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ABSTRACT

The primary goal of this work is to extend the notions of potential theory to com-

pact sets. There are several equivalent ways to define continuous harmonic functions

H(K) on a compact set K in Rn. One may let H(K) be the uniform closure of all

functions in C(K) which are restrictions of harmonic functions on a neighborhood of

K, or take H(K) as the subspace of C(K) consisting of functions which are finely

harmonic on the fine interior of K. In [9] it was shown that these definitions are

equivalent.

We study the Dirichlet problem on a compact set K ⊂ Rn in Chapter 4. As

in the classical theory, our Theorem 4.1 shows C(∂fK) ∼= H(K) for compact sets

with ∂fK closed, where ∂fK is the fine boundary of K. However, in general a

continuous solution cannot be expected even for continuous data on ∂fK as illustrated

by Theorem 4.1. Consequently, we show that the solution can be found in a class of

finely harmonic functions. Moreover by Theorem 4.3, in complete analogy with the

classical situation, this class is isometrically isomorphic to Cb(∂fK) for all compact

sets K.

To study these spaces, two notions of Green functions have previously been intro-

duced. One by [22] as the limit of Green functions on domains Dj where the domains

Dj are decreasing to K. Alternatively, following [12, 13] one has the fine Green func-

tion on the fine interior of K. Our Theorem 3.14 shows that these are equivalent

notions.



Using a localization result of [3] one sees that a function h ∈ H(K) if and only

if it is continuous and finely harmonic on every fine connected component of the

fine interior of K. Such collection of sets is usually called a restoring covering. An-

other equivalent definition of H(K) was introduced in [22] using the notion of Jensen

measures which leads to another restoring collection of sets.

In Section 5.1 a careful study of the set of Jensen measures on K, leads to an

interesting extension result (Corollary 5.8) for subharmonic functions. This has a

number of applications. In particular we show that the restoring coverings of [9] and

[22] are the same. We are also able to extend some results of [18] and [22] to higher

dimensions.
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Chapter 1

Introduction

There are several ways to define the spaces (S(K))-H(K) of continuous (sub)-harmonic

functions on a compact set K in Rn. Let C(K) denote the space of all continuous real

functions on K. The natural definition is to let H(K) or S(K) be the uniform clo-

sure of all functions in C(K) which are restrictions of harmonic (resp. subharmonic)

functions on a neighborhood of K. More fashionably, we can define H(K) and S(K)

as the subspaces of C(K) consisting of functions which are finely harmonic (resp.

finely subharmonic) on the fine interior of K. The equivalence of these definitions

was shown in [2] and [3].

Another definition was introduced in [22] using the notion of Jensen measures. A

measure µ supported by K is Jensen with barycenter x ∈ K if for every open set V

containing K and every subharmonic function u on V we have u(x) ≤ µ(u). The set

of such measures will be denoted by Jx(K). Then H(K) is the subspace of C(K)

1



CHAPTER 1. INTRODUCTION 2

consisting of functions h such that h(x) = µ(h) for all µ ∈ Jx(K) and x ∈ K. It was

shown in [22] that this definition is equivalent to the definitions above.

The main goal of this work is to extend the classic potential theory to compact

sets K ⊂ Rn. We consider two main problems in this arena. The first is a Dirichlet

problem on compact sets and the second is to prove a natural restoring property of

harmonic functions on compact sets with respect to the fine topology.

1.1 A Dirichlet problem on compact sets

The Dirichlet problem for harmonic functions on domains in Rn is not only important

by itself but also by its influence on potential theory. Many now standard notions,

e.g. regular points, fine topology, etc., first appeared in the study of this problem.

One possible extension can be found in the abstract theory of balayage spaces,

see [4, 19]. However we feel that the gain in transparency following from a direct

geometric approach more than justifies the use of new techniques.

The Dirichlet problem can be thought of as having two components; the data set

and the data itself. One uses an initial function defined on the data set to construct a

solution (a harmonic function) on the rest of the domain which must have a prescribed

regularity as it approaches the data set. Classically, the data set is taken to be the

topological boundary of the domain. One of our main goals here is to establish that

the natural choice for the data set on a compact set K is the fine boundary of K,

∂fK, which is shown by Lemma 3.3 to be the Choquet boundary of K with respect
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to subharmonic functions on K. We limit ourselves to initial functions that are

continuous and bounded on ∂fK as in the classical case.

