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ABSTRACT

The mixed problem is to find a harmonic or biharmonic function having pre-

scribed Dirichlet data on one part of the boundary and prescribed Neumann data on

the remainder. One must make a choice as to the required boundary regularity of

solutions. When only weak regularity conditions are imposed, the harmonic mixed

problem has been solved on smooth domains in the plane by Wendland, Stephan, and

Hsiao. Significant advances were later made on Lipschitz domains by Ott and Brown.

The strain of requiring a square-integrable gradient on the boundary, however, forces

a strong geometric restriction on the domain. Well-known counterexamples by Brown

show this restriction to be a necessary condition.

This thesis proves that these harmonic counterexamples are an anomaly, in that

the mixed problem can be solved for all data modulo a finite dimensional subspace.

The geometric restriction now required is significantly less stringent than the one

referred to above. This result is proved by representing solutions in terms of single

and double layer potentials, establishing a mixed Rellich inequality, and applying

functional analytic arguments to solve a two-by-two system of equations. These

results are then extended to allow Robin data in place of Neumann data.

This thesis also establishes counterexamples for the biharmonic mixed problem

with Poisson ratio in the interval [ -1, -.5]. These counterexamples are biharmonic

analogues to the harmonic ones referred to above. Their exact form is obtained by

solving a four-by-four system of equations.
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Introduction

In a 1994 paper [Bro94], R. Brown formulated and solved a Mixed Problem for

certain domains in Rn. To illustrate the required restriction on the class of domains

used, we may consider the following special case of his result in R2:

Theorem 0.0.1. Let Ω = {(x, y) : y > φ(x)}, where φ is a real-valued Lipschitz

function on R with φ(0) = 0. Define D = ∂Ω ∩ {(x, y) : x < 0} and N = ∂Ω∩{(x, y) :

x ≥ 0}. Furthermore, assume there is an ε > 0 such that φ′ < −ε for a.e.x < 0 and

φ ≡ 0 for x ≥ 0.

Given λ ≥ 0, hD ∈ W 1,2(D), and hN ∈ L2(N) there exists a unique function u

with nontangential maximal function bounds

∫
∂Ω

|∇u∗|2 + λ2 |u∗|2 dσ ≤
∫
D

|∂ThD|2 + λ2h2
D dσ +

∫
N

h2
N dσ

satisfying the conditions

∆u+ λu = 0 in Ω

u|D = hD

1



INTRODUCTION 2

∂νu|N = hN

Here ∆ is Laplace’s operator, σ is surface measure, ∂ν is the outer normal deriv-

ative, and boundary values are taken using nontangential limits. The superscript ∗

indicates the nontangential maximal function.

When extending this result to bounded domains, Brown obtains a requirement

that the sets N and D meet at interior angles strictly less than π. This thesis

aims to loosen this restriction so that any interior angle 6= π is allowed. There is

a cost, however; we will now require the mixed data to be in a certain subspace of

W 1,2(D)× L2(N). Fortunately this new restriction presents only a finite dimensional

problem. In Chapter 3.1 we prove:

Theorem 0.0.2. Let Ω be a creased Lipschitz domain in the plane and D ⊂ ∂Ω be

the finite union of m connected open sets with pairwise disjoint closures and D 6= ∂Ω.

Then the quotient space W 1,2(D)/W 1,2
0 (D) has dimension 2m.

The conditions on φ in Theorem 0.0.1 allow us to create a larger domain, Ω̃

(with boundary ∂Ω̃ = D ∪ {(x,−φ(x)) : x ≤ 0}), by reflecting Ω over N . We may

then solve the Dirichlet Problem

∆u+ λu = 0 in Ω̃

u(x, φ(x)) = u(x,−φ(x)) = hD(x).

Any such u is also a solution to the Mixed Problem on Ω with data
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u|D = hD

∂νu|N = 0.

Such a reflection is not possible for all domains in the plane. [Bro94] partially

overcomes this by utilizing a Rellich inequality and the method of continuity. In

Chapter 3.2 we establish a Rellich Inequality better suited for our new approach

to the method of continuity. With these tools, we are able to prove our main result

in Chapter 3.3. Unlike the methods in [Bro94], our proof of the existence and

regularity of solutions utilizes the theory of Layer Potentials.

Two additional mixed problems are addressed in this thesis. Chapter 3.4 ex-

tends the above results to the Mixed Robin Problem, while Chapter 4 establishes

counterexamples for the Biharmonic Mixed Problem.



CHAPTER 1

Definitions

1.1. Function Spaces

Throughout this thesis Ω is a bounded and connected Lipschitz domain in the

plane with connected boundary.1 A dissection of Ω is a boundary decomposition

∂Ω = D ∪N , where D is open, N = ∂Ω \D, and both sets have non-empty interior.

Our domains will be given a special type of dissection:

Definition 1.1.1. A domain Ω with dissection ∂Ω = D ∪N is strongly dissected

if there is a C∞0 (R2) vector field α and a constant δ > 0 such that α · ν > δ on N and

α · ν < −δ on D.2

We will be working with a variety of function spaces throughout this thesis. If U

is an open set in the plane, C∞0 (U) denotes the space of infinitely differentiable func-

tions with compact support in U . By C∞0 (D) we mean the restriction of C∞0 (R2\N)

functions to ∂Ω. Similarly, C∞(∂Ω) denotes the restriction of C∞(R2) functions to

∂Ω.

1 Lipschitz domains will be defined in Chapter 1.2.
2 Strongly dissected domains are more general than the creased Lipschitz domains considered in
[Bro94]. The differences between the two are examined in Example 3.5.1

4



1.1. FUNCTION SPACES 5

L2(∂Ω) is the space of functions g defined almost everywhere on ∂Ω and bounded

in the L2 norm

||g||2L2(∂Ω) :=

∫
∂Ω

g2 dσ,

where dσ denotes surface measure. If N is a closed subspace of ∂Ω, we define L2
0(N)

as the set of g ∈ L2(∂Ω) with support in N and
∫
N
g dσ = 0. Such g are said to have

mean value zero.

Let D be an open subset of ∂Ω. Since Ω is Lipschitz, every h in C∞0 (D) has

well-defined tangential derivatives. For such functions we may define the Sobolev

norm

||h||2W 1,2(D) :=

∫
D

h2 + |∂Th|2 dσ.

We define the Sobolev space W 1,2(D) as the set of functions f ∈ L2(D), having a

companion function ft ∈ L2(D) satisfying the integration by parts formula

∫
D

ft h dσ = −
∫
D

f ∂Th dσ,

for every h ∈ C∞0 (D). In this case we set ∂Tf := ft and call this a tangential

derivative. We might also refer to ft as being a weak derivative. Finally, we define

W 1,2
0 (D) to be the closure of the set of W 1,2(D) functions with support compactly

contained in D.
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Chapter 3 of this thesis is dedicated to mixed problems for harmonic functions

in the plane.

Definition 1.1.2. A twice-differentiable function u is harmonic on an open set

U ⊂ Rn if
n∑
i=1

∂2
i u(x) = 0 on U . The partial differential operator ∆ :=

n∑
i=1

∂2
i is called

the Laplacian and ∆u = 0 is Laplace’s equation.

Definitions and function spaces for the Biharmonic Mixed Problem will be given

in Chapter 4.

1.2. Boundary Values and Layer Potentials

Recall Ω is a bounded and connected Lipschitz domain in the plane with con-

nected boundary. A bounded Lipschitz domain is defined by a finite collection of

neighborhoods Uj and Lipschitz functions φj, where the Uj cover Ω and

Ω ∩ Uj = {(x1, x2) : φj(x1) < x2} ∩ Uj ,

after an appropriate translation and rotation of the coordinate system.

Given positive constants α and r, we define the truncated cones

Γα,r(x) := {z ∈ Ω ∩Br(x) : |x− z| < (1 + α) dist(z, ∂Ω)}

for each x ∈ ∂Ω. We also define the nontangential maximal function of a harmonic

function u on Ω by
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u∗α,r(x) := sup
z ∈Γα,r(x)

|u(z)| .

When u∗α,r ∈ L2(∂Ω), u has well-defined nontangential boundary values

u(x) := lim
z→x

z∈Γα,r(x)

u(z)

for almost every x ∈ ∂Ω.3

Given an L2(∂Ω) function f , there is a unique harmonic function u and a param-

eter (α, r), depending only on Ω, such that u∗α,r ∈ L2(∂Ω) and u(x) = f(x) on ∂Ω.

Since α and r are independent of f we omit them from the notation, instead writing

Γ(x) and u∗(x).

We use ∇u to denote the gradient vector (∂1u, ∂2u). When ∇u∗ ∈ L2(∂Ω), the

gradient of u also has nontangential boundary values, in the sense that

~v · ∇u(x) = lim
z→x
z∈Γ(x)

~v · ∇u(z),

for any constant vector ~v and almost every x ∈ ∂Ω.

By considering the exterior domain Ωe := Ω
c
, we may define exterior cones, max-

imal functions, and nontangetial limits. All exterior objects are written with the

superscript ‘e’. For example if x is on the boundary, ue(x) denotes the nontangential

limit taken using exterior cones. On the other hand, both u(x) and ui(x) denote the

3 See Corollary 1.4.3 in [Ken94]
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nontangential limit at x using interior cones.

On a Lipschitz domain the unit outer normal vector ν(x) = (ν1(x), ν2(x)) and

tangent vector T (x) = (ν2(x),−ν1(x)) are defined at almost every x on the bound-

ary. 〈 ·, ·〉 will denote the standard inner product in R2. When ∇u∗ ∈ L2(∂Ω)

we may define the directional derivatives ∂νu(x) := 〈 ν(x),∇u(x) 〉 and ∂Tu(x) :=

〈T (x),∇u(x) 〉 for almost every x ∈ ∂Ω.

K is the double layer potential operator

K(h)(x) := − 1

2π

∫
∂Ω

〈x− y, ν(y) 〉
|x− y|2

h(y) dσ(y)

and S is the single layer potential operator

S(h)(x) :=
1

2π

∫
∂Ω

log |x− y| h(y) dσ(y),

for any L2 function h, and x ∈ R2 \ ∂Ω. For x ∈ ∂Ω we also define the four following

principal value integral operators:
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K(h)(x) := p.v.
−1

2π

∫
∂Ω

〈x− y, ν(y) 〉
|x− y|2

h(y) dσ(y)

S(h)(x) :=
1

2π

∫
∂Ω

log |x− y| h(y) dσ(y)

∂TS(h)(x) := p.v.
1

2π

∫
∂Ω

〈x− y, T (x) 〉
|x− y|2

h(y) dσ(y)

∂νS(h)(x) := p.v.
1

2π

∫
∂Ω

〈x− y, ν(x) 〉
|x− y|2

h(y) dσ(y)

= K∗(h)(x)

These are all bounded operators on L2(∂Ω).4 When f ∈ W 1,2(Ω) and α is a C1(R2)

vector field we may also define α · ∇K, via the identities of Lemma 1.2.1. This is a

bounded operator from W 1,2(∂Ω) to L2(∂Ω).

With this notation we can state the well-known jump relations.5 For a.e. x ∈ ∂Ω

we have

4 See the paper [CMM82] by Coifman, McIntosh, and Meyer.
5 See page 218 in [McL00].
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α · ∇Ki(f)(x) : = n.t. lim
z→x

α(x) · ∇K(f)(z)

=
1

2
α(x) · T (x) ∂Tf(x) + α(x) · ∇K(f)(x)

α · ∇Si(g)(x) : = n.t. lim
z→x

α(x) · ∇S(g)(z)

= −1

2
α(x) · ν(x) g(x) + α(x) · ∇S(g)(x),

where f ∈ W 1,2(∂Ω), g ∈ L2(∂Ω), and the non-tangential limits are taken using an

interior family of regular cones. For limits using exterior cones we instead have

α · ∇Ke(f)(x) = −1

2
α(x) · T (x) ∂Tf(x) + α · ∇K(f)(x)

α · ∇Se(g)(x) =
1

2
α(x) · ν(x) g(x) + α · ∇S(g)(x).

The operators α · ∇K and α · ∇S are related to one another by the following

lemma.

Lemma 1.2.1. Let f ∈ W 1,2(∂Ω). For almost every x ∈ ∂Ω we have the pointwise

equalities



1.2. BOUNDARY VALUES AND LAYER POTENTIALS 11

1) ∂TK(f)(x) = −∂νS(∂Tf)(x)

2) ∂νK(f)(x) = ∂TS(∂Tf)(x)

Proof.

1. First restrict x0 to a compactly contained open subset U ⊂ Ω and restrict y

to a compactly contained open subset of U
c
. With these restrictions log |x0 − y| is

harmonic in both the x0 and y variables.

Fix x, y ∈ ∂Ω, and x0 ∈ Ω. Expanding the dot product, we have

T (x) · ∇x0∂ν,y log |x0 − y|

=
∑
k=1,2

[ν2(x)∂1,x0νk(y)∂k,y − ν1(x)∂2,x0νk(y)∂k,y] log |x0 − y|

=
∑
k=1,2

[ν2(x)∂k,x0νk(y)∂1,y − ν1(x)∂k,x0νk(y)∂2,y] log |x0 − y|,

where we have used ∂k,x0∂j,y log |x0 − y| = ∂k,y∂j,x0 log |x0 − y| for the second equality,

j = 1, 2.

Since log |x0 − y| is harmonic and ∂k,y log |x0 − y| = −∂k,x0 log |x0 − y| we may add

0 =
∑
k=1,2

[−ν2(x)∂k,x0ν1(y)∂k,y + ν1(x)∂k,x0ν2(y)∂k,y] log |x0 − y|

to the right hand side of the equation. After collecting terms, we arrive at

T (x) · ∇x0∂ν,y log |x0 − y| = ν(x) · ∇x0∂T,y log |x0 − y|.
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Integrating against f and using integration by parts to pass the tangential deriv-

ative onto f yields

T (x) · ∇x0

∫
∂Ω

∂ν,y log |x0 − y| f(y) dσ(y) = −ν(x) · ∇x0

∫
∂Ω

log |x0 − y| ∂Tf(y) dσ(y).

Letting x0 → x nontangentialy, we produce singular integrals on both sides of the

equation:

∂TK(f)(x) +
1

2
∂Tf(x) = −∂νS(∂Tf)(x) +

1

2
∂Tf(x)

Canceling the 1
2
∂Tf(x) yields the desired equality.

2. We use a process similar to part 1. Fix x, y ∈ ∂Ω, and x0 ∈ Ω. Then “ν(x) ·

∇x0∂ν,y log |x0 − y|” equals

∑
j,k

νj(x)∂k,x0νk(y)∂j,y log |x0 − y|

=
∑
j,k

νj(x)∂k,x0

[(
νk(y)∂j,y − νj(y)∂k,y

)
+ νj(y)∂k,y

]
log |x0 − y|

=
∑
j 6=k

νj(x)∂k,x0

[
νk(y)∂j,y − νj(y)∂k,y

]
log |x0 − y|

where we have used the fact that log |x0 − y| is harmonic for the second equality.



