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PROJECTIONS AND IDEMPOTENTS WITH FIXED

DIAGONAL AND THE HOMOTOPY PROBLEM

FOR UNIT TIGHT FRAMES

JULIEN GIOL, LEONID V. KOVALEV, DAVID LARSON, NGA NGUYEN AND
JAMES E. TENER

Abstract. We investigate the topological and metric structure of the
set of idempotent operators and projections which have prescribed di-
agonal entries with respect to a fixed orthonormal basis of a Hilbert
space. As an application, we settle some cases of conjectures of Larson,
Dykema, and Strawn on the connectedness of the set of unit-norm tight
frames.

1. Introduction

A finite unit-norm tight frame (FUNTF) is a finite sequence of unit vectors
(x1, . . . , xk) in an n-dimensional Hilbert space H which has the following
reproducing property:

(1.1) y =
n

k

k∑

j=1

〈y, xj〉xj for all y ∈ H.

When k = n, the above defines an orthonormal basis in H. The redundancy
inherent in the frames with k > n makes them useful in signal processing,
as the original signal may be recovered after a partial loss in transmission.
We refer to [1, 3, 5, 6, 7] for background on FUNTF and to [9, 10, 16] for
the general theory of frames.

We denote the set of all k-vector unit-norm tight frames in an n-dimensional
Hilbert space by FC

k,n or FR
k,n depending on the base field. When k = n,

the topology of these sets is well understood. Indeed, FC
n,n can be identified

with the unitary group U(n) and FR
n,n with the orthogonal group O(n). In

particular, FC
n,n is pathwise connected while FR

n,n has two connected compo-
nents. Much less is known about the topology of frames with redundancy,
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i.e., with k > n. The third author conjectured in [15] that FC
k,n is path-

wise connected whenever k > n ≥ 1, or, equivalently, all k-vector unit-norm
tight frames are homotopic. Dykema and Strawn proved in [6] that FC

k,1

is pathwise connected for k ≥ 1 and FR
k,2 is pathwise connected for k ≥ 4.

They conjectured that FR
k,n is pathwise connected whenever k ≥ n+ 2 ≥ 4.

They also showed that over either field, the number of connected compo-
nents remains the same when n is replaced with k − n. The latter implies
that FC

k,k−1 and FR
k,k−2 are also pathwise connected. The other cases of the

conjecture remained open.
The Grammian operator [10] of a FUNTF is a scalar multiple of a pro-

jection with constant diagonal, see for instance Corollary 2.6 in [6] or Theo-
rem 3.5 in [3]. Furthermore, Fk,n fibers over the set of projections in B(Ck)

or B(Rk) with all diagonal entries equal to n/k. The fibers are identified
with the orthogonal group, which is connected in the complex case and has
two connected components in the real case. Thus, the topological structure
of Fk,n is largely determined by the structure of the set of projections with a
fixed constant diagonal. The latter set is the subject of our first result. We
denote by Mn(C) (resp. Mn(R)) the set of all n× n matrices with complex
(resp. real) entries. When the choice of C or R is unimportant, we write
simply Mn.

Theorem 1.1. The set of projections in M2n(C) with all diagonal entries
equal to 1/2 is pathwise connected for all n ≥ 1.

Theorem 1.1 implies that FC
2n,n is connected for n ≥ 1. In the case of real

scalars Theorem 1.1 remains true if n ≥ 2, see Remark 3.2. Therefore, FR
2n,n

has at most two connected components when n ≥ 2, and its quotient under
the natural action of the orthogonal group in Rn is connected.

We denote by Mn(C) (resp. Mn(R)) the set of all n × n matrices with
complex (resp. real) entries. When the choice of C or R is unimportant,
we write simply Mn. Let Dn ⊂ Mn be the subalgebra of diagonal matrices.
There is a natural linear operator (conditional expectation) E : Mn → Dn

which acts by erasing off-diagonal entries. Theorem 1.1 concerns the preim-
age of (1/2)id under the restriction of E to projections. It is natural to ask
if preimages of other matrices are connected as well. We do not have a com-
plete answer, see however Theorem 4.1. The image of the set of projections
under E was the subject of recent papers by Kadison [11, 12].

Theorem 8.1 provides a partial extension of Theorem 1.1 to infinite-
dimensional spaces, where the notion of connectedness is understood in the
sense of norm topology on the space of bounded operators.

Our second main result is a non-self-adjoint version of Theorem 1.1, which
applies to idempotent matrices with an arbitrary fixed diagonal.

Theorem 1.2. For every d in Dn(C), the set of idempotents q in Mn(C)
such that E(q) = d is pathwise connected.
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Naturally, the set of idempotents q such that E(q) = d is empty for
some matrices d. Diagonal matrices of the form E(q) are characterized in
Theorem 5.1. Our proof of Theorem 1.2 involves several results of inde-
pendent interest. First, we characterize the diagonals of idempotents with
given range in terms of the commutator of the range projection [q] (Theo-
rem 6.3). Specifically, the characterization involves the relative commutator
{[q]}′ ∩ Dn. Along the way we obtain the following rigidity result (Theo-
rem 6.5): for every d ∈ Dn there exists ǫ > 0 such that the existence of an
idempotent q with ‖E(q) − d‖ < ǫ implies the existence of another idem-
potent q1 with E(q1) = d. A perturbation argument is used to connect an
arbitrary idempotent to an idempotent q such that {[q]}′ ∩Dn = C id while
preserving the diagonal. Finally, we show that idempotents whose range
projection has trivial relative commutant form a path-connected set.

