
Syracuse University Syracuse University 

SURFACE SURFACE 

Mathematics - Dissertations Mathematics 

2011 

Excess Porteous, Coherent Porteous, and the Hyperelliptic Locus Excess Porteous, Coherent Porteous, and the Hyperelliptic Locus 

in M3 in M3 

Thomas S. Bleier 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/mat_etd 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Bleier, Thomas S., "Excess Porteous, Coherent Porteous, and the Hyperelliptic Locus in M3" (2011). 
Mathematics - Dissertations. 67. 
https://surface.syr.edu/mat_etd/67 

This Dissertation is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted 
for inclusion in Mathematics - Dissertations by an authorized administrator of SURFACE. For more information, please 
contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/mat_etd
https://surface.syr.edu/math
https://surface.syr.edu/mat_etd?utm_source=surface.syr.edu%2Fmat_etd%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat_etd%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/mat_etd/67?utm_source=surface.syr.edu%2Fmat_etd%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ABSTRACT

In the moduli space of curves of genus 3, the locus of hyperelliptic curves forms

a divisor, that is a closed subscheme of codimension 1. J. Harris and I. Morrison

compute an expression for the class of this divisor, in the Chow ring of the moduli

space, using a map of vector bundles and by applying the Thom-Porteous formula to

determine an expression for a certain degeneracy locus of this map. One would like

to extend their idea in order to compute an expression for the divisor associated to

the closure of the hyperelliptic locus, in the Chow ring of the moduli space of stable

curves (of genus 3.)

Recent work due to S. Diaz allows one to define the degeneracy class of a map

between coherent sheaves, and gives explicit means for computing this class. Diaz uses

his technique to partially extend the above mentioned computation, but he points out

that in order to complete the computation one must combine his techniques with an

Excess Thom-Porteous formula. This thesis completes this computation by combining

the work of Diaz with this Excess Thom-Porteous formula.
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Chapter 1

Background

1.1 Introduction

In [HM, p.162] the authors consider a family π : X → B of smooth curves of genus 3,

not all of which are hyperelliptic, and a map σ : E → F of vector bundles (of ranks

3 and 2, respectively) on X. They show that this map fails to be surjective exactly

at the hyperelliptic Weierstrass points of hyperelliptic fibers of π. They then use the

Thom-Porteous formula for vector bundles to determine an expression for the class

of

D1(σ) = {x ∈ X | rank(σx) ≤ 1}

in the Chow group of X. The authors then use this result to obtain an expression in

Picfun(M3)⊗Q (the group of divisor classes on the moduli stack) for the class of the

locus of hyperelliptic curves.

1
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One would like to extend this technique to determine an expression in Picfun(M3)⊗

Q for the closure of the locus of hyperelliptic curves. Unfortunately, if one supposes

that π : X → B is a family of stable curves of genus 3, then F will fail to be locally

free at singular points of singular fibers of π. (See [HM, Sec. 3.F] for details.) Har-

ris and Morrison are able to compute this class in Picfun(M3) ⊗ Q using different

techniques, but one would still like to extend the original technique to compute the

class.

The author of [D], by constructing a certain blow-up g : X ′ → X and a map

σ′ : E ′ → F ′ of vector bundles on X ′, related to the original map σ, is able to define

the degeneracy class for a map of coherent sheaves. The author then applies this

process in order to determine an expression in Picfun(M3) ⊗ Q for the class of the

closure of the hyperelliptic locus in M3 \∆1. The author points out that at singular

curves corresponding to general points of ∆1, not only will F fail to be locally free at

the singular points, but also the map σ will have rank ≤ 1 at all points of the elliptic

component of the fiber. The author suggests that one could combine the process

for determining the degeneracy class of a map of coherent sheaves with the excess

Porteous formula found in [F, Ex. 14.4.7] to compute an expression in Picfun(M3)⊗Q

for the class of the closure of the hyperelliptic locus in M3. This is the goal of this

thesis.

To this end, I consider a family π : X → B of smooth, nonhyperelliptic curves

degenerating to a general element of ∆1, and I consider the map σ′ : E ′ → F ′ men-
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tioned above. After determining the scheme structure of D1(σ′), I then use the excess

Porteous formula ([F, Ex. 14.4.7]) to determine the number of times the standard

Thom-Porteous formula counts a general element of ∆1. Finally, I combine this com-

putation with that of [D] to determine an expression in Picfun(M3)⊗Q for the class

of the closure of the hyperelliptic locus in M3.
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1.2 Moduli Spaces of Curves

Definition 1.2.1. Let f : X → B be a morphism of schemes over Spec C and let

b ∈ B be a point. Let k(b) be the residue field of b and Spec k(b)→ B be the natural

morphism. Then the fiber of f over b is the scheme

Xb := X ×B Spec k(b)

Notation 1.2.2. By a smooth curve we will mean a smooth curve over C that is a

complete and connected.

Definition 1.2.3. Let g ∈ Z+. Let f : X → B be a flat morphism of schemes over

Spec C such that Xb is a smooth curve of genus g for every closed point b ∈ B. We

call f a family of smooth curves of genus g over B.

Fix g ∈ Z+, and consider the functor

F : schemes→ sets

that sends a scheme B to the set of all families of smooth curves of genus g over B,

modulo the following equivalence relation:

X
f−−−→ B ∼ X ′

g−−−→ B

if there exists an isomorphism ϕ : X → X ′ such that f = g ◦ ϕ.

Remark 1.2.4. Note that F (Spec C) is the set of isomorphism classes of smooth

curves of genus g.
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Definition 1.2.5. A scheme M and a natural transformation ψ from F to the functor

Mor(−,M) are a coarse moduli space for F if:

i) The map ψSpec C : F (Spec C)→ Mor(Spec C,M) is a set bijection.

ii) Given another scheme M′ and a natural transformation ψ′ : F → Mor(−,M′),

there exists a unique morphism π : M → M′ such that the associated natural

transformation Π : Mor(−,M)→ Mor(−,M′) satisfies ψ′ = Π ◦ ψ.

Proposition 1.2.6. If a coarse moduli space exists for F , it is unique up to canonical

isomorphism.

Proof. Suppose M and M′ are both coarse moduli spaces for F , with corresponding

natural transformations ψ and ψ′, respectively, then there exists a unique morphism

π : M→M′ such that the associated natural transformation Π (as in (1.2.5)) satisfies

ψ′ = Π ◦ ψ.

Similarly, there exists a unique morphism π′ : M′ → M such that the associated

natural transformation Π′ satisfies ψ = Π′ ◦ ψ′.

But now we have π′ ◦ π : M →M is an isomorphism with associated natural trans-

formation Π′ ◦ Π. Moreover, by above we have

ψ = Π′ ◦ ψ′

= Π′ ◦ (Π ◦ ψ)

= (Π′ ◦ Π) ◦ ψ.
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But we know that there is a unique morphism ϕ : M→M whose associated natural

transformation, Φ, satisfies ψ = Φ ◦ ψ. Since idM is such a morphism, we see that

π′ ◦ π =idM. Similarly, π ◦ π′ =idM′ . Thus M ∼= M′. Moreover, by the uniqueness of

π, we see that the isomorphism is canonical.

Theorem 1.2.7. For g ≥ 2, there exists a coarse moduli space for F , Mg. Moreover,

it is an irreducible quasi-projective variety of dimension 3g − 3 over C.

Proof. See [M, Thm 5.11].

Remark 1.2.8. Mg is neither projective nor affine. (See [HM, p.45].)

Definition 1.2.9. A stable curve is a complete connected curve that has only nodes

as singularities and has only finitely many automorphisms.

Remark 1.2.10. A smooth curve of genus g has at most 84(g − 1) automorphisms

and hence is stable. (See [H, IV.Ex.2.5].)

Definition 1.2.11. The arithmetic genus of a connected curve C is dimCH
1(C,OC).

Notation 1.2.12. By [H, III.7.12.2] the arithmetic genus of a smooth curve is equal

to its geometric genus (which up until now we have simply called its genus.) Thus

we will refer simply to the genus of a stable curve with the understanding that for

a smooth curve this can be interpreted as before and for a singular stable curve this

will refer to its arithmetic genus.
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Proposition 1.2.13. Let C be a stable curve of genus g with δ nodes and ν irreducible

components C1, . . . , Cν of genera g1, . . . , gν, then

g =

(
ν∑
i=1

gi

)
+ δ − ν + 1

Proof. See [HM, 3.1].

Definition 1.2.14. Let g ∈ Z+. Let f : X → B be a flat morphism of schemes over

Spec C such that Xb is a stable curve of (arithmetic) genus g for every closed point

b ∈ B. We call f a family of stable curves of genus g over B.

Fix g ∈ Z+ and consider the functor Fstab : schemes→ sets that sends a scheme

B to the set of families of stable curves of genus g over B, modulo the same equivalence

relation as above. Similar to (1.2.5) we can define what it means to be a coarse moduli

space for Fstab.

Theorem 1.2.15. For g ≥ 2, there exists a coarse moduli space for Fstab, Mg.

Moreover, it is a projective variety of dimension 3g − 3 over C.

Proof. See [HM, Thm. 2.15].

Remark 1.2.16. By (1.2.10), we see that Mg ⊂Mg.

Definition 1.2.17. We call Mg the stable compactification of Mg.

Notation 1.2.18. Let ∆ = Mg \Mg.

Definition 1.2.19. For i,= 1, . . . , bg/2c, define ∆i to be the closure in Mg of the

locus of curves of genera i and g − i meeting transversely at one point.
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Define ∆0 to be the closure in Mg of the locus of irreducible curves with a single

node.

Proposition 1.2.20. ∆ is a divisor in Mg. Moreover, ∆0,∆1, . . . ,∆bg/2c are its

irreducible components.

Proof. See [HM, p.50].
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1.3 Hyperelliptic Curves

Definition 1.3.1. A smooth curve C of genus g ≥ 2 is called hyperelliptic if there

exists a finite morphism f : C → P1 of degree 2.

Proposition 1.3.2. The locus of hyperelliptic curves in Mg is of dimension 2g − 1.

We will use the following three lemmas in the proof of the above proposition.

Lemma 1.3.3. If C is a hyperelliptic curve, then there is a unique finite morphism

f : C → P1 of degree 2, up to automorphism of P1.

Proof. See [H, IV.5.3].

Lemma 1.3.4. If C is a hyperelliptic curve of genus g and f : C → P1 is a finite

morphism of degree 2, then f is branched at 2g + 2 points of P1.

Proof. By [H, IV.2.4], the degree of the ramification divisor, R, of f : C → P1 is

2g + 2. Moreover, since f is a morphism of degree 2, every point of C appearing in

R (i.e., appearing with nonzero coefficient) has a coefficient of 1, and all such points

must map to distinct points of P1.

Definition 1.3.5. The points of C in 1.3.4 that lie over the branch points in P1 are

called hyperelliptic Weierstrass points of C.

Lemma 1.3.6. Any set of 2g + 2 distinct elements of P1 determine a hyperelliptic

curve of genus g.
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Proof. First we choose homogeneous coordinates on P1 so that none of of the 2g + 2

distinct elements equal ∞. Let α1, . . . , α2g+2 ∈ C be distinct. Let

F (z) = z2 − (x− α1) . . . (x− α2g+2) ∈ C(x)[z],

and let

K =
C(x)[z]

F (z)
.

Since the αi are distinct, F is irreducible, and hence K is a finite extension of C(x) of

degree 2. The inclusion C(x) ↪→ K then defines a morphism of curves, f : C → P1,

of degree 2. Moreover, this map will be branched at exactly α1, . . . α2g+2 ∈ P1. By

[H, IV.2.4] the genus of C must be g.

(Proof of 1.3.2). Let C be a hyperelliptic curve of genus G and f : C → P1 a mor-

phism of degree 2. We can normalize the 2g+ 2 branch points in P1 by first ordering

them and then following f by the automorphism of P1 that sends the first three branch

points to 0, 1, and∞, respectively. By abuse of notation we continue to call the com-

position of f with this automorphism f . Thus we can assume that f is branched at

0, 1,∞ and 2g − 1 points of C \ {0, 1}.