1.3. THE HARMONIC MIXED PROBLEM AND MAIN RESULT 13

Summing over 1 ≤ k, j ≤ 2 then gives

−ν(x) · ∇x0∂ν,y log |x0 − y| = T (x) · ∇x0∂T,y log |x0 − y|.

We may integrate against f and use integration by parts to pass the tangential

derivative onto f . Taking limits then yields the desired equality.

�

To conclude this section, we state the following well-known results 6 :

Lemma 1.2.2. Given any f ∈ W 1,2(∂Ω) and g ∈ L2(∂Ω), the function u = Kf − Sg

is harmonic on R2\∂Ω, and satisfies
∫
∂Ω
|u∗|2 + |∇u∗|2dσ < ∞.

Lemma 1.2.3. Let u be a harmonic function on Ω with nontangential maximal

function bound
∫
∂Ω
|u∗|2 + |∇u∗|2dσ < ∞. Then the L2 norms of ∇u∗, ∂νu, and

∂Tu are all comparable.

1.3. The Harmonic Mixed Problem and Main Result

With the notation from previous sections at our disposal, we are now able to

describe our main result.

Definition 1.3.1. The Harmonic Mixed Problem

6 See [JK82].
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Let Ω be a strongly dissected Lipschitz domain, and fix hD ∈ W 1,2(D) and hN ∈

L2(N). A harmonic function u is said to solve the Mixed Problem with data hD and

hN if it satisfies the three boundary conditions:

u|D = hD,

∂νu|N = hN ,

and

∫
∂Ω

|u∗|2 + |∇u∗|2 dσ <∞,

where boundary values are taken via nontangential limits.

In Chapter 3.3 we prove our main result:

Theorem 1.3.2. Let Ω be a strongly dissected Lipschitz domain in the plane such

that D is the finite union of m connected open sets with pairwise disjoint closures.

There exists a finite dimensional subspace E ⊂ W 1,2(D)× L2(N) such that the

Mixed Problem is uniquely solvable for all data (hD, hN) ∈ E⊥. Furthermore, dimE ≤

2m+ 1 and the solution to the Mixed Problem satisfies

∫
∂Ω

|∇u∗|2 dσ ≤ C(

∫
D

u2 + |∂Tu|2 dσ +

∫
N

|∂νu|2 dσ)

Existence and regularity will be proved by representing solutions as u = Kf −Sg

and solving the system of equations
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 1
2
I + K S

∂νK
1
2
I − ∂νS


 f
g

 =

uD
uN


for f ∈ W 1,2

0 (D) and g ∈ L2
0(N). The bound on dimE will be a consequence of

Theorem 0.0.2 and Remark 3.3.8.



CHAPTER 2

History

The formal definition of the mixed problem for harmonic functions can obscure

just how important this problem is. Let us keep an example in mind, furnished by

the paper Harmonic solutions of a mixed boundary problem arising in the modeling

of macromolecular transport into vessel walls [BNR10]. This paper, written jointly

by a mathematician, a biomedical engineer, and a chemical engineer, moves past the

traditional areas of physics and engineering, and enters the realm of medicine.

As cholesterol builds in our veins, it constricts blood flow. This means blood

pressure builds up by the cholesterol, but flows through the dangerously small opening

remaining. Here, then, we can consider two different types of information: the value of

blood density on one part of the vein surface, and a directional derivative of changing

blood density on the remainder. If we can measure this data, can we discover what

is happening within the vein? Is it time to consider Lipitor?

These questions might be beyond the reach of study– after all, it might be ex-

pensive or unsafe to measure these quantities in a healthy person. Instead we may

wish to start with supposed boundary data, and ask “what if?” Does this data lead

to a correct analysis of blood density in veins? This information could be used to

determine criteria for unsafe cholesterol levels, and we need only test at-risk patients.

16



2.1. ORIGINS 17

[BNR10] answers these questions affirmatively. If given reasonable mixed bound-

ary data on a reasonably shaped vein, we can create a reasonably detailed analysis of

interior blood density.

The main issue driving research in the mixed problem is to determine

definitions for reasonable domains, data, and solutions.

2.1. Origins

The mixed problem has its origins in the experimental sciences, with Leopoldo

Nobili observing colored rings forming on a charged silver plate. By 1824, Nobili had

learned to create these rings by applying a negatively charged wire to the positively

charged plate.1 Bernard Riemann then translated this phenomenon into a mathe-

matical framework in 1855 [Rie55], solving a mixed Dirichlet-Neumann problem for

Laplace’s Equation. This was Riemann’s first paper in mathematical physics, and

in fact was his first publication in a major journal.2 It was not, however, his most

famous. Herbert Weber is typically credited as the mathematical father of the field,

having proposed a solution to Nobili’s problem in the 1873 paper [Web73].3

The most influential early work on the mixed problem was conducted by Stanislaw

Zaremba, whose 1910 paper Sur un probleme mixte relatif a l’equation de Laplace

1 See page 41 in [Duf08].
2 See [Arc91].
3 It is interesting to note that Riemann was introduced to Nobili rings in a physics seminar at
Göttingen– taught by William Weber. In turn, Riemann’s writings greatly influenced Herbert We-
ber. Although this author has not been able to find a reference, it would seem quite a coincidence
if the two Webers were unrelated. See [Arc91].
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[Zar10] is possibly the most cited in the field. In fact, the mixed problem is often

called “Zaremba’s problem.”

It was not long before further applications of the mixed problem were found, many

of which involve Laplace’s Equation.4 Most developments have focused on second-

order elliptic equations, although there has also been some progress on higher order

and nonlinear equations. Despite these advances, the original mixed problem for har-

monic functions holds secrets to be revealed.

There have been an overwhelming number of papers written on mixed problems

over the years.5 It is unfortunate to find that a large number of these are rather

difficult to obtain, including Zaremba’s influential paper.67

This thesis chapter presents selected results on the mixed problem for harmonic

functions. It is organized thematically, rather than chronologically, and aims to give

readers a sense of the different avenues that mathematicians have followed in taming

the mixed problem.

4 The books of Duffy [Duf08] and Sneddon [Sne66] offer a good history of the developments through
the 1960’s, with emphasis on applications to physics and engineering.
5 A recent MathSciNet search of articles with ”mixed problem” in the title returned 2044 hits,
a substantial proportion of which seem to be relevant. Combinations of ”mixed, misti, problem,
Zaremba, elliptic, Laplace, and harmonic” produce between 100 and 865 hits.
6 Zaremba’s paper is readily available... in Russian translation. See
http://mi.mathnet.ru/eng/umn7059. The original journal containing the paper is also available
online through the HathiTrust Digital Library, but Zaremba’s paper has been omitted. An Inter-
Library Loan request for the original work was filled only after several attempts, and the text was
obtained from Purdue University.
7 Although the papers of Riemann and Weber do not appear on a MathSciNet search, they are
available for free online through Google Books.
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In what follows Ω will always denote a simply-connected Lipschitz domain in

Rn. Its boundary is partitioned into disjoint sets N and D, which correspond to the

location of prescribed Neumann and Dirichlet data.

2.2. Common Threads

We begin with the 1930 paper of Evans and Haskell, The mixed problem for

Laplace’s equation in the plane discontinuous boundary values [EH30].8 It employs

techniques that have been elaborated upon and rediscovered through the years.

Evans and Haskell first choose their domain Ω to be the upper-half unit disk, with

N the linear part of the boundary. The authors then state necessary and sufficient

conditions for the proposed solution u to have an integral representation of the form

u =

∫
D

∂νG dF −
∫
N

G dH,

where ν is the outward unit normal vector and G is the Green’s function for the mixed

problem, constructed as follows: Let G̃ be the Green’s function for the unit disk with

pole contained in the open upper half disk, and define G(x, y) := G̃(x, y) + G̃(x,−y).

Since G̃ equals zero on D and G is even with respect to the x-axis, this mixed

Green’s function satisfies

8 This does not appear in MathSciNet, but is instead found at http://www.jstor.org/stable/85356.
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G|D = 0

and ∂νG|N = 0.

The measures dF and dH are derived from functions of bounded variation such that

F (θ2)− F (θ1) =

∫ θ2

θ1

u(1, θ) dθ

and

H(b)−H(a) =

∫ b

a

∂νu(r, 0) dr,

where u has been written in polar coordinates.

This representation is then extended to more general domains in the plane. Two

key observations are utilized: First, that a harmonic function on the upper-half disk

taking on Neumann data identically equal to zero on N has a harmonic extension

to the full disk, and is therefore smooth on Ω ∪ N ; Second, that such a function

can be conformally mapped to a harmonic function on a simply connected domain,

with Neumann data identically equal to zero along a connected boundary portion of

our choosing. By combining these facts the authors obtain necessary and sufficient

conditions for a Green’s representation to the Mixed Problem.
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The main elements of this paper are integral representations, reflections, and con-

formal mappings. Along with the Lax-Milgram theorem, these tools are at the heart

of nearly all advances to the mixed problem in the 20th century. Of the four, integral

representations– along with their natural counterparts, series representations– have

received the most attention.

2.3. Integral Representations, Part 1

The successful use of a Green’s function representation for solutions leads one to

wonder if alternative integral representations may also be utilized. In fact, Weber’s

original paper [Web73] obtains a solution as an integral transform of the form

u(ρ, z) =

∫ ∞
0

ξ−1A(ξ)e−ξzJ0(ξρ) dξ,

where J0 is a Bessel function. The function A is obtained by solving dual integral

equations corresponding to the two types of data (Neumann and Dirichlet) in a mixed

problem.

In his paper, Weber considers a 3-dimensional space (written in cylindrical coor-

dinates)

R3 := {(ρ, θ, z) : 0 < ρ, 0 < θ < 2π, −∞ < z <∞}

containing an electrically charged plate
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D = {0 < ρ < 1, z = 0}.9

His goal is to find a function U describing the electric potential at any given point of

R3. Such a function will be harmonic in both the upper-half and lower-half spaces.

In fact, U must also be even and rotation invariant with respect to the plate, i.e.

U(ρ, θ1, z) = U(ρ, θ2,−z)

for any triples (ρ, θ1, z) and (ρ, θ2, z) in the domain.

Using this symmetry Weber reduces to a 2-dimensional mixed problem in the up-

per half plane R2
+ withD = {(ρ, z) : |ρ| < 1, z = 0} andN = {(ρ, z) : |ρ| ≥ 1, z = 0}

. He then solves for a harmonic function u with constant mixed data of u = 1 on D

and ∂νu = 0 on N .

A great number of papers follow Weber’s lead by representing solutions in terms

Bessel functions, Hankel functions, sine expansions, and other familiar tools from

applied mathematics. Such methods have the advantage of giving concrete formulas

that can be computed to any desired degree of accuracy. Furthermore they typi-

cally do not require new theory, instead relying on long established techniques. For

9 Weber’s paper considers several boundary value problems. In some texts “Weber’s problem” refers
instead to a mixed problem on an infinite strip in the plane.
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example, the paper [BNR10] mentioned earlier mirrors Weber’s method, first tak-

ing advantage of the symmetries of a cylindrical blood vessel, and then representing

solutions in terms of Bessel and hyperbolic sine functions

These benefits come at a price: a great deal of apriori knowledge is required, on

both the type of data and the specific shape of the domain. Cylinders, sectors, rect-

angles and upper-half spaces are commonly used. The mixed data is often assumed to

be constant on all or part of the boundary. Each type of problem must be addressed

on a case-by-case basis.

Because of these limitations, the methods are mainly used by engineers and applied

mathematicians with a specific problem in mind. As such, the typical complaint

can be levied: experimental evidence is given priority over mathematical rigor. A

quote from Fourier Analysis and Boundary Value Problems by E. A. González-Valesco

describes the philosophy espoused by many authors:

“What matters... is that we have found such a solution. What does

not matter is that certain steps of our procedure were unjustified. In

fact, this is not untypical of work in applied mathematics and will

be a recurrent theme in this book. When looking for the solution of

a particular problem we will not hesitate in making any number of

reasonable assumptions, justified or unjustified, and if they lead to a

solution that can be verified a posteriori the matter is settled, and that

is that.”10

10 Page 10 in [GV96].
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There are, of course, many papers conducted in a more aesthetically pleasing

fashion. One such example of rigorous work conducted under Weber’s influence is

the 1954 proof by Green and Zerna [GZ54] described in [Sne66]. Their paper is set

up as in Weber’s problem, except the Dirichlet data f is no longer assumed constant.

They obtain the representation

u(ρ, z) =
1

2

∫ 1

0

g(t)√
ρ2 + (z + it)2

dt+
1

2

∫ 1

0

g(t)√
ρ2 + (z − it)2

dt,

with

g(t) =
2

π
f(0) +

2t

π

∫ t

0

f ′(ρ)√
t2 − ρ2

dρ.

As in previous examples, the solution is first constructed using Bessel functions,

the computation of which require apriori knowledge of the domain, the upper-half

plane.

The reader might notice, however, that u is given as a single layer potential.

Rather than computing Bessel functions it would seem reasonable to simply begin

with a single layer representation, freeing one to work on arbitrary Lipschitz do-

mains.11

2.4. Integral Representations, Part 2

In the works referred to above, very little concern is given to the manner in

which boundary values are computed. Typically, the mixed data is expected to be

11 This approach relies on theory that was not developed until much later, such as [CMM82].
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attained continuously, or sometimes via an approach perpendicular to the boundary.

This causes an imbalance: solutions only have a derivative on the N portion of the

boundary.

To address this issue we utilize the well-known trace theorems. Let Ω be a bounded

Lipschitz domain with connected boundary, and define the trace operator

γ : u→ u|∂Ω.

If u ∈ C∞(Ω) then γ is simply the restriction to the boundary and γ(u) ∈ C∞(∂Ω).

The trace operator has a unique extension to a bounded linear operator

γ : W s,2(Ω)→ W s−1
2
,2(∂Ω),

for 1
2
< s < 3

2
. A stronger results holds for smooth domains: if Ω is a Ck−1,1 domain

with k ≥ 1, then the extension is bounded for all 1
2
< s ≤ k.12

In light of the Green’s identity for smooth functions,

∫
Ω

u∆u dx = −
∫

Ω

|∇u|2 dx+

∫
∂Ω

u ∂νu dσ(x),

a solution u is typically required to be in W 1,2(Ω), and its Dirichlet data will therefore

be in W
1
2
,2(D). Since the regularity problem can be solved in this space, u also has

Neumann data in W− 1
2
,2(N). Continuing this line of thought we see that, in general,

12 See page 102 in [McL00].
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our mixed data should reside in W t,2(D)×W t−1,2(N) for some t > 0. 13

When Ω is smooth one may consider larger values of t, as is done in the 1979

paper On the Integral Equation Method for the Plane Mixed Boundary Value Problem

of the Laplacian, by Wendland, Stephan, Darmstadt, and Hsiao [WSH79]. Their

paper considers 1 < t < 2, with Ω an appropriately smooth, bounded, and simply

connected domain in the plane. The boundary sets D and N are connected and have

positive measure. For simplicity we will describe t = 3
2
, the case where the mixed

data is in W
3
2
,2(D)×W 1

2
,2(N).