The paper concludes with Section 8, where some of our results are ex-
tended to operators in separable infinite-dimensional Hilbert spaces. Whether
full analogues of Theorem 1.1 and 1.2 hold in infinite dimensions remains
open.

2. Preliminaries

2.1. Projections as 2 × 2 matrices. The content of this section is well-
known folklore. It is essentially contained in [8, Theorem 2]. We include
this discussion for the convenience of the reader, since it is the basis for our
proof of Theorem 1.1.

When a Hilbert space comes as an orthogonal direct sum of two Hilbert
spaces, say H = K ⊕ L, projections p of B(H) can be identified with those
2× 2 matrices

p =

(
a b
b∗ d

)

where a, b, d are operators in B(K), B(L,K), B(L) respectively, such that

(i) 0 ≤ a ≤ id and 0 ≤ d ≤ id ;

(ii) |b∗| =
√

a(id − a) and |b| =
√

d(id− d) ;
(iii) ab = b(id− d).

Then it is readily seen that Ker b∗ = Ker bb∗ = Ker a(id − a) =
Ker (id− a)⊕Ker a, hence

K = Ker (id− a)⊕Ker a⊕ (Ker b∗)⊥ .

Likewise,

L = Ker d⊕Ker (id − d)⊕ (Ker b)⊥ .

According to these two decompositions, we can write

a = id⊕ 0⊕ a′ , d = 0⊕ id⊕ d′ and b = 0⊕ 0⊕ b′,

where b′, for instance, denotes the restriction of b to (Ker b)⊥ which is

injective and whose range is dense in (Ker b∗)⊥.
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There is a unique polar decomposition b′ = u′|b′|, where u′ is an isometry

from (Ker b)⊥ onto (Ker b∗)⊥. Note that (ii) and (iii) above entail |b′| =√
d′(id− d′) and a′b′ = b′(id−d′). Hence |b′| commutes with d′ and a′u′|b′| =

u′(id− d′)|b′|. The range of |b′| being dense in (Ker b)⊥, it follows that

a′u′ = u′(id− d′).

Thus the positive injective contractions a′ and id−d′ are unitarily equivalent
and the same statement holds for id− a′ and d′.

2.2. Diagonal conditional expectation and minimal block decom-

position. Let H be a separable Hilbert space and let us fix an orthonormal
basis. Let {ei}i∈I denote the corresponding set of rank one projections. An
element x of B(H), i.e. a bounded linear operator on H, can be identified
with its matrix with respect to this basis. It is then called diagonal if all
of its off-diagonal entries are equal to zero, i.e eixej = 0 whenever i 6= j.
The set D made of these diagonal elements is a maximal abelian self-adjoint
algebra in B(H) (it is equal to its commutant). It comes with the so-called
diagonal conditional expectation

E : B(H) → D

defined as the idempotent map which erases the off-diagonal entries.

Let x in B(H) be fixed and denote
x
∼ the smallest equivalence relation

on I such that i
x
∼ j whenever eixej 6= 0. Summing the projections ei over

each equivalence class, we obtain an orthogonal decomposition of the unit
{fj}j∈J within D. We call

x =
∑

j∈J

xfj

the minimal block decomposition of x. By construction, the projections fj
commute with x. More precisely, these are the minimal projections of the
commutative von Neumann algebra {x}′ ∩D. Note

(
{x}′ ∩D

)′
≃

∏

j∈J

fjB(H)fj,

which justifies the terminology.
Our strategy for the proof of Theorem 1.2 consists in restricting ourselves

to idempotents q which share the same diagonal E(q) = d and the property
that {q}′ ∩D = Cid or, equivalently, ({x}′ ∩D)′ = B(H).

3. Projections with diagonal 1/2

3.1. Proof of Theorem 1.1.

Proof. Let p in M2n(C) be a projection such that E(p) = id/2 and write p
as a 2× 2 matrix

(3.1) p =

(
a b
b∗ d

)
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with coefficients a, b, d in Mn. We will now use implicitly the preliminary
remarks of 2.1.

By assumption on the diagonal, we have Tr a = Tr (id − d) = n/2. Since

the restriction of a to (Ker b∗)⊥ and that of id−d to (Ker b)⊥ are unitarily
equivalent, they have equal trace and it follows that dim Ker (id − a) =
dim Ker d. Considering id − p instead, the same argument shows that
dim Ker a = dim Ker (id − d). In particular, we see that the subspaces
Ker b and Ker b∗ have the same dimension, hence we can extend the unitary
u′ to a unitary u in Mn such that

p =

(
a

√
a(id − a)u

u∗
√

a(id− a) u∗(id− a)u

)
.

