolkit [17]. Adlib is a runtime library that was
designed to support HPF translation. It provides communication primitives
similar to Multiblock PARTI, plus the Fortran 90 transformational intrinsics
for arithmetic on distributed arrays. The Global Array (GA) toolkit, developed
at Pacific Northwest National Lab, provides an efficient and portable “shared-



memory” programming interface for distributed-memory computers. Each pro-
cess in a MIMD parallel program can asynchronously access logical blocks of
distributed arrays, without need for explicit cooperation by other processes
(“one-sided communication”). Besides providing a more tractable interface for
creation of multidimensional distributed arrays, our syntax extensions should
provide a more convenient interface to primitives like ga_get, which copies a
patch of a global array to a local array.

Regular problems (such as the linear algebra examples in section 4) are an
important subset of parallel applications, but of course they are far from exclu-
sive. Many important problems involve data structures too irregular to represent,
purely through HPF-style distributed arrays. Our third category of libraries
therefore includes libraries designed to support irregular problems. These in-
clude CHAOS [8] and DAGH [19]. We anticipate that irregular problems will
still benefit from regular data-parallel language extensions at some level they
usually resort to representations involving regular arrays. But lower level SPMD
programming, facilitated by specialized class libraries, is likely to take a more
important role. For an HPspmd binding of the CHAOS/PARTI library, for
example, the simplest assumption is that the preprocessing phases yield new
arrays. Indirection arrays may well be left as HPspmd distributed arrays; data
arrays may be reduced to ordinary Java arrays holding local elements. Paral-
lel loops of an executor phase can then be expressed using owverall constructs.
More advanced schemes may incorporate irregular maps into generalized array
descriptors [11, 9, 7] and require extensions to the baseline HPspmd language
model.

4 HPJava—an HPspmd language

HPJava [6] is an instance of our HPsmpd language model. HPJava extends
its base language, Java, by adding some predefined classes and some additional
syntax for dealing with distributed arrays.

As explained in the previous section, the underlying distributed array model
is equivalent to the HPF array model. Array mapping is described in terms
of a slightly different set of basic concepts. Process group objects generalize
the processor arrangements of HPF. Distributed range objects are used instead
HPF templates. A distributed range is comparable with a single dimension of
an HPF template. These substitutions are a change of parametrization only.
Groups and ranges fit better with our distributed control constructs.

Figure 1 is a simple example of an HP Java program. It illustrates creation of
distributed arrays, and access to their elements. The class Procs2 is a standard
library class derived from the special base class Group. It represents a two-
dimensional grid of processes. Similarly the distributed range class BlockRange
is a library class derived from the special class Range; it denotes a range of
subscripts distributed with BLOCK distribution format over a specific process



Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new BlockRange(M, p.dim(0)) ;
Range y = new BlockRange(N, p.dim(1)) ;

float [[,]] a
c

new float [[x, yl], b
new float [[x, yl] ;

new float [[x, yI],

. initialize values in ‘a’, ‘b’
overall(i = x for :)
overall(j = y for :)
c [i, j1 =a [i, j1 + b [i, j] ;

Figure 1: A parallel matrix addition.

dimension. Process dimensions associated with a grid are returned by the dim()
inquiry. The on(p) construct is a new control construct specifying that the
enclosed actions are performed only by processes in group p.

The variables a, b and c are all distributed array objects. The type signature
of an r-dimensional distributed array involves double brackets surrounding r
comma-separated slots. The constructors specify that these all have ranges x
and y they are all M by N arrays, block-distributed over p.

A second new control construct, overall, implements a distributed parallel
loop. The constructs here iterate over all locations (selected by the degenerate
interval “ : ) of ranges x and y. The symbols i and j scoped by these con-
structs are bound locations. In HPF, a distributed array element is referenced
using integer subscripts, like an ordinary array. In HPJava, with a couple of
exceptions noted below, the subscripts in element references must be bound
locations, and these must be locations in the range associated with the array
dimension. This rather drastic restriction is a principal means of ensuring that
referenced array elements are held locally.