The paper begins by establishing a variational solution u to the mixed problem

for harmonic functions. While this method guarantees u ∈ W 1,2(Ω), a greater degree

of regularity is required in order to apply the trace theorems above– an amount of

regularity that the authors recognized as unattainable in general. This difficulty is

an issue mathematicians have grappled with throughout the history of the mixed

problem, and every investigator is forced to compromise in some way.

Wendland and his collaborators solve the mixed problem, modulo a 2-dimensional

subspace. Specifically, their variational solution can be decomposed as u = g+ c1b1 +

c2b2, where g ∈ W 2,2(Ω), the ci are constants, and each bi is a rotation of Im(z−vi)
1
2 ,

where {v1, v2} = D ∩ N . Since the bi are smooth away from the interface points v1

and v2, they do not interfere with u attaining its mixed data.

These authors are not satisfied with such an abstract solution. They proceed to

represent u in terms of single and double layer potentials, and then solve the system

13 This thesis considers the endpoint case t = 1 on Lipschitz domains.
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of equations they generate. Furthermore they establish superconvergence results for

the Galerkin method, showing that their system can be obtained using a well-known

approximation technique.

The variational approach used by [WSH79] is a significant departure from the

methods of the previous section, and untethers the authors from the case-by-case

analysis previously required. Similarly, their layer potential representations are able

to handle a wide class of domains and mixed data with a single argument.

In 2005 Wendland and Hsiao, and Cakoni, successfully applied this method to

a mixed problems for biharmonic functions on bounded and simply connected C 1,1

domains in the plane [CHW05]. In analogy to the harmonic case, the singularity

they now encounter is comparable to that of Im(z
3
2 ) at the origin.

The layer potential operators used above for the harmonic mixed problem in the

plane are the single layer potential

S(g)(x) =
1

2π

∫
∂Ω

log |x− y| g(y) dσ(y),

and the double layer potential

K(f)(x) = − 1

2π

∫
∂Ω

〈x− y, ν(y) 〉
|x− y|2

f(y) dσ(y).
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Here f and g are continuous functions, x ∈ R2 \ ∂Ω., and ν denotes the unit outer

normal vector.

The functions S(g) and K(f) are harmonic in Ω, and, by letting x approach the

boundary nontangentially, give rise to bounded linear operators:

1

2
I + K : W s+ 1

2
,2(∂Ω)→ W s+ 1

2
,2(∂Ω)

∂νK : W s+ 1
2
,2(∂Ω)→ W s− 1

2
,2(∂Ω)

S : W s− 1
2
,2(∂Ω)→ W s+ 1

2
,2(∂Ω)

−1

2
I + ∂νS : W s− 1

2
,2(∂Ω)→ W s− 1

2
,2(∂Ω),

where −1
2
≤ s ≤ 1

2
. If Ω is a C r+1,1 domain then this holds on the wider interval

−r − 1 ≤ s ≤ r + 1.14

If our solution can be represented in the form u = K(f)−S(g), and if uD and uN

denote the desired mixed data, we are led to the matrix equation

1
2
I + K S

∂νK
1
2
I − ∂νS


f
g

 =

uD
uN

 .
Any solution (f, g) to this equation gives a solution to the the mixed problem with

mixed data (uD, uN).

14 See Theorem 7.1 and the note on page 209 in [McL00].
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The 1979 and 2006 papers by Wendland, Hsiao, and their collaborators utilized

this approach. The book Strongly Elliptic Systems and Integral Equations [McL00]

by William McLean takes this method and runs with it.

McLean’s domains are only assumed to be bounded and Lipschitz in Rn (n ≥ 2),

and he works on a large class of second-order differential operators: those that are

formally self-adjoint, have smooth coefficients, and are coercive on both W 1,2(Ω) and

W 1,2(Rn\Ω). Under these assumptions, McLean proves the matrix equation above

has finite dimensional cokernel, as an operator on W
1
2
,2(∂Ω)×W− 1

2
,2(∂Ω).15 Thus he

has solved a mixed problem for functions u ∈ W 1,2(Ω), modulo a finite dimensional

subspace.16

McLean is able to prove his result with remarkably little work because he is

only requiring the solution to have a gradient in W− 1
2
,2(∂Ω). This is a rather weak

condition, and it would be much more satisfying if the gradient was continuous, or at

least in some Lp space with p ≥ 1.

In [AK82] Azzam and Kreyszig did even better. Working on sectors with suf-

ficiently small angles and mixed data equal to zero near the interface points, they

produce solutions that are in C2(Ω). Their method uses barrier functions, not inte-

gral representations, and suggests that the geometry of the domain is a key factor in

the boundary regularity solutions might possess.

15 It is not clear who this result is due to, although McLean does specifically mention Wendland at
several points earlier in the book.
16 Unlike [WSH79], the size of this subspace is not computed.
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2.5. Reflections and Apriori Estimates

Sectors in the plane are natural domains for the harmonic mixed problem. For

one thing, working in the complex plane gives one access to the Riemann mapping

theorem and the theory of conjugate harmonic functions. For another, sectors can be

used to separate out the level of regularity one can expect from a solution. Azzam

and Kreyszig’s result show that sectors with small interior angles allow for smooth

solutions.

A 2008 paper by Lanzani, Capogna, and Brown [LCB08] gives a way to extend

such a result. Conformal maps of the form i(−iz)q transform mixed problems on

sectors with large angles into mixed problems on sectors with smaller angles, where

a solution is known to exist. There is some distortion in the process, however, and

rather than having a full derivative in L2(∂Ω), solutions will only be guaranteed a

derivative in some Hardy or weighted Lp space.

The paper makes use of apriori estimates of solutions, and these are also at the

heart of the 1994 paper [Bro94] by R. Brown. If Ω is a convex polyhedral domain,

then Brown can guarantee solutions have a gradient in L2(∂Ω) when each edge is

given entirely by either Dirichlet data or Neumann data. In fact his result holds for a

much more general subclass of Lipschitz domains in Rn, subject to a convexity-type

requirement:

A domain in R2 is called a Creased Lipschitz graph domain if it is the area above a

Lipschitz function φ such thatD = {(x, φ(x)) : x < 0}, φ′(x) < −ε on D, and φ′(x) ≥

0 on N , for some constant ε > 0. A bounded Lipschitz domain with connected
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boundary is a Creased Lipschitz domain if it agrees locally with orthogonal motions

of Lipschitz and Creased Lipschitz graph domains. (Here we assume the Lipschitz

graph portions are given either pure Dirichlet or pure Neumann conditions.)

As in [LCB08], Brown extends results on “good” domains to a wider class. Here,

the good domains are creased Lipschitz graphs with φ′(x) ≡ 0 on N . For such

domains a mixed problem with Neumann data identically zero is equivalent to a

purely unmixed Dirichlet problem obtained on the domain obtained by reflecting

across N .17

By using a Rellich identity of the form

∫
∂Ω

|∇u|2α · ν − 2∂νu · α dσ = −2

∫
Ω

k2uα · ∇u dx,

for solutions to ∆u = k2u, Brown obtains the estimate

∫
∂Ω

(∇u∗)2 + k2(u∗)2 dP ≤ C(

∫
N

u2
N dP +

∫
∂Ω

(∂TuD)2 + k2(f)2 dP .

Here uD and uN are the Dirichlet and Neumann data, respectively, ∗ indicates the

nontangential maximal function, ν is the outer unit normal vector, and α is a smooth

vector field with compact support. Using this inequality, a sequence of approximat-

ing domains, a corresponding sequence of operators, and a localization argument,

17 This is exactly the idea used in [EH30] to construct a mixed Green’s function.
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Brown is able to extend his results to Creased Lipschitz domains.18 Similar meth-

ods were subsequently employed to solve mixed problems for Lamé and Stokes sys-

tems [BMMW10], [BM09].

The 2008 paper [VV08] by G. Verchota and Venouziou extended Brown’s result

to compact polyhedra in R3, obtaining a similar requirement on the interior angles

of the domain. This paper also uses a sequence of approximating domains, but in a

somewhat different manner. While Brown’s functional analytic arguments required a

family of operators with uniform bound from below, this paper also needs a uniform

bound from above to prove convergence of a sequence of harmonic functions.19

The idea of approximating solutions by a bounded sequence of harmonic functions

had appeared earlier, in the work of Ohtsuka and Strebel.20 There, a mixed problem

for smooth bounded domains in R2 was converted to a purely unmixed Dirichlet prob-

lem by reflection onto a doubled Riemann surface. To solve the resulting Dirichlet

problem, Ohtsuka and Strebel employed the Schwartz alternating method, generat-

ing a sequence of uniformly bounded harmonic functions converging to the desired

solution. Conformal maps allowed them to transfer between the manifold and the

original domain, and as in [LCB08] this causes a loss of boundary regularity.

Ohtsuka and Strebel’s solution does not necessarily have a gradient in L2(∂Ω).

Furthermore, their reliance on conformal maps ties this result to domains in the

complex plane. In [Lie86] G. Lieberman is able to work in higher dimensions by

18 The methods employed in this thesis are a blend of Brown’s approach with McLean’s.
19 Polyhedra need not be Lipschitz. The approximating domains used are Lipschitz, however, and
Brown’s bound from below must be adapted to the situation.
20 See p. 446 in [GM08], where the result is credited to conversations held in 1970. As pointed out
in the book, finding a concrete reference to this has proved illusive.
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instead using a modified Perron process, approximating the solution by a convergent

sequence of subharmonic functions. This result, however, also suffers from a lack of

boundary regularity.21

2.6. A Final Example

This thesis chapter is an attempt to describe a broad swath of techniques using a

minimal collection of references. As such we conclude this history with some remarks

and a final example.

The Regularity problem can be solved on all bounded Lipschitz domains, with

solutions having a full gradient in L2(∂Ω). As seen in previous sections, however,

the mixed problem requires one to make a compromise– either impose additional

restrictions on the domain or weaken the required level of boundary regularity.

The results of Ohtsuka, Strebel, and Lieberman, along with all the results from

Integral Representations, Part 1, drop the requirement of having a gradient on

the entire boundary. Wendland, McLean, and others allow their gradients to exist in

relatively weak function spaces. Azzam, Kreysig, and Brown obtain strong boundary

regularity, but only on a restricted class of domains.

The paper The mixed problem for the Laplacian in Lipschitz domains [OB], by

K. Ott and R. Brown finds a new compromise: gradients are expected to exist in Lp

for some p ≥ 1. Unlike the weak function spaces of McLean, this means the gradient

is defined pointwise almost everywhere. In their paper Ott and Brown solved the

21 There are benefits to these approaches. The proofs use locally conformal maps and the Perron
process, tools that do not require the domain to be simply connected.
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mixed problem on all bounded Lipschitz domains in Rn with connected boundary,

with mixed data in W 1,p(D)×Lp(N) for small p > 1 or in the Hardy space H1,1(D)×

H1(N). As should be expected for a Hardy space result, the proof relies in part on

reverse-Holder estimates and modern real-variable techniques.

Many authors have examined the nature of admissible mixed data, and have

obtained results on weighted Lp, Besov, and other function spaces. The Ott and

Brown result, however, uses the most classical function spaces of measure theory, Lp.

At the same time it solves a mixed problem on all Lipschitz domains in Rn, domains

sufficiently general for most applications.22

Out of all the Lp spaces, L2 often plays the most critical role. For instance, it is the

dividing line between the Neumann and Dirichlet Problems for harmonic functions on

Lipschitz domains. This thesis examines mixed data in W 1,2(D)×L2(N). As always,

there is a required compromise. Here it resembles that of [WSH79], but allows for a

more general class of Lipschitz domains than in [Bro94].

22 It is worth noting, however, that many polyhedral domains are not Lipschitz.



CHAPTER 3

Harmonic Mixed Problems

This chapter is devoted to solving the following Mixed Problem:1

Definition 3.0.1. The Harmonic Mixed Problem

Let Ω be a strongly dissected Lipschitz domain, and fix hD ∈ W 1,2(D) and hN ∈

L2(N). A harmonic function u is said to solve the Mixed Problem with data hD and

hN if it satisfies the three boundary conditions:

u|D = hD,

∂νu|N = hN ,

and

∫
∂Ω

|u∗|2 + |∇u∗|2 dσ <∞,

where boundary values are taken via nontangential limits.

In Section 3.3 we prove our main result:

Theorem 3.0.2. Let Ω be a strongly dissected Lipschitz domain in the plane such

that D is the finite union of m connected open sets with pairwise disjoint closures.

1 The mixed problem with Robin data in place of Neumann data is addressed in Section 3.4.

35
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There exists a finite dimensional subspace E ⊂ W 1,2(D)× L2(N) such that the

Mixed Problem is uniquely solvable for all data (hD, hN) ∈ E⊥. Furthermore, dimE ≤

2m+ 1 and the solution to the Mixed Problem satisfies

∫
∂Ω

|∇u∗|2 dσ ≤ C(

∫
D

u2 + |∂Tu|2 dσ +

∫
N

|∂νu|2 dσ).

Existence and regularity is proved by representing solutions in terms of layer

potentials, u = Kf − Sg, and then solving the system of equations

 1
2
I + K S

∂νK
1
2
I − ∂νS


 f
g

 =

uD
uN


for f ∈ W 1,2

0 (D) and g ∈ L2
0(N). The bound on dimE is obtained by calculating the

dimension of the quotient space W 1,2(D)/W 1,2
0 (D)× L2(N)/L2

0(N).

3.1. The Dimension of W 1,2(D)/W 1,2
0 (D)

Lemma 3.1.1. W 1,p(0, 1) functions are absolutely continuous for all p ≥ 1.2

Proof.