Now if we put at := (id− t)a+ (t/2)id in B(K), it is easily seen that the
formula

pt :=

(
at

√
at(id− at)u

u∗
√

at(id− at) u∗(id− at)u

)
.

defines a projection-valued path connecting p0 = p and

p1 =

(
id/2 u/2
u∗/2 id/2

)
,

and such that E(pt) = 1/2 for all t. The main point is the latter assertion,
which readily follows from the linearity of E and the identities

at = (id− t)a+ t(1/2)id ,

u∗(id − at)u = (id− t)u∗(id− a)u+ (t/2)id.

Finally, by connectedness of the unitary group in Mn(C), every projection
p in M2n(C) with diagonal id/2 can be connected to

q =

(
id/2 id/2
id/2 id/2

)
. �

Remark 3.1. Most of the proof of Theorem 1.1 carries over to a separable
Hilbert space H over real or complex scalars. Indeed, we used the assump-
tion that the space is finite-dimensional only to prove that the subspaces
Ker b and Ker b∗ are of the same dimension. (The unitary group in B(H) is
known to be path-connected and even contractible [13].) Thus we have the
following result: if H is decomposed into a direct sum K⊕L, then the set of
all projections of form (3.1) with E(p) = id/2 and dim Ker b = dim Ker b∗

is path-connected.

Remark 3.2. The set of projections with diagonal id/2 in M2(R) is not
connected, since it consists of just two elements

(
1/2 ±1/2
±1/2 1/2

)
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However, this set is path-connected in M2n(R) for all n > 1. Indeed, the
unitary group splits into two components: special unitary group and its
complement. If the block b in (3.1) is not invertible, then in the proof of
Theorem 1.1 we can choose the unitary u to have determinant 1 or −1. Thus,
the existence of a projection p with E(p) = id/2 and noninvertible b implies
the connectedness of the set. Such a projection can be easily constructed
by including the 4× 4 block




1/2 1/2 0 0
1/2 1/2 0 0
0 0 1/2 1/2
0 0 1/2 1/2


 .

3.2. Explicit parametrization in 4 dimensions. We observe that there
are three sets of projections in M4(C) with diagonal id/2. First, those whose
all entries are non-zero can be parametrized by

p =




1/2 t1ξ̄1 t2ξ̄2 t3ξ̄3
t1ξ1 1/2 ∓it3ξ1ξ̄2 ±it2ξ1ξ̄3
t2ξ2 ±it3ξ̄1ξ2 1/2 ∓it1ξ2ξ̄3
t3ξ3 ∓it2ξ̄1ξ3 ±it1ξ̄2ξ3 1/2




with
√

t21 + t22 + t23 = 1/2, tj > 0, and ξj in T. Then come those with exactly
four null entries:

p =




1/2 t1ξ̄1 t2ξ̄2 0
t1ξ1 1/2 0 t2ξ̄3
t2ξ2 0 1/2 −t1ξ̄1ξ2ξ̄3
0 t2ξ3 −t1ξ1ξ̄2ξ3 1/2




with
√

t21 + t22 = 1/2, tj > 0, ξj in T, and the two other families obtained
by permutation of the basis. Finally, here are those which have eight null
entries:

p =




1/2 ξ̄1/2 0 0
ξ1/2 1/2 0 0
0 0 1/2 ξ̄2/2
0 0 ξ2/2 1/2




with ξj in T, and the two other families obtained by permutation of the
basis.

It follows readily that the set of diagonal 1/2 projections is pathwise
connected in M4(C), giving us an explicit, parametric proof of Theorem 1.1
in that case.

In the real case, the latter set restricts to three sets of four projections.
Also, there are no 4× 4 diagonal 1/2 projections whose entries are all non-
zero real numbers. And those with four null entries split into twenty-four
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paths which connect the twelve extreme projections. For instance, for every
ǫ1, ǫ2, ǫ5, ǫ6 in {±1} such that ǫ1ǫ2ǫ5ǫ6 = −1, the extreme projections

p =




1/2 ǫ1/2 0 0
ǫ1/2 1/2 0 0
0 0 1/2 ǫ6/2
0 0 ǫ6/2 1/2




and

q =




1/2 0 ǫ2/2 0
0 1/2 0 ǫ5/2

ǫ2/2 0 1/2 0
0 ǫ5/2 0 1/2




can be connected by the path



1/2 cos θǫ1/2 sin θǫ2/2 0
cos θǫ1/2 1/2 0 sin θǫ5/2
sin θǫ2/2 0 1/2 cos θǫ6/2

0 sin θǫ5/2 cos θǫ6/2 1/2




with θ running from 0 to π/2.
We let the reader check that any two extreme projections can be connected

by at most three paths of this type. In particular, diagonal 1/2 projections
in M4(R) form a pathwise connected set.

4. Further connectedness results for projections with fixed
diagonal

4.1. Amplification of the 2×2 case. Here is a generalization of Theorem
1.1. The proof is basically the same, so we only insist on the points that
differ.

Theorem 4.1. For every d in D2n of the type d = cos2 θe + sin2 θe⊥ with
a rank n projection e in D2n and θ in [0, π/2], the set of projections p in
M2n(C) such that E(p) = d is pathwise connected.