Let S2g+2 be the symmetric group on 2g + 2 letters. We define an action on sets

of 2g − 1 distinct elements β1, . . . , β2g−1 ∈ C \ {0, 1}:

i) Let σ ∈S2g+2. Reorder the set 0, 1,∞, β1, . . . , β2g−1 according to σ.

ii) Renormalize using the automorphism of P1 that sends σ(0), σ(1), and σ(∞) back

to 0, 1,∞. The images of σ(β1), . . . , σ(β2g−1) become a new set of 2g−1 distinct
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elements in C \ {0, 1}.

We consider the open set given by

(
∩2g−1
i=1 {xi 6= 0}

)⋂(
∩2g−1
i=1 {xi 6= 1}

)⋂
(∩i 6=j{xi 6= xj})

in A2g−1
x1,...,x2g−1

, modulo the S2g+2 action described above. Since S2g+2 is a finite group,

this will be an irreducible variety of dimension 2g − 1; call it V .

By (1.3.6) we see that to any point of V there corresponds a hyperelliptic curve of

genus g. By (1.3.4) we see that every hyperelliptic curve of genus g must correspond

to some point of V . Finally, by (1.3.3) we see that two hyperelliptic curves of genus

g correspond to the same point of V if and only if they are isomorphic. Hence V is a

parameter space for hyperelliptic curves of genus g. In particular, the dimension of

the locus of hyperelliptic curves in Mg must equal the dimension of V .

Proposition 1.3.7. The locus of hyperelliptic curves in Mg is closed.

Proof. Let B be a regular, integral scheme and f : X → B be a family of smooth

curves of genus g ≥ 2 such that for b ∈ B \{b0}, Xb is hyperelliptic. Let ω = ωX/B be

the relative dualizing sheaf. Since ω restricts to the canonical bundle on each fiber

of f , it gives a map g : X → Pg−1 × B. By [H, IV.5.3], the image of Xb, for b 6= b0

is a rational curve and g(Xb0) is either a rational curve, if Xb0 is hyperelliptic, or

is isomorphic to Xb0 , if Xb0 is not hyperelliptic. Thus p2 : g(X) → B is a family

of rational curves that degenerates to g(Xb0). Since such a family cannot possibly

degenerate to a curve of genus g ≥ 2, we see that g(Xb0) is rational. Hence Xb0 is

hyperelliptic.
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Corollary 1.3.8. The hyperelliptic locus forms a divisor in M3.

Proof. This follows from (1.2.7), (1.3.2), and (1.3.7).

Notation 1.3.9. Let X be a projective scheme over C and F a coherent sheaf on X.

For i ≥ 0, we let hi(X,F) :=dimCH
i(X,F). (By [H, III.5.2] this is always finite.)

Notation 1.3.10. Let X be a projective scheme over C, L an invertible sheaf on X,

and D a divisor on X. Then we let L(D) := L ⊗O(D).

Proposition 1.3.11. Let C be a smooth curve, Q a closed point of C, and ω the

canonical bundle of C. Then h0(C, ω(−Q)) = h0(C, ω(−2Q)) if and only if Q is a

hyperelliptic Weierstrass point of C. In particular, C is not hyperelliptic if and only

if h0(C, ω(−Q)) = h0(C, ω(−2Q)) + 1,∀Q ∈ C.

Proof. By the Riemann-Roch Theorem for curves, h0(C, ω(−Q)) = h0(C, ω(−2Q)) if

and only if h0(C,O(2Q)) = h0(C,O(Q)) + 1 = 2. But this is true if and only if |2Q|

determines a finite morphism of degree 2 from C onto P1 (which will automatically

be ramified at Q); in other words, if and only if Q is a hyperelliptic Weierstrass point

of C.

The second part follows from the first and the Riemann-Roch Theorem.
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1.4 The Class of a Degeneracy Locus

Let σ : E → F be a homomorphism of vector bundles of ranks e and f on an n-

dimensional variety X, and let k ≤ min(e, f).

Definition 1.4.1. The kth degeneracy locus of σ, as a set, is

Dk(σ) := {x ∈ X|rank(σx) ≤ k}.

Remark 1.4.2. Locally, σ can be represented by an f × e matrix with entries in

an affine coordinate ring of X. One can then consider the ideal generated by the

(k + 1)× (k + 1) minor determinants of this local representation. These local ideals

patch together to give an ideal sheaf, which gives Dk(σ) the structure of a closed

subscheme of X.

Notation 1.4.3. Set m = n− (e− k)(f − k) and d = e− k.

In what follows, we use the construction given in [F, 14.4] for defining the kth

degeneracy class of σ.

Let Gd(E) be the Grassmannian of d−planes in E ; let π be the projection from Gd(E)

to X, and let S be the universal subbundle of π∗E . The composition

S → π∗E → π∗F

determines a section, sσ, of S∨ ⊗ π∗F . The zero set Z(sσ) maps onto Dk(σ); let

η : Z(sσ)→ Dk(σ) be the induced morphism. The localized top Chern class Z(sσ) is

in Am(Z(sσ)). (See [F, 14.1] for a discussion of locallized top Chern classes.)
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Definition 1.4.4. We define the kth degeneracy class of σ to be

Dk(σ) = η∗(Z(sσ)) ∈ Am(Dk(σ))

Notation 1.4.5. Let c =
∑
cit

i be a formal power series. Then ∆
(p)
q (c) will denote

the determinant of the p× p matrix whose i, j-entry is given by cj−i+q.

Notation 1.4.6. c(E) := 1 + c1(E)t+ . . .+ ce(E)te, denotes the Chern polynomial of

E , and s(E) := 1 + s1(E)t+ s2(E)t2 + . . ., the Segre polynomial of E .

c(F − E) := c(F)s(E).

Theorem 1.4.7 (The Thom-Porteous Formula). (a) The image of Dk(σ) in Am(X)

is

Dk(σ) = ∆
(e−k)
f−k (c(F − E)) ∩ [X].

(b) Each irreducible component of Dk(σ) has codimension at most (e− k)(f − k), in

X. If codim (Dk(σ), X) = (e− k)(f − k), then Dk(σ) is a positive cycle whose

support is Dk(σ).

(c) If codim(Dk(σ), X) = (e− k)(f − k), and X is Cohen-Macaulay, then Dk(σ) is

also Cohen-Macaulay and

Dk(σ)− [Dk(σ)].

Proof. See [F, Theorem 14.4].

Theorem 1.4.8 (Excess Porteous Formula). Let σ : E → F be as above and let k be

an integer such that Dk−1(σ) = ∅. Then on D = Dk(σ), there is an exact sequence

0→ K → ED → FD → C → 0,
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with K, C vector bundles of ranks e− k, f − k. Then

Dk(σ) = {c(K∗ ⊗ C) ∩ s(Dk(σ), X)}m.

Proof. See [F, Example 14.4.7].

We would now like to define the class of a degeneracy locus for a map of coherent

sheaves. We follow the method of [D].

Lemma 1.4.9. Let F be a coherent sheaf on the n-dimensional variety X. Let Y ⊂ X

be the locus where F fails to be locally free. Restricted to X−Y , F is a vector bundle;

call its rank f . Let I be the f th Fitting ideal sheaf of F on X. The zero scheme of

I has support equal to Y . Let h : Z → X be the blow-up of X along I. Let h∗F be

the pullback to Z of F . Then the double dual (h∗F)∗∗ is locally free, that is a vector

bundle.

Proof. See [D, Lemma 1].

Theorem 1.4.10. Let X be an n-dimensional variety and σ : E → F be a homo-

morphism of coherent sheaves on X. Then there is a blow-up g : X ′ → X with the

following properties:

(i) If Y is the locus where either E or F fails to be locally free, then g gives an

isomorphism between X − Y and g−1(X − Y ).

(ii) The pullbacks of the restrictions of E and F to X − Y extend to vector bundles

on all of X ′.
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(iii) The pullback of the restriction of σ to X−Y extends to a homomorphism of the

vector bundles in (ii) over all of X ′.

Proof. Let h1 : Z → X be the blow-up of X along the f th Fitting ideal sheaf of

F . On Z we have a homomorphism of coherent sheaves h∗1σ : h∗1E → h∗1F . Taking

double duals gives (h∗1σ)∗∗ : (h∗1E)∗∗ → (h∗1F)∗∗. This extends the vector bundle

homomorphism h∗1σ on Z − h−1
1 (Y ).

By (1.4.9) (h∗1F)∗∗ is a vector bundle. Let e be the rank of (h∗1E)∗∗ on its locally

free locus, and let h2 : X ′ → Z be the blow-up of Z along the eth Fitting ideal sheaf

of (h∗1E)∗∗. By (1.4.9) we then have a homomorphism of vector bundles

(h∗2(h∗1σ)∗∗)∗∗ : (h∗2(h∗1E)∗∗)∗∗ → (h∗2(h∗1F)∗∗)∗∗

Notation 1.4.11. Let σ′ : E ′ → F ′ be the map of vector bundles above.

Let g = h2 ◦ h1 : X ′ → X.

Using this notation g is the desired blow-up, E ′ and F ′ are the desired vector

bundles, and σ′ is the desired homomorphism.

Definition 1.4.12. Let k ≤ min(e, f) and m be as in (1.4.3). We apply the standard

Thom-Porteous formula to obtain a class in Am(X ′):

∆
(e−k)
f−k (c(F ′ − E ′)) ∩ [X ′].

We then define the kth degeneracy class of the morphism of coherent sheaves σ : E →

F to be

g∗(∆
(e−k)
f−k (c(F ′ − E ′)) ∩ [X ′]).



Chapter 2

The hyperelliptic locus in M3 \∆1

2.1 The hyperelliptic locus in M3

By (1.3.8) the locus of hyperelliptic curves in M3 forms a divisor, which we’ll call H.

In this section we present the method for computing the class, [H], in Pic(M3) ⊗ Q

given in [HM, 3.E]. To this end, let π : X → B be a one-parameter family of smooth

curves of genus 3, not all of which are hyperelliptic, with smooth base B. Let X2 :=

X ×B X, with πi, i = 1, 2, the projections, and let I∆ be the ideal sheaf of the

diagonal. We consider the natural map OX2 → OX2/I2
∆. Tensoring with π∗2ωX/B and

pushing forward under π1 gives a map

σ : (π1)∗
(
π∗2ωX/B ⊗OX2

)
→ (π1)∗

(
π∗2ωX/B ⊗OX2/I2

∆

)
.

Notation 2.1.1. Let E and F be the domain and target, respectively, of the above

map.

17
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Proposition 2.1.2. E and F are locally free sheaves, that is vector bundles, on X.

Proof. Let p ∈ X. We consider two copies of the family π : X → B. Let xi, yi,

i = 1, 2, be local coordinates on X at p with π given locally by xi = ti, so that ti is

a local coordinate on B centered at π(p). Near p× p, X ×B X has local coordinates

x1, y1, x2, y2, X ×BX has local equation x1 = x2, and the diagonal has local equation

y1 = y2. The ideal I2
∆ is locally generated by (y1 − y2)2. Thus in a neighborhood of

p × p, elements of OX/I2
∆ can be written as f(x1, y1) + g(x1, y1)(y1 − y2). Hence in

a neighborhood of p on the first copy of X, (π1)∗OX/I2
∆ is a free module over OX

generated by 1 and (y1 − y2). Since π∗2ωX/B is locally free of rank 1, we see that F is

locally free.

Since ωX/B is locally free on X, it’s clear that E is locally free.

Notation 2.1.3. If T is a vector bundle on a scheme X and p ∈ X, we let Tp be the

vector bundle fiber over p. If σ : T → S is a map of vector bundles and p ∈ X, we

let σp : Tp → Sp denote the corresponding homomorphism of vector spaces.

Proposition 2.1.4. Let p ∈ X be a closed point and b = π(p). Then Ep = H0(Xb, KXb)

and Fp = H0(Xb, KXb/KXb(−2p)), the space of differentials in a neighborhood of p

in Xb, modulo those vanishing to order 2 at p.

Proof. See [HM, p.162-163].

With this description of E and F we see that for a point p ∈ X, σp sends each

global holomorphic differential on Xπ(p) to its truncated Taylor series at p.
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Proposition 2.1.5. The map σp : Ep → Fp fails to be surjective if and only if p is a

hyperelliptic Weierstrass point of Xπ(p). Moreover, if p is a hyperelliptic Weierstrass

point of Xπ(p), then rankσp = 1. Hence, D1(σ) as a set consists exactly of the

hyperelliptic Weierstrass points of hyperelliptic fibers of π.

