Syracuse University **[SURFACE](https://surface.syr.edu/)**

[Mathematics - Faculty Scholarship](https://surface.syr.edu/mat) [Mathematics](https://surface.syr.edu/math) Mathematics

4-27-2009

An N-Dimensional Version of the Beurling-Ahlfors Extension

Leonid V. Kovalev Syracuse University

Jani Onninen Syracuse University

Follow this and additional works at: [https://surface.syr.edu/mat](https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages)

C Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Kovalev, Leonid V. and Onninen, Jani, "An N-Dimensional Version of the Beurling-Ahlfors Extension" (2009). Mathematics - Faculty Scholarship. 49. [https://surface.syr.edu/mat/49](https://surface.syr.edu/mat/49?utm_source=surface.syr.edu%2Fmat%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact [surface@syr.edu.](mailto:surface@syr.edu)

AN N-DIMENSIONAL VERSION OF THE BEURLING-AHLFORS EXTENSION

LEONID V. KOVALEV AND JANI ONNINEN

Abstract. We extend monotone quasiconformal mappings from dimension n to $n + 1$ while preserving both monotonicity and quasiconformality. The extension is given explicitly by an integral operator. In the case $n = 1$ it yields a refinement of the Beurling-Ahlfors extension.

1. Introduction

Extension Problem. Given a mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ of class \mathscr{A} , find $F: \mathbb{R}^{n+1} \to$ \mathbb{R}^{n+1} of class $\mathscr A$ such that the restriction of F to \mathbb{R}^n agrees with f.

Let us introduce coordinate notation $x = (x^1, \ldots, x^n)$ and $f = (f^1, \ldots, f^n)$. By setting $F^i = f^i$ for $i = 1, ..., n$ and $F^{n+1} = x^{n+1}$ one immediately obtains a solution to the extension problem for many classes $\mathscr A$ such as continuous ($\mathscr{A} = C^0$), smooth ($\mathscr{A} = C^k$), homeomorphic, diffeomorphic, and (bi-)Lipschitz mappings.

When $\mathscr{A} = \mathcal{QC}$, the class of quasiconformal mappings, the extension problem is much more difficult. It was solved

- for $n = 1$ by Beurling and Ahlfors [\[4\]](#page-9-0) in 1956,
- for $n = 2$ by Ahlfors [\[1\]](#page-8-0) in 1964,
- for $n \leq 3$ by Carleson [\[8\]](#page-9-1) in 1974, and
- for all $n \geq 1$ by Tukia and Väisälä [\[16\]](#page-9-2) in 1982.

The Tukia-Väisälä extension uses, among other things, Sullivan's theory [\[15\]](#page-9-3) of deformations of Lipschitz embeddings. Our goal is to give an explicit extension for a subclass of \mathcal{QC} . Quasiconformal mappings can be defined as orientation-preserving quasisymmetric mappings [\[11,](#page-9-4) [17\]](#page-9-5).

Definition 1.1. A homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ is quasisymmetric if there is a homeomorphism $\eta: [0, \infty) \to [0, \infty)$ such that

$$
(1.1) \qquad \qquad \frac{|f(x) - f(z)|}{|f(y) - f(z)|} \le \eta \left(\frac{|x - z|}{|y - z|} \right).
$$

for $x, y, z \in \mathbb{R}^n$, $z \neq y$.

1

Date: April 17, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 30C65; Secondary 47H05, 47B34. Kovalev was supported by the NSF grant DMS-0913474.

Onninen was supported by the NSF grant DMS-0701059.

One can say that quasisymmetry is a three-point condition. But there are two subclasses of QC that are defined by *two-point* conditions, namely bi-Lipschitz class $\beta \mathcal{L}$ and the class of nonconstant delta-monotone mappings [\[2,](#page-8-1) Chapter 3. Recall that a mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ is *monotone* if

(1.2)
$$
\langle f(x) - f(y), x - y \rangle \ge 0
$$
 for all $x, y \in \mathbb{R}^n$.