Proof. Up to a permutation, we can assume that e is the projection onto the
span of the first n vectors of the canonical basis. Now let p be a projection
in M2n, written as a 2×2 matrix over Mn like in the previous section. Since
Tr a = Tr (id − d) = n cos2 θ and Tr (id − a) = Tr d = n sin2 θ, there exists
a unitary u in Mn such that

p =

(
a

√
a(id − a)u

u∗
√

a(id− a) u∗(id− a)u

)
.

Then we put at := (id− t)a+ t cos2 θ1 and it simply remains to mimick the
rest of the proof of Theorem 1.1. �
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5. Diagonals of idempotents

An idempotent is an operator which is equal to its square. For d in Dn to
be the diagonal of an idempotent q in Mn, it is necessary that Tr d = rank q
belongs to the set of integers {0, 1, . . . , n}. Now is this sufficient? The cases
Tr d = 0 and Tr d = n have to be treated separately. Since 0 and id are
the only idempotents with rank 0 and n, respectively, it turns out that 0
and 1 are the only possible diagonals of idempotents with trace 0 and n,
respectively. The remainder of this section is devoted to proving that for
every d in Dn with Tr d in {1, . . . , n − 1} there exists an idempotent q in
Mn such that E(q) = d.

The case Tr d = 1 is very easy. Let {d1, . . . , dn} denote the set of values
on the diagonal of d so that

∑n
j=1 dj = 1. Then consider for instance the

matrix q in Mn which is defined by its entries qi,j := di. It is readily seen
that q is idempotent and that E(q) = d.

We proceed by induction on k.
Assume it has been proven that for all n ≥ k and for all d in Dn with

Tr d = k − 1 there exists an idempotent q in Mn such that E(q) = d. We
now take n ≥ k+1 and d in Dn with Tr d = k. Let {d1, . . . , dn} denote the
set of values on the diagonal of d.

If dj0 = 1 for some j0, then
∑

j 6=j0
dj = k−1 and the induction hypothesis,

together with an obvious splicing argument, help us find q.
Since d 6= id, there exist at least two indices i, j such that di + dj 6= 2

(otherwise, we find that dj = 1 for all j). Without loss of generality, we
can assume that d1 + d2 6= 2 and we put λ := (d2 − 1)/(d1 + d2 − 2). Since
(d1+d2−1)+d3+ · · ·+dn = k−1, we can find by assumption an idempotent
r in Mn−1 such that E(r) has diagonal values {d1+d2−1, d3, . . . , dn}. Now
consider the idempotent

q̃ =

(
1 0
0 r

)
=



1 0 0
0 d1 + d2 − 1 0
0 0 ∗




and the invertible element

σ =



λ λ− 1 0
1 1 0
0 0 id




in Mn. Then a straightforward computation shows that the idempotent
q := σq̃σ−1 has diagonal d.

Thus we have proved:

Theorem 5.1. Let d be in Dn. Then d is the diagonal of an idempotent in
Mn if and only if one of the following holds:

(i) d = 0;
(ii) d = id;
(iii) Tr d belongs to {1, . . . , n− 1}.
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6. Idempotents with prescribed range and diagonal

Throughout this section, we will work with the conditional expectation E
from Mn onto Dn, the set of diagonal n×n matrices. Given an idempotent
p, recall that the set of idempotents which have the same range as p is equal
to the affine subset p+ pMnp

⊥, where p⊥ = id− p. We will now investigate
the intersections of the latter with the preimages E−1(d).

First we determine the range of the linear operator x 7−→ E(pxp⊥). The
following lemma should be compared to Lemma 4.2 in [6], which concerns the
rank of the differential of the conditional expectation on the Grassmannian
manifold.

Lemma 6.1. Let p be a projection in Mn with minimal block decomposition
p =

∑s
j=1 pfj. Then

E(pMnp
⊥) = {d ∈ Dn : Tr dfj = 0, 1 ≤ j ≤ s}.

Remark 6.2. If we give Mn(C) its Hilbert-Schmidt (or Euclidean) structure
via the inner product Tr a∗b, then the previous lemma can be restated by
saying that E(pMnp

⊥) is equal to the orthogonal complement of {p}′ ∩Dn

in Dn.

Proof. Let d belong to E(pMnp
⊥), say d = E(pxp⊥). Then for all j = 1 . . . , s

we have Tr dfj = Tr pxp⊥ = Tr p⊥fjpx by commutativity of the trace, hence

Tr dfj = 0 since p⊥fjp = p⊥pfj = 0. Thus E(pMnp
⊥) is contained in Dn

and is orthogonal to the span of the fj’s, namely {p}′ ∩Dn.

Now let d in Dn be orthogonal to E(pMnp
⊥). This means that for all x

in Mn, we have Tr (pxp⊥)∗d = Tr x∗pdp⊥ = 0. Hence pdp⊥ = 0, i.e. the
range of p is invariant under d. By Lagrange interpolation, we can find a
polynomial g such that d∗ = g(d). Thus pd∗p⊥ = pg(d)p⊥ = 0. It follows
that d commutes with p, hence d belongs to {p}′ ∩ Dn and the proof is
complete. �

Given a projection p, we characterize the diagonals which can be realized
as the diagonal of an idempotent with the same range as p.