Proof. Since |KXb| is base point free for every fiber Xb of π, we see that rank σp ≥

1, ∀p ∈ X. Moreover, by the Riemann-Roch Theorem, for any p ∈ X we have

h0(Xπ(p), KXπ(p)(−p)) = 2. Thus we see that rank σp = 1 if and only if

h0(Xπ(p), KXπ(p)(−2p)) = 2. That is if and only if p is a hyperelliptic Weierstrass

point of Xπ(p).

Proposition 2.1.6. The scheme D1(σ) is reduced.

Proof. See [HM, Exercise (3.116)].

Corollary 2.1.7.

Intheabovesituation, wehave[D1(σ)] = ∆
(1)
2 (c(E∗ −F∗)) ∩ [X]

= c2(E∗ −F∗),

in A0(X).

Proof. By assumption the fibers of π are not all hyperelliptic and hence the hy-

perelliptic Weierstrass points of hyperelliptic fibers are isolated points of X. Thus

codim(D1(σ), X) = 2 = (rank E − 1)(rankF − 1). Since π is relatively smooth and B

is smooth, we see by [H, III.10.1(c)] that X is smooth, hence Cohen-Macaulay. The

result now follows from (1.4.7(a),(c)).
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Notation 2.1.8. Let λ(π) = c1(π∗ωX/B) ∈ A0(B) and γ = c1(ωX/B) ∈ A1(X).

Remark 2.1.9. By [HM, p.155], λ(π) = π∗(γ2)
12

.

Proposition 2.1.10. In the above situation, we have

c(E∗) = 1− π∗λ(π)t

Proof. Since E ∼= π∗(π∗ωX/B), this follows from [F, Theorem 3.2(d)] and [F, Remark

3.2.39(a)].

Proposition 2.1.11. There exists a short exact sequence of line bundles of the form

0→ ω2
X/B → F → ωX/B → 0.

Thus we have c(F) = 1 + 3γt+ 2γ2t2.

Proof. See [HM, (3.115)] for the existence of the short exact sequence. The rest

follows from [F, Theorem 3.2(e)].

Corollary 2.1.12. In the above situation, we have

s(F∗) = 1 + 3γt+ 7γ2t2 + . . . .

Moreover,

[D1(σ)] = 7γ2 − 3γπ∗λ(π).

Proof. Let s(F∗) = s0 +s1t+s2t
2 + . . .. Since ci(F∗) = (−1)ici(F) and s(F∗)c(F∗) =

1, we have

(s0 +s1t+s2t
2 + . . .)(1−3γt+2γ2t2) = s0 +(s1−3γ)t+(2γ2s0−3γs1 +s2)t2 + . . . = 1
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Solving gives s0 = 1, s1 = 3γ, and s2 = 7γ2.

This gives

c(E∗ −F∗) = (1− π∗λ(π)t)(1 + 3γt+ 7γ2t2 + . . .)

= 1 + (3γ − π∗λ(π))t+ (7γ2 − 3π∗λ(π)γ)t2 + . . . .

The result now follows from (2.1.7).

Proposition 2.1.13. In the above situation, we have

π∗([D1(σ)]) = 72λ(π)

Proof.

π∗([D1(σ)]) = π∗(7γ
2 − 3γπ∗λ(π)) (2.1.1)

= 84λ(π)− 12λ(π) (2.1.2)

= 72λ(π). (2.1.3)

Note that 2.1.2 follows from Remark (2.1.9) and the fact that the degree of γ on any

fiber is 2(3)− 2 = 4.

Notation 2.1.14. Let h denote the class in Picfun(M3)⊗Q associated to H by [HM,

Proposition (3.91)].

Let λ be the divisor class in Picfun(M3) that associates to each family π : X → B

the divisor λ(π), as above. (See [HM, 3.D] for a discussion of divisor classes on the

moduli stack.)
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By abuse of notation, we will also let λ = c1(π∗ωC3/M3) ∈ Pic(M3). The distinction

between the two uses of λ should be clear from the context.

Theorem 2.1.15. We have the following expression,

[H] = 18λ ∈ Pic(M3)⊗Q

Proof. By [H, IV.2.4] there are exactly 8 hyperelliptic Weierstrass points on a hyper-

elliptic curve of genus 3. Thus by [HM, Proposition (3.91)] we have

h =
1

8
(72λ) = 9λ ∈ Picfun(M3)

Since a generic hyperelliptic curve has one non-trivial automorphism, by [HM, Propo-

sition (3.93)] we have

[H] = 18λ ∈ Pic(M3)⊗Q.
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2.2 The hyperelliptic locus in M3 \∆1

Let H0 denote the closure of H in M3 \ ∆1. In this section, we follow the method

presented in [D] for computing the class [H0] ∈ Pic(M3 \∆1) ⊗ Q. To this end, let

π : X → B be a generic 1-parameter family of stable curves of genus 3, with smooth

base B. By shrinking B if necessary, we can assume that there are no fibers of π

corresponding to elements of ∆1. Let σ : E → F be as above.

Proposition 2.2.1. E is a vector bundle on all of X. F is a vector bundle away from

singular points of singular fibers of π, but fails to be locally free at singular points of

singular fibers. Moreover, the second Fitting ideal of F near a node p of a fiber of π

is the maximal ideal at p.

Proof. Since ωX/B is locally free on X, it’s clear that E is locally free. The statement

about F follows the proof of (2.1.2) and [D, Lemma 2].

Let g : X ′ → X be the blow-up of X at the nodes of singular fibers of π and

let σ′ : E ′ → F ′ be the map of vector bundles obtained by applying the process of

(1.4.10).

Proposition 2.2.2. The map σ′ is surjective at all nonsingular points of singular

fibers corresponding to general points of ∆0 and at all points of the exceptional divisor

in the above blow-up.

Proof. See [D, Lemmas 3, 4].
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This lemma shows that the [D1(σ)] (see Definition (1.4.12)) counts hyperelliptic

curves as we wish, away from ∆1. (This is due to the fact that codim(∆0,M3) = 1,

and thus a general member of ∆0 is not contained in H0.) Since E is already a vector

bundle, the Chern classes of E ′ are simply the pullbacks of the Chern classes of E

along g. Thus we have

c(E ′) = 1− g∗(π∗λ(π))t.

To compute the Chern classes of F ′, we use the following proposition.

Proposition 2.2.3. On X ′ there is a two-term filtration,

0→ F ′2 → F ′ → F ′1 → 0,

where F ′1 is g∗ωX/B and F ′2 is g∗ω2
X/B ⊗O(−D). Moreover, we then have

c(F ′) = 1 + (3g∗γ −D)t+ 2g∗γ2t2.

Proof. The filtration is given by [D, Lemma 5]. The Chern classes of F ′ are then

given by [F, Theorem 3.2(e)].

Proposition 2.2.4.

[D1(σ′)] = c2(E ′∗ −F ′∗) = 7g∗γ2 − 3(g∗γ)(g∗(π∗λ(π))) +D2.

Proof. The first equality follows from (1.4.7). To obtain the second equality, we

compute:

s(F∗) = (1 + (D − 3g∗γ)t+ 2g∗γ2t2)−1

= 1 + (3g∗γ −D)t+ (7g∗γ2 − 6g∗γD +D2)t2 + . . . .
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Hence

c2(E ′∗ −F ′∗) = (7g∗γ2 − 6g∗γD +D2)− g∗(π∗λ(π))(3g∗γ −D)

= 7g∗γ2 − 3(g∗γ)(g∗(π∗λ(π))) +D2.

Notation 2.2.5. Let h0(π) denote the divisor on B associated to H0 by [HM, Propo-

sition (3.91).]

Proposition 2.2.6. We have

h0(π) = 9λ(π)− δ0(π).

Proof. By (2.1.6) and (2.2.2) we have that π∗g∗[D1(σ′)] = 8h0. Thus by (2.2.4) we

have

8h0 = π∗g∗
(
7g∗γ2 − 3(g∗γ)(g∗(π∗λ(π))) +D2

)
(2.2.1)

= 7κ(π)− 12λ(π)− δ0(π). (2.2.2)

(2.2.2) follows from (2.1.9) and from the facts that the degree of γ on any fiber is 4

and that there is one component of D for each curve corresponding to an element of

∆0, all of which are disjoint and have self-intersection −1. By [HM, eq. (3.110)], we

have κ(π) = 12λ(π)− δ(π). Ignoring δ1, we obtain 8h0 = 72λ(π)− 8δ0(π), and hence

h0 = 9λ(π)− δ0(π).

Corollary 2.2.7. We have the following expression,

[H0] = 18λ− 2∆0.
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Proof. This follows from [HM, Proposition (3.93)].



Chapter 3

The class of the hyperelliptic locus

in M3

3.1 The rank of σ′

Let π : X → B be a general 1-parameter family of stable curves of genus 3. Let

σ : E → F be as in the previous chapter.

Proposition 3.1.1. E is a vector bundle on all of X. F is a vector bundle away from

singular points of singular fibers of π, but fails to be locally free at singular points of

singular fibers. Moreover, the second Fitting ideal of F near a node p of a fiber of π

is the maximal ideal at p.

Proof. This is simply a restatement of (2.2.1) to include points of fibers corresponding

to general elements of ∆1, and its proof follows from that of (2.2.1) and a trivial

27
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generalization of [D, Lemma 2].

As in the previous chapter, let g : X ′ → X be the blow-up of X at the nodes of

singular fibers of π and let σ′ : E ′ → F ′ be the map of vector bundles obtained by

applying the process of (1.4.10).

Theorem 3.1.2. (a) The map σ′ has rank 1 at the hyperelliptic Weierstrass points

of smooth hyperelliptic fibers of π.

(b) The map σ′ has rank 1 at the hyperelliptic Weierstrass points of (the proper trans-

form of) the genus 2 component of a fiber corresponding to a general member

of ∆1.

(c) The map σ′ has rank 1 at all points of (the proper transform of) the elliptic

component of a fiber corresponding to a general member of ∆1.

(d) The map σ′ has rank 1 at all points of the exceptional divisor lying over the node

of a fiber corresponding to a general member of ∆1.

(e) The map σ′ is surjective at all other points.

Proof. (a) follows from (2.1.5), and (e) follows from (2.1.5) and [D, Lemmas 3, 4] for

points of smooth fibers and points of fibers corresponding to general members of ∆0.

Let E be the elliptic component and C the genus 2 component of a fiber, Xb,

corresponding to a general member of ∆1, and let P be their point of intersection.

Note that away from P we can prove the above statements for σ, rather than for σ′.
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Suppose Q is a closed point of E−P . Let ωb, ω1, and ω2 the dualizing sheaves on

Xb, E, and C, respectively. We see that σQ fails to be surjective iff h0(ωb(−2Q)) =

h0(ωb(−Q)). Moreover, since ωb is base point free away from P , the rank of σQ is

always positive. Let Pi be the point on the curve of genus i lying over P in X̃b,

i = 1, 2. Using the description of the dualizing sheaf of Xb given in [HM, p.82], we

have

H0(ωb(−Q)) = H0(ω1(−Q+ P1))⊕H0(ω2(P2)),

and

H0(ωb(−2Q)) = H0(ω1(−2Q+ P1))⊕H0(ω2(P2)).

Since sections of ω1(P1) are simply constants, if a section vanishes at Q, it vanishes

to infinite order. Thus H0(ω1(−Q+ P1)) = H0(ω1(−2Q+ P1)).

Suppose Q is a closed point of C − P . Using the notation above, we again see

that since ωb is base point free away from P , σQ will always have positive rank, and

that σQ will fail to be surjective iff h0(ωb(−2Q)) = h0(ωb(−Q)). We have

H0(ωb(−2Q)) = H0(ω1(P1))⊕H0(ω2(−2Q+ P2)),

and

H0(ωb(−Q)) = H0(ω1(P1))⊕H0(ω2(−Q+ P2)).

Thus σQ will fail to be surjective if and only if

h0(ω2(−2Q+ P2)) = h0(ω2(−Q+ P2)).
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Since H0(ω2(P2)) = H0(ω2), this is true if and only if

h0(ω2(−2Q)) = h0(ω2(−Q)).

That is, if and only if Q is a hyperelliptic Weierstrass point of C.