We called f *delta-monotone* if there exists $\delta > 0$ such that

(1.3)
$$
\langle f(x) - f(y), x - y \rangle \ge \delta |f(x) - f(y)||x - y|
$$
 for all $x, y \in \mathbb{R}^n$.

The class of nonconstant delta-monotone mappings is denoted by DM. When we want to specify the value of δ we write that f is δ -monotone.

In contrast to the bi-Lipschitz case, the extension problem for the class \mathcal{DM} cannot be solved by means of the trivial extension. For example, the mapping $f(x) = |x|^p x$, $p > -1$, belongs to \mathcal{DM} but its trivial extension does not (unless $p = 0$).

Main Result. Let $n \geq 2$. For any mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ of class \mathcal{DM} *there exists* $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ *of class* \mathcal{DM} *such that the restriction of* F *to* \mathbb{R}^n *agrees with* f.

Our proof is by an explicit construction that can be viewed as an n dimensional version of the Beurling-Ahlfors extension. Suppose $f \in \mathcal{DM}$. Let $\mathbb{R}^{n+1}_+ = \mathbb{R}^n \times [0, \infty)$ and

(1.4)
$$
\phi(x) = (2\pi)^{-\frac{n}{2}} e^{-|x|^2/2}, \qquad x \in \mathbb{R}^n.
$$

We define $F: \mathbb{R}^{n+1}_+ \to \mathbb{R}^{n+1}_+$ by

(1.5)
$$
F^{i}(x,t) = \int_{\mathbb{R}^{n}} f^{i}(x+ty) \phi(y) dy \qquad i = 1,...,n
$$

(1.6)
$$
F^{n+1}(x,t) = \int_{\mathbb{R}^n} \langle f(x+ty), y \rangle \phi(y) dy
$$

where $x \in \mathbb{R}^n$, $t \geq 0$ (see §[4](#page-5-0) for the convergence of these integrals). Observe that $F(x, 0) = (f(x), 0)$. Furthermore, $F^{n+1}(x,t) \ge 0$ because

$$
\int_{\mathbb{R}^n} \langle f(x+ty), y \rangle \phi(y) dy = \int_{\mathbb{R}^n} \langle f(x+ty) - f(x), y \rangle \phi(y) dy \ge 0
$$

due to the monotonicity of f. Finally, we extend F to \mathbb{R}^{n+1} by reflection

$$
F^{i}(x,t) = F^{i}(x,-t)
$$
 $i = 1,...,n$ and $F^{n+1}(x,t) = -F^{n+1}(x,-t)$.

Theorem 1.2. Let $n \geq 2$. If $f: \mathbb{R}^n \to \mathbb{R}^n$ is δ -monotone, then $F: \mathbb{R}^{n+1} \to$ \mathbb{R}^{n+1} *is* δ_1 -monotone where δ_1 depends only on δ and n. In addition, $F: \mathbb{H}^{n+1} \to \mathbb{H}^{n+1}$ *is bi-Lipschitz in the hyperbolic metric.*

Here $\mathbb{H}^{n+1} = \mathbb{R}^n \times (0, \infty)$ and the hyperbolic metric on \mathbb{H}^{n+1} is $|dx|/x^{n+1}$. Theorem [1.2](#page-2-0) can be also formulated for $n = 1$, in which case it becomes a refinement of the Beurling-Ahlfors extension theorem.

Proposition 1.3. *If* $f: \mathbb{R} \to \mathbb{R}$ *is increasing and quasisymmetric, then* $F: \mathbb{R}^2 \to \mathbb{R}^2$ is δ_1 -monotone where δ_1 depends only on η in Definition [1.1.](#page-1-0) *Furthermore,* $F: \mathbb{H}^2 \to \mathbb{H}^2$ *is bi-Lipschitz in the hyperbolic metric.*

Fefferman, Kenig and Pipher [\[9,](#page-9-6) Lemma 4.4] proved that F in Proposition [1.3](#page-2-1) is quasiconformal. Proposition [1.3](#page-2-1) was originally proved in [\[12\]](#page-9-7) using their result. In this paper we give a direct proof.