Let f be in W 1,p(0, 1) for some p ≥ 1 and define Fa(b) =
∫ b
a
f ′(t) dt, for 0 < a, b <

1. Fa is continuous on [0, 1] since f ′ ∈ Lp([0, 1]) ⊂ L1([0, 1]).

By the Lebesgue Dominated Convergence theorem we can write

2W 1,p(0, 1) is defined by replacing 2 with p in the definition of W 1,2(D) given in Chapter 1.1.
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Fa(b) = lim
r→∞

∫ 1

0

f ′(x)χr(x)dx,

where χr is an approximate indicator function, constructed as follows:

Choose a C∞0 (0, 1) function δ with
∫ 1

0
δ(t) dt = 1. We then set δr(t) = rδ(rt) and

define χr(x) =
∫ x

0
δr(t− a)− δr(t− b) dt. In the sense of distributions, lim

r→∞
δr(x) is

the dirac-delta mass at x = 0.3

Using the Lebesgue dominated convergence theorem and the definition of a weak

derivative, we then have

Fa(b) = − lim
r→∞

∫ 1

0

f(x)
[
δr(x− a)− δr(x− b)

]
dx

= f(b)− f(a)

for almost every 0 < a, b < 1.

Fix an a where this limit holds. Then f(x) = f(a) + Fa(x) for almost every

x ∈ [0, 1], and f can be adjusted on a set of measure zero to make it agree with the

continuous function f(a) + Fa(x). �

Recall Theorem 0.0.2: Let Ω be a bounded Lipschitz domain and D ⊂ ∂Ω be the

finite union of m connected open sets with pairwise disjoint closures and D 6= ∂Ω.

Then the quotient space W 1,2(D)/W 1,2
0 (D) has dimension 2m.

Proof of Theorem 0.0.2.

3 Theorem 2, Ch. 3 of [Ste70]
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Case 1: D = (0, 1) ⊂ ∂Ω ∩ R

First we show h(x) = 1 and h(x) = x are not in W 1,2
0 (D), so that the dimension

of W 1,2(D)/W 1,2
0 (D) is at least 2. The following argument applies to either formula

for h:

If h were in W 1,2
0 (D) we could approximate it by C∞0 (D) functions. On the

compact set [0, 1] these functions would also approximate h in the W 1,1(D) norm.

Assume we have found a g in C∞0 (D) with ||g − h||W 1,1(D) <
1
4
. Since h(x) ≥ x there

must exist an x0 in the interval (1
2
, 1) where g(x0) > 1

4
.

Using g(1) = 0, h(x0) ≤ 1, and h(1) = 1 we see:

∫
(0,1)

|g ′(t)− h′(t)| dt ≥
∣∣∣∣∫

(x0,1)

g ′(t)− h′(t)dt
∣∣∣∣

= |g(1)− g(x0)− h(1) + h(x0)|

= |−g(x0) + (h(x0)− 1)|

>
1

4
,

a contradiction. Now set f(x) = 1 and g(x) = x. Given any h ∈ W 1,2
0 (D) and c ∈ R,

f(x) 6= cg(x) + h(x),

since f(0) = 1 and g(0) = h(0) = 0. It follows that dim[W 1,2(D)/W 1,2
0 (D)] ≥ 2.
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Next we show dim[W 1,2(D)/W 1,2
0 (D)] ≤ 2. Choose f(x) ∈ W 1,2(D). By Lemma

3.1.1 f is continuous and there is a linear function p(x) such that f(0) = p(0) and

f(1) = p(1). Define g(x) = f(x)− p(x) so that g(0) = g(1) = 0. To prove the claim

we show g ∈ W 1,2
0 (D).

For each 0 < r < 1
2
, choose χr ∈ C∞0 (D) such that χr(x) = 1 on (r, 1 − r), 0 ≤

χr ≤ 1, and |χ′r| ≤ 2
r
. Define the W 1,2

0 (D) functions gr = g · χr. The gr approximate

g in the W 1,2(D) norm. To see this we use the product rule, the bound on χ′r and

Hölder’s Inequality to obtain the estimate:

||gr − g||2W 1,2(D) = ||g (χr − 1)||2W 1,2(Dr)

≤
∫
Dr

|g|2 + |g ′(χr − 1) + g χ′r|
2

≤ ||g||2W 1,2(Dr)
+

4

r

∫
Dr

|g ′ · g|+ 4

r2

∫
Dr

|g|2

≤ ||g||2W 1,2(Dr)
+

4

r
||g||L2(Dr)

(
||g′||L2(Dr) +

||g||L2(Dr)

r

)
,

where Dr = D \ [r, 1− r].

The first term converges to zero as r → 0. For the other term we use the absolute

continuity and vanishing of g on the boundary, together with Hölder’s inequality to

obtain
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∫
Dr

|g(x)|2dx =

∫
[0,r]

∣∣∣∣∫
[0,x]

g ′(t)dt

∣∣∣∣2 dx+

∫
[1−r,1]

∣∣∣∣∫
[x,1]

g ′(t)dt

∣∣∣∣2 dx
≤ r2

2

∫
Dr

|g ′(t)|2 dt,

which shows
1

r
||g||L2(Dr) → 0.

Case 2: D connected

Since D is connected and D 6= ∂Ω we may parametrize D as {(x(t), y(t)) : 0 ≤

t ≤ 1}, with two distinct boundary points. Given any H ∈ W 1,2(D) we may define

h(t) = H(x(t), y(t)), and since D is Lipschitz, the W 1,2(D) norm is equivalent to the

W 1,2((0, 1)) norm under this relationship. Furthermore h vanishes at the boundary

if and only if H does, and h has compact support if and only if H does. Therefore

the result for connected D follows from that for D = (0, 1).

Case 3: D has multiple components

It is enough to prove the theorem when D has two components, D1 and D2, with

disjoint closures. From the previous case we know each component contributes two

functions (extended to be zero outside that component) in W 1,2(D)/W 1,2
0 (D).

Given any f ∈ W 1,2(D) we can find p(x), a linear combination of the four functions

referred to above, such that g = f − p is zero at the (four) boundary points of D. If
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χ is the indicator function, Case 2 implies the functions gi = gχ
Di

are in W 1,2
0 (Di),

i = 1, 2. Therefore g = g1 + g2 is in W 1,2
0 (D). �

3.2. The Mixed Rellich Inequality

Recall that Ω is a bounded Lipschitz domain in the plane with connected bound-

ary. In addition, Ω is given the boundary dissection ∂Ω = D ∪N .

In order to make use of layer potentials we will establish some important integral

estimates. We start with a useful algebraic identity.

Lemma 3.2.1. Let α = (α1, α2) and α̃ = (−α2, α1) be continuous vector fields on

the plane, and let u be C1 in a neighborhood of ∂Ω. Then the following pointwise

identity holds:

∂νu(α · ∇u) = (α · ν) |∇u|2 + (α̃ · ∇u)∂Tu

Proof.

∂νu(α · ∇u) =
∑
i,j

νi∂iu αj∂ju

We reorder the α and ν terms, and add “αi∂ju νi∂ju− αi∂ju νi∂ju” to get

∂νu(α · ∇u) =
∑
i,j

(αj∂i − αi∂j)u νi∂ju+ αi∂ju νi∂ju.

Summing over 1 ≤ i, j ≤ 2 the right-hand side becomes
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(α2∂1 − α1∂2)u ν1∂2u+ (α1∂2 − α2∂1)u ν2∂1u+ (α · ν) |∇u|2

= (α̃ · ∇u) ∂Tu+ (α · ν) |∇u|2 . �

This result can be extended by an application of the dominated convergence the-

orem.

Corollary 3.2.2. Let u be the Poisson extension of a W 1,2(∂Ω) function. Then∫
D
∂νu(α · ∇u) dσ =

∫
D

(α · ν) |∇u|2 + (α̃ · ∇u)∂Tu dσ.

The next theorem establishes a Rellich identity for the Mixed Problem.

Theorem 3.2.3. Let u = K(f) − S(g) for some f ∈ W 1,2
0 (D) and g ∈ L2(∂Ω)

with supp g in N , λ ∈ R, and let α be a C∞0 (R2) vector field.

The following mixed Rellich Identity holds:
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∫
N

(α · ν) |∇u|2 dσ +

∫
D

(−α · ν) |∇u|2 dσ + λ

∫
∂Ω

(α · ν)g2 − (α · ν) |∂Tf |2 dσ

= 2

∫
N

α · ∇u (∂νu+ λg) dσ + 2

∫
D

α̃ · ∇u (∂Tu+ λ∂Tf) dσ

+ λ

∫
∂Ω

g C(g) − ∂Tf C(∂Tf) + 2g C̃(∂Tf) dσ

+

∫
Ω

div(α) |∇u|2 − 2∇α(∇u) · ∇u dx,

where α̃ = (−α2, α1), and C and C̃ are compact operators.

When λ = 0 this also holds for any harmonic function on Ω with u∗+∇u∗ ∈ L2(∂Ω).

Proof. Since u∗ and ∇u∗ are in L2(∂Ω) by Lemma 1.2.2, a standard approx-

imation argument allows us to apply the Divergence Theorem to the vector field

“|∇u|2α− 2(α · ∇u)∇u” and get

∫
∂Ω

(α · ν) |∇u|2 dσ = 2

∫
∂Ω

∂νu(α · ∇u) dσ +

∫
Ω

div(α) |∇u|2 − 2∇α(∇u) · ∇u dx,

where we have used ∆u = 0, and ∇α(∇u) · ∇u is used to denote
∑
∂iαj ∂iu ∂ju, the

sum being over 1 ≤ i, j ≤ 2.4

Applying Corollary 3.2.2 , we replace
∫
∂Ω
∂νu(α · ∇u) dσ with

∫
N
∂νu(α · ∇u) dσ

+
∫
D

(α · ν) |∇u|2 + (α̃ · ∇u) ∂Tu dσ. After collecting terms we have

4 The idea to use the Divergence Theorem in this way first appeared in [Bro94]. There, α is a
constant vector and u satisfies ∆u = k u for some real number k.
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∫
N

(α · ν) |∇u|2 dσ +

∫
D

(−α · ν) |∇u|2 dσ

= 2

∫
N

∂νu(α · ∇u)dσ + 2

∫
D

(α̃ · ∇u)∂Tu dσ

+

∫
Ω

div(α) |∇u|2 − 2∇α(∇u) · ∇u dx.

This is the mixed Rellich identity with λ = 0, and we have only used the nontangential

maximal function bounds on u and ∇u.

We now introduce the λ-terms by adding and subtracting

2λ

∫
N

g(α · ∇u) dσ + 2λ

∫
D

(α̃ · ∇u)∂Tf dσ

to the right side of the equation. This now gives us:

∫
N

(α · ν) |∇u|2 dσ +

∫
D

(−α · ν) |∇u|2 dσ

= 2

∫
N

(∂νu+ λg)(α · ∇u) dσ + 2

∫
D

(α̃ · ∇u)(∂Tu+ λ∂Tf) dσ

− 2λ

∫
N

g (α · ∇u) dσ − 2λ

∫
D

(α̃ · ∇u) ∂Tf dσ

+

∫
Ω

div(α) |∇u|2 − 2(∇α(∇u) · ∇u) dx.

We name the two middle terms from the right-hand side:
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Error1 = −2λ

∫
N

g(α · ∇u) dσ

and Error2 = −2λ

∫
D

(α̃ · ∇u) ∂Tf dσ.

We deal with each in turn. Note that ∂νu = ∂νKf − ∂νSg a.e. on D since g is

supported in N . Equivalently, ∂νu
i = ∂νu

e on D. Similarly, we have ∂Tu = ∂TKf −

∂TSg a.e. on N since f is supported in D, and hence ∂Tu
i = ∂Tu

e on N . (Recall

that in our notation u|∂Ω and ui|∂Ω both refer to the boundary values obtained via

nontangential limits in the interior domain, while ue|∂Ω is obtained using limits from

the exterior domain.)

1. Error1

On N we have

α · ∇u = (α · ν)∂νu+ (α · T )∂Tu

= (α · ν)[
1

2
g + ∂νKf − ∂νSg] + (α · T )[∂TKf − ∂TSg]

almost everywhere.

We regroup terms on the right hand side to get



3.2. THE MIXED RELLICH INEQUALITY 46

1

2
(α · ν)g + [ (α · ν)∂νKf + (α · T )∂TKf ]− [ (α · ν)∂νSg + (α · T )∂TSg ].

We may then use the identities ∂νK = ∂TS∂T and ∂TK = −∂νS∂T of Lemma

1.2.1 along with the pointwise equality (α · T )ν − (α · ν)T = α̃ to get

α · ∇u =
1

2
(α · ν) g − [α̃ · ∇]S(∂Tf)− [α · ∇]Sg.

Integrating against g gives us the equality

∫
N

g(α · ∇u) dσ =

∫
N

1

2
(α · ν) g2 dσ −

∫
N

g [α̃ · ∇]S(∂Tf) dσ −
∫
N

g [α · ∇]Sg dσ.

Since supp g ⊂ N , we may take advantage of the adjoint operator to rewrite the

third integral on the right hand side as

∫
N

g [α · ∇]S(g) dσ =
1

2

∫
N

g
(

[α · ∇]S + ([α · ∇]S)∗
)
(g) dσ

=
1

2

∫
N

g C(g) dσ,

where C is the integral operator with kernel
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1

2π

(x− y) · (α(x)− α(y))

|x− y|2
.

Since this kernel is bounded, C is a compact operator.

We can now rewrite Error1 as

Error1 = λ

∫
N

−(α · ν)g2 + 2g [α̃ · ∇]S(∂Tf) + g C(g) dσ

2. Error2

We mimic the process used for Error1. On D we have

α̃ · ∇u = (α̃ · ν)∂νu+ (α̃ · T )∂Tu

= (α̃ · ν)[ ∂νKf − ∂νSg ] + (α̃ · T )[
1

2
∂Tf + ∂TKf − ∂TSg ]

almost everywhere.

After regrouping, applying Lemma 1.2.1, and noting that α̃ · T = −α · ν and

α̃ · ν = α · T , we obtain

α̃ · ∇u = −1

2
(α · ν)∂Tf + [α · ∇]S∂Tf − [α̃ · ∇]Sg.

We now integrate against ∂Tf to get
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Error2 = λ

∫
D

(α · ν) |∂Tf |2 − ∂Tf C(∂Tf) + 2 ∂Tf [α̃ · ∇]S(g) dσ,

where C is the same compact operator as in Error1.

3. Error1 + Error2

Adding the two error terms and regrouping gives us

Error1 + Error2 = −λ
∫
∂Ω

(α · ν)g2 + (−α · ν) |∂Tf |2 dσ

+ λ

∫
∂Ω

g C(g)− ∂Tf C(∂Tf)) dσ

+2λ

∫
D

∂Tf [α̃ · ∇]S(g)+2λ

∫
N

g [α̃ · ∇]S(∂Tf) dσ.

The last two terms can be combined using adjoints as

2λ

∫
N

g ( [α̃ · ∇S]∗ + [α̃ · ∇S] ) (∂Tf) dσ = 2λ

∫
N

g C̃(∂Tf) dσ,

where C̃ is the compact integral operator with kernel

1

2π

(x− y) · (α̃(x)− α̃(y))

|x− y|2
.
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Using these expressions for the error terms and then regrouping proves the theo-

rem.