In Section 3.1, we introduce Jensen measures as our main tool and begin extend-

ing potential theory to compact sets K ⊂ Rn by defining harmonic functions and

subharmonic functions on K. We devote Section 3.3 to the construction and study

of harmonic measure on compact sets. The harmonic measure on K is shown to be a

maximal Jensen measure. This is used to see the important fact (Corollary 3.12) that

harmonic measures are concentrated on the fine boundary. In Chapter 4 we study

the Dirichlet problem for compact sets. As in the classical theory, our Theorem 4.1

shows C(∂fK) ∼= H(K) for a class of compact sets. However, in general a continu-

ous solution cannot be expected even for continuous data on ∂fK as illustrated by

Example 4.1. Consequently, we show that the solution can be found in the class of

finely harmonic functions introduced in this section. Moreover by Theorem 4.3, in

complete analogy with the classical situation, this class is isometrically isomorphic to

Cb(∂fK) for all compact sets K.

1.2 Restoring properties of harmonic functions

Despite the existence of so many equivalent definitions of harmonic functions on

compact sets it is still difficult to verify whether a function on a compact set is

harmonic or subharmonic. In [9] it was shown that h ∈ H(K) if and only if h is

continuous and finely harmonic on the fine interior of K. A localization result from



CHAPTER 1. INTRODUCTION 4

[3] implies that h ∈ H(K) if and only if h is continuous and finely harmonic on every

fine connected component of the fine interior of K. Such collection of sets is usually

called a restoring covering.

In its turn another restoring collection of sets was introduced in [22]. For x ∈ K

let I(x) be the set of all points y ∈ K such that µ(V ) > 0 for every µ ∈ Jx(K) and

every open set V containing y. It was shown that the sets I(x) form the restoring

covering.

The main goal of Chapter 5 is to reconcile the results in [9] and [22]. It required

the understanding of a connection between fine topology and Jensen measures. For

this we use the fact from [22] that I(x) is the closure of the set Q(x) of all y ∈ K

such that GK(x, y) > 0, where the Green function GK on K is defined as the limit of

Green functions on domains Dj decreasing to K.

Fuglede [12, 13, 14] defined a Green function on K as the fine Green function on

the fine interior intf (K) of K. We denote the fine Green function on a finely open

set U by Gf
U(x, y) ( see [13, 14, 15] for the definition, and Section 3.4 for some basic

properties).

As the first step we show (Theorem 3.14) that these two notions of Green functions

are constant multiples of each other. This leads to Proposition 3.15 which shows that

the set Q(x) is a fine connected component of intf (K).

To finish the reconciliation process in Section 5.1 we study closely the set Jx(K).

The main result (Theorem 5.6) provides Corollary 5.7 showing that µ ∈ Jx(K) if
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and only if µ ∈ Jx(I(x)). This corollary proves to be quite useful. From it we are

able to derive a number of applications in Section 5.2. In particular Corollary 5.8 an

extension result for subharmonic functions shows that for every f ∈ S(I(x)) there is

a f̂ ∈ S(K) such that f̂ |I(x) = f . Also following from Corollary 5.7 is the desired

reconciliation of the restoring theorem of Poletsky [22] and the [9] result, proved here

as Theorem 5.9.

In 1983, Gamelin and Lyons have shown [18, Theorem 3.1] that for K ⊂ R2

H(K)⊥ =
⊕

H(Aj)
⊥

where Aj are the fine components (fine open, fine connected) of the fine interior

of K. However their work follows from an estimate for harmonic measure of the

radial projection of a set, proved by Beurling in his thesis, which has no analog

in Rn for n > 2. By using Theorem 5.9 we are now able to extend this result to

higher dimensions in Corollary 5.10. As an application of this we are able to show,

Proposition 5.11, that every Jensen set is Wermer, which was first proved by Poletsky

in [22] for n = 2.



Chapter 2

Fundamental Ideas

We begin by developing some standard concepts which are basic to the theory devel-

oped below.

2.1 Classical Potential Theory

Potential theory is generally defined as the study of harmonic and subharmonic func-

tions. Subharmonic functions are a generalization of convex functions. Convex func-

tions are characterized by a subaveraging property with respect to lines. Indeed

consider a convex open set D in Rn, n ≥ 2. One says that a continuous function

f : D → R is convex on D if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

6



CHAPTER 2. FUNDAMENTAL IDEAS 7

for all x, y ∈ D and 0 ≤ λ ≤ 1. In reality, it is an easy exercise [24, Chp 4, Ex 24]

to see that it is sufficient to take λ = 1/2 above, that is, a continuous function f is

convex if and only if the property

f

(
x+ y

2

)
≤ 1

2
f(x) +

1

2
f(y)

holds for all x, y ∈ D. In other words if f is continuous and subaveraging over all one-

dimensional spheres, i.e. end-points of line segments. Actually continuity is somewhat

stronger than is needed in this case. However one cannot drop the condition entirely

for the second definition to remain equivalent to the first.