Theorem [1.2](#page-2-0) has an application to mappings with a convex potential [\[7\]](#page-9-8), i.e., those of the form $f = \nabla u$ with u convex. The basic properties and examples of quasiconformal mappings with a convex potential are given in [\[13\]](#page-9-9).

Corollary 1.4. Suppose that $f: \mathbb{R}^n \to \mathbb{R}^n$, $n \geq 2$, is a K-quasiconformal mapping with a convex potential. Then f can be extended to a K_1 -quasiconformal mapping $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ with a convex potential, where K_1 depends only on K and n .

2. Preliminaries

Let e_1, \ldots, e_{n+1} be the standard basis of \mathbb{R}^{n+1} . All vectors are treated as column vectors. The transpose of a vector v is denoted by v^T . We use the operator norm $\|\cdot\|$ for matrices. A Borel measure μ on \mathbb{R}^n is *doubling* if there exists \mathscr{D}_{μ} , called the doubling constant of μ , such that

$$
\mu(2B) \leq \mathscr{D}_{\mu} \,\mu(B)
$$

for all balls $B = B(x, r)$. Here $2B = B(x, 2r)$.

The geometric definition of class \mathcal{QC} given in the introduction is equivalent to the following analytic definition [\[11,](#page-9-4) [17\]](#page-9-5).

Definition 2.1. A homeomorphism $f: \mathbb{R}^n \to \mathbb{R}^n$ $(n \geq 2)$ is quasiconformal if $f \in W^{1,n}_{loc}(\mathbb{R}^n, \mathbb{R}^n)$ and there exists a constant K such that the differential matrix $Df(x)$ satisfies the distortion inequality

$$
||Df(x)||^{n} \leq K \det Df(x) \quad \text{a.e. in } \mathbb{R}^{n}.
$$

Delta-monotone mappings also have an analytic definition.

Lemma 2.2. Let Ω be a convex domain in \mathbb{R}^n , $n \geq 2$. Suppose $f \in$ $W^{1,1}_{\text{loc}}(\Omega,\mathbb{R}^n)$ *is continuous. The following are equivalent:*

- *(i)* f *is* δ -monotone in Ω for some $\delta > 0$; that is, [\(1.3\)](#page-2-2) holds for all $x, y \in \Omega$;
- *(ii) there exists* $\delta > 0$ *such that for a.e.* $x \in \Omega$ *the matrix* $Df(x)$ *satisfies*

$$
v^T Df(x)v \ge \delta |Df(x)v||v| \qquad \text{for every vector } v \in \mathbb{R}^n;
$$

(iii) there exists $\gamma > 0$ *such that for a.e.* $x \in \Omega$ *the matrix* $Df(x)$ *satisfies*

$$
v^T Df(x)v \ge \gamma \|Df(x)\| |v|^2 \quad for every vector \ v \in \mathbb{R}^n.
$$

The constants δ *and* γ *depend only on each other.*

Proof. The equivalence of [\(i\)](#page-3-0) and [\(ii\)](#page-3-1), with the same constant δ , was proved in [\[12,](#page-9-7) p. 397]. It is obvious that [\(iii\)](#page-3-2) implies [\(ii\)](#page-3-1) with $\delta = \gamma$. It remains to establish the converse implication [\(ii\)](#page-3-1) \implies [\(iii\)](#page-3-2). To this end we need the following