Theorem 6.3. Let p be a projection in Mn with minimal block decompo-
sition p =

∑s
j=1 pfj . For every diagonal matrix d in Dn, the following

assertions are equivalent:

(i) d belongs to E(p + pMnp
⊥);

(ii) Tr dfj = rank pfj for j = 1, . . . , s.

Proof. The first assertion says that d − E(p) belongs to E(pMnp
⊥). By

Lemma 6.1, this is equivalent to the fact that Tr (d − E(p))fj = 0 for j =
1 . . . , s. And since Tr E(p)fj = Tr pfj = rank pfj, we get the equivalence
with the second assertion. �

The case of diagonal id/2 being our original motivation, let us restate the
previous result in this particular situation.
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Corollary 6.4. Let p be a projection in M2n with minimal block decompo-
sition p =

∑s
j=1 pfj. Then there is a diagonal id/2 idempotent in M2n with

range equal to that of p if and only if rank fj = 2rank pfj for j = 1, . . . , s.

Now that we have characterized the diagonals that belong to E(p +
pMnp

⊥), we will give a uniform lower estimate of the distance between
a diagonal and the closed affine subspaces E(p + pMnp

⊥) of Mn which do
not contain it.

Theorem 6.5. Let d be a diagonal in Dn. Let S be the set of all possible
sums of diagonal elements of d, i.e. the set of all Tr (de) when e runs
over all diagonal projections. Put γ := 1 if S is contained in Z and γ :=
dist(S \ Z,Z) otherwise. Then for all projections p in M2n, we have the
following alternative: either d belongs to E(p+ pMnp

⊥) or

dist(d,E(p + pMnp
⊥)) ≥

γ

⌊n/2⌋
.

Proof. Suppose that d does not belong to E(p + pMnp
⊥) and let p =∑s

j=1 pfj be the minimal block decomposition of p. By Theorem 6.3, there
is one j such that Tr dfj 6= rank pfj. �

Again, we find it worth restating the result above in the special case of
diagonal id/2, in a slightly different form.

Corollary 6.6. Let q be an idempotent in M2n. If ‖E(q)− 1/2‖ < 1
n
, then

there exists an idempotent q̃ with diagonal id/2 and with range equal to that
of q.

Proof. In this case, the constant γ is equal to 1/2. Let p be the range
projection of q. Since dist(d,E(p+ pMnp

⊥)) < 1
n
, Theorem 6.5 implies that

1/2 is actually the diagonal of an idempotent q̃ in E(p+ pMnp
⊥). �

7. Connectedness of idempotents with fixed diagonal

This section is devoted to the proof of Theorem 1.2. Like in the previous
section, we work with n × n matrices and the diagonal conditional expec-
tation E : Mn → Dn. But this time, we need to assume that matrices are
taken over the complex field (this assumption is used in Lemma 7.3 only).

Given an idempotent q, it will prove convenient to denote [q] its range
projection which is given, for instance, by the formula [q] = q(q+ q∗− id)−1.

The key idea in our strategy is to reduce to the case of idempotents for
which the algebra {[q]}′ ∩Dn is trivial. We begin with a simple observation.

Remark 7.1. The commutative finite-dimensional algebra {[q]}′ ∩Dn is the
span of all diagonal projections which leave the range of q invariant, i.e.
those diagonal projections e such that e[q] = [q]e or, equivalently, q⊥eq = 0.

We now proceed to the construction that will allow us to implement the
reduction claimed above.
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Proposition 7.2. Let q be a nontrivial idempotent in Mn. If dim {[q]}′ ∩
Dn > 1, then there exists an idempotent r in Mn such that

(i) E(r) = E(q);
(ii) {[r]}′ ∩Dn ( {[q]}′ ∩Dn;
(iii) there is a piecewise affine path consisting of at most two steps from q

to r within the set of idempotents with diagonal constant equal to E(q).

Proof. According to Remark 7.1, the algebra {[q]}′ ∩Dn is spanned by the
diagonal projections e such that eq = qeq. By assumption, we can find one
such e that is non trivial. We will construct an idempotent r such that
{[r]}′∩Dn ( {[q]}′∩Dn, the inclusion being proper because we will arrange
for e not to be in {[r]}′ ∩Dn.
The first step is to connect q to an idempotent q̃ which commutes with e
and has same range and diagonal as q. Note that this leaves the algebra
{[q]}′ ∩Dn = {[q̃]}′ ∩ Dn unchanged and that one passes from q to q̃ by a
straight line segment. To do this, we set q̃ := q − x with x = eqe⊥ + e⊥qe.
Since e is a diagonal projection, it is clear that E(x) = 0 so that E(q̃) = E(q).
Using the identity eq = qeq, we first check that q̃e = eq̃ = eqe. Then we
verify that qx = x and xq = 0, so that q̃q = q and qq̃ = q̃, which is the
algebraic condition for the idempotents q and q̃ to have the same range.
Since q is assumed to be non trivial, so is q̃, i.e. q̃ 6= 0 and q̃⊥ 6= 0. Also, we
took e non trivial, i.e. e 6= 0 and e⊥ 6= 0. Now if q̃e = 0, we have q̃e⊥ = q̃ and
q̃⊥e = e. Likewise, if q̃⊥e⊥ = 0, we find that q̃e⊥ = e⊥ and q̃⊥e = q̃⊥. As
a consequence, up to replacing e by e⊥, we can further assume that q̃e 6= 0
and q̃⊥e⊥ 6= 0, so that q̃⊥e⊥Mnq̃e 6= {0}. We pick now an element y 6= 0 in
the latter. Note that y = e⊥ye = q̃⊥yq̃.
For the second step, we will exhibit an idempotent r with same nullspace
and diagonal as q̃, and such that {[r]}′ ∩ Dn ( {[q̃]}′ ∩ Dn. To this aim,
we consider the parametrized family of idempotents given by rt := q̃ + ty.
Since y = e⊥ye, we have E(y) = 0 hence E(rt) = E(q̃) = d for all t. Since
y = q̃⊥yq̃, we see that q̃y = y and yq̃ = 0, hence rt is an idempotent with
the same nullspace as q̃ for all t. Also, for all t 6= 0, we observe that e does
not belong to {[r]t}