�

Remark 3.2.4. Allowing f in W 1,2(∂Ω) (and not just W 1,2
0 (D)) would introduce

the unwanted term λ
∫
N

(α · T ) g f dσ into Error1. To compensate we could instead

require α · T = 0 on N ∩ supp(f) and obtain the same equality. The restriction on

the support of f , however, will be required in the proof of Theorem 3.2.12.

Remark 3.2.5. Choosing α to be a vector field with components the real and

imaginary parts of a holomorphic function would remove the last integral in the mixed

Rellich Identity, and simplify our work on the exterior domain Ω
c
. Although we will

not use the result, it may be of interest to note the following lemma from [LCB08]:

Lemma 3.2.6. Let u be a harmonic function on a Lipschitz Graph domain Ω, with

u∗ and ∇u∗ in L2(∂Ω). Also let α be a vector field whose components are the real and

imaginary parts of a holomorphic function. Then div
(
|∇u|2 α − 2(α · ∇u)∇u

)
= 0.

Corollary 3.2.7. Let u and α be as in Lemma 3.2.6. The following mixed

Rellich Identity then holds:
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∫
N

(α · ν) |∇u|2 dσ +

∫
D

(−α · ν) |∇u|2 dσ

= 2

∫
N

α · ∇u ∂νu dσ + 2

∫
D

α̃ · ∇u ∂Tu dσ

Remark 3.2.8. In Theorem 3.2.3 u = Kf − Sg approaches the boundary

from the interior domain Ω. We can obtain a very similar equality for ue on the

exterior domain when
∫
∂Ω
g dσ = 0.5 This is accomplished by replacing λ with −λ

and noting that in the jump relations we now have ∂νu
e|N = −1

2
g + ∂νKf − ∂νSg

and ∂Tu
e|D = −1

2
∂Tf + ∂TKf − ∂TSg. Otherwise the proof is identical, and we

obtain

∫
N

(α · ν) |∇ue|2 dσ +

∫
D

(−α · ν) |∇ue|2 dσ + λ

∫
∂Ω

(α · ν)g2 − (α · ν) |∂Tf |2 dσ

= 2

∫
N

α · ∇ue (∂νu
e − λg) dσ + 2

∫
D

α̃ · ∇ue (∂Tu
e − λ∂Tf) dσ

− λ

∫
∂Ω

g C(g) − ∂Tf C(∂Tf) + 2g C̃(∂Tf) dσ

+

∫
Ω
c
div(α) |∇ue|2 − 2∇α(∇ue) · ∇ue dx.

5 Without the assumption that g has mean value zero we would end up with an additional compact
operator. Unlike the other compact operators involved, however, it does not vanish when λ = 0.
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Notice that some of the terms on the right-hand side have changed sign, but those

on the left have not. The condition that g has mean value zero guarantees that u has

sufficient decay at infinity to justify our application of the divergence theorem.6

Of special use to us is the case λ = 0, where we have

∫
N

(α · ν) |∇ue|2 dσ +

∫
D

(−α · ν) |∇ue|2 dσ

= 2

∫
N

(α · ∇ue) ∂νue dσ + 2

∫
D

(α̃ · ∇ue) ∂Tue dσ

+

∫
Ω
c
div α |∇ue|2 − 2∇α(∇ue) · ∇ue dx.

Just as in Theorem 3.2.3, this holds for any harmonic function for which the

divergence theorem can be applied on the exterior domain. In particular, the specific

choice of boundary dissection does not matter.

Our next result requires us to divide by |α · ν|. We therefore require this term

to be bounded from below. Recall that a bounded and connected Lipschitz domain

Ω ⊂ R2 with connected boundary is strongly dissected (with respect to the C∞0 vector

field α and boundary dissection ∂Ω = D ∪N) if there is a δ > 0 such that α · ν > δ

on N and α · ν < −δ on D.

Corollary 3.2.9. Let Ω be a strongly dissected Lipschitz domain, λ ≥ 0, f ∈

W 1,2
0 (D), g ∈ L2(∂Ω) with support in N , and u = Kf − Sg.

The following inequality holds:

6 See Theorem 3.40 and the proof of Proposition 3.4 in [Fol95].
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||∇u||2L2(∂Ω) + λ||g||2L2(N) + λ||∂Tf ||2L2(D)

≤ c
[
||∂νu+ λg||2L2(N) + ||∂Tu+ λ∂Tf ||2L2(D)

+ λ||R(f, g)||2L2(∂Ω) + ||T (f, g)||2L2(∂Ω)

]
,

for some constant c and compact operators R and T . The constant c → ∞ as

inf |α · ν| → 0, and T is the map (f, g)→
∫
∂Ω
|u|2 dσ.

Proof. Applying Young’s Inequality
(
2ab ≤ εa2 + b2

ε

)
, the Schwartz Inequality,

the sign change of α · ν between N and D, and the bound from below on |α · ν| to

Theorem 3.2.3, we may find a constant c0 such that

∫
N

|∇u|2 + λ g2dσ +

∫
D

|∇u|2 + λ |∂Tf |2 dσ

≤ c0

[ ∫
N

ε |∇u|2 +
1

ε
|∂νu+ λ g|2 dσ +

∫
D

ε |∇u|2 +
1

ε
|∂Tu+ λ ∂Tf |2 dσ

+ λ

∫
N

ε

2
g2 +

2

ε
|C(g)|2dσ + λ

∫
D

ε |∂Tf |2 +
1

ε
|C(∂Tf)|2dσ

+ λ

∫
N

ε

2
g2 +

8

ε
|C̃(∂Tf)|2dσ +

∫
Ω

|∇u|2 dx
]
.

By moving the “ε” and “λε” terms to the left hand side, we get
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(1− c0ε)
[ ∫

N

|∇u|2 + λ g2dσ +

∫
D

|∇u|2 + λ |∂Tf |2 dσ
]

≤ c0

[ ∫
N

1

ε
|∂νu+ λ g|2 dσ +

∫
D

1

ε
|∂Tu+ λ ∂Tf |2 dσ

+ λ

∫
N

2

ε
|C(g)|2dσ + λ

∫
D

1

ε
|C(∂Tf)|2dσ

+ λ

∫
N

8

ε
|C̃(∂Tf)|2dσ +

∫
Ω

|∇u|2 dx
]
.

Taking ε small, and dividing by 1− coε gives

∫
∂Ω

|∇u|2 dσ + λ

∫
∂Ω

g2 + |∂Tf |2 dσ

≤ c1

[ ∫
N

|∂νu+ λg|2 dσ +

∫
D

|∂Tu+ λ∂Tf |2 dσ +

∫
Ω

|∇u|2 dx
]

+ c2λ
[
||C(g)||2L2(N) + ||C(∂Tf)||2L2(D) + ||C̃(∂Tf)||2L2(N)

]
,

where c1 and c1 are positive constants depending only on inf |α · ν|.

We can bound the solid term using Green’s identity and then Young’s inequality:

2

∫
Ω

|∇u|2 dx = 2

∫
∂Ω

u ∂νu dσ

≤ 1

ε

∫
∂Ω

u2 dσ + ε

∫
∂Ω

|∂νu|2 dσ.
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Taking ε small, we move ε
∫
∂Ω
|∂νu|2 dσ to the left-hand side. Since (by Rellich’s

Theorem) the map T : (f, g) →
∫
∂Ω
|u|2 dσ is compact, we may combine the above

inequalities to prove the corollary. �

Remark 3.2.10. At the end of Corollary 3.2.9 we could have instead used the

bound

2

∫
Ω

|∇u|2 dx = 2

∫
∂Ω

u ∂νu dσ

≤ 1

ε

∫
D

u2 dσ +
1

ε

∫
N

|∂νu|2 dσ + ε

∫
N

u2 dσ + ε

∫
D

|∂νu|2 dσ.

Since Ω is connected,
∫
N
u2 dσ ≤ k(

∫
D
u2 dσ +

∫
Ω
|∇u|2 dx), for some constant k

depending on Ω. By rearranging terms we then have

(2− kε)
∫

Ω

|∇u|2 dx− kε
∫
D

|∂νu|2 dσ ≤ (kε+
1

ε
)

∫
D

u2 dσ +
1

ε

∫
N

|∂νu|2 dσ.

By using these estimates in the proof of Corollary 3.2.9 and then setting λ = 0,

we obtain

||∇u||2L2(∂Ω) ≤ c (||∂νu||2L2(N) + ||u||W 1,2(D)),

for some constant c. Since λ = 0 this holds for any harmonic u with u∗ + ∇u∗ ∈

L2(∂Ω).
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Notice that the we now have the W 1,2(D) norm of u on the right-hand side of

the inequality. Because of the operator T , taking λ = 0 in Corollary 3.2.9 would

have instead introduced the unwanted term ||u||L2(N) to the right-hand side of the

inequality. The inequality of Remark 3.2.10, however, only uses the mixed data of

u on the right-hand side.

Recall that L2
0(N) is the subspace of L2(N) whose elements g have support in N

and mean value zero, i.e.
∫
N
g dσ = 0.

Theorem 3.2.11. Let ui be a harmonic function in Ω with |ui|∗ + |∇ui|∗ ∈ L2(∂Ω).

Then there is a constant c such that

||∇ui||2L2(∂Ω) ≤ c (||∂νui||2L2(D) + ||ui||W 1,2(N)).

Let ue be a harmonic function in Ω
c

with |ue|∗ + |∇ue|∗ ∈ L2(∂Ω). Then there is

constant c such that

||∇ue||2L2(∂Ω) ≤ c (||∂νue||2L2(D) + ||ue||2W 1,2(N)).

Notice that we have swapped N and D from their usual locations. If u = Kf − Sg

with f ∈ W 1,2
0 (D) and g ∈ L2

0(N), then both inequalities hold.

Proof. If Ω is strongly dissected by α, D, and N then it is also strongly dissected

by −α, D̃ = N , and Ñ = D. Using this new dissection and λ = 0 in Remark 3.2.10,

we have
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||∇ui||2L2(∂Ω) ≤ c (||∂νui||2L2(D) + ||ui||W 1,2(N)),

where we have swapped the locations of N and D. This proves the first part of the

theorem.

For the second inequality we use Remark 3.2.8 with λ = 0:

∫
N

(α · ν) |∇ue|2 dσ +

∫
D

(−α · ν) |∇ue|2 dσ

= 2

∫
N

(α · ∇ue) ∂νue dσ + 2

∫
D

(α̃ · ∇ue) ∂Tue dσ

+

∫
Ω
c
div α |∇ue|2 − 2∇α(∇ue) · ∇ue dx.

As in the proof of Corollary 3.2.9, we may use Young’s inequality to find a

constant C > 0 such that

∫
N

|∇ue|2 dσ +

∫
D

|∇ue|2 dσ

≤ C
[ ∫

N

|∂νue|2 dσ +

∫
D

|∂Tue|2 dσ +

∫
Ω
c
|∇ue|2 dx

]
.

Let Br denote the ball of radius r centered at the origin, and choose r large enough

so that Ω ⊂ Br. Applying the divergence theorem to the domain Br \ Ω we have
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∫
Br\Ω
|∇ue|2 dx =

∫
∂Ω

ue ∂νu
e dσ +

∫
∂Br

ue ∂ru
e dσ,

where r is the outer normal vector to the ball Br. (ν is still the outer normal vector

for the interior domain Ω.) Since g has mean value zero, u is harmonic at infinity.

Therefore, |u| and r2 |∂ru| are both uniformly bounded uniformly on B c
r . 7 Taking

limits, we obtain

∫
Ω
c
|∇ue|2 dx = lim

r→∞

∫
Br\Ω
|∇ue|2 dx

=

∫
∂Ω

ue ∂νu
e dσ + lim

r→∞

∫
∂Br

ue ∂νu
e dσ

=

∫
∂Ω

ue ∂νu
e dσ.

We now proceed as in Remark 3.2.10 to obtain

||∇ue||2L2(∂Ω) ≤ c (||∂νue||2L2(N) + ||ue||2W 1,2(D)),

for some constant c.

Using this inequality with the boundary dissection −α, D̃ = N , and Ñ = D, we

obtain

7 Proposition 2.75 in [Fol95].
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||∇ue||2L2(∂Ω) ≤ c (||∂νue||2L2(D) + ||ue||2W 1,2(N)),

the second part of the theorem. Finally we note that if u = Kf−Sg with f ∈ W 1,2
0 (D)

and g ∈ L2
0(N), then |ui|∗, |ue|∗, |∇ui|∗, and |∇ue|∗ are all in L2(∂Ω). �

We will use Theorem 3.2.11 to strengthened Corollary 3.2.9. The next theo-

rem says that the left-hand side can be made independent of λ. This improvement is

essential to our later application of the Method of Continuity.

Theorem 3.2.12 (Mixed Rellich Inequality).

Let Ω be a strongly dissected Lipschitz domain, λ ≥ 0, f ∈ W 1,2
0 (D), g ∈ L2

0(∂Ω),

and u = Kf − Sg. We then have the following inequality:

||∇ui||2L2(∂Ω) + ||g||2L2(N) + ||∂Tf ||2L2(D)

≤ c
(
||∂νui + λ g||2L2(N) + ||∂Tui + λ ∂Tf ||2L2(D)

+ λ||R(f, g)||2L2(∂Ω) + ||T (f, g)||2L2(∂Ω)

)
,

for some constant c and compact operator B. T is the compact operator T : (f, g)→∫
∂Ω
|u|2 dσ. Furthermore, when λ = 0 the inequality also holds for ue.

Proof. Using the jump relations for layer potentials, the continuity of S(g) across

the boundary, and our definition of u, we have
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||∂Tf ||2L2(D) = ||∂T (Kf)i − ∂T (Kf)e||2L2(D)

= ||∂Tui − ∂Tue||2L2(D)

≤ ||∂Tui||2L2(D) + ||∂Tue||2L2(D).

Applying the inequality of Theorem 3.2.11 for the exterior domain, we may

bound ||∂Tue||2L2(D) by a multiple of ||ue||2W 1,2(N) + ||∂νue||2L2(D).

We now take advantage of the supports of f and g, along with the jump relations.

Since f = 0 on N, ∂Tu
e = ∂Tu

i on N . Similarly ∂νu
e = ∂νu

i on D because

g = 0 on D. This means

||∂Tue||2L2(D) ≤ c
(
||ui||2W 1,2(N) + ||∂νui||2L2(D)

)
≤ c ||ui||2W 1,2(∂Ω),

where we have used Lemma 1.2.3 for the second inequality.

Using these inequalities and combining terms, we have ||∂Tf ||2L2(D) ≤ c||ui||2W 1,2(∂Ω),

and a similar process shows ||g||2L2(N) ≤ c ||ui||2W 1,2(∂Ω).