Claim: if a real square matrix A satisfies

$$
v^T A v \ge \delta |Av||v| \qquad \text{for every } v \in \mathbb{R}^n
$$

then

(2.1)
$$
|Av| \ge c ||A|| |v| \qquad c = c(\delta) > 0.
$$

Although this claim is known, even with a sharp constant [\[3\]](#page-9-10), we give a proof for the sake of completeness. It suffices to estimate $|Av|$ from below under the assumptions that $Av \neq 0$ and $||A|| = 1 = |v|$. Let u be a unit vector in \mathbb{R}^n such that $|Au| = 1$. Replacing u by $-u$ if necessary we may assume that $u^T A v + v^T A u \leq 0$. Let $\lambda = \sqrt{|Av|}$. On one hand we have

(2.2)
$$
(\lambda u + v)^T A (\lambda u + v) \leq \lambda^2 u^T A u + v^T A v \leq \lambda^2 + \lambda^2 = 2\lambda^2.
$$

On the other hand

(2.3)
$$
(\lambda u + v)^T A (\lambda u + v) \ge \delta |\lambda Au + Av| |\lambda u + v| \ge \delta (\lambda - \lambda^2)(1 - \lambda)
$$
.
Combining (2.2) and (2.3) we obtain $2\lambda \ge \delta (1 - \lambda)^2$, hence

$$
\lambda \ge \delta^{-1} + 1 - \sqrt{(\delta^{-1} + 1)^2 - 1} > 0.
$$

This proves the claim.

3. Delta-monotone mappings and doubling measures

The following result shows that $\mathcal{DM} \subset \mathcal{QC}$. In particular, $f \in \mathcal{DM}$ implies that f is a continuous Sobolev mapping, and therefore [\(ii\)](#page-3-1)–[\(iii\)](#page-3-2) of Lemma [2.2](#page-3-3) hold.

Proposition 3.1. [\[12,](#page-9-7) Theorem 6] *Every nonconstant* δ*-monotone mapping is* η -quasisymmetric where η depends only on δ .

It is well-known that quasisymmetric mappings are closely related to doubling measures [\[11\]](#page-9-4). The following lemma is another instance of this relation.

Lemma 3.2. For any nonconstant δ -monotone mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ ($n \geq$ 2) the measure $\mu = ||Df(x)|| dx$ *is doubling. The doubling constant* \mathscr{D}_{μ} *depends only on* δ *and* n*.*

Proof. Recall that f is quasisymmetric. Lemma 3.2 in [\[14\]](#page-9-11) implies the existence of a constant $C = C(\delta, n)$ such that

(3.1)
$$
C^{-1} \frac{\text{diam } f(B)}{\text{diam } B} \le \frac{1}{|B|} \int_B ||Df|| dx \le C \frac{\text{diam } f(B)}{\text{diam } B}
$$

for all balls $B \subset \mathbb{R}^n$. Since diam $f(2B) \leq C$ diam $f(B)$ with $C = C(\eta)$, the lemma follows.

Recall that $\phi: \mathbb{R}^n \to (0, \infty)$ is the Gaussian kernel [\(1.4\)](#page-2-3). Let $\mathbb{B} = B(0, 1)$ be the open unit ball in \mathbb{R}^n .

Lemma 3.3. Let μ be a doubling measure in \mathbb{R}^n and $p \geq 0$. Let Ω be either \mathbb{R}^n *or the half space* $\{y : \langle y, \xi \rangle \geq 0\}$ *for some* $\xi \in \mathbb{R}^n$. *Then*

(3.2)
$$
C^{-1}\mu(\mathbb{B}) \le \int_{\Omega} |y|^p \phi(y) d\mu(y) \le C\mu(\mathbb{B})
$$

where the constant C *depends only on* \mathscr{D}_{μ} *, p and n.*

Proof. We begin by estimating the integral in (3.2) from above as follows

$$
\int_{\mathbb{R}^n} |y|^p \phi(y) \, d\mu(y) = \int_{\mathbb{B}} |y|^p \phi(y) \, d\mu(y) + \sum_{k=0}^\infty \int_{2^k < |y| \le 2^{k+1}} |y|^p \phi(y) \, d\mu(y),
$$