Subharmonic functions are those that satisfy the same subaveraging inequality

with n-dimensional spheres replacing their one-dimensional counterparts. Specifically,

an upper semicontinuous function f : D → [−∞,∞) is subharmonic if

f(x) ≤ 1

SA(∂B(x, r))

∫
∂B(x,r)

f(ζ) dσ(ζ)

for every x ∈ D and every ball B(x, r), centered at x of radius r, compactly contained

in D, i.e. B(x, r) ⊂ D, where SA(∂B(x, r)) is the surface area of the n-sphere and

σ is the standard surface measure. This is easily seen ([20, Sections 2.3-2.4]) to

be equivalent to subaveraging over balls, that is, an upper semicontinuous function

f : D → [−∞,∞) is subharmonic if

f(x) ≤ 1

vol(B(x, r))

∫
B(x,r)

f(ζ) dm(ζ)

for every x ∈ D and every ball B(x, r) compactly contained in D.
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Perhaps the most remarkable characteristic of subharmonicity is that it is an

entirely local property, see [20, Thm 2.3.8]. A function is subharmonic if either of

the above properties holds for only arbitrarily small radii. This property is not at all

obvious from the definitions given above.

To remove pathologies we do not allow the function f to be identically equal

to −∞ on any connected component of D. The set of subharmonic functions and

harmonic functions on D are denoted S(D) and H(D), respectively. A function

g is superharmonic if −g is subharmonic. A function h is harmonic if it is both

subharmonic and superharmonic.

The central question of study in potential theory is the Dirichlet problem. For

any f ∈ C(∂D), the Dirichlet problem on D is to find a unique function h which is

harmonic on D and continuous on D such that h|∂D = f . The function f is commonly

referred to as the boundary data, and the corresponding h is said to be the solution

of the Dirichlet problem on D with boundary data f . The punctured disk in R2 is a

fundamental example which shows that the Dirichlet problem can not be solved for

any continuous boundary data.

However for a bounded open set D the method of Perron allows one to assign a

function which is harmonic on D to any continuous (or simply measurable) boundary

data. Given f ∈ C(∂D) Perron considered the function

h(x) = sup{u(x) : u ∈ S(D) and lim sup
ζ→p

u(ζ) ≤ f(p) for all p ∈ ∂D}

called the Perron solution which he then showed to be harmonic in D.
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Later the concept of a regular domain was developed to establish the continuity of

the Perron solution to the boundary. A bounded open set D ⊂ Rn is a regular domain

if the Dirichlet problem is solvable on D for any continuous boundary data. Therefore

on a regular domain, the space of boundary data functions C(∂D) is isometrically

isomorphic to H(D), the space of continuous functions on D which are harmonic on

D.

For any f ∈ C(∂D) let hf ∈ H(D) denote the solution of the Dirichlet problem

on D with boundary data f . Let z ∈ D. The point evaluation Hz : f 7→ hf (z) is a

positive bounded linear functional on C(∂D). By the Riesz Representation Theorem,

there is a Radon measure ωD(z, ·) on ∂D which represents Hz, that is

hf (z) =

∫
∂D

f(ζ) dωD(z, ζ),

for all f ∈ C(∂D). The measure ωD(z, ·) is called the harmonic measure of D with

barycenter at z. See [1, 20] for more details on potential theory.

2.2 The Fine Topology

In solving the Dirichlet problem people wanted to characterize regular boundary

points. It turns out that this is a local problem and leads directly to the development

of the fine topology.

The fine topology on Rn is the coarsest topology on Rn such that all subharmonic

functions are continuous in the extended sense of functions taking values in [−∞,∞].
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One easily sees that the metric topology is coarser than the fine topology. Hence

all usual open sets are finely open. Furthermore since there exist finite valued dis-

continuous subharmonic functions the fine topology is strictly finer than the metric

topology. For example the function

u(z) =
∞∑
n=1

2−n log |z − 2−n|

is subharmonic on the complex plane and discontinuous at the origin, see [23, pg.

41-42].