We can rephrase these bounds using the map T : (f, g)→
∫
∂Ω
u2 dσ, as

||∂Tf ||2L2(D) + ||g||2L2(N) ≤ c(||∇ui||2L2(∂Ω) + ||T (f, g)||2L2(∂Ω)).



3.2. THE MIXED RELLICH INEQUALITY 60

Combining these inequalities with Corollary 3.2.9, we arrive at the desired result

for ui. The proof for ue is nearly identical. �

Corollary 3.2.13. Let u be as in Theorem 3.2.12. Then the following in-

equality holds:

||∂Tf ||2L2(D) + ||g||2L2(N) ≤ c (||u||2W 1,2(D) + ||∂νu||2L2(N)),

for some constant c.

Proof. The proof of Theorem 3.2.12 shows

||∂Tf ||2L2(D) + ||g||2L2(N) ≤ c||u||2W 1,2(∂Ω)

= c(||∇u||2L2(∂Ω) + ||u||2L2(D) + ||u||2L2(N)).

Since Ω is connected,
∫
N
u2 dσ ≤ c(

∫
D
u2 dσ +

∫
∂Ω
|∇u∗|2 dσ), for some constant

c depending on Ω. By using Lemma 1.2.3 and combining inequalities, we get

||∂Tf ||2L2(D) + ||g||2L2(N) ≤ c(||∇u||2L2(∂Ω) + ||u||2L2(D)).

Applying Remark 3.2.10 with λ = 0 to bound ||∇u||2L2(∂Ω) proves the corollary.

�
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3.3. Proof of the Main Result

Let us recall some definitions from Functional Analysis.

Definition 3.3.1. On a Hilbert space, a bounded linear operator A is left-semi

Fredholm if it has closed range and finite dimensional kernel. Equivalently, A is left-

semi Fredholm if and only if there is no sequence {xn} of unit vectors such that

xn → 0 weakly and lim ‖A(xn)‖ = 0.8

Definition 3.3.2. The index of a left-semi Fredholm operator A is the value of

dim(ker A)− dim (kerA∗). A is Fredholm if it has finite index.

Definition 3.3.3. Let S ⊂ R be connected. A family {Aλ : λ ∈ S} of bounded

linear operators on a normed space is called continuous if the map h : λ → Aλ is

continuous in the norm topology.

The following lemma will allow us to apply the Mixed Rellich Inequality in the

proof of our main result, Theorem 3.0.2.

Lemma 3.3.4 (Method of Continuity). Let {Aλ} be a continuous family of bounded

linear operators on a Hilbert space with the uniform bound from below

||x||2 ≤ C||Aλ(x)||2 + ||Kλ(x)||2,

where the Kλ are a collection of compact operators.

8 Chapter 11, Theorem 2.3 in [Con90]
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Then the operators Aλ are all left semi-Fredholm with the same index. In partic-

ular if one has index zero, all of them are Fredholm with index zero.

Remark 3.3.5. The lemma remains true when the bound from below involves

several compact operators, for instance

||x||2 ≤ C||Aλ(x)||2 + ||Kλ1(x)||2 + ||Kλ2(x)||2.

The proof of this is nearly identical to that of the lemma.

Remark 3.3.6. Similar theorems appear in the literature. The case where Aλ =

A+λI and Kλ ≡ 0 is commonly used, as are two versions proved in the book [GT01].

Although probably well-known, this author was unable to find a reference to the

version presented above.

Proof of Lemma 3.3.4.

We prove the lemma by contradiction. Fix λ and assume {xn} is a sequence of unit

vectors converging weakly to 0 such that ||Aλ(xn)|| → 0. Being a compact operator,

Kλ is completely continuous, and so ||Kλ(xn)|| → 0. But then

1 = ||xn||2 ≤ C||Aλ(xn)||2 + ||Kλ(xn)||2 → 0,

a contradiction. Therefore Aλ is left-semi Fredholm.
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Let h be the continuous map h : λ → Aλ. The map i from left semi-Fredholm

operators to their index (under the discrete topology) is continuous,9 so the map i◦h

is also continuous.

Assume one of the Aλ has finite index z. By continuity and the definition of the

discrete topology, (i ◦ h)−1(z) is open, closed and nonempty; hence it is the entire

connected set S. Since the Aλ are left-semi Fredholm, this implies they all have the

same index z ∈ [−∞,∞). �

Consider the operator M : (f, g) → (u|
D
, ∂νu|N ), where u = Kf − Sg. If the

support of f is in D, then ∇u∗ ∈ L2(∂Ω) is only guaranteed when f ∈ W 1,2
0 (D). It is

therefore natural to view M as a map from W 1,2
0 (D)× L2(N) to W 1,2(D)× L2(N),

where the domain and range are different.

Let πD be the orthogonal projection of W 1,2(D) onto W 1,2
0 (D) and πN be the or-

thogonal projection of L2(N) onto L2
0(N), and equip the product spaceW 1,2(D)× L2(N)

with the norm

||(a, b)||2W 1,2(D)×L2(N) = ||a||2W 1,2(D) + ||b||2L2(N).

Define the continuous family of bounded linear operators

{Uλ : W 1,2(D)× L2(N)→ W 1,2(D)× L2(N), λ ≥ 0}

9 Chapter 11, Theorem 3.13 in [Con90]
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by

Uλ(f, g) = M(πD[f ], πN [g]) + λ(f, g).

When λ is sufficiently large Uλ is invertible, and we may apply the method of

continuity. The difference between W 1,2(D) and W 1,2
0 (D) therefore plays an essen-

tial role. As we have proved in Chapter 3.1, these spaces differ by only a finite

dimensional vector space.10

Remark 3.3.7. When (f, g) ∈ W 1,2
0 (D)×L2

0(N) the equation U(f, g) = (u|D, u|N)

can be written in matrix form as

1
2
I + K S

∂νK
1
2
I − ∂νS


f
g

 =

uD
uN

 ,
This is the same matrix equation used in [McL00]. There, however, (f, g) lies in

the weaker function space W
1
2
,2(D)×W− 1

2
,2(N), and u = Kf − Sg does not neces-

sarily satisfy ∇u∗ ∈ L2(∂Ω)..

Remark 3.3.8. Given any g ∈ L2(N) with support in N , the function

g − 1
|N |

∫
N
g dσ is in L2

0(N). Hence these spaces differ by a one-dimensional vector

space.

We are now in a position to prove our main result.

10 This is not true in higher dimensions, which explains why all the results proved in this chapter
are restricted to R2.
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Theorem 3.3.9. Let Ω be a strongly dissected Lipschitz domain in the plane such

that D is the finite union of m open sets with pairwise disjoint closures. Also let

U := U0 be the operator defined above. Then U is Fredholm with index 0, and its

kernel has dimension 2m+ 1.

Proof. We can adapt the Mixed Rellich Inequality to provide the uniform bound

from below required in the Method of Continuity. By adding ||(1 − πD)f ||2 and

||(1−πN)g||2 to both sides of Theorem 3.2.12 and using the triangle inequality, we

obtain

||∇u||2L2(∂Ω) + ||g||2L2(N) + ||∂Tf ||2L2(D)

≤ c ||(U + λI2×2)(f, g)||2W 1,2(D)×L2(N)

+ ||B(π[f ], πN [g])||2L2(∂Ω)

+ (1 + cλ)||( (1− πD)f, (1− πN)g )||2W 1,2(D)×L2(N),

for f ∈ W 1,2(D) and g ∈ L2(N). Here c is a constant independent of λ and B is

compact.

By Theorem 0.0.2 and Remark 3.3.8, the maps 1− πD and 1− πN have finite

dimensional range, and are also compact. Since U + λI is invertible for large λ, we

may apply Lemma 3.3.4 to show U is Fredholm with index 0.
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By Corollary 3.2.13, if U(f, g) = 0 with f ∈ W 1,2
0 (D) and g ∈ L2

0(N), then g = 0

and f is constant on each component of D. In fact, since f vanishes at each boundary

point of D, it is identically zero. Therefore U is injective on W 1,2
0 (D)× L2

0(N), and

kerU = ker((1− πD, 1− πN)

= W 1,2(D)/W 1,2
0 (D)× L2(N)/L2

0(N).

By Theorem 0.0.2 and Remark 3.3.8 the dimension of kerU is 2m+ 1. �

Remark 3.3.10. By Lemma 1.2.2, any solution u = Kf − Sg to the mixed

problem with f ∈ W 1,2(D) and g ∈ L2
0(N) satisfies the estimate

|| u∗||2L2(∂Ω) + ||∇u∗||2L2(∂Ω) <∞.

By Lemmas 1.2.3, and Remark 3.2.10 we also have

||∇u∗||2L2(∂Ω) ≤ c1||∇u||2L2(∂Ω)

≤ c2(||u||2W 1,2(D) + ||∂νu||2L2(N)),

where c1 and c2 are constants independent of u.
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Combining these apriori estimates with Theorem 3.3.9 concludes the proof of

Theorem 3.0.2.

3.4. Robin Boundary Conditions

The results of the previous section remain true when the Neumann data is replaced

with Robin boundary conditions.

Definition 3.4.1. The Mixed Robin Problem

Let Ω be a strongly dissected Lipschitz domain, and fix hD ∈ W 1,2(D) and hN , b ∈

L2(N). A harmonic function u is said to solve the Mixed Robin Problem with data

hD and hN if

u|D = hD,

(
∂νu+ b u

)
|N = hN ,

and ∫
∂Ω

|u∗|2 + |∇u∗|2 dσ <∞,

where boundary values are taken via nontangential limits.

Theorem 3.4.2. Let Ω be a strongly dissected Lipschitz Domain in the plane such

that D is the finite union of m connected open sets with pairwise disjoint closures.
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There exists a finite dimensional subspace F ⊂ W 1,2(D)× L2(N) such that the

Mixed Robin Problem is uniquely solvable for all data (hD, hN) ∈ F⊥. Furthermore

the solution to the Mixed Problem satisfies

∫
∂Ω

|∇u∗|2 dσ ≤ C(

∫
D

u2 + |∂Tu|2 dσ +

∫
N

|∂νu|2 dσ).

If b > 0 a.e. on N then dimF ≤ 2m+ 1.

Remark 3.4.3. The proof below is modeled after the paper [LS04].

Proof. Let U , πD, and πN be the operators from Theorem 3.3.9, and define a

new operator on W 1,2(D)× L2(N) by

R(f, g) =
(
0|D , b (KπD[f ]− SπN [g]) |N

)
.

Thus U +R maps (f, g) to the mixed Robin data of u = KπD[f ]− SπN [g].

If b ∈ L∞(N) then

||b u||L2(N) ≤ ||b||L∞(N) ||u||L2(N),

and we see that R is the composition of the bounded map (f, g)→ u, the compact

inclusion map W 1,2(N) ↪→ L2(N), and the bounded map u→ (0, b u). Thus R is a

compact operator when b ∈ L∞(N).
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Next fix b in L2(N). We may now obtain the following inequality:

||b u||L2(N) ≤ ||b||L2(∂Ω) ||u||L∞(N)

≤ C||b||L2(∂Ω) ||u||W 1,2(∂Ω)

≤ C1||b||L2(∂Ω) (||f ||W 1,2(D) + ||g||L2(N)),

where C1 is a constant independent of u. This shows R is a bounded operator when

b is an L2(N) function. Since L∞(N) is dense in L2(N) and the set of compact

operators is closed,11 R is a compact operator whenever b ∈ L2(N). The operator

U +R is therefore Fredholm with index 0.

We now compute the dimension of ker(U +R) assuming b > 0 a.e. on N . By

the definition of U + R, (f, g) ∈ ker(U +R) when f ∈ W 1,2(D)/W 1,2
0 (D) and g ∈

L2(N)/L2
0(N), so that | ker(U +R)| ≥ 2m+ 1. On the other hand, if (U +R)(f, g) = 0,

then u|D = 0 and ∂νu|N = −b u|N .

Applying the divergence theorem, and then using b > 0, we see:

∫
Ω

|∇u|2 dx =

∫
∂Ω

u ∂νu dσ(x)

= −
∫
N

b |u|2dσ

≤ 0.

11 Theorem 3.5 in chapter 6 of [Con90]
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Thus u is constant in Ω. In fact, since u|D = 0 we must have u ≡ 0 and U(f, g) = 0.

By Remark 3.2.13, if U(f, g) = 0 with f ∈ W 1,2
0 (D) and g ∈ L2

0(N), then g = 0

and f is constant on each component of D. Since f vanishes at each boundary point

of D, it is identically zero. This proves U +R is injective on W 1,2
0 (D)× L2

0(N) and

| ker(U +R)| = 2m+ 1.

The nontangential maximal function bounds on u are a consequence of its rep-

resentation as layer potentials, in conjunction with Lemmas 1.2.3, and Remark

3.2.10. �

3.5. Remarks on Bad Mixed Data

The results above solve the mixed problem on strongly dissected Lipschitz do-

mains, but only up to a finite dimensional subspace F of dimension ≤ 2m+ 1. In

contrast, there is no exceptional subspace when applying the results in [Bro94] to

creased Lipschitz domains. One benefit of the results contained above is that while

every creased Lipschitz domain is strongly dissected, the reverse inclusion is not true.

Example 3.5.1. All polygonal domains P can be strongly dissected given any

partition of the sides into N and D. On the other hand, the polygon is a creased

Lipschitz domain only if N and D sides form interior angles less than π.

To see this, consider a vertex at the origin where N and D meet at an angle θ > π.

Near that vertex the domain agrees with a sector, say Ωθ = {reiφ : 0 < r < 1, 0 < φ <

θ}. Assume D is a subset of the x-axis. Then the harmonic function u(z) = Im(z
π
2α )
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has mixed data identically zero near the vertex, and is also well-behaved on the entire

boundary. However, the singularity of u is such that ∇u /∈ L2(∂P ). P cannot be a

creased Lipschitz domain; otherwise this would contradict [Bro94].12

To see that P is strongly dissected we now construct the appropriate vector field

α. First consider Ωθ from above with 0 < θ < 2π, θ 6= π. If both linear pieces are of

type D we can take α(z) to be the vector with endpoints z and ei
θ
2 . If both linear

pieces are of type N we use the vectors with endpoints z and ei
θ−2π

2 . These choices

guarantee α points directly into D and out of N .

If N lies on the x-axis and D is the other linear part of the boundary, we must

consider two cases. When θ < π we choose α with endpoints at z and ei
θ−π
2 . Finally,

when θ > π we choose α with endpoints at z and ei
θ+π
2 .

This defines a strong dissection near each vertex, and we may extend this smoothly

to the remainder of the boundary. We may therefore apply Theorem 3.0.2 to solve

the mixed problem for all data outside a finite dimensional subspace.