where

$$
\int_{\mathbb{B}} |y|^p \phi(y) d\mu(y) \leq \phi(0)\mu(\mathbb{B}) = (2\pi)^{-\frac{n}{2}} \mu(\mathbb{B})
$$

and

$$
\int_{2^k < |y| \le 2^{k+1}} |y|^p \phi(y) \, d\mu(y) \le 2^{p(k+1)} (2\pi)^{-\frac{n}{2}} e^{-2^{2k-1}} \mu(B(0, 2^{k+1}))
$$
\n
$$
\le 2^{p(k+1)} (2\pi)^{-\frac{n}{2}} e^{-2^{2k-1}} \mathscr{D}_{\mu}^{k+1} \mu(\mathbb{B}).
$$

Summing over $k = 0, 1, 2...$ we obtain

$$
\int_{\mathbb{R}^n} \phi(y) \, d\mu(y) \le C \, \mu(\mathbb{B})
$$

where $C = C(\mathscr{D}_{\mu}, p, n) > 0$.

We turn to the left side of [\(3.2\)](#page-5-1). The inequality

$$
|y|^p \phi(y) \ge \frac{e^{-1/2}}{2^p (2\pi)^{n/2}}
$$
 for $\frac{1}{2} \le |y| \le 1$

implies

$$
\int_{\Omega} |y|^p \phi(y) d\mu(y) \ge \frac{e^{-1/2}}{2^p (2\pi)^{n/2}} \mu(\Omega \cap \{1/2 \le |y| \le 1\}).
$$

Since $\mu(\Omega \cap \{1/2 \le |y| \le 1\}) \ge \mathcal{D}_{\mu}^{-3} \mu(\mathbb{B})$, the left side of [\(3.2\)](#page-5-1) follows. \Box

4. Proof of main results

Proof of Theorem [1.2.](#page-2-0) Since f is quasisymmetric by Proposition [3.1,](#page-4-2) it satisfies the growth condition $|f(x)| \leq \alpha |x|^p + \beta$ for some constants α, β, p , see [\[11,](#page-9-4) Theorem 11.3]. Therefore, the integrals (1.5) and (1.6) converge and F is C^{∞} -smooth in \mathbb{H}^{n+1} . Let $\gamma = \gamma(\delta) > 0$ be as in part [\(iii\)](#page-3-2) of Lemma [2.2.](#page-3-3)

Our first step is to prove that for $(x,t) \in \mathbb{H}^{n+1}$ the matrix $\mathscr{B} := DF(x,t)$ satisfies the condition

(4.1)
$$
w^T \mathcal{B} w \ge \gamma_1 ||\mathcal{B}|| |w|^2 \quad \text{for every vector } w \in \mathbb{R}^{n+1}
$$

where $\gamma_1 = \gamma_1(\delta, n) > 0$. Fix $x \in \mathbb{R}^n$ and $t > 0$. We compute the partial derivatives of F at $(x, t) \in \mathbb{H}^{n+1}$ as follows.

$$
\frac{\partial F^i}{\partial x_j} = \int_{\mathbb{R}^n} f_j^i(x + ty) \phi(y) dy, \quad 1 \le i, j \le n;
$$

$$
\frac{\partial F^i}{\partial t} = \int_{\mathbb{R}^n} \sum_{j=1}^n f_j^i(x + ty) y^i \phi(y) dy, \quad 1 \le i \le n;
$$

$$
\frac{\partial F^{n+1}}{\partial x_j} = \int_{\mathbb{R}^n} \sum_{i=1}^n f_j^i(x + ty) y^j \phi(y) dy, \quad 1 \le j \le n;
$$

$$
\frac{\partial F^{n+1}}{\partial t} = \int_{\mathbb{R}^n} \sum_{i=1}^n \sum_{j=1}^n f_j^i(x + ty) y^i y^j \phi(y) dy.
$$

To simplify formulas we write $A(y) = Df(x + ty)$ and let $B(y)$ be the $(n+1) \times (n+1)$ matrix written in block form below.