′∩Dn, since r
⊥
t ert = −ty 6= 0. So it only remains to find

a value of t 6= 0 for which {[rt]}
′ ∩Dn ⊂ {[q]}′ ∩Dn and we will suffice to

take the corresponding rt for the desired r. Actually, we will show that all
but finitely many values of t will do.
Let f be a diagonal projection and consider the map g : t 7−→ r⊥t frt. Since
each matrix coefficient is a polynomial of degree not greater than 2, g is
either constant equal to zero or vanishes for at most two distinct values of
t. So if f does not belong to {[q]}′ ∩ Dn or, in other terms, if g(0) 6= 0,
we see that f belongs to {[rt]}

′ ∩Dn for two values of t at most. Because
there are only finitely many diagonal projections, we deduce that for all but
finitely many values of t, the projections that lie in {[rt]}

′ ∩Dn also belong
to {[q]}′ ∩Dn, hence, in view of Remark 7.1, {[rt]}

′ ∩Dn ⊂ {[q]}′ ∩Dn. �
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Lemma 7.3. Let us fix 0 < k < n and let G(k, n) denote the set of projec-
tions with rank k in Mn(C). The set Ω := {p ∈ G(k, n) : {p}′ ∩Dn = Cid}
is an open, dense, pathwise connected subset of G(k, n).

Proof. As is well-known, the Grassmannian G(k, n) is a connected complex
manifold of dimension k(n − k). Now let us take p in G(k, n) and observe
that p belongs to Ω if and only if there is no nontrivial diagonal projection
which commutes with p. Hence G(k, n) \ Ω is equal to the union, over all
nontrivial projections e in Dn, of the subsets {p ∈ G(k, n) : ep = pe}.
The latter can in turn be decomposed into the disjoint union of the subsets
Fl = {p ∈ G(k, n) : ep = pe, rankep = l}, l running from 0 to k. Each
set Fl can be identified with G(l, rank e) ×G(k − l, n − rank e), which is a
complex manifold of dimension not greater than k(n− k)− 1.
This shows in particular that G(k, n) \ Ω is closed and has empty interior.
Being a proper analytic subset of the connected complex manifold G(k, n),
this set has pathwise connected complement (cf. Proposition 3 of Section
2.2 in [4]). �

Thanks to this result and to the Lemma 6.1 of the previous section, we
will now prove that the sets Ω ∩ E−1(d) are either connected or empty.

Theorem 7.4. For every diagonal d in Dn, the set of idempotents q such
that E(q) = d and {[q]}′ ∩ Dn = C id is pathwise connected whenever it is
not empty.

Proof. Let q and r be two idempotents in the set under consideration, if not
empty. By Lemma 7.3 with k = rank q, we can find a projection-valued
path pt connecting [q] and [r] within Ω, i.e. such that {pt}

′ ∩Dn = C id for
all t. Then it follows from Lemma 6.1 that for all t, E(ptMnp

⊥
t ) is equal to

Dn ∩ Ker Tr, the orthogonal complement of C id in Dn with respect to the
Hilbert-Schmidt inner product. Hence each operator

Dt : Mn → Dn = Dn ∩Ker Tr ⊕ C id , x 7−→ E(ptxp
⊥
t )

is such that DtD
∗
t realizes an isomorphism from Dn ∩ Ker Tr onto itself.

Thus

Ct := D∗
t (DtD

∗
t )

−1 : Dn ∩Ker Tr → Mn

defines a continuous path of right inverses for Dt, seen as operators from
Mn to Dn ∩Ker Tr.
Now consider the path xt := Ct(d − E(pt)) in Mn, which is continuous and
satisfies E(ptxtp

⊥
t ) = d−E(pt) for all t. Setting qt := pt+ptxtp

⊥
t , we obtain

an idempotent-valued path within the desired set, from q0 = [q] to q1 = [r].
Since E is linear, it only remains to connect the latter to q and r respectively
by straight line segments and we are done. �

Proof of Theorem 1.2. Let q and r be idempotents with diagonal d. By
Proposition 7.2, we can connect them, within a finite number of affine steps
in the set of idempotents with diagonal d, to two idempotents, q̃ and r̃
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respectively, such that, moreover, {[q]}′∩Dn = {[r]}′∩Dn = C id. The latter
pair can now be connected by Theorem 7.4 and the proof is complete. �

8. Extensions to infinite dimensions

In this section we extend some of the preceding results to operators on a
separable Hilbert space H over complex or real scalars. Recall that by The-
orem 1.1 the set of projections with 1/2 on the diagonal is path-connected
in M2n(C) or in M2n(R) for n > 1. Theorem 8.1 is a partial extension of
this result to B(H) equipped with the operator norm topology. To state it
we need the following definition: an operator x ∈ B(H) with ‖x‖ = 1 is
2-pavable if there exists a diagonal projection e such that ‖exe‖ < 1 and
‖e⊥xe⊥‖ < 1. Note that for any projection p the operator 2p− id has norm
1; in fact, it is a symmetry (i.e., self-adjoint unitary). See [2] for recent
results on paving of projections.

Theorem 8.1. The projections p ∈ B(H) such that E(p) = id/2 and 2p −
id is pavable are pathwise connected within the set of all projections with
diagonal id/2.

Proof. Let f be a diagonal projection with infinite rank and nullity. Given
a projection p as in the statement, we must find a path (within the set of
projections with diagonal id/2) from p to the block matrix

p0 =

(
id/2 id/2
id/2 id/2

)

in which the blocks correspond to ran f and ran f⊥. Let e be a projection
that paves 2p−id. Note that e has infinite rank and nullity. Replacing e with
e⊥ if necessary, we can ensure that both ef and e⊥f⊥ have infinite rank.
Let {ei}i∈N be the standard basis of H. Let σ ∈ B(H) be a zero-diagonal
involution that acts by permuting the basis elements so that (i) {ei, σei} ⊂
ran(ef) for infinitely many values of i ∈ N and (ii) {ei, σei} ⊂ ran(e⊥f⊥) for
infinitely many values of i ∈ N. Let us write the projection p1 := (id + σ)/2
in the block form

(8.1) p1 =

(
a1 b1
b∗1 d1

)

with respect to the decomposition H = ran f ⊕ ran f⊥. The block b1 has
infinite-dimensional kernel which contains all vectors ei + σei such that
{ei, σei} ⊂ ran f⊥. Similarly, the kernel of b∗1 contains all vectors ei + σei
such that {ei, σei} ⊂ ran f . By Remark 3.1 the projection p1 can be con-
nected by an appropriate path to p0.

Now let p1 be represented as in (8.1) but with respect to decomposition
H = ran e ⊕ ran e⊥. Replacing f with e in the preceding paragraph, we
again find that b1 and b∗1 have infinite dimensional kernels. Writing p in
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block form with the same decomposition H = ran e⊕ ran e⊥, we obtain

p =

(
a b
b∗ d

)

with ‖2a − id‖ < 1 and ‖2d − id‖ < 1. It follows that both a(id − a)
and d(id − d) are invertible. As was noted in section 2.1, this implies the
invertibility of b (and b∗). By Remark 3.1 the projection p can be connected
by an appropriate path to p1, and we are done. �

Recall that B(H) is the dual of S1, the set of trace-class operators on
H. This duality induces w∗-topology on B(H). Recall the definition of the
minimal block decomposition of an operator from section 2.2.

Theorem 8.2. Given a projection p ∈ B(H), let
∑

j∈J pfj be its minimal
block decomposition. The w∗-closure of the set

{E(q) : q2 = q, ran q = ran p}

consists of all operators d ∈ D(H) such that tr(dfj) = rk(pfj) whenever fj
has finite rank.

Since the idempotents q in Theorem 8.2 are all of the form p+ pxp⊥, the
conclusion of Theorem 8.2 can be deduced from the following lemma.

Lemma 8.3. Let p ∈ B(H) be a projection. Define Dp : B(H) → B(H) by

Dp(x) = E(pxp⊥). The w∗-closure of ranDp is the space

(8.2) {d ∈ D(H) : tr(dc) = 0 ∀c ∈ {p}′D ∩ S1}.

Proof. Let N be the space in (8.2). First we prove that ranDp ⊆ N . If
d = Dp(x) for some x ∈ B(H), then for each c ∈ {p}′D ∩ S1 we have

tr(dc) = tr(pxp⊥c) = tr(p⊥cpx) = tr(p⊥pcx) = 0

which means that d ∈ N .
Next, suppose that c ∈ D(H) ∩ S1 annihilates ranDp. This means that

for any x ∈ B(H) we have tr(pxp⊥c) = 0. Since

tr(pxp⊥c) = tr(p⊥cpx), ∀x ∈ B(H),

it follows that

(8.3) p⊥cp = 0,

i.e., ran p is invariant under c. Using continuous functional calculus, we can
write c∗ = F (c), where F (z) = z̄ on the spectrum σ(c). Note that σ(c) has
empty interior and connected complement. By Mergelyan’s theorem there
exists a sequence of polynomials Pn such that Pn → F uniformly on σ(c).
It follows from (8.3) that p⊥Pn(c)p = 0 for all n. Letting n → ∞, we obtain
p⊥c∗p = 0. Taking adjoints, we find that pc = pcp. Since pcp = cp by (8.3),
c and p commute. Thus c annihilates N . �
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Remark 8.4. In general, ranDp is not w∗-closed. Indeed, if p or p⊥ has
finite rank, then ranDp is contained in S1, although it may be w∗-dense in
D(H). Therefore, Theorem 8.2 does not completely describe the possible
diagonals of idempotents with a given range. The difficulty of obtaining
such a description can be illustrated by the following fact: there exists a
nonzero idempotent with zero diagonal [14, Theorem 3.7].