We may wish to categorize the bad mixed data, that is, data not perpendicular

to F . In the case of smooth domains in the plane there is exactly 2m dimensions

of bad data, generated by translations and rotations of the function u(z) = Re(z
1
2 )

[WSH79]. This thesis treats the case of strongly dissected Lipschitz domains, and

requires them to be nonsmooth near the intersection of N and D. In this setting the

mixed problem has at most a 2m + 1 dimensional subspace of bad data. When an

additional convexity-type condition is imposed, there is no bad data [Bro94].

12This example appears in [Bro94].



3.5. REMARKS ON BAD MIXED DATA 72

This opens some further questions to be address:

Question 3.5.2. The results in [WSH79] suggest that we should have an upper

bound of 2m, not 2m+ 1. Can we prove this without further restricting the class of

domains allowed?

Replacing the vector field in the definition of a strong dissection with one with

components the real and imaginary parts of a harmonic function would accomplish

this, but at what cost? Can we describe the domains dissected by such vectors?

Question 3.5.3. Can the results for strongly dissected domains and smooth do-

mains be combined? Perhaps we may develop a theory where the domain is smooth

at some meeting points of D and N , and strongly dissected at others?

Question 3.5.4. For each 0 ≤ n ≤ 2m+ 1, can we classify all domains for which

the bad data has dimension n? Curvilinear polygons where some of the edges meet

at convex angles seem like possible candidates.



CHAPTER 4

The Biharmonic Mixed Problem

The Neumann and Regularity problems for the biharmonic equation on Lipschitz

domains were studied in [Ver90] and [Ver05]. The solutions to these problems lead

us to consider a mixed problem for biharmonic functions. Just as with harmonic

functions, the geometry of the domain appears to play a role in its solvability.

In this chapter we give examples of well-behaved mixed data which nonetheless

yield biharmonic functions without the appropriate boundary regularity. These exam-

ples are constructed on sectors in the plane with interior angles greater than π. The

specific range of bad angles will depend on the Poisson ratio, a parameter described

in the definition of the biharmonic Neumann data.

4.1. Biharmonic Mixed Data

The function spaces involved in the biharmonic mixed problem are somewhat more

complicated than those for the harmonic mixed problem. For one thing, biharmonic

Dirichlet and Neumann problems each contribute two pieces of boundary data, for a

total of four in the mixed problem. For another, some of this data only exists in the

sense of distributions.

73
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In this section we define mixed biharmonic data and the mixed biharmonic prob-

lem. These definitions are similar to those found in [Ver05]. As in previous sections,

Ω is a connected Lipschitz domain in the plane with connected boundary, unit outer-

normal vector ν, and unit tangent vector T .

∇ denotes the gradient, and ∇ · ∇ = ∆ is Laplace’s operator. When we write

∇∇u, we are not using the dot product. Rather we are applying the gradient to each

component of ∇u, producing the 2× 2 Hessian matrix (∂i∂ju) with Hilbert-Schmidt

norm |∇∇u|2 =
∑
i,j

|∂i∂ju|2.

W 2,2(Ω) is the closure of C∞(Ω) in the Sobolev norm

||u||2W 2,2(Ω) =

∫
Ω

u2 + |∇u|2 + |∇∇u|2 dx.

A function u ∈ W 2,2(Ω) is biharmonic if it satisfies the biharmonic equation ∆2u =

0 in Ω. If we also have ∇∇u∗ ∈ Lp(∂Ω) for some p > 1, then the boundary values of

∂i∂ju are obtained by taking nontangential limits in the interior domain.

Given a relatively open subset U ⊆ ∂Ω, we define W−1,2(U) to be the space dual to

the Sobolev space W 1,2
0 (U). Since the Regularity problem for harmonic functions can

be solved in W 1,2(∂Ω), we will identify each h ∈ W 1,2
0 (U) with its Poisson extension

on Ω, and note that ∇h∗ ∈ L2(∂Ω).

Definition 4.1.1. Let u be a biharmonic function satisfying ∇∇u∗ ∈ L2(∂Ω).

We define the distribution ∂ν∆u ∈ W−1,2(∂Ω) by the formula
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∫
∂Ω

h ∂ν∆u dσ :=

∫
∂Ω

∆u ∂νh dσ,

h ∈ W 1,2(∂Ω).

Elements ∂ν∆u ∈ W−1,2(U) are defined by instead using h ∈ W 1,2
0 (U). In addi-

tion, we can sometimes define ∂ν∆u when∇∇u∗ /∈ L2(∂Ω). Let Ωj ⊂ Ω be a sequence

of smooth approximating domains.1 If the following limits exist, we define

∫
∂Ω

f ∂ν∆u dσ := lim
j→∞

∫
∂Ωj

F ∂ν∆u dσ,(4.1)

for F ∈ C(Ω) having nontangential limits f almost everywhere. When ∇∇u∗ ∈

L2(∂Ω) and f ∈ L2(∂Ω), this agrees with our original definition of ∂ν∆u.2 One

benefit of this definition is that it does not require F to be harmonic.

Definition 4.1.2. W−1,2
0 (∂Ω) is the set of distributions f ∈ W−1,2(∂Ω) such that∫

∂Ω
f dσ = 0.

Taking h to be constant in Definition 4.1.1, we see ∂ν∆u ∈ W−1,2
0 (∂Ω).

Definition 4.1.3. Let w be a function satisfying w∗ ∈ L2(∂Ω). We define the

distribution ∂Tw ∈ W−1,2
0 (∂Ω) by the integration-by-parts formula

1 These are commonly used in the literature. See, for instance, definition 3.1 in [Ver05].
2 Proposition 4.2 in [Ver05].
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∫
∂Ω

h ∂Tw dσ := −
∫
∂Ω

w ∂Th dσ,

h ∈ W 1,2(∂Ω).

Definition 4.1.4. Biharmonic Neumann Data

Given u ∈ W 2,2(Ω) with ∇∇u∗ ∈ L2(∂Ω) we define two boundary operators, Mρ, and

Kρ by:

Mρ(u)(x) = ρ∆u(x) + (1− ρ)
∑
i,j

νi(x)νj(x)∂i∂ju(x)

Kρ(u)(x) = ∂N∆u(x) + (1− ρ)∂T
∑
i,j

νi(x)Tj(x)∂i∂ju(x),

for −1 ≤ ρ < 1. Here ∆u and ∂i∂ju are nontangential boundary values defined for

almost every x ∈ ∂Ω, while ∂ν∆u and ∂T (νiTj∂i∂ju) should be understood as elements

of W−1,2
0 (∂Ω). Together Mρ(u) and Kρ(u) are known as the Neumann data for the

biharmonic equation. The parameter ρ is called the Poisson ratio.

With this notation we can define the Biharmonic Neumann and Dirichlet Prob-

lems:

Definition 4.1.5. The Biharmonic Neumann Problem

Let h ∈ L2(∂Ω) and Λ ∈ W−1,2
0 (∂Ω). The Biharmonic Neumann Problem is to find a

biharmonic function u ∈ W 2,2(Ω) satisfying the three boundary conditions
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Mρ(u) = h

Kρ(u) = Λ

∇∇u∗ ∈ L2(∂Ω).

Definition 4.1.6. The Biharmonic Dirichlet Problem

Let f ∈ W 1,2(∂Ω) and g ∈ L2(∂Ω). The Biharmonic Dirichlet Problem is to find a

biharmonic function u ∈ W 1,2(Ω) satisfying the three boundary conditions

u = f

∂νu = g

∇u∗ ∈ L2(∂Ω),

in the sense of nontangential convergence.

While the biharmonic Neumann Problem requires integrability of ∇∇u∗, the

Dirichlet Problem only requires integrability of ∇u∗. As with the case for harmonic

functions, we rectify this imbalance by establishing a regularity problem.

Definition 4.1.7. In R2, WA2,2(∂Ω) is the space of vectors F = (f0, f1, f2), where

each fi is in W 1.2(∂Ω), and ∂Tf0 = N2f1 −N1f2.
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Definition 4.1.8. The Biharmonic Regularity Problem

Let F = (f, f1, f2) be an element of WA2,2(∂Ω). The Biharmonic Regularity Problem

is to find a biharmonic function u ∈ W 2,2(Ω) satisfying the three boundary conditions

u = f

∂νu = ν1f1 + ν2f2

∇∇u∗ ∈ L2(∂Ω),

in the sense of nontangential convergence.

If u solves a regularity problem, then (u,∇u) ∈ WA2,2(∂Ω) and ∂νu ∈ L2(∂Ω). For

such u we set g = ν1f1 + ν2f2. In a slight abuse of notation, both F and (f, g) are

called the biharmonic regularity data.

Individually, the Biharmonic Neumann and Regularity Problems can be solved.

More precisely, we have the following theorem from [Ver05] and [Ver90]:

Theorem 4.1.9. Let Ω ⊂ R2 be a bounded Lipschitz domain with connected bound-

ary, and −1 ≤ ρ < 1.

The Biharmonic Neumann problem is uniquely solvable for any Neumann data in

L2(∂Ω)×W−1,2
0 (∂Ω). The Biharmonic Regularity Problem is uniquely solvable for

any biharmonic regularity data in WA2,2(∂Ω).
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The range −1 ≤ ρ < 1 for the Poisson ratio is important. When −3 < ρ < −1

there exist biharmonic functions with L2(∂Ω)×W−1,2
0 (∂Ω) Neumann data, but for

which ∇u∗ /∈ L2(∂Ω). Examples of this include the functions u(z) = Im(βzq +

γzzq−1), with the proper choice of q, β, and γ [Ver05].

As with the Laplacian, we will consider a mixture of the Neumann and Regularity

problems. Recall the following definition:

Definition 4.1.10. Given a domain Ω, a dissection of ∂Ω is a decomposition

∂Ω = N ∪D, where D is open, N = ∂Ω\D, and both sets have non-empty interior.

Definition 4.1.11. Let Ω be a Lipschitz domain and let D ∪N be a dissection

of ∂Ω. Given F = (f, g) ∈ WA2,2(∂Ω), h ∈ L2(∂Ω), and Λ ∈ W−1,2
0 (∂Ω), the Bihar-

monic Mixed Problem is to find a biharmonic function u ∈ W 2,2(Ω) satisfying the

following five boundary conditions:

Mρ(u) = h, Kρ(u) = Λ, on N,

u = f, ∂νu = g, on D,

∇∇u∗ ∈ L2(∂Ω).

This definition warrants further explanation. The boundary data f, g, and h

should be attained pointwise almost everywhere in the sense of nontangential lim-

its. Meanwhile, by Kρ(u) = Λ on N we mean Kρ(u) and Λ agree as linear functionals

on W 1,2
0 (N).
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Whereas the Neumann and Regularity problems are solvable for −1 ≤ ρ < 1, we

will construct counterexamples showing that the Biharmonic Mixed Problem is not

solvable in general when −1 ≤ ρ ≤ −1
2
.

Remark 4.1.12. In their 2005 paper [CHW05], Cakoni, Hsiao, and Wendland

solved a similar mixed biharmonic problem for 0 < ρ < 1. There, however, the mixed

data is in the weaker function spaces (f, g) ∈ W
3
2
,2(∂Ω)× L

1
2
,2(∂Ω) and (h,Λ) ∈

W−1
2
,2(∂Ω)×W−3

2
,2(∂Ω), where Ω is a smooth domain. These conditions allow them

to solve the mixed problem using compact operators. Unfortunately, these operators

are not compact in our setting.

4.2. Counterexamples

In this section we establish counterexamples to the general solvability of the bi-

harmonic mixed problem. To do this we will explicitly define biharmonic functions

u ∈ W 2,2(Ω) that have mixed data meeting the requirements of definition 4.1.11, but

do not satisfy the boundary regularity requirement ∇∇u∗ ∈ L2(∂Ω). We also show

that there is no solution to the mixed problem having the same mixed data u.

For each θ ∈ (0, 2π), define the domain Ωθ := {z = reiφ : 0 < r < 1, 0 < φ < θ}.

When θ ≥ π, functions of the form v(z) = Im(zα) serve as counterexamples for the

Harmonic Mixed Problem [Bro94]. When −3 < ρ < −1, functions of the form
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w = Im(Ezq + Fzzq−1) serve as counterexamples for the Biharmonic Neumann Prob-

lem [Ver05]. We will show that when −1 ≤ ρ ≤ −1
2

and θ is near 3π
2

, functions of

the form

u = Im(Ezq + Fzzq−1) +Re(Gzq +Hzzq−1)

serve as counterexamples for the Biharmonic Mixed Problem. E,F,G,H, and q are

constants we will need to determine.

We begin by dissecting the boundary of Ωθ, setting N = {reiφ : 0 ≤ r ≤ 1, φ = 0}

and D = ∂Ωθ\N . The function u above has well-behaved mixed data on this domain.

In fact, ∇∇u ∈ L∞(Ωθ\B) for any ball B centered at the origin.

Let D̃ = {reiθ : 0 < r < 1}. The mixed data of u on N and D̃ is:3

u = rq
[
E sin(qθ) + F sin((q − 2)θ) +G cos(qθ) +H cos((q − 2)θ)

]
on D̃,

∂νu = −rq−1
[
Eq cos(qθ) + F (q − 2) cos((q − 2)θ)

−Gq sin(qθ)−H(q − 2) sin((q − 2)θ)
]

on D̃,

Mρ(u) = rq−2(1− q)
[
G(1− ρ)q +H((1− ρ)q − 4)

]
on N,

Kρ(u) = −rq−3(1− q)(2− q)
[
E(1− ρ)q + F ((1− ρ)(q − 2) + 4)

]
on N,

3 See the calculation in Section 21 of [Ver05]
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Setting this boundary data equal to zero produces the matrix equation

A(ρ, θ, q)x = 0, where

A(ρ, θ, q) =



sin(qθ) sin((q − 2)θ) cos(qθ) cos((q − 2)θ)

q cos(qθ) (q − 2) cos((q − 2)θ) −q sin(qθ) −(q − 2) sin((q − 2)θ)

0 0 (1− ρ)q (1− ρ)q − 4

(1− ρ)q (1− ρ)(q − 2) + 4 0 0



and

x =



E

F

G

H


.

Solutions to this equation give nontrivial coefficients to u, so that u has smooth

mixed data on all of ∂Ωθ. In particular, u has zero Dirichlet data on D̃, is in WA2,2(D),

and has zero Neumann data pointwise on N . Furthermore, when 1 < q ≤ 3
2
,

∇∇u ∈ L2(Ω). On the other hand, |∇∇u|∗ /∈ L2(∂Ω) for this range of q, and u is not

a solution to the corresponding mixed problem.

Triples (ρ, θ, q) such that det(A(ρ, θ, q)) = 0, −1 ≤ ρ < 1, 0 < θ < 2π and

1 < q ≤ 3
2

therefore correspond to potential counterexamples for the mixed problem.4

4 This is the same strategy employed in [Ver05] to establish counterexamples for the biharmonic
Neumann problem.
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Before identifying such triples, we prove a uniqueness result showing these to be true

counterexamples.