(4.2)
$$
B(y) = \begin{pmatrix} A(y) & A(y)y \\ y^T A(y) & y^T A(y)y \end{pmatrix}.
$$

With this notation we have

(4.3)
$$
DF(x,t) = \int_{\mathbb{R}^n} B(y)\phi(y) dy.
$$

First we show that the norm of $\mathscr B$ is dominated by the quantity

$$
\alpha:=\int_{B(0,1)}\lVert A(y)\rVert\, dy.
$$

Indeed,

$$
\|\mathscr{B}\| \le \int_{\mathbb{R}^n} \|B(y)\| \phi(y) \, dy \le \int_{\mathbb{R}^n} \|A(y)\| (1+|y|)^2 \phi(y) \, dy.
$$

By Lemma [3.2](#page-4-3) the measure $\mu = ||A(y)|| dy$ is doubling. Applying Lemma [3.3](#page-5-2) we obtain

(4.4)
$$
\|\mathscr{B}\| \leq C\alpha, \qquad C = C(\delta, n).
$$

Next we estimate the quadratic form $w \mapsto w^T \mathcal{B}w$ generated by \mathcal{B} from below. For this we fix a vector $w \in \mathbb{R}^{n+1}$, written as $w = v + s e_{n+1}$ with $v \in \mathbb{R}^n$ and $s \in \mathbb{R}$. It is easy to see that

$$
w^T B(y) w = (v + sy)^T A(y) (v + sy).
$$

Let $\Omega = \{y \in \mathbb{R}^n : \langle v, sy \rangle \geq 0\}$. Then

$$
w^T \mathscr{B} w = \int_{\mathbb{R}^n} \left\{ (v + sy)^T A(y)(v + sy) \right\} \phi(y) dy
$$

\n
$$
\geq \gamma \int_{\mathbb{R}^n} ||A(y)|| |v + sy|^2 \phi(y) dy
$$

\n
$$
\geq \gamma \int_{\Omega} ||A(y)|| |v + sy|^2 \phi(y) dy
$$

\n
$$
\geq \gamma |v|^2 \int_{\Omega} ||A(y)|| \phi(y) dy + \gamma s^2 \int_{\Omega} ||A(y)|| |y|^2 \phi(y) dy.
$$

Applying Lemma [3.3](#page-5-2) with $\mu = ||A(y)|| dy$ we obtain

(4.5)
$$
w^T \mathcal{B} w \ge c \alpha \gamma (|v|^2 + s^2) = c \alpha \gamma |w|^2, \qquad c = c(\delta, n).
$$

Combining [\(4.4\)](#page-6-0) and [\(4.5\)](#page-7-0) we obtain [\(4.1\)](#page-5-3) with $\gamma_1 = (c/C)\gamma$. By virtue of Lemma [2.2](#page-3-3) F is δ_1 -monotone in the upper half-space \mathbb{H}^{n+1} where δ_1 = $\delta_1(\delta, n)$. By symmetry, F is also δ_1 -monotone in the lower half-space.

To prove that F is δ_1 -monotone in the entire space \mathbb{R}^{n+1} , we consider two points $a, b \in \mathbb{R}^{n+1}$ such that the line segment $[a, b]$ crosses the hyperplane \mathbb{R}^n at some point c. We have

$$
\langle F(a) - F(b), a - b \rangle = \langle f(a) - f(c), a - b \rangle + \langle F(c) - F(b), a - b \rangle
$$

\n
$$
\geq \delta_1 |F(a) - F(c)||a - b| + \delta_1 |F(c) - F(b)||a - b|
$$

\n
$$
\geq \delta_1 |F(a) - F(b)||a - b|
$$

Therefore, $F \in \mathcal{DM}$.