Let E0 be the rational curve lying over P in the blow-up g : X ′ → X, and let Q

be a closed point of E0. Choose local coordinates x and y on X centered at P , so that

the map π is given locally by xy = t, where t is a local coordinate on B centered at

b. At P , F is simply the linearizations, at P , of differentials in a neighborhood of P .

Thus locally, F is generated by 1, dx, and dy, but since these are relative differentials,

we have the nontrivial relation dt = 0. That is

d(xy) = y dx+ x dy = 0

After blowing-up P on X and extending the sheaves this relation becomes ỹ dx+dy =

0 on one patch and dx+ x̃ dy = 0 on the other.

Choose {α1, α2, α3} as a basis for H0(ωb) (ωb as above), where α1 is a nonzero

constant function on E, α2 is a regular differential on C that does not vanish at P2,

and α3 is a regular differential on C vanishing to order 1 at P2. After multiplying all

the α by suitable constants the map becomes

σ′(α1) = 0(1) + 1dx+ 0dy

σ′(α2) = 0(1) + 0dx+ 1dy

σ′(α3) = 0(1) + 0dx+ 0dy.
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This completes the proof.
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3.2 The scheme structure of D1(σ′)

Let π : X → B, g : X ′ → X, and σ′ : E ′ → F ′ be as in the previous section. In

the previous section, we determined D1(σ′) (see (1.4.1)) as a set. In this section, we

determine the natural scheme structure on D1(σ′).

Proposition 3.2.1. D1(σ′) is reduced away from points of X ′ lying over points of X

contained in fibers corresponding to general members of ∆1.

Proof. This follows from (3.1.2) and (2.1.6).

Proposition 3.2.2. Let C be the genus 2 component of a fiber of π corresponding

to a general member of ∆1. Then D1(σ′) is reduced at the hyperelliptic Weierstrass

points of (the proper transform of) C.

Proof. Since this question is clearly local on B, we can assume that π : X → B is

a 1-parameter family of smooth, nonhyperelliptic curves of genus 3 degenerating to

a general member of ∆1, with both X and B smooth. Let Xb0 = E ∪ C denote

the special fiber of this family, ωX/B be the relative dualizing sheaf, and ωX/B(E) :=

ωX/B ⊗OX(E). On smooth fibers ωX/B(E) restricts to the canonical bundle, but on

the special fiber we see that ωX/B(E) restricts to ω2(2P ) on C and the trivial bundle

on E, where ω2 is the canonical bundle on C and P = E ∩ C. Since Xb0 is a general

member of ∆1, we can assume that P is not a hyperelliptic Weierstrass point of C.

Thus ωX/B(E) determines a map

ϕ : X → P2 ×B
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that embeds each of the smooth fibers as a planar quartic and maps the special fiber

to a cuspidal quartic whose normalization is C; E gets collapsed to the cusp.

Again since this is clearly local on B, we can assume B = SpecA, for some 1-

dimensional ring A; moreover, we can shrink B to a smaller affine open set if necessary

and will do so without comment. Let t be a local parameter at b0 ∈ B. Then ϕ maps

X to P2
A and we can choose homogeneous coordinates so that the image of X has the

form

Y 2Z2 + Z
∑
i+j=3

αi,jX
iY j +

∑
i+j=4

βi,jX
iY j + tG(X, Y, Z) = 0,

where G is a homogenous polynomial of degree 4 in A[X, Y, Z].

Since we are interested in the behavior of σ′ at the hyperelliptic Weierstrass points

of C, and since ϕ is an embedding away from P , it is enough to determine the behavior

of σ′ on ϕ(X). Moreover, it’s clear by the construction of σ′ that D1(σ′) will be

reduced at Q1, . . . , Q6 (the hyperelliptic Weierstrass points of C) if and only if D1(σ)

is. Thus we will consider σ : E → F on ϕ(X).

To do this we will need to determine three sections of ωX/B whose restrictions

to each fiber form a basis for the space of sections of the dualizing sheaf for that

fiber. First, we will find three linearly equivalent divisors on X whose restriction to

a smooth fiber is the canonical divisor, to E is linearly equivalent to P , and to C is

linearly equivalent to KC +P . By the description of the dualizing sheaf given in [HM,

p.82], the invertible sheaf associated to such divisors will be ωX/B, and the hope is

that the global sections associated to these divisors will restrict to the desired basis
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on each fiber.

To this end, we consider the divisors {X = 0}, {Y = 0}, and {Z = 0} on ϕ(X).

Since the canonical bundle on a smooth planar quartic is O(1), these will restrict to

the canonical divisor on each smooth fiber; moreover, the associated sections will give

a basis for the space of sections of the canonical bundle on a smooth fiber.

We consider the pullbacks of these divisors to X. Since {Z = 0} does not pass

through the cusp of the central fiber, it pulls back isomorphically to a divisor we’ll

call DZ . ϕ∗{X = 0} is supported on E and an irreducible curve which we’ll call

DX ; with this notation we have ϕ∗{X = 0} = DX + 2E. Similarly, ϕ∗{Y = 0} is

supported on E and an irreducible curve we’ll call DY ; we then have ϕ∗ = DY + 3E.

Clearly, these pullbacks still restrict to the canonical bundle on smooth fibers of π,

but since the map on the special fiber to P2 is given by KC + 2P , we see that these

pullbacks must restrict to KC + 2P on C and are linearly equivalent to 0 on E.

Since E.(E + C) ∼ 0, C.(E + C) ∼ 0, and E.C ∼ P , we see that E.E ∼ −P and

C.C ∼ −P . Thus we have the following:

Lemma 3.2.3. Using the notation above, the divisors DX +E, DY +2E, and DZ +C

restrict to the canonical divisor on smooth fibers of π, to P on E, and to KC + P on

C.

We now would like to consider the sections sX , sY , and sZ of ωX/B associated to

DX + E, DY + 2E, and DZ + C, respectively.
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Lemma 3.2.4. The sections sX , sY , and sZ on each fiber of π restrict to a basis for

the space of global sections of the dualizing sheaf.

Proof. Since X, Y, and Z give a basis for O(1) on P2, this is clear for smooth fibers

of π. Thus we consider the restrictions of sX , sY and sZ to Xb0 .

Suppose c1sX + c2sY + c3sZ = 0 for some ci ∈ C. Restricted to E, sX and sY

are both 0, but sZ is not identically 0. As a result, we must have c3 = 0. We can

factor out a local equation, say x = 0, for E from c1sX + c2sY = 0. This gives

c1
sX
x

+ c2
sY
x

= 0, but restricted to E, sY
x

= 0 and sX
x

is not identically 0. Thus we

must have c1 = 0. Since sY is not identically 0, we must then have c2 = 0.

Since the space of global sections of the dualizing sheaf of C ∪E has rank 3, this

completes the proof.

To give the map σ in local coordinates at a smooth point, x, of a fiber of π we

simply determine local equations for sX , sY , and sZ in a neighborhood of x and then

consider their linearizations. Presently we are interested in hyperelliptic Weierstrass

points of C. Since Xb0 is a general point of ∆1, we can assume that P is not such a

point. Since the family remains unchanged away from E under ϕ, we can make our

computations on ϕ(X).

The hyperelliptic Weierstrass points of C can be determined by looking at lines

through the cusp of ϕ(C). A point of ϕ(C) whose tangent line passes through the

cusp is a hyperelliptic Weierstrass point. Since the line given by Y = 0 intersects the
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cusp with multiplicity 3, we see that no hyperelliptic Weierstrass points lie along this

line. Thus it is enough to consider the affine open set of ϕ(X) given by Y 6= 0. The

total space of our family on this open set is given in affine coordinates by

z2 + z
∑
i+j=3

αi,jx
i +

∑
i+j=4

βi,jx
i + tG(x, 1, z) = 0.

On this open set local equations for sX , sY , and sZ are x, 1, and zt, respectively.

The linearizations of these sections at a point (x0, z0, t0) are:

x = x0 + dx

1 = 1

zt = z0t0 + t0 dz + z0 dt

Since the family is parameterized by t, we must have dt = 0. But we then also

have

0 = d

(
z2 + z

∑
i+j=3

αi,jx
i +

∑
i+j=4

βi,jx
i + tG(x, 1, z)

)

=

(
2z +

∑
i+j=3

αi,jx
i + t

∂

∂z
G(x, 1, z)

)
dz

+

(
z
∑
i+j=3

iαi,jx
i−1 +

∑
i+j=4

iβi,jx
i−1 + t

∂

∂x
G(x, 1, z)

)
dx

Suppose (x0, z0, 0) is a point on ϕ(C) such that

z0

∑
i+j=3

iαi,jx
i−1
0 +

∑
i+j=4

iβi,jx
i−1
0 = 0.

Then the tangent line to ϕ(C) at this point is given by z− z0 = 0, or in homogeneous

coordinates Z − z0Y = 0. But this line does not pass through the cusp of ϕ(C), so
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(x0, z0, 0) cannot be a hyperelliptic Weierstrass point. Thus it suffices to consider the

open set given by z
∑

i+j=3 iαi,jx
i−1 +

∑
i+j=4 iβi,jx

i−1 + t ∂
∂z
G(x, 1, z) 6= 0. In which

case we have

dx =
−
(

2z +
∑

i+j=3 αi,jx
i + t ∂

∂z
G(x, 1, z)

)
z
∑

i+j=3 iαi,jx
i−1 +

∑
i+j=4 iβi,jx

i−1 + t ∂
∂x
G(x, 1, z)

dz

The linearizations of our sections at a point (x0, z0, t0) of this open set are then:

x = x0 +
−
(

2z0 +
∑

i+j=3 αi,jx
i
0 + t0

∂
∂z
G(x0, 1, z0)

)
z0

∑
i+j=3 iαi,jx

i−1
0 +

∑
i+j=4 iβi,jx

i−1
0 + t0

∂
∂x
G(x0, 1, z0)

dz

1 = 1

zt = z0t0 + t0 dz

This shows that in local coordinates at a point of this open set the map σ : E → F

is given by the matrix x 1 zt

−(2z+
∑
i+j=3 αi,jx

i+t ∂
∂z
G(x,1,z))

z
∑
i+j=3 iαi,jx

i−1+
∑
i+j=4 iβi,jx

i−1+t ∂
∂x
G(x,1,z)

0 t


The ideal generated by the 2× 2 minors of this matrix is

I =

(
t, 2z +

∑
i+j=3

αi,jx
i

)
⊂ A[x, z]

(z2 + z
∑

i+j=3 αi,jx
i +
∑

i+j=4 βi,jx
i + tG(x, 1, z))

,

or equivalently

I =

(
2z +

∑
i+j=3

αi,jx
i, z2 + z

∑
i+j=3

αi,jx
i +

∑
i+j=4

βi,jx
i

)
⊂ C[x, z]

Substituting z = −1
2

∑
i+j=3 αi,jx

i into the third equation gives

I =

(
2z +

∑
i+j=3

αi,jx
i, h(x)

)
⊂ C[x, z],



CHAPTER 3. THE CLASS OF THE HYPERELLIPTIC LOCUS IN M3 38

where h(x) is a polynomial of degree 6. Since there are six hyperelliptic Weierstrass

points on C, we see that h(x) must have distinct roots, and thus I is the ideal of

these six points. This shows that D1(σ′) is reduced at these points.

To determine the remaining scheme structure of D1(σ′), we explicitly construct a

family of smooth nonhyperelliptic curves of genus 3 degenerating to a general member

of ∆1. Using the proof of the previous proposition as a guide, we begin with a family

of smooth planar quartics, over (an open subset of) A1
t degenerating to a cuspidal

quartic. We then explicitly compute the stable reduction of such a family.

To begin let

F (X, Y, Z) = Y 2Z2 + Z
∑
i+j=3

αi,jX
iY j +

∑
i+j=4

βi,jX
iY j,

where the αi,j and βi,j are such that F (X, Y, Z) = 0 is nonsingular away from [0, 0, 1].