The general policy is relaxed slightly to simplify coding of stencil updates.
A subscript can be a shifted location. Usually this is only legal if the subscripted
array is declared with suitable ghost regions [12]. Figure 2 illustrates the use of
the library class ExtBlockRange to create arrays with ghost extensions (in this
case, extensions of width 1 on either side of the locally held “physical” segment,).
The communication library routine Adlib.writeHalo updates the ghost region.
This example also illustrates application of a postfix backquote operator to a
bound location. The expression i¢ (read “i-primed”) yields the integer global
loop index.

Distributed arrays can be defined with some sequential dimensions. The



Procs2 p = new Procs2(P, P) ;

on(p) {
Range x = new ExtBlockRange(N, p.dim(0), 1, 1) ;
Range y = new ExtBlockRange(N, p.dim(1), 1, 1) ;

float [[,]] u = new float [[x, yl] ;

. some code to initialise ‘u’

for(int iter = 0 ; iter < NITER ; iter++) {
Adlib.writeHalo(u) ;

overall(i = x for 1 : N - 2)
overall(j =y for 1 + (i‘ + diter) 4 2 : N - 2 : 2)
u [i, j] = 0.256 * (u [1i -1, j] +u [i + 1, j] +
u i, j - 1] +u [1i, j + 11) ;

Figure 2: Red-black iteration.

sequential attribute of an array dimension is flagged by an asterisk in the type
signature. As illustrated in Figure 3, element reference subscripts in sequential
dimensions can be ordinary integer expressions.

The short examples here have already covered much of the special syn-
tax of HPJava. Other significant extensions allow Fortran-90-like sections of
distributed arrays. This, in turn, forces us to define certain subranges and
subgroups. Arrays constructed directly using subgroups and subranges can re-
produce all the alignment options of HPF. In any case, the language itself is
relatively simple. Complexities associated with varied and irregular patterns of
communication are dealt with in libraries. These can implement many richer
operations than the writeHalo and cshift functions of the examples.

5 Conclusions

In this article we discussed motivations for introducing an HPspmd program-
ming model: a SPMD framework for using libraries based on distributed arrays.
It adopts the model of distributed arrays standardized by the HPF Forum, but
relinquishes the high-level single-threaded model of the HPF language. This
makes compilers or translators for the HPspmd-extended languages a relatively
straightforward proposition. As a concrete example, we described the specific
syntax of HP Java.



Procsl p = new Procsi(P) ;
on(p) {
Range x = new BlockRange(N, p.dim(0)) ;

float [[,*]] a
float [[*,]1] b

new float [[x, N]], ¢ = new float [[x, NI] ;
new float [[N, x]], tmp = new float [[N, x]] ;

. initialize ‘a’, ‘b’
for(int s = 0 ; s < N ; s++) {
overall(i = x for :) {
float sum = 0 ;
for(int j = 0 ; j < N ; j++)

sum += a [i, j] * b [j, il ;

c [i, (i + s) % N]
}

sum ;

// cyclically shift ‘b’ (by amount 1 in x dim)...

Adlib.cshift(tmp, b, 1, 1) ;
HPspmd.copy (b, tmp) ;

Figure 3: A pipelined matrix multiplication program.

Two recent languages that have some similarities to our HPspmd languages
are F-- and ZPL. F-- [18] is an extended Fortran dialect for SPMD program-
ming. The approach is different to the one proposed here. There is no analogue
of global subscripts, or HPF-like distribution formats. In F- - the logical model of
communication is built into the language—remote memory access with intrinsics
for synchronization where our basic philosophy is to provide communication
through separate libraries. ZPL [20] is a array parallel programming language
for scientific computations. It has a construct for performing computations over
a region, or set of indices, quite similar to our overall construct. Communication
is more explicit than HPF, but not as explicit as in the language discussed in
this article.

At the time of writing the HPJava translator is partially operational. On-
going work will complete the functionality, and add some optimization for the
generated code. The language definition calls for full compile-time or runtime
checking of the constraints on locality of reference. The translator will be en-



hanced to add these. Early benchmarks results will be included in the final
version of this paper.
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