It remains to show that $F\colon \mathbb H^{n+1}\to \mathbb H^{n+1}$ is bi-Lipschitz in the hyperbolic metric. Since $F \in \mathcal{QC}$ and \mathbb{H}^{n+1} is a geodesic space, it suffices to prove that

(4.6)
$$
||DF(x,t)|| \approx \frac{F^{n+1}(x,t)}{t}.
$$

Here $X \approx Y$ means that X and Y are comparable, i.e., $C^{-1}Y \leq X \leq$ CY where $C = C(\delta, n)$. It follows from [\(4.4\)](#page-6-0) and [\(4.5\)](#page-7-0) that $||DF(x, t)||$ is comparable to the integral average of $||Df||$ over the ball $B(x, t)$. By [\(3.1\)](#page-4-4) this average is comparable to t^{-1} diam $f(B(x,t))$. The quasisymmetry of F implies (cf. [\[11,](#page-9-4) 11.18])

$$
\text{diam } f(B(x,t)) \approx |F(x,t) - F(x,t/2)| \approx F^{n+1}(x,t).
$$
\nThis proves (4.6).

Proof of Proposition [1.3.](#page-2-1) The proof of Theorem [1.2](#page-2-0) also works in the case $n = 1$ with the following interpretation. Since quasisymmetric mappings on the line need not be absolutely continuous $[4]$, the derivative f' must be understood in the sense of distributions. In fact, $\mu := f'$ is a positive doubling measure with $\mathscr{D}_{\mu} = \mathscr{D}_{\mu}(\eta)$ [\[11,](#page-9-4) 13.20]. Lemma [3.2](#page-4-3) is not needed in this case. The rest of the proof carries over with $\gamma = 1$ and $\gamma_1 = \gamma_1(\mathscr{D}_\mu)$. \Box *Proof of Corollary [1.4.](#page-3-4)* According to [\[12,](#page-9-7) Lemma 18], a K-quasiconformal mapping with a convex potential is also δ -monotone with $\delta = \delta(K, n)$. Let F be the δ_1 -monotone extension of f provided by Theorem [1.2.](#page-2-0) Since the differential matrix Df is symmetric, the formulas [\(4.2\)](#page-6-1) and [\(4.3\)](#page-6-2) show that DF is symmetric as well. In addition, DF is positive semidefinite by Lemma [2.2.](#page-3-3) Thus, $F = \nabla U$ for some convex function $U: \mathbb{R}^{n+1} \to \mathbb{R}$.

5. Concluding remarks

Both classes \mathcal{QC} (quasiconformal) and \mathcal{BL} (bi-Lipschitz) are groups under composition. However, the class of delta-monotone mappings \mathcal{DM} is not closed under composition (consider the rotation of the complex plane given by $z \mapsto e^{i\theta}z$ where $|\theta| < \pi/2$). Let $\mathcal{QC}_d \subset \mathcal{QC}$ be the group generated by \mathcal{BL} and \mathcal{DM} . In other words, f belongs to \mathcal{QC}_d if it can be decomposed into bi-Lipschitz and delta-monotone mappings. This should be compared with the notion of polar factorization of mappings introduced by Brenier [\[6\]](#page-9-12).

Theorem [1.2](#page-2-0) together with the trivial extension of bi-Lipschitz mappings yield a solution to the extension problem for \mathcal{QC}_d .

Corollary 5.1. Let $n \geq 2$. For any mapping $f: \mathbb{R}^n \to \mathbb{R}^n$ of class \mathcal{QC}_d there exists $F: \mathbb{R}^{n+1} \to \mathbb{R}^{n+1}$ of class \mathcal{QC}_d such that the restriction of F to \mathbb{R}^n agrees with f.

It seems likely that \mathcal{QC}_d is a proper subset of \mathcal{QC} . This motivates the following question:

Question 5.2*.* Which quasiconformal mappings are decomposable?