Note that by proper choice of coordinates, any cuspidal quartic can be given by such

an equation. Moreover, we will assume that α3,0 = −1. Let Ct be the family of

curves, parameterized by t ∈ C, given by

F (X, Y, Z)− at2XZ3 − bt3Z4 = 0,

where a, b ∈ C are such that a, b 6= 0 and 4a3 + 27b2 6= 0. The special fiber, C0, is the

cuspidal quartic given by F (X, Y, Z) = 0.
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If we consider the specific planar curve given by

Y 2Z2 −X3Z + Y 4 −XZ3 − Z4 = 0,

one easily checks that this curve is nonsingular. Thus for most choices of αi,j, βi,j,

a, b, and t such a curve is nonsingular. Thus for most choices of αi,j, βi,j, a, and b

all but finitely many fibers of the family Ct will be smooth. So we will assume that

we have chosen αi,j, βi,j, a, b in such a way. Moreover, by restricting t to an open

neighborhood of t = 0, we can assume that all fibers other than C0 are smooth.

The elliptic curve that will appear in the stable limit will lie over the cusp of

F (X, Y, Z) = 0; thus for our purposes it will suffice to consider the family f(x, y) −

at2x− bt3 = 0, where f(x, y) = F (x, y, 1).

By [H, III.10.1(c)] the total space of our family is smooth away from the singular

point of C0. However, the total space of this family does have a singularity at the

origin. We will resolve the singularity in the total space and the cusp in the central

fiber simultaneously with four successive blow-ups.

First, we blow-up along the linear subspace x = y = 0 in A3
(x,y,t) and take the

proper transform of our family. This gives us two patches to consider:

On the first patch (which we’ll call (P1)), we make the substitution y = xy.

The exceptional divisor (by which we will always mean the exceptional divisor in the

ambient affine space restricted to the total space of our family), which we’ll call E1, is
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then given by x = 0, and the proper transform of Ct is given by f(x, xy)−at2x−bt3 =

0. (We’ll continue to call this Ct,).

On the second patch (P2), we make the substitution x = xy. E1 is given by y = 0

and the proper transform of Ct is given by f(xy, y)− at2xy − bt3 = 0.

On both patches, the special fiber consists of the union of C (the normalization

of f(x, y) = 0) and E1, which has multiplicity 2. On the first patch, these two com-

ponents are tangent at x = y = 0. (They’re disjoint on the second.) Both patches

contain a codimension 1 singularity along E1. (See (A.1.1) and (A.1.2).)

Next, we blow-up (P1) along x = y = t = 0. This gives three patches to consider:

On the first patch (P1-1), we make the substitutions y = xy and t = xt. The

exceptional divisor, E2 is given by x = 0, and the proper transform of Ct is given by

1
x3
f(x, x2y) − at2 − bt3 = 0. The special fiber is given by xt = 0 and consists of the

union of C and E2, which do not meet on this patch. The total space of the family

on this patch is nonsingular. (See (A.1.3).)

On the second patch (P1-2), we make the substitutions x = xy and t = yt. E2 is

given by y = 0, and the proper transform of Ct is given by 1
y3
f(xy, xy2)−at2x−bt3 = 0.

The special fiber is given by yt = 0 and consists of the union of C, E1 (which appears

with multiplicity 2), and E2. The total space of the family is still singular along E1.

(See (A.1.4).)
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On the third patch (P1-3), we make the substitutions x = xt and y = yt. E2 is

given by t = 0, and the proper transform of Ct is given by 1
t3
f(xt, xyt2)− ax− b = 0.

Since x 6= 0 on this patch, we see that it is contained in (P1-1); thus we can ignore it.

Note that E2 is the union of three rational curves (which are distinct by the re-

strictions placed on a, b) meeting at one point (contained in (P1-2)).

Next, in an effort to obtain a special fiber that is supported on a nodal curve, we

will blow-up the point in (P1-2) where E1, E2, and C all meet. Again we have three

patches to consider:

On the first patch (P1-2-1), we make the substitutions y = xy and t = xt. The

exceptional divisor, E3, is given by x = 0, and the proper transform of Ct is given by

1
x6y3

f(x2y, x3y2) − at2 − bt3 = 0. The special fiber is given by x2yt = 0 and consists

of the union of C, E2 (which is now the disjoint union of three rational curves which

we’ll call E ′2, E ′′2 , and E ′′′2 ), and E3 (which appears with multiplicity 2). The total

space of the family is nonsingular on this patch. (See (A.1.5).)

On the second patch (P1-2-2), we make the substitutions x = xy and t = yt. E3 is

given by y = 0, and the proper transform of Ct is given by 1
y6
f(xy2, xy3)−at2x−bt3 =

0. The special fiber is given by y2t = 0 and consists of the union of C, E1 (which

appears with multiplicity 2), and E3 (which also appears with multiplicity 2). The

total space of the family is still singular along E1. (See (A.1.6).)
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On the third patch (P1-2-3), we make the substitutions x = xt and y = yt. E3 is

given by t = 0, and the proper transform of Ct is given by 1
y3t6

f(xyt2, xy2t3)−ax−b =

0. Since x 6= 0 on this patch, it is contained in (P1-2-1); so we can ignore it.

Finally, we resolve the singularity in the total space by blowing-up along E1.

Points of E1 are only contained in (P2) and (P1-2-2); so we only need to blow-

up these two patches. We blow-up (P2) first. We do this by blowing-up A3 along

y = t = 0 and taking the proper transform of Ct. Again there are two patches to

consider:

On the first patch (P2-1), we make the substitution y = yt. The exceptional

divisor, E4 is given by t = 0 and the proper transform of Ct is given by 1
t2
f(xyt, yt)−

atxy − bt = 0. The special fiber is given by t = 0 and consists only of E4 (which

appears with multiplicity 2). The total space is nonsingular on this patch. (See

(A.1.7).)

On the second patch (P2-2), we make the substitution t = yt. E4 is given by y = 0

and the proper transform of Ct is given by 1
y2
f(xy, y)− at2xy− bt3y = 0. The special

fiber is given by yt = 0 and consists only of C. Again, the total space is nonsingular.

(See (A.1.8).)

Next we blow-up (P1-2-2). Again this is done by blowing-up A3 along x = t = 0
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and taking the proper transform of Ct. There are two patches to consider:

On the first patch (P1-2-2-1), we make the substitution t = xt. E4 is given by

x = 0, and the proper transform of Ct is given by 1
x2y6

f(xy2, xy3)− at2x− bt3x = 0.

The special fiber is given by xy2t = 0 and consists of the union of C and E3 (which

appears with multiplicity 2). The total space of the family is nonsingular on this

patch. (See (A.1.9).)

On the second patch (P1-2-2-2), we make the substitution x = xt. E4 is given by

t = 0, and the proper transform of Ct is given by 1
y6t2

f(xy2t, xy3t) − atx − bt = 0.

The special fiber is given by y2t = 0 and consists of the union of E4 (which appears

with multiplicity 2) and E3 (which also appears with multiplicity 2). The total space

of the family is nonsingular. (See (A.1.10).)

The total space of our family is now nonsingular and the special fiber is supported

on a nodal curve, but contains components of multiplicity 2 that we must deal with.

A schematic drawing of the special fiber is given below:



CHAPTER 3. THE CLASS OF THE HYPERELLIPTIC LOCUS IN M3 44

Figure 3.1: A schematic drawing of the special fiber

We deal with the components of multiplicity 2 by making a base change of order

2 branched over t = 0. This base change will introduce new singularities into the

total space, so we package it with the normalization of the resulting surface. The

effect of this will be to take the branched cover of the total space branched along

the union of C, E ′2, E ′′2 , and E ′′′2 (see [HM], pp.124-125). Since this branch divisor

is smooth, the resulting surface will be smooth as well. Since E3 meets the branch

locus in four points, its inverse image will be a double cover of E3
∼= P1 branched at

four points, that is, a single elliptic curve that we will call E. E4, on the other hand,

is disjoint from the branch locus, so its inverse image will be an unramified double

cover of E4
∼= P1; that is, two disjoint rational curves that we’ll call E ′4 and E ′′4 .
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The pullback of the special fiber to the new family will then be

2C̃ + 2E ′2 + 2E ′′2 + 2E ′′′2 + 2E ′4 + 2E ′′4 + 2E

But the special fiber of the new family is exactly one-half of this divisor. Thus the

special fiber is

C̃ + E ′2 + E ′′2 + E ′′′2 + E ′4 + E ′′4 + E

Since E ′2, E ′′2 , E ′′′2 , E ′4, and E ′′4 are all rational curves with self-intersection -1, they

can be blown-down. The special fiber then becomes the union of E and C, meeting

transversely at one point, as desired.

For our purposes, we are only interested in points of E. Thus we will only explic-

itly compute the base change described above on those patches containing points of

E3, specifically (P1-2-1), (P1-2-2-1), and (P1-2-2-2). Moreover, all the points of E3

in (P1-2-2-1) are contained in one of the other two open sets; so we don’t need to

consider (P1-2-2-1). For ease of notation we will rename the open sets (P1-2-1) and

(P1-2-2-2), U and V , respectively.

Recall, the total space on U is given by 1
x6y3

f(x2y, x3y2) − at2 − bt3 = 0. The

special fiber is given by x2yt = 0 and consists of the union of C̃, E ′2, E ′′2 , E ′′′2 , and E3

(which appears with multiplicity 2).

The total space on V is given by 1
y6t2

f(xy2t, xy3t)−atx−bt = 0. The special fiber

is given by y2t = 0 and consists of the union of E4 (which appears with multiplicity
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2) and E3 (which also appears with multiplicity 2).

We now explicitly perform the calculations described above on these two open sets.

After the base change of order 2 on U , the total space of the family is given by

{ 1

x6y3
f(x2y, x3y2)− at2 − bt3 = 0} ∩ {u2 − x2yt = 0} ⊆ A4

(x,y,t,u),

with the special fiber given by u = 0. Then we normalize by setting u = xv. This

gives:

{ 1

x6y3
f(x2y, x3y2)− at2 − bt3 = 0} ∩ {v2 − yt = 0} ⊆ A4

(x,y,t,v),

with the special fiber given by xv = 0. We continue to call this open set U .

On the open subset {t 6= 0} ⊂ U we have y = v2/t, so that the total space is given

by

{ t8

x6v6
f(x2v2t−1, x3v4t−2)− at7 − bt8 = 0} ∩ {t 6= 0} ⊆ A3

(x,t,v),

with the special fiber still given by xv = 0. In this case x = 0 is a local equation for

E, while v = 0 is a local equation for E ′2 ∪ E ′′2 ∪ E ′′′2 . Thus these rational curves can

be blown-down using the relation xv 7→ x. We thus arrive at

{ t
8

x6
f(x2t−1, x3vt−2)− at7 − bt8 = 0} ∩ {t 6= 0} ⊆ A3

(x,t,v),

with the special fiber given by x = 0, which is a local equation for E. We will call

this open set U0.

We will let U1 denote the open subset {y 6= 0} ⊂ U . On this open set we have
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t = v2/y, so the total space is given by

{ 1

x6
f(x2y, x3y2)− ayv4 − bv6 = 0} ∩ {y 6= 0} ⊆ A3

(x,y,v),

with special fiber once again given by xv = 0. On this open set we can blow-down

using the relation xy 7→ x. We then arrive at

{y4 + y3
∑
i+j=3

αi,jx
j + y2

∑
i+j=4

βi,jx
j+2 − ayv4 − bv6 = 0} ∩ {y 6= 0} ⊆ A3

(x,y,v)

After the base change of order 2 on V , the total space of the family is given by

{ 1

y6t2
f(xy2t, xy3t)− atx− bt = 0} ∩ {u2 − y2t = 0} ⊆ A4

(x,y,t,u),

with the special fiber given by u = 0. We normalize by setting u = xyv. This gives:

{ 1

y6t2
f(xy2t, xy3t)− atx− bt = 0} ∩ {x2v2 − t = 0} ⊆ A4

(x,y,t,v),

with the special fiber given by xyv = 0. Clearly this can be simplified to

{ 1

x6y6v4
f(x3y2v2, x3y3v2)− axv2 − bv2 = 0} ⊆ A3

(x,y,v).

On this open set x = 0 is a local equation for E ′4 ∪ E ′′4 and y = 0 is a local equation

for E. Thus we can blow-down using the relation xy 7→ y. This gives

{ 1

y6v4
f(xy2v2, y3v2)− axv2 − bv2 = 0} ⊆ A3

(x,y,v),

with special fiber given by yv = 0.

The question remains as to which elements of ∆1 can appear in this stable limit.