When referring to a topological concept in the fine topology we will follow the

standard policy of either using the words “fine” or “finely” prior to the topological

concept or attaching the letter f to the associated symbol. For example, the fine

boundary of K, ∂fK, is the boundary of K in the fine topology. The fine topology is

strictly finer than the Euclidean topology.

A set E is said to be thin at a point x0 if x0 is not a fine limit point of E, i.e. if

there is a fine neighborhood U of x0 such that E \ {x0} does not intersect U . For an

open set D a boundary point p ∈ ∂D is regular for the Dirichlet problem if and only

if the complement of D is not thin at p.

An example of a set which is thin at the origin is given by the Lebesgue spine in

R3 defined by

L = {(x, y, z) : x > 0 and y2 + z2 < exp(−c/x)},

where c > 0.
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Fuglede’s [12, p. 147] observation that a fine open set U in Rn has at most

countably many fine open connected components will be useful later.

Many of the key concepts of classical potential theory have analogous definitions

in relation to the fine topology. Presently we will recall a few of them. Relative

to a finely open set V in Rn the harmonic measure δV
c

x is defined as the swept-out

of the Dirac measure δx on the complement of V . A function u is said to be finely

hyperharmonic on a finely open set U if it is lower finite, finely lower semicontinuous,

and

−∞ < δV
c

x (u) ≤ u(x),

for all x ∈ V and all relatively compact finely open sets V with fine closure contained

in U . We say that u is finely superharmonic if u is finely hyperharmonic and not

identically equally to ∞ in any fine component of U . Then u is called finely sub-

harmonic −u is finely superharmonic. A function h is said to be finely harmonic if

h and −h are finely hyperharmonic, or equivalently finely superharmonic. Further-

more, the fine Dirichlet problem on U for a finely continuous function f defined on

the fine boundary of a bounded finely open set U consists of finding a finely harmonic

extension of f to U . The development of the fine Dirichlet problem is quite similar

to that of the classical. In the seventies Fuglede [12] establishes a Perron solution for

the fine Dirichlet problem. His [12, Theorem 14.6] shows that there exists a Perron

solution HU
f which is finely harmonic on U for any numerical function f on ∂fU which

is δ
∂fU
x integrable for every x ∈ U . Furthermore [12, Theorem 14.6] provides us with
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the desired continuity at the boundary, i.e. that the fine limit of HU
f (x) tends to f(y)

as x ∈ U goes to y for every finely “regular” boundary point y ∈ ∂fU at which f is

finely continuous.

The two books [5, 12] are classical references on the fine topology and many books

on potential theory contain chapters on the topic, e.g. [1, Chapter 7].

2.3 Functional Analysis

We will often use µ(f) to denote
∫
f dµ where the integral is taken over the entire

support of µ.

We will be primarily concerned with continuous real functions defined on either

a domain or a compact subset of Rn. Therefore our prerequisites from this beautiful

subject are rather limited. The aim of this section is to present a rather focused

account of the theory.

LetM(Rn) denote the space of finite signed Radon measures on Rn and let C0(Rn)

denote the space of continuous functions on Rn which vanish at infinity. Observe

that C0(Rn) is a separable Banach space with the supremum norm, that is ||f || =

supz∈Rn |f(z)|. Furthermore by the Riesz Representation Theorem the space C∗0(Rn)

of bounded linear functionals on C0(Rn) is isometrically isomorphic to M(Rn).

A useful concept in analysis is the notion of weak∗ convergence . Let {µj} be a

sequence in M(Rn). We say that µj converges to µ in the weak∗ topology, if µj(f)

converges to µ(f) for every f ∈ C0(Rn). This topology is particularly useful because
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of the theorem of Alaoglu, which states that for any normed space X, the unit ball in

X∗ is compact in the weak∗ topology. To check the weak∗ convergence of a sequence

{µj} whose supports lie in a closed ball B, it suffices to check the weak∗ convergence

in C∗(B).

These standard definitions and results from functional analysis may be found in

most functional analysis books, for example Conway [8].

2.4 Jensen Measures

If D is an open set in Rn, we say that µ is a Jensen measure on D with barycenter

z ∈ D if µ is a probability measure (a positive Radon measure of unit mass) whose

support is compactly contained in D and for every subharmonic function f on D the

sub-averaging inequality f(z) ≤ µ(f) holds.

The set of Jensen measures on D with barycenter z ∈ D will be denoted Jz(D).