Concerning the connectedness of idempotents sharing the same diago-
nals, we have the following result which generalizes Proposition 7.2. Recall
that {[r]}′D means the range of the diagonal expectation E restricted to the
commutant of the range projection of r, i.e {[r]}′D = {[r]}′ ∩D(H).

Proposition 8.5. For any idempotent q ∈ B(H) \ {0, 1} there exists an
idempotent r ∈ B(H) such that {[r]}′D = C id and there is a piecewise linear
path from q to r within the set of idempotents with diagonal E(q).

The proof is preceded by two lemmas.

Lemma 8.6. For any idempotent q ∈ B(H) there exists an idempotent
q̃ ∈ ({[q]}′D)

′ such that ran q̃ = ran q and E(q̃) = E(q).

Proof. Let {fj}j∈J be the set of minimal projections in {[q]}′D . Let q̃ =∑
j∈J qfj be the expectation of q with respect to the block-diagonal algebra

({[q]}′D)
′. It is easy to see that q̃ is an idempotent and E(q̃) = E(q). Since

qq̃ = q̃ and q̃q = q, we have ran q̃ = ran q. Finally, q̃fj = fjqfj = fj q̃ for all
j ∈ J , which means q̃ ∈ ({[q]}′D)′. �

Lemma 8.7. Suppose that t 7→ x(t) is a real analytic map from R to B(H).
Then there exists a countable set C ⊂ R such that all operators x(t), t ∈
R \ C, have the same minimal block decomposition.

Proof. Each entry of the matrix representing x(t) in the canonical basis of
H is a real-analytic function of t. Recall that a scalar-valued real-analytic
function has at most countably many zeroes unless it vanishes identically.
Therefore, the set of nonzero entries in the matrix of x(t) is the same for all
but countably many values of t. Since the set of nonzero entries determines
the minimal block decomposition, the claim follows. �

Proof of Proposition 8.5. Let {fj}j∈J be the set of minimal projections in
{[q]}′D. By virtue of Lemma 8.6 we may assume that

(8.4) q ∈ ({[q]}′D)′, i.e., q =
∑

j∈J

fjqfj.

For k, l ∈ J we set ykl = fkq
⊥xklqfl, where xkl ∈ B(H) is chosen as follows.

If either k = l, q⊥fk = 0, or qfl = 0, then set xkl = 0. Otherwise, choose
xkl so that 0 < ‖ykl‖ < 2−k−l. Let n =

∑
k,l∈J ykl.

One can easily check that qn = 0, nq = n, and E(n) = 0. Therefore,
qt := q + tn is an idempotent for all t ∈ R, and E(qt) = E(q). The range
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projection of qt,

[qt] = (q + tn) (q + q∗ + t(n+ n∗)− id)−1

is real analytic in t. By Lemma 8.7 [qt] has the same minimal block de-
composition for all t ∈ R \ C where C is countable. If this decomposition
consists of just one block, then we can set r = q + tn for some t ∈ R \ C.

Suppose that the minimal block decomposition of [qt], t ∈ R \ C, is non-
trivial. Then there exists a diagonal projection f /∈ {0, id} that commutes
with [qt] for all t ∈ R \ C, hence for all t ∈ R. This can be expressed as

(8.5) (q⊥ − tn)f(q + tn) = 0, t ∈ R.

The coefficient of t in (8.5) must be zero, hence

q⊥fn− nfq = 0.

Since f ∈ [q]′D, we have f =
∑

j∈K fj for some K ⊂ J . Also, f commutes

with q due to (8.4). Thus we obtain

0 = q⊥fn− nfq = fq⊥n− nqf = fn− nf = fnf⊥ − f⊥nf,

hence fnf⊥ = f⊥nf = 0. From the definition of n one can see that fnf⊥ =
0 only if

(8.6) q⊥f = 0 or qf⊥ = 0.

Similarly, f⊥nf = 0 implies

(8.7) q⊥f⊥ = 0 or qf = 0.

Since q, f /∈ {0, id}, the relations (8.6)–(8.7) contradict each other. This
completes the proof. �
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[3] P. Casazza and J. Kovačević, Equal-norm tight frames with erasures, Adv. Comput.

Math. 18 (2003), no. 2–4, 387–430.
[4] E. M. Chirka, Complex analytic sets, Kluwer Acad. Publ., 1989.
[5] K. Dykema, D. Freeman, K. Kornelson, D. Larson, M. Ordower and E. Weber, El-

lipsoidal tight frames, Illinois J. Math. 48 (2004), 477–489.
[6] K. Dykema and N. Strawn, Manifold structure of spaces of spherical tight frames, Int.

J. Pure Appl. Math. 28 (2006), no. 2, 217–256.
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