On the open set U0, the elliptic curve is given by the equation v2− t−at3− bt4 = 0 in
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the t, v-plane, and the double cover of P1 that appears in the stable reduction process

is given by (t, v) 7→ t, where we consider t as an affine coordinate on P1. Moreover,

U0 contains all but three points of the elliptic curve: C ∩ E, E ′4 ∩ E, and E ′′4 ∩ E,

and it’s clear where these points map to: C ∩E maps to 0 while the other two points

map to infinity. Thus we see that the map is branched at the points of P1 satisfying

t+ at3 + bt4 = 0.

If we compose this map with the automorphism of P1 that sends t to 1
t
. This

new map is then branched at infinity and points satisfying t3 + at + b = 0. Thus

the elliptic curve that appears in the stable limit is isomorphic to an elliptic curve in

the x, y-plane given by y2 = x3 + ax + b. The j-invariant of such a curve is easily

calculated as

j = 1728
4a3

4a3 + 27b2
.

Since every elliptic curve is isomorphic to one of the form y2 = x3 + Ax + B in the

plane, we see that the elliptic curve appearing in our stable limit is a general elliptic

curve.

If C is any smooth curve of genus 2 and Q is a point of C that is not a hyperelliptic

Weierstrass point, then |K + 2Q| determines a map from C to P2. This maps C to a

cuspidal quartic which is smooth away from the cusp. Moreover, after an automor-

phism of P2, we can assume that the cuspidal quartic is given by F (X, Y, Z) = 0, for

some choice of αi,j and βi,j. Thus we see that an open dense subset of the genus 2
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curves can appear in the limit, and that the point E ∩C can be any point of C other

than one of the six hyperelliptic Weierstrass points. This shows that there is an open

dense subset of ∆1, any of whose points can appear as the stable limit of our family.

We now use this family to prove the following theorem:

Theorem 3.2.5. Using the notation as in the proof of (3.1.2), let φ : E → P1 be the

double cover of P1 determined (up to automorphism of P1) by |2P1|. Let S1, S2, and

S3 be the points of E, other than P1, that are ramified over P1. Then, as a scheme,

D1(σ′) is reduced except at S1, S2, S3, and P2, where the ideal locally defining D1(σ′)

is the product of the maximal ideal at Si and the ideal defining E, i = 1, 2, 3, (or the

the maximal ideal at P2 and the ideal defining E0, respectively).

Proof. We use the family, π : X → A1
u, just constructed. It’s clear that we can apply

(3.2.3) and (3.2.4) to our situation, were DX , DY , and DZ are simply the proper

transforms of {X = 0}, {Y = 0}, and {Z = 0}. Thus we first find local equations for

sX , sY , and sZ on each of the open sets U0, U1, and V .

On U0 we have sX = x, sY = x2v, and sZ = t; on U1 we have sX = x, sY = x2y,

and sZ = v; and on V we have sX = yx, sY = y2, and sZ = 1.

Now we can explicitly compute the map at each point of D1(σ′). Note that all

points of E are contained in U0, accept those points that are the result of blowing-

down E ′4 and E ′′4 (contained in V ) and the point where E meets C (contained in
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U1).

We consider U0 first. Recall that on this open set the total space of the family is

given by

{ t
8

x6
f(x2t−1, x3vt−2)− at7 − bt8 = 0} ∩ {t 6= 0} ⊆ A3

(x,t,v),

with a fiber of the family given by x = u. Thus we have

dx = 0,

and

d

(
t8

x6
f(x2t−1, x3vt−2)− at7 − bt8

)
= 0

This allows us to write

0 = p(x, t, v) dt+ q(x, t, v) dv,

where

p(x, t, v) =
∂

∂t

(
t8

x6
f(x2t−1, x3vt−2)− at7 − bt8

)
= 4v2t3 +

∑
i+j=3

(5− j)αi,jxjvjt4−j +
∑
i+j=4

(4− j)βi,jx2+jvjt3−j − 7at6 − 8bt7

q(x, t, v) =
∂

∂v

(
t8

x6
f(x2t−1, x3vt−2)− at7 − bt8

)
= 2vt4 +

∑
i+j=3

jαi,jx
jvj−1t5−j +

∑
i+j=4

jβi,jx
2+jvj−1t4−j

Suppose (0, γ, ζ) is a point on E with ζ 6= 0. Since t 6= 0 on all of U0, we have

2ζγ4 6= 0, and hence q(0, γ, ζ) 6= 0. Thus in a neighborhood of (0, γ, ζ) we have

dv =
−p(x, t, v)

q(x, t, v)
dt
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Let (x0, t0, v0) be a point in such neighborhood. The linearizations of x, x2v, and t

at this point are

x = x0 + dx

= x0

x2v = x2
0v0 + 2x0v0dx+ x2

0dv

= x2
0v0 − x2

0

(
−p(x0, t0, v0)

q(x0, t0, v0)

)
dt

t = t0 + dt

Thus locally, the map σ′ can be given by the matrix: x x2v t

0 −x2
(
−p(x,t,v)
q(x,t,v)

)
1


The ideal of

C[x, t, v, t−1](
t8

x6
f(x2t−1, x3vt−2)− at7 − bt8

)
generated by the 2× 2 minor determinants of this matrix is (x); in particular, D1(σ′)

is reduced at such points.

Next we consider the points (0, γ, 0) of E. In this case we have −7aγ6− 8bγ7 6= 0,

and hence p(0, γ, 0) 6= 0. Thus in a neighborhood of (0, γ, 0) we have

dt =
−q(x, t, v)

p(x, t, v)
dv

Again, let (x0, t0, v0) be a point in such a neighborhood. The linearizations of x, x2v
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and t at this point are

x = x0 + dx

= x0

x2v = x2
0v0 + 2x0v0dx+ x2

0dv

= x2
0v0 + x2

0dv

t = t0 + dt

= t0 +
−q(x0, t0, v0)

p(x0, t0, v0)
dv

So locally, the map σ′ can be given by the matrix: x x2v t

0 x2 −q(x,t,v)
p(x,t,v)


The ideal of

C[x, t, v, t−1](
t8

x6
f(x2t−1, x3vt−2)− at7 − bt8

)
generated by the 2× 2 minor determinants of this matrix is(

x3,
xq(x, t, v)

p(x, t, v)
, x2

(
vq(x, t, v)

p(x, t, v)
+ t

))
When we pass to the complete local ring at (0, γ, 0), we see that since vq(x,t,v)

p(x,t,v)
+ t 6= 0

and p(x, t, v) 6= 0, we have that the ideal is given by

(xq(x, t, v), x2) = (xvt4, x2) = (xv, x2)

In particular, D1(σ′) is non-reduced at such points.
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Next we consider the points of V that are not contained in U0 ∪ U1. There are

only two such points, those obtained from blowing-down E ′4 and E ′′4 . Recall that on

V the total space of the family is given by

{ 1

y6v4
f(xy2v2, y3v2)− axv2 − bv2 = 0} ⊆ A3

(x,y,v),

with a fiber given by yv = u. Thus we have

d(yv) = y dv + v dy = 0.

Since v 6= 0, this gives

dy =
−y
v
dv.

We also have

d

(
1

y6v4
f(xy2v2, y3v2)− axv2 − bv2

)
= 0

These relations allow us to write

0 = p(x, y, v) dx+ q(x, y, v) dv,
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where

p(x, y, v) =
∂

∂x

(
1

y6v4
f(xy2v2, y3v2)− axv2 − bv2

)
=

∑
i+j=3

iαi,jx
i−1yjv2 +

∑
i+j=4

iβi,jx
i−1y2+jv4 − av2

= v2

(∑
i+j=3

iαi,jx
i−1yj +

∑
i+j=4

iβi,jx
i−1y2+jv2 − a

)

q(x, y, v) =
∂

∂v

(
1

y6v4
f(xy2v2, y3v2)− axv2 − bv2

)
−y
v

∂

∂y

(
1

y6v4
f(xy2v2, y3v2)− axv2 − bv2

)
=

∑
i+j=3

2αi,jx
iyjv +

∑
i+j=4

4βi,jx
iy2+jv3 − 2axv − 2bv

−
∑
i+j=3

jαi,jx
iyjv −

∑
i+j=4

(2 + j)βi,jx
iy2+jv3

=
∑
i+j=3

(2− j)αi,jxiyjv +
∑
i+j=4

(2− j)βi,jxiy2+jv3 − 2axv − 2bv

The points of V we wish to consider are (0, 0, ζ), where 1 − bζ2 = 0. At such a

point we have

p(0, 0, ζ) = −aζ2 6= 0

Thus in a neighborhood of such points we have

dx =
−q(x, y, v)

p(x, y, v)
dv

Let (x0, y0, v0) be a point in such a neighborhood. The linearizations of xy, y2



CHAPTER 3. THE CLASS OF THE HYPERELLIPTIC LOCUS IN M3 55

and 1 at this point are

xy = x0y0 + y0dx+ x0dy

= x0y0 −
(
y0
q(x0, y0, v0)

p(x0, y0, v0)
+
x0y0

v0

)
dv

y2 = y2
0 + 2y0dy

= y2
0 − 2

y2
0

v0

dv

1 = 1 + 0 dv

So locally, the map σ′ can be given by the matrix: xy y2 1

−y q(x,y,v)
p(x,y,v)

− xy
v

−2y2

v
0


The ideal of

C[x, y, v](
1

y6v4
f(xy2v2, y3v2)− axv2 − bv2

)
generated by the 2× 2 minor determinants of this matrix is

(
y

(
q(x, y, v)

p(x, y, v)
+
xy

v

)
, y2

)
.

But

q(0, 0, ζ)

p(0, 0, ζ)
=

2bζ

a
6= 0

Thus in the complete local ring at (0, 0, ζ), the ideal is given simply by (y); in par-

ticular, D1(σ′) is reduced at the points (0, 0, ζ).
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Finally, we consider the point P = (0, 1, 0) of U1. Recall that the total space of

the family on U1 is given by

{y4 + y3
∑
i+j=3

αi,jx
j + y2

∑
i+j=4

βi,jx
j+2 − ayv4 − bv6 = 0} ∩ {y 6= 0} ⊆ A3

(x,y,v),

with a fiber given by xv = u. So in a neighborhood of P we have

0 = d

(
y4 + y3

∑
i+j=3

αi,jx
j + y2

∑
i+j=4

βi,jx
j+2 − ayv4 − bv6

)
= p(x, y, v) dx+ q(x, y, v) dy + r(x, y, v) dv

where

p(x, y, v) = y3
∑
i+j=3

jαi,jx
j−1 + y2

∑
i+j=4

(j + 2)βi,jx
j+1

q(x, y, v) = 4y3 + 3y2
∑
i+j=3

αi,jx
j + 2y

∑
i+j=4

βi,jx
j+2 − av4

r(x, y, v) = −4ayv3 − 6bv5

But we have q(0, 1, 0) = 4 + 3α3,0 = 1. (Recall that α3,0 was assumed to be −1.)

Thus in a neighborhood of P we have

dy =
−p(x, y, v)

q(x, y, v)
dx− r(x, y, v)

q(x, y, v)
dv

We also have the relation

0 = d(xv) = v dx+ x dv

Thus F is locally generated by 1, dx, and dv, but with a non-trivial relation at P .
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We consider the map from E(U1) to the free module generated by 1, dx, and dv.

Let (x0, y0, v0) be a point in a neighborhood of P . The linearizations of x, x2y, and

v at this point are

x = x0 + dx

x2y = x2
0y0 + 2x0y0 dx+ x2

0 dy

= x2
0y0 + 2x0y0 dx+ x2

0

−p(x0, y0, v0)

q(x0, y0, v0)
dx− x2

0

r(x0, y0, v0)

q(x0, y0, v0)
dv

= x2
0y0 +

(
2x0y0 − x2

0

p(x0, y0, v0)

q(x0, y0, v0)

)
dx− x2

0

r(x0, y0, v0)

q(x0, y0, v0)
dv

v = v0 + dv

Locally this map is given by


x x2y v

1 2xy − x2 p(x,y,v)
q(x,y,v)

0

0 −x2 r(x,y,v)
q(x,y,v)

1

 (3.2.1)

Since F is not free at P , we apply the process of [D] (described above). As

mentioned above, the smallest nonzero Fitting ideal of F is the maximal ideal of P .