Examples of Jensen measures with barycenter at z ∈ D include the Dirac measure at

z, i.e. δz, the harmonic measure with barycenter at z for any regular domain which

is compactly contained in D, and the average over any ball (or sphere) centered at z

which is contained in D.

It is important to note that the Jensen measures and in particular the harmonic

measures are in the unit ball ofM(Rn) ∼= C∗0(Rn) which is a compact set in the weak∗

topology.

One could define the set of Jensen measures J c
z (D) with respect to the continuous
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subharmonic functions on D. However the following theorem shows that the set of

Jensen measures would not be changed.

Theorem 2.1. Let D be a bounded open subset of Rn. For every z ∈ D, the sets

Jz(D) and J c
z (D) are equal.

Proof. Since it is clear that Jz(D) ⊆ J c
z (D) for all z ∈ D, we will now show the

reverse inclusion.

Pick some z0 ∈ D and let µ ∈ J c
z0

(D). Then we must show f(z0) ≤ µ(f) for every

function f which is subharmonic on D. The support of µ is compactly contained in

D.

Since f is subharmonic on D we can find ([20, Lemma 2.5.1]) a decreasing sequence

{fn} of continuous subharmonic functions which converge to f . As µ ∈ J c
z0

(D) we

have fn(z0) ≤ µ(fn) for every fn. By the Lebesgue Monotone Convergence Theorem

it follows that f(z0) ≤ µ(f). Thus µ ∈ Jz0(D).

Since Jz(D) = J c
z (D) for all z ∈ D, to check that µ ∈ Jz(D), it suffices to check

that µ has the sub-averaging property for every continuous subharmonic function.

The following proposition of Cole and Ransford [7, Proposition 2.1] will demon-

strate some basic properties of sets of Jensen measures.

Proposition 2.2. Let D1 and D2 be open subsets of Rn with D1 ⊂ D2. Let z ∈ D1.

i. If µ ∈ Jz(D1) then also µ ∈ Jz(D2).
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ii. If µ ∈ Jz(D2) and supp(µ) ⊂ D1, and if each bounded component of Rn \ D1

meets Rn \D2, then µ ∈ Jz(D2).

Jensen measures and subharmonic functions are, in a sense, dual to each other.

This duality is illustrated by the following theorem of Cole and Ransford [6, Corollary

1.7].

Theorem 2.3. Let D be an open subset of Rn which possesses a Green’s function.

Let φ : D → [−∞,∞) be a Borel measurable function which is locally bounded above.

Then, for each z ∈ D,

sup {v(z) : v ∈ S(D), v ≤ φ} = inf {µ(φ) : µ ∈ Jz(D)} ,

where S(D) denotes the set of subharmonic functions on D.



Chapter 3

Potential theory on compact sets

We now begin our study of potential theory on compact sets. For compact sets

which are not connected, the Hausdorff property will allow us to reduce Dirichlet

type problems on the compact set to solving separate problems on each connected

component. Therefore in what follows we will work on compact sets K in Rn which

need not be connected, with the understanding that we can always separate the

problem by working on the connected components of K individually.

3.1 Harmonic and Subharmonic Functions on Com-

pact Sets

There are currently three equivalent ways to define harmonic and subharmonic func-

tions on compact sets.

16



CHAPTER 3. POTENTIAL THEORY ON COMPACT SETS 17

Definition 3.1 (Exterior). Let H(K) (or S(K)) be the uniform closure of all func-

tions in C(K) which are restrictions of harmonic (resp. subharmonic) functions on a

neighborhood of K.

Definition 3.2 (Interior). One can define H(K) (or S(K)) as the subspaces of C(K)

consisting of functions which are finely harmonic (resp. finely subharmonic) on the

fine interior of K.

The equivalence of these definitions of H(K) was shown in [9] and of S(K) in

[2, 3].

For the third definition of H(K) we must to extend the notion of Jensen measures

to compact sets.

Definition 3.3. We define the set of Jensen measures on K with barycenter at z ∈ K

as the intersection of all the sets Jz(U), that is

Jz(K) =
⋂
K⊂U

Jz(U),

where U is any open set containing K.

Another definition of H(K) was introduced in [22] using the notion of Jensen

measures.

Definition 3.4 (Via Jensen measures). The set H(K) is the subspace of C(K) con-

sisting of functions h such that h(x) = µ(h) for all µ ∈ Jx(K) and x ∈ K.

It was shown in [22] that this definition is equivalent to the exterior definition

above.
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Our first lemma shows that this last construction of Poletsky extends to subhar-

monic functions in the ideal way.