Both bi-Lipschitz and delta-monotone mappings take smooth curves into rectifiable curves [\[2,](#page-8-1) Theorem 3.11.7]. This is no longer true for their composition. More precisely, for any $1 < \alpha < 2$ one can construct a mapping $f: \mathbb{R}^2 \to \mathbb{R}^2$ such that $f \in \mathcal{QC}_d$ and $f(\mathbb{R})$ has Hausdorff dimension at least α . To this end, one first finds a bi-Lipschitz mapping $g: \mathbb{R}^2 \to \mathbb{R}^2$ such that $g(\mathbb{R})$ contains a planar Cantor set E of dimension $0 < \beta < 1$ (see Lemma 3.1[\[5\]](#page-9-13) and the comment after its proof). Second, there is a deltamonotone mapping $h: \mathbb{R}^2 \to \mathbb{R}^2$ such that the Hausdorff dimension of $h(E)$ is equal to α (see the construction in [\[10,](#page-9-14) Theorem 5]). Finally, let $f = h \circ g$.

Acknowledgments

We thank Mario Bonk and Jang-Mei Wu for conversations related to the subject of this paper.

REFERENCES

- 1. L. V. Ahlfors, Extension of quasiconformal mappings from two to three dimensions, Proc. Nat. Acad. Sci. U.S.A. 51 1964 768–771.
- 2. K. Astala, T. Iwaniec, and G. J. Martin, Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton University Press, Princeton, 2009.
- 3. K. Astala, T. Iwaniec, and G. J. Martin, Monotone maps of \mathbb{R}^n are quasiconformal, Methods Appl. Anal. 15 (2008) no. 1, 31–38.
- 4. A. Beurling and L. Ahlfors, The boundary correspondence under quasiconformal mappings, Acta Math. 96 (1956), 125–142.
- 5. C. J. Bishop, Quasiconformal mappings which increase dimension, Ann. Acad. Sci. Fenn. Math. 24 (1999), no. 2, 397–407.
- 6. Y. Brenier, Polar factorization and monotone rearrangement of vector-valued functions, Comm. Pure Appl. Math. 44 (1991), 375–417.
- 7. L. A. Caffarelli, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5 (1992), no. 1, 99–104.
- 8. L. Carleson, The extension problem for quasiconformal mappings, in "Contributions to analysis" (ed. by L. V. Ahlfors et al.), Academic Press, New York, 1974, 39–47.
- 9. R. A. Fefferman, C. E. Kenig and J. Pipher, The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math. (2) **134** (1991), 65–124.
- 10. F. W. Gehring and J. Väisälä, Hausdorff dimension and quasiconformal mappings, J. London Math. Soc. (2) 6 (1973), 504–512.
- 11. J. Heinonen, Lectures on analysis on metric spaces, Universitext. Springer-Verlag, New York, 2001.
- 12. L. V. Kovalev, Quasiconformal geometry of monotone mappings, J. Lond. Math. Soc. (2) 75 (2007), no. 2, 391–408.
- 13. L. V. Kovalev and D. Maldonado, Mappings with convex potentials and the quasiconformal Jacobian problem, Illinois J. Math. 49 (2005), no. 4, 1039–1060.
- 14. L. V. Kovalev, D. Maldonado, and J.-M. Wu, Doubling measures, monotonicity, and quasiconformality, Math. Z. **257** (2007), no. 3, 525-545.
- 15. D. Sullivan, Hyperbolic geometry and homeomorphisms. Geometric topology, edited by J. C. Cantrell, Academic Press, New York-London, 1979, 543–555.
- 16. P. Tukia and J. Väisälä, *Quasiconformal extension from dimension n to n* + 1, Ann. of Math. (2) 115 (1982), no. 2, 331–348.
- 17. J. Väisälä, Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, Vol. 229. Springer-Verlag, Berlin-New York, 1971.

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: lvkovale@syr.edu

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: jkonnine@syr.edu