Thus we blow-up along the maximal ideal of P , pullback E , F , and σ and take their

double duals. This gives the map σ′ : E ′ → F ′. We have two patches to consider:

On the first patch we have the relation v = xv. The result of pulling back (3.2.1)
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is 
x x2y xv

1 2xy − x2 p(x,y,v)
q(x,y,v)

0

0 −x2 r(x,y,v)
q(x,y,v)

1


But on this patch the relation 0 = v dx + x dv, after taking the double dual of the

pullback of F , becomes 0 = v dx+ dv. Thus the map σ′ is given locally by x x2y xv

1 2xy − x2 p(x,y,v)
q(x,y,v)

+ x2v r(x,y,v)
q(x,y,v)

−v

 (3.2.2)

The ideal generated by the 2× 2 minor determinants in

C[x, y, v, y−1]

(y4 + y3
∑

i+j=3 αi,jx
j + y2

∑
i+j=4 βi,jx

j+2 − ax4yv4 − bx6v6)

is (
xv, x2

(
y − xp(x, y, v)

q(x, y, v)

))
In the complete local ring at any point of this patch along the exceptional divisor,

this ideal becomes

(xv, x2)

If v 6= 0, then this ideal is simply (x), and we see that D1(σ′) is reduced.

On the second patch we have the relation x = xv. The result of pulling back
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(3.2.1) is 
xv x2yv2 v

1 2xyv − x2v2 p(xv,y,v)
q(xv,y,v)

0

0 −x2v2 r(xv,y,v)
q(xv,y,v)

1


But on this patch the relation 0 = v dx + x dv, after taking the double dual of the

pullback of F , becomes 0 = dx+ x dv. Thus the map σ′ is given locally by xv x2yv2 v

−x −x2v2 r(xv,y,v)
q(xv,y,v)

− 2x2yv + x3v2 p(xv,y,v)
q(xv,y,v)

1

 (3.2.3)

The ideal generated by the 2× 2 minor determinants in

C[x, y, v, y−1]

(y4 + y3
∑

i+j=3 αi,jx
jvj + y2

∑
i+j=4 βi,jx

j+2vj+2 − ayv4 − bv6)

is (xv). This shows that at (0, 1, 0), D1(σ′) is simply the union of the exceptional

divisor and E.

Combining this with (3.2.2) completes the proof of (3.2.5).



CHAPTER 3. THE CLASS OF THE HYPERELLIPTIC LOCUS IN M3 60

3.3 Excess Porteous

Let π : X → B be a generic 1-parameter family of smooth, nonhyperelliptic curves

of genus 3 degenerating to a general element of ∆1; let E and C be the elliptic and

genus 2 curves, respectively, meeting transversely at P .

Let σ : E → F be the map of coherent sheaves described above; let g : X ′ → X

be the blow-up of X at the maximal ideal of P , with E0 the exceptional divisor; and

let σ′ : E ′ → F ′ be the map of vector bundles on X ′ described above.

Let D = D1(σ′). The expected codimension of D is (3 − 1)(2 − 1) = 2, but by

(3.1.2) D is the union of E0, E, and the six hyperelliptic Weierstrass points of C

(Q1, . . . , Q6.) We’d like to compute the class D1(σ′) in A0(D); since the codimension

of D is less than 2, we use (1.4.8). Specifically, since D0(σ′) = ∅, there exist vector

bundles K and C, of ranks 2 and 1 respectively, on D, and an exact sequence

0→ K → E ′D → F ′D → C → 0,

where E ′D and F ′D are the restrictions of E ′ and F ′ to D. Then we have

D1(σ′) = {c(K∨ ⊗ C) ∩ s(D,X ′)}0

Proposition 3.3.1. Let P1 and P2 be as in the proof of (3.1.2)), S1, S2, and S3 as

in (3.2.5), and Qi, i = 1, . . . , 6, the hyperelliptic Weierstrass points of C. Then

s(D,X ′) = [E0] + [E] +
6∑
i=1

[Qi] +
3∑
i=1

[Si] + [P1] + [P2].

In particular, ∫
D

s(D, X̃) = 11
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Proof. Let f : X̃ ′ → X ′ be the blow-up of X ′ along D. By [H, Ex.II.7.11(b)] we

can identify this blow-up with the blow-up along Q1 ∪ . . . ∪ Q6 ∪ S1 ∪ S2 ∪ S3 ∪ P2.

Let E ′ be the exceptional divisor of this blow-up and Q′i, S
′
i, and P ′2 the components

lying above Qi, Si, and P2, respectively. Then D′ := f−1(D) = f ∗(E0 +E) +E ′. Let

h : D′ → D be the projection. By [F, Cor. 4.2.2] we have

s(D,X ′) = h∗[D
′]− h∗(D′ · [D′])

= [E0] + [E]− h∗(f ∗(E0 + E) · [f ∗(E0 + E)] + 2f ∗(E0 + E) · [E ′] + E ′ · [E ′])

= [E0] + [E]− (E0 + E) · [E0 + E]− h∗(2f ∗(E0 + E) · [E ′] + E ′ · [E ′])

= [E0] + [E]− (E0 + E) · [E0 + E] +
6∑
i=1

[Qi] +
3∑
i=1

[Si] + [P2]

−h∗(2f ∗(E0 + E) · [E ′])

= [E0] + [E]− (E0 + E) · [E0 + E] +
6∑
i=1

[Qi] +
3∑
i=1

[Si] + [P2]

Lines 2 and 3 are by [F, Prop. 2.3(c)]. Line 4 is due to the fact that each component

of E ′ is a rational curve, with self-intersection -1, disjoint from the other components.

Line 5 is shown as follows:

f ∗(E0 + E) · [E ′] = (E0 + E + S ′1 + S ′2 + S ′3 + P ′2) ·

[Q′1 + . . .+Q′6 + S ′1 + S ′2 + S ′3 + P ′2]

= E0 · [P ′2] +
3∑
i=1

E · [S ′i] +
3∑
i=1

S ′i · [S ′i] + P ′2 · [P ′2]

= (E0 + P ′2) · [P ′2] +
3∑
i=1

(E + S ′i) · [S ′i]

= 0,
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where by abuse of notation we identify E0 and E with their proper transforms in D′.

Furthermore, we have

E0 · [E0] = −[P1], E0 · [E] = [P1], and E1 · [E] = −2[P1]

Thus we have

(E0 + E) · ([E0 + E]) = E0 · [E0] + 2E · [E0] + E · [E] = −[P1]

In order to determine the equivalence of D in D1(σ′), we need only look at c1(K∗⊗

C) ∩ ([E0] + [E1]).

Notation 3.3.2. Since F ′D → C is surjective, its kernel is a vector bundle (of rank

1). But the kernel of this map is the image of E ′D → F ′D, which we’ll call A.

Proposition 3.3.3. In the above situation, we have

c1(K∗ ⊗ C) ∩ ([E0] + [E1]) = (2c1(F ′D)− c1(A)) ∩ ([E0] + [E1]).

Proof. By [F, Ex. 3.2.2] we have

c1(K∗ ⊗ C) = 2c1(C) + c1(K∗) = 2c1(C)− c1(K).

Also, from the exact sequence

0→ K → E ′D → F ′D → C → 0,
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we have the relation

c1(K) + c1(F ′D) = c1(E ′D) + c1(C).

Combining we have

c1(K∗ ⊗ C) = c1(C) + c1(F ′D)− c1(E ′D).

Moreover, E ′D is the trivial bundle on both E0 and E, so c1(E ′D) ∩ ([E0] + [E1]) = 0.

But we also have

c1(C) + c1(A) = c1(F ′D).

Combining this with above gives the desired result.

Proposition 3.3.4. In the above situation, we have

∫
D

2c1(F ′D) ∩ ([E0] + [E]) = 6.

Proof. The proof of [D, Lemma 5] immediately generalizes to our situation to show

that

c1(F ′D) = 3γD − E0,

where γD := g∗(c1(ωX/B)) · D. The restriction of ωX/B to E is K1(P1), where K1 is

the canonical bundle on E, so γD has degree 1 on this curve. Also the restriction of

ωX/B to C is K2(P2) where K2 is the canonical bundle on C, so γD has degree 3 on

this curve. Moreover, the degree of γD on any member of the family is 4, so that the
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degree on E0 is 0. Also, we see that ](E0 · [E0]) = −1 and ](E0 · [E1]) = 1. Thus

∫
D

2c1(F ′D) ∩ ([E0] + [E]) =

∫
D

2(3γD − E0) · ([E0] + [E])

= 2

∫
D

3γD · [E0]− E0 · [E0] + 3γD · [E]− E0 · [E]

= 2(0− (−1) + 3(1)− 1)

= 6.

It remains to determine c1(A)∩([E0]+[E]). We use the following two propositions:

Proposition 3.3.5. In the above situation, we have

AE0
∼= O(1)

Proof. We consider the map E ′ → F ′ on E0 given by restricting the matrices (3.2.2)

and (3.2.3), from the proof of (3.2.5), to E0. On one affine patch of E0 we have 0 0 0

1 0 −v

 ,
and on the other  0 0 0

−x 0 1

 ,
where v and x are affine parameters on their respective patches. On the first patch

v = 0 is a local equation for C, and on the second x = 0 is a local equation for E.
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Since C and E both meet E0 transversely, we see that s1 and s3 map to sections with

a simple zero on E0.

Notation 3.3.6. Let F ′1 = g∗ωX/B and F ′2 = g∗ω2
X/B ⊗O(−E0).

Proposition 3.3.7. There exists a short exact sequence of vector bundles

0→ F ′2 → F ′ → F ′1 → 0,

on X ′.

Proof. This is a trivial generalization of [D, Lemma 5].

Proposition 3.3.8. In the above situation, AE ∼= OE. In particular, c1(A)∩E = 0.

Proof. We consider the composition of maps E ′ → F ′ → F ′1. For a point x ∈ E

this map takes sections of the relative dualizing sheaf, expands them about a local

coordinate at x, first maps them to the constant and linear term, and then maps them

to the constant term. We can choose a basis for the sections of the dualizing sheaf

such that two of them, when expanded about x ∈ E are 0, and the other is a section

of K1(P1) where K1 is the canonical bundle of E. Thus E ′x → (F ′1)x is surjective if

and only if the section on E fails to vanish at x. This is the case for all x 6= P1. When

we consider the map E ′ → F ′1(−P1), we see that away from P1 this is the same as

before. But at P1 this map will take the linear term of the section of the dualizing

sheaf instead of the constant term, and thus is surjective at all points of E1. Thus

AE → (F ′1)E(−P1) is a surjective map of vector bundles of the same rank, and thus
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is an isomorphism. But F ′1 is simply the relative dualizing sheaf of the family, so F ′1

is K1(P1) on E. Thus AE ∼= K1 = OE.

Proposition 3.3.9. Thus we have

c1(A) ∩ ([E0] + [E]) = c1(O(1)) ∩ [E0]

](c1(A)) ∩ ([E0] + [E])) = 1.

Proof. This follows immediately from (3.3.5) and (3.3.8).

We have now proven the following result:

Theorem 3.3.10. In the above situation,

∫
D

D1(σ′) = 16

Proof. By (3.3.1), (3.3.4), and (3.3.9), we have

∫
D

s(D,X ′) = 11∫
D

2c1(F ′D) ∩ ([E0] + [E]) = 6∫
D

c1(A) ∩ ([E0] + [E])) = 1.

Thus by (3.3.1) and (3.3.3), we have

∫
D

D1(σ′) = 11 + 6− 1 = 16.
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3.4 The Main Result

Let H be the hyperelliptic locus in M3 and H its closure in M3. Let h ∈ Picfun(M3)

be the rational divisor class on the moduli stack associated to H by [HM, Prop.

(3.88)]. We wish to combine the above result with that of [D] to obtain an expression

for h in terms of the generators λ, δ0, and δ1 of Picfun(M3).

Let π : X → B be a generic 1-parameter family of stable curves of genus 3. Let

σ′ : E ′ → F ′ be the map described above on X ′, where g : X ′ → X is the blow-up

along the nodes of singular fibers of π. The result of applying (1.4.7) gives

[D1(σ′)] = c2(E ′∗ −F ′∗)

From the proof of [D, Lemma 5], we have

c(E ′) = 1− λ

c(F ′) = 1 + 3γ − E0 + 2γ2,

where E0 is the exceptional divisor of the blow-up g : X ′ → X. This gives

[D1(σ′)] = 7ω2 − 3ωλ+ E2
0 .