Proposition 4.2.1. Let u = Im(Ezq + Fzzq−1) +Re(Gzq +Hzzq−1),

det(A(ρ, θ, q)) = 0, −1 ≤ ρ < 1, 0 < θ < 2π and 1 < q ≤ 3
2
. Then there is no solu-

tion to the biharmonic mixed problem with the same data as u on ∂Ωθ.

Remark 4.2.2. We must define what we mean by saying u and w to have the

same mixed data.

By inspection |∇u| is continuous on ∂Ω. Since ∇∇w∗ ∈ L2(∂Ω), an application

of Lemma 3.1.1 shows |∇w| is absolutely continuous on ∂Ω. u and w having the

same Dirichlet on D therefore means |u− w|+ |∇(u− w)| = 0 pointwise on D.

By inspection ∇∇u∗ ∈ Lp(∂Ω) for 1 < p < 1
2−q . Therefore Mρ(u − w) is a well-

defined Lp function, and we are assuming it equals zero pointwise a.e. on N .

Some care must be taken when considering the third-order Neumann data on N .

While Kρ(u) = 0 pointwise on N , it is not a bounded distribution in W−1,2(N). On

the other hand, since w is a solution to the mixed problem, Kρ(w) must equal zero as

a distribution acting on W 1,2
0 (D

c
). It need not necessarily be defined pointwise a.e.

on N , however. We will therefore need to analyze Kρ(u) and Kρ(w) separately.

Proof. Set Ω = Ωθ. Assume that w is a biharmonic function with the same

mixed data as u, but satisfying ∇∇w∗ ∈ L2(∂Ω). We would like to apply Green’s

identity 5

5 See Equation 4.2 below.
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(1− ρ)

∫
Ω

Li l(u− w)Li l(u− w)dx

=

∫
∂Ω

∂ν(u− w)Mρ(u− w) dσ −
∫
∂Ω

(u− w)Kρ(u− w)dσ,

but must do so carefully. The left-hand side integral is finite because both |∇∇u|

and |∇∇w| are in L2(Ω). The first integral on the right-hand side is also finite

because ∇∇(u− w)∗ ∈ Lp(∂Ω) for 1 < p < 1
2−q , and |∇(u− w)| is in Lp

′
(∂Ω) for the

Hölder conjugate exponent p′ = p
p−1

. As noted in Remark 4.2.2, however, the

second integral on the right-hand side is not well-defined.

To overcome this, we will work on a sequence of smooth approximating domains

Ωj ⊂ Ω, where 1
j
< dist(∂Ωj, ∂Ω) < 2

j
. On these domains we have ∇∇(u − w)∗ ∈

L2(∂Ωj). An application of Green’s Identity to the biharmonic function u− w gives

(1− ρ)

∫
Ωj

Li l(u− w)Li l(u− w)dx

=

∫
∂Ωj

∂ν(u− w)Mρ(u− w) dσ −
∫
∂Ωj

(u− w)Kρ(u− w)dσ,(4.2)

where Li l = ∂i∂l + tδil∆, t = −1 + 1
2

√
1+ρ√
1−ρ , and the summation convention is used.6

Since |∇∇(u− w)| ∈ L2(Ω), the left-hand side can be bounded uniformly in j and

converges to (1−ρ)
∫

Ω
Li l(u− w)Li l(u− w) dx. Our goal is to show that this integral

6 See Section 6 and Equation 10.2 in [Ver05].
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equals zero, for this would imply u(x)− w(x) = a+~b · x+ c |x|2 for some constants

a, ~b, and c.7 This would mean |∇∇u| ≤ |∇∇w|+ 4c, contradicting ∇∇u∗ /∈ L2(∂Ω).

To accomplish this goal we examine each term on the right-hand side of Equation

4.2. By inspection
∣∣∂ku(z)

∣∣ ≤ |z|q−|k|, where k = (k1, k2) is a multi-index with

|k| = k1 + k2 and 0 ≤ |k| ≤ 3. Since ∂mw = ∂mu = 0 on D for 0 ≤ |m| ≤ 1, we may

obtain a similar estimate on |w(z)| as follows:

Fix z ∈ Ω and let γ be the line segment connecting z to the origin. Applying the

Fundamental Theorem of Calculus, w(0) = 0, and then Hölder’s Inequality, we have

|w(z)|2 =

∣∣∣∣∫
γ

∂Tw(y) dσ(y) + w(0)

∣∣∣∣2
=

∣∣∣∣∫
γ

∂Tw(y) dσ(y)

∣∣∣∣2
≤ |γ|

∫
γ

|∇w(y)|2 dσ(y).

Repeating this argument, but now using |∇w(0)| = 0, we obtain

|∇w(z)|2 ≤ |γ|
∫
γ

|∇∇w(y)|2 dσ(y).

Together with the measurement |γ| = |z| and the nontangential maximal bound

on ∇∇w, these inequalities show |∂mw(z)| ≤ C |z|
3
2
−|m| for 0 ≤ |m| ≤ 1 and some

constant C. Since q ≤ 3
2

and |z| ≤ 1 for z ∈ Ω, we also have |w(z)| ≤ C |z|q.

7 See the proof of Lemma 10.5 in [Ver05].
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Using the above inequalities, nontangential bounds, and Hölder’s Inequality, we

may obtain the following estimates for the right-hand side of Equation 4.2.

∫
∂Ωj

∂ν(u− w)Mρ(u− w) dσ ≤ ‖∇(u− w)∗‖Lp′ (∂Ω) ‖∇∇(u− w)∗‖Lp(∂Ω)

∫
∂Ωj

(u− w)Kρ(u) dσ ≤ C

∫
∂Ωj

|z|q |z|q−3 dσ

Let us consider each estimate individually.

The L1 function ∇(u − w)∗∇∇(u − w)∗ dominates the first integrand pointwise

almost everywhere.
∫
∂Ωj

∂ν(u− w)Mρ(u− w) dσ therefore converges to∫
∂Ω
∂ν(u− w)Mρ(u− w) dσ by the Dominated Convergence Theorem. Since u and w

have the same mixed data by assumption, this integral equals zero.

For the second inequality, we should notice that 2q − 3 > −1. The integrand on

the right-hand side therefore provides the L1 function needed to justify another appli-

cation of the Dominated Convergence Theorem. This shows
∫
∂Ωj

(u− w)Kρ(u) dσ →∫
∂Ω

(u− w)Kρ(u) dσ. By assumption Kρ(u) = 0 pointwise a.e. on N . Mean-

while, u − w = 0 on D since they share the same Dirichlet data there. Therefore,∫
∂Ω

(u− w)Kρ(u) dσ = 0.

This now leaves us with only

∫
∂Ωj

(u− w)Kρ(w) dσ
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on the right-hand side of Equation 4.2. By Proposition 4.2 and Lemma 4.9 in

[Ver05] this integral equals 〈u− w,Kρ(w)〉, the action of the distribution Kρ(w) on

the W 1,2
0 (D

c
) function u−w. This equals zero since, by assumption, Kρ(w) = 0 as a

distribution acting on W 1,2
0 (D

c
).

Taking limits in Equation 4.2, we conclude

(1− ρ)

∫
Ω

Li l(u− w)Li l(u− w)dx = 0.

As seen before, this implies |∇∇u| ≤ |∇∇w|+ 4c, contradicting ∇∇u∗ /∈ L2(∂Ω).

�

We now turn our attention to finding triples (ρ, θ, q) such that det(A(ρ, θ, q)) = 0,

−1 ≤ ρ < 1, 0 < θ < 2π, and 1 < q ≤ 3
2
.

Lemma 4.2.3.

1. det(A(ρ, θ, 1)) = 16

2. det(A(ρ, 3π
2
, 4

3
)) = 64

27
(2 + ρ)(1 + 2ρ)

Proof.

1. Setting q = 1 we have
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A(ρ, θ, 1) =



sin(θ) − sin(θ) cos(θ) cos(θ)

cos(θ) − cos(θ) − sin(θ) − sin(θ)

0 0 (1− ρ) −(3 + ρ)

1− ρ 3 + ρ 0 0


,

Expanding by minors along the fourth and then third rows gives

det(A(ρ, θ, 1) = −(1− ρ)

∣∣∣∣∣∣∣∣∣∣∣
− sin(θ) cos(θ) cos(θ)

− cos(θ) − sin(θ) − sin(θ)

0 (1− ρ) −(3 + ρ)

∣∣∣∣∣∣∣∣∣∣∣

+ (3 + ρ)

∣∣∣∣∣∣∣∣∣∣∣
sin(θ) cos(θ) cos(θ)

cos(θ) − sin(θ) − sin(θ)

0 (1− ρ) −(3 + ρ)

∣∣∣∣∣∣∣∣∣∣∣

= (1− ρ)2

∣∣∣∣∣∣∣∣
− sin(θ) cos(θ)

− cos(θ) − sin(θ)

∣∣∣∣∣∣∣∣

+ (1− ρ)(3 + ρ)

∣∣∣∣∣∣∣∣
− sin(θ) cos(θ)

− cos(θ) − sin(θ)

∣∣∣∣∣∣∣∣

− (3 + ρ)(1− ρ)

∣∣∣∣∣∣∣∣
sin(θ) cos(θ)

cos(θ) − sin(θ)

∣∣∣∣∣∣∣∣
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− (3 + ρ)2

∣∣∣∣∣∣∣∣
sin(θ) cos(θ)

cos(θ) − sin(θ)

∣∣∣∣∣∣∣∣ .

Simplifying, we obtain

det(A(ρ, θ, 1)) = (1− ρ)2 + 2(1− ρ)(3 + ρ) + (3 + ρ)2

= [(1− ρ) + (3 + ρ)]2

= 16

2. With θ = 3π
2

and q = 4
3
, we have qθ = 2π and (q − 2)θ = −π. The determinant

of A(ρ, 2π, 4
3
) therefore equals



0 0 1 −1

4
3

2
3

0 0

0 0 4
3
(1− ρ) 4

3
(1− ρ)− 4

4
3
(1− ρ) −2

3
(1− ρ) + 4 0 0



Expanding by minors along the first row and then the third column, we compute
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det(A(ρ, 2π,
4

3
)) =

∣∣∣∣∣∣∣∣∣∣∣

4
3

2
3

0

0 0 4
3
(1− ρ)− 4

4
3
(1− ρ) −2

3
(1− ρ) + 4 0

∣∣∣∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣∣∣∣

4
3

2
3

0

0 0 4
3
(1− ρ)

4
3
(1− ρ) −2

3
(1− ρ) + 4 0

∣∣∣∣∣∣∣∣∣∣∣

= −4

3
(1− ρ) + 4

∣∣∣∣∣∣∣∣
4
3

2
3

4
3
(1− ρ) −2

3
(1− ρ) + 4

∣∣∣∣∣∣∣∣

− 4

3
(1− ρ)

∣∣∣∣∣∣∣∣
4
3

2
3

4
3
(1− ρ) −2

3
(1− ρ) + 4

∣∣∣∣∣∣∣∣

=
4

3
(1 + 2ρ)

∣∣∣∣∣∣∣∣
4
3

2
3

4
3
(1− ρ) −2

3
(1− ρ) + 4

∣∣∣∣∣∣∣∣ .

The determinant of the matrix on the last line equals 16
9

(2 + ρ). We therefore

conclude det(A(ρ, 3π
2
,
4

3
)) = 64

27
(2 + ρ)(1 + 2ρ).

�

Theorem 4.2.4. For each −2 ≤ ρ ≤ −1
2

there exists a number q ∈ (1, 4
3

] such

that det(A(ρ, 3π
2
, q)) = 0.
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Proof. The determinant of A is continuous on the box

B =
{

(ρ, θ, q) : −2 ≤ ρ ≤ 1, 0 ≤ θ ≤ 2π, 1 ≤ q ≤ 3
2

}
.

By the previous lemma, the determinant is positive on the set

P =
{

(ρ, θ, 1) : −2 ≤ ρ ≤ 1, 0 ≤ θ < 2π
}
.

On the other hand, the the lemma also states

det
(
A( ρ, 3π

2
, 4

3
)
)

= 64
27

(2 + ρ)(1 + 2ρ).

When −2 < ρ < −1
2
, this determinant is negative.

Applying the intermediate value theorem we find that there is at least one zero

for every ρ ∈ [−2,−1
2

]. �

By continuity, the determinant of A must be negative in a neighborhood of

{(ρ, 3π
2
, 4

3
) : −2 < ρ < −1

2
} ⊂ R3. Another application of the intermediate value the-

orem proves the following theorem.

Theorem 4.2.5. For each δ > 0 and −2 < ρ < −1
2
− δ there exist constants ε > 0

and q ∈ (1, 4
3
] such that the determinant of A(ρ, θ, q) equals zero on the set

{ (ρ, θ, q) : 3π
2
− ε < θ < 3π

2
+ ε }.
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When ρ ≥ −1 each of these points corresponds to a counterexample for the Bihar-

monic Mixed Problem.

3-dimensional plots created using the computer program Maple suggest that the

interval ρ ∈ (−1,−1
2
] is optimal. They also indicate that θ ≥ π is required for all our

counterexamples. We should keep in mind, however, that these counterexamples are

all of the form u = Im(Ezq + Fzzq−1) +Re(Gzq +Hzzq−1). There may very well be

counterexamples for other values of ρ and θ.

To illustrate the relationship between ρ and θ we present 3-D plots created using

Maple. In all these examples, the curved surface shows the value of the determinant.

Intersections with the plane represent determinants equal to zero. The axis labels

indicate the Poisson ration r, the exponent q, and the angle t in radians.
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Figure 1. Biharmonic Counterexample with θ = π

The angle θ = π is attained, as a straightforward computation shows

det(A(−1, π, 3
2
) = 0. The following 3-D plot indicates that this is the only such ex-

ample. We have fixed θ = π, and are letting ρ and q vary.

Notice that there is only a single intersection point, at ρ = −1, θ = π, and q = 3
2
.
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Figure 2. Biharmonic Counterexamples with ρ = −1

To better illustrate the relationship between ρ and θ we now set ρ = −1 and let

q and θ vary:

The intersection of the plane and surface forms a curve, roughly in the shape of

an ellipse. Notice that θ ≥ π at all these points. Similar graphs can be obtained for

−1 < ρ < −1
2
.

On −1 < ρ < −1
2
, the area enclosed by the intersection curve decreases as ρ in-

creases. When ρ = −1
2

there appears to be a single point of intersection.
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Figure 3. Lack of Biharmonic Counterexamples for ρ = 0

Plots show no intersections when ρ > −1
2
. To illustrate this we also show the

graph for ρ = 0:

Here we see that there are no intersection points to indicate counterexamples for

the Biharmonic Mixed Problem.
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