But there is one component of E0 for each fiber of π from δ0 and one component for

each fiber from δ1, and each component has square −1. Hence

(πg)∗([D1(σ′)]) = 7κ− 12λ− δ0 − δ1.
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We use λ = (κ+ δ0 + δ1)/12 from [HM, (3.110)], to obtain

(πg)∗([D1(σ′)]) = 72λ− 8δ0 − 8δ1.

We notice that generic members of ∆1 are not contained in H, but by (3.3.10) we

know that (1.4.7) will count generic members of ∆1 16 times each. Thus we need to

subtract 16δ1 from the result above. This gives

72λ− 8δ0 − 24δ1.

Since each smooth hyperelliptic curve contains 8 hyperelliptic Weierstrass points,

we divide this by 8, giving

h = 9λ− δ0 − 3δ1.

By [HM, Prop. (3.92)], we have

[H] = 18λ− 2∆0 − 3∆1.



Appendix A

Stable Reduction Calculations

A.1 Total Space Singularities

Proposition A.1.1. (P1) is singular along E1 and nonsingular away from E1.

Proof. On (P1) the total space of the family is given by

f(x, xy)− at2x− bt3 = 0

Writing this out we have

x2y2 +
∑
i+j=3

αi,jx
3yj +

∑
i+j=4

βi,jx
4yj − at2x− bt3 = 0

The first order partial derivatives of this family are

∂

∂x
= 2xy2 +

∑
i+j=3

3αi,jx
2yj +

∑
i+j=4

4βi,jx
3yj − at2 (A.1.1)

∂

∂y
= 2x2y +

∑
i+j=3

jαi,jx
3yj−1 +

∑
i+j=4

jβi,jx
4yj−1 (A.1.2)

∂

∂t
= −2atx− 3bt2 (A.1.3)

69
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Since (P1) is the result of blowing up the orginal family along an ideal whose support

is the only singular point of the original family, we see that away from E1 (P1) is

nonsingular.

On (P1), E1 is given by x = 0. From the equation for the total space of the

family on this patch, we see that t = 0 whenever x = 0. Moreover, all three partial

derivatives vanish at all points of the form (0, y0, 0). So (P1) is singular along E1.

Proposition A.1.2. (P2) is singular along E1 and nonsingular away from E1.

Proof. On (P2) the total space of the family is given by

f(xy, y)− at2xy − bt3 = 0

Writing this out we have

y2 +
∑
i+j=3

αi,jx
iy3 +

∑
i+j=4

βi,jx
iy4 − at2xy − bt3 = 0

The first order partial derivatives of this family are

∂

∂x
=

∑
i+j=3

iαi,jx
i−1y3 +

∑
i+j=4

iβi,jx
i−1y4 − at2y (A.1.4)

∂

∂y
= 2y +

∑
i+j=3

3αi,jx
iy2 +

∑
i+j=4

4βi,jx
iy3 − at2x (A.1.5)

∂

∂t
= −2atxy − 3bt2 (A.1.6)

As in the previous proof, (P2) is the result of blowing up the orginal family along an

ideal whose support is the only singular point of the original family, and thus away

from E1 (P2) is nonsingular.
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On (P2), E1 is given by y = 0. From the equation for the total space of the family,

we see that t = 0 whenever y = 0, and all three partial derivatives vanish at points

of the form (x0, 0, 0). So (P2) is singular along E1.

Proposition A.1.3. (P1-1) is nonsingular.

Proof. On (P1-1) the total space of the family is given by

1

x3
f(x, x2y)− at2 − bt3 = 0

Writing this out we have

xy2 +
∑
i+j=3

αi,jx
jyj +

∑
i+j=4

βi,jx
1+jyj − at2 − bt3 = 0

The first order partial derivatives of this family are

∂

∂x
= y2 +

∑
i+j=3

jαi,jx
j−1yj +

∑
i+j=4

(1 + j)βi,jx
jyj (A.1.7)

∂

∂y
= 2xy +

∑
i+j=3

jαi,jx
jyj−1 +

∑
i+j=4

jβi,jx
1+jyj−1 (A.1.8)

∂

∂t
= −2at− 3bt2 (A.1.9)

(P1-1) is the result of blowing up a point lying on E1, the singular locus of (P1).

Thus away from E1 and E2 (P1-1) is nonsingular.

E2 is given locally by x = 0. From the equation of the total space of the family

on this patch, we see that when x = 0 we have −1 − at2 − bt3 = 0. (Recall that

α3,0 = −1.) Hence t 6= 0 when x = 0. We set all partial derivatives equal to 0 and set

x = 0 and attempt to solve for y and t. The equation for ∂/∂t gives 2at + 3bt2 = 0.
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Since t 6= 0 this implies that t = −2a/3b. Thus we have

0 = 1 + at2 + bt3

= 1 + a

(
−2a

3b

)2

+ b

(
−2a

3b

)3

= 1 +
4a3

9b2
− 8a3

27b2

−1 =
4a3

27b2

This is a contradiction by the restrictions placed on a, b. Hence, (P1-1) is nonsingular

along E2. Since E1 does not meet this patch, (P1-1) is nonsingular.

Proposition A.1.4. (P1-2) is singular along E1 and nonsingular away from E1.

Proof. On (P1-2) the total space of the family is given by

1

y3
f(xy, xy2)− at2x− bt3 = 0

Writing this out we have

x2y +
∑
i+j=3

αi,jx
3yj +

∑
i+j=4

βi,jx
4y1+j − at2x− bt3 = 0

The first order partial derivatives of this family are

∂

∂x
= 2xy +

∑
i+j=3

3αi,jx
2yj +

∑
i+j=4

4βi,jx
3y1+j − at2 (A.1.10)

∂

∂y
= x2 +

∑
i+j=3

jαi,jx
3yj−1 +

∑
i+j=4

(1 + j)βi,jx
4yj (A.1.11)

∂

∂t
= −2atx− 3bt2 (A.1.12)
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As in the previous proposition (P1-2) is nonsingular away from E1 and E2. Moreover,

since (P1) was singular at every point of E1 and only one point of E1 was blown up,

we see that (P1-2) must still be singular along E1. Thus since E1 is given locally by

x = 0, we will consider the open subset given by x 6= 0.

Setting each of the partial derivatives equal to 0 and restricting to E2 (given locally

by y = 0), we have

0 = −3x2 − at2 (A.1.13)

0 = x2 + α2,1x
3 + β4,0x

4 (A.1.14)

0 = −2atx− 3bt2 (A.1.15)

Since we are assuming x 6= 0, (A.1.15) implies that t 6= 0 and x = −3bt/2a. Substi-

tuting into (A.1.13) gives

0 = −3

(
−3b

2a

)2

t2 − at2 =

(
−27b2 − 4a3

4a2

)
t2

Since t 6= 0 this implies that −27b2 = 4a3, which is a contradiction by the restrictions

placed on a, b. Thus (P1-2) is nonsingular along points of E2 not meeting E1.

Proposition A.1.5. (P1-2-1) is nonsingular.

Proof. On (P1-2-1) the total space of the family is given by

1

x6y3
f(x2y, x3y2)− at2 − bt3 = 0

Writing this out we have

y +
∑
i+j=3

αi,jx
jyj +

∑
i+j=4

βi,jx
2+jy1+j − at2 − bt3 = 0
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The first order partial derivatives of this family are

∂

∂x
=

∑
i+j=3

jαi,jx
j−1yj +

∑
i+j=4

(2 + j)βi,jx
1+jy1+j (A.1.16)

∂

∂y
= 1 +

∑
i+j=3

jαi,jx
jyj−1 +

∑
i+j=4

(1 + j)βi,jx
2+jyj (A.1.17)

∂

∂t
= −2at− 3bt2 (A.1.18)

This patch is the result of blowing up (P1-2) at the point where E1 and E2 meet. Since

(P1-2) was singular along E1 and nonsingular elsewhere, the only possible singular

points of this patch are those lying on E1 and E3, but E1 does not meet this patch.

Thus we need only check for singularities along E3, which is given by x = 0 on this

patch. But one easily see that (A.1.17) does not vanish along x = 0. Thus (P1-2-1)

is nonsingular.

Proposition A.1.6. (P1-2-2) is singular along E1 and nonsingular away from E1.

Proof. On (P1-2-2) the total space of the family is given by

1

y6
f(xy2, xy3)− at2x− bt3 = 0

Writing this out we have

x2 +
∑
i+j=3

αi,jx
3yj +

∑
i+j=4

βi,jx
4y2+j − at2x− bt3 = 0

As above, this patch is the result of blowing up (P1-2) at the point where E1 and E2

meet. It’s clear that it will still be singular along E1. Moreover, the only point of E3

contained in this patch that is not contained in (P1-2-1) is where E1 and E3 meet,
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which must be a singular point. By the previous proposition, we see that (P1-2-2)

must thus be nonsingular away from E1.

Proposition A.1.7. (P2-1) is nonsingular.

Proof. On (P2-1) the total space of the family is given by

1

t2
f(xyt, yt)− atxy − bt = 0

Writing this out we have

y2 +
∑
i+j=3

αi,jx
iy3t+

∑
i+j=4

βi,jx
iy4t2 − atxy − bt = 0

The first order partial derivatives of this family are

∂

∂x
=

∑
i+j=3

iαi,jx
i−1y3t+

∑
i+j=4

iβi,jx
i−1y4t2 − aty (A.1.19)

∂

∂y
= 2y +

∑
i+j=3

3αi,jx
iy2t+

∑
i+j=4

4βi,jx
iy3t2 − atx (A.1.20)

∂

∂t
=

∑
i+j=3

αi,jx
iy3 +

∑
i+j=4

2βi,jx
iy4t− axy − b (A.1.21)

This patch is the result of blowing up (P2) along E1, and thus the only possible

singular points are those of E4, which is given locally by t = 0. From the equation

for the total space of the family, we see that t = 0 implies y = 0. Setting both y and

t equal to 0, as well as (A.1.21), gives b = 0, a contradiction since we assume b 6= 0.

Thus (P2-1) is nonsingular.

Proposition A.1.8. (P2-2) is nonsingular.
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Proof. On (P2-2) the total space of the family is given by

1

y2
f(xy, y)− at2xy − bt3y = 0.

Writing this out we have

1 +
∑
i+j=3

αi,jx
iy +

∑
i+j=4

βi,jx
iy2 − at2xy − bt3y = 0

As above, this patch is the result of blowing up (P2) along E1. Thus the only possible

singular points are along E4, which is given locally by y = 0. y = 0 does not meet

this patch, we see that it is nonsingular.

Proposition A.1.9. (P1-2-2-1) is nonsingular.

Proof. On (P1-2-2-1) the total space of the family is given by

1

x2y6
f(xy2, xy3)− at2x− bt3x = 0

Writing this out we have

1 +
∑
i+j=3

αi,jxy
j +

∑
i+j=4

βi,jx
2y2+j − at2x− bt3x = 0

As in the previous two patches, the only possible singular points lie along E4, which

is given locally by x = 0. Thus E4 does not meet this patch, and we see immediately

that it is nonsingular.

Proposition A.1.10. (P1-2-2-2) is nonsingular.

Proof. On (P1-2-2-2) the total space of the family is given by

1

y6t2
f(xy2t, xy3t)− atx− bt = 0
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Writing this out we have

x2 +
∑
i+j=3

αi,jx
3yjt+

∑
i+j=4

βi,jx
4y2+jt2 − atx− bt = 0

The first order partial derivatives of this family are

∂

∂x
= 2x+

∑
i+j=3

3αi,jx
2yjt+

∑
i+j=4

4βi,jx
3y2+jt2 − at (A.1.22)

∂

∂y
=

∑
i+j=3

jαi,jx
3yj−1t+

∑
i+j=4

(2 + j)βi,jx
4y1+jt2 (A.1.23)

∂

∂t
=

∑
i+j=3

αi,jx
3yj +

∑
i+j=4

2βi,jx
4y2+jt− ax− b (A.1.24)

Once again, this patch can only be singular along E4, which is given locally by

t = 0. From the equation for the total space of our family on this patch we see that

x = 0 whenever t = 0. Setting both x and t equal to 0 in (A.1.24) gives b = 0, a

contradiction. Thus (P1-2-2-2) is nonsingular.
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