Lemma 3.1. A function is in S(K) if and only if it is continuous and satisfies the

subaveraging property with respect to every Jensen measure on K, that is

S(K) = {f ∈ C(K) : f(z) ≤ µ(f), for all µ ∈ Jz(K) and every z ∈ K} .

Proof. We use the exterior definition of S(K) to show “⊆”. Take f ∈ C(K) and let

{fj} be a sequence of subharmonic functions defined in a neighborhood of K such

that {fj} is converging uniformly to f . Then fj(z) ≤ µ(fj) for any µ ∈ Jz(K). Since

the convergence is uniform we have f(z) ≤ µ(f).

Now suppose that f is in the set on the right. The subaveraging condition im-

plies that f is finely subharmonic on the fine interior of K, and by assumption f is

continuous. Therefore f satisfies the interior definition of S(K).

Recall the (exterior) definition of S(K) as the uniform limits of continuous func-

tions subharmonic in neighborhoods of K. The following proposition shows that the

defining sequence for any function in S(K) may be taken to be increasing. This result

is a simple consequence of a duality theorem of Edwards.

Proposition 3.2. Every function in S(K) is the limit of an increasing sequence of

continuous subharmonic functions defined on neighborhoods of K.

Proof. Recall (see [16, Theorem 1.2]and [6]) Edwards Theorem states: If p is a con-
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tinuous function on K, then for all z ∈ K we have

Ep(z) := sup{f(z) : f ∈ S(K), f ≤ p} = inf{µ(p) : µ ∈ Jz(K)}.

From the proof of this theorem it follows that Ep is lower semicontinuous and is the

limit of an increasing sequence of continuous subharmonic functions on neighborhoods

of K. The result follows by observing that p = Ep whenever p ∈ S(K).

3.2 The Choquet Boundary

In the book [16], Gamelin introduces a version of Choquet theory for cones of functions

on compact sets. (Actually it applies to sets of functions which are slightly weaker

than the cones we define.)

Following his guidance we consider a set R of functions mapping a compact set

K ⊂ Rn to [−∞,∞) with the following properties:

i. R includes the constant functions,

ii. if c ∈ R+ and f ∈ R then cf ∈ R,

iii. if f, g ∈ R then f + g ∈ R, and

iv. R separates the points of K.

One then considers a set of R-measures for z ∈ K defined as the set of probability

measures µ on K such that

f(z) ≤ µ(f)
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for all f ∈ R.

Naturally our model for R will be S(K). It then follows that when R = S(K) the

R-measures for z ∈ K are precisely Jz(K). We now state some classic results from

[16] which we will need in the following sections.

One can define the Choquet boundary of K with respect to S(K) as

ChS(K)K = {z ∈ K : Jz(K) = {δz}}.

Many nice properties of the Choquet boundary are known. In particular, we will need

the following characterization, see also, for example, [4, VI.4.1] and [19].

Lemma 3.3. The Choquet boundary of K with respect to S(K) is the fine boundary

of K, i.e.

ChS(K)K = ∂fK.

Proof. Since the fine topology is strictly finer than the Euclidean topology, any point

in the interior of K will also be in the fine interior of K, and any point of Rn \ K

can be separated from K by an Euclidean (therefore fine) open set. Therefore the

fine boundary of K is contained in ∂K. The result follows immediately from [22,

Theorem 3.3] or [4, Proposition 3.1] which states that Jz(K) = {δz} if and only if

the complement of K is non-thin at z, that is z is a fine boundary point of K.

In particular,

Corollary 3.4. If Jx(K) 6= {δx}, then x ∈ intfK.
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The set ∂fK is also called the stable boundary of K. In fact the lemma shows that

ChS(K)K is the finely regular boundary of the fine interior of K. For more details on

finely regular boundary points and other related concepts, see [4, VII.5-7] and [19].

With this association, the result in [5, p. 89] of Brelot about the stable boundary

points of K shows that ChS(K)K is dense in ∂K. We present a more geometric proof

here.

Theorem 3.5. The fine boundary of K (and therefore the Choquet boundary of K

with respect to S(K)) is dense in the topological boundary of K.

For the proof we will need the following notation. Recall that B(x, r) is the open

ball of radius r centered at x in Rn. The sphere of radius r centered at x in Rn is

then denoted S(x, r) = ∂B(x, r). The surface measure on S(x, r) will be denoted σ,

and take sn−1 to be the surface area of the unit (n− 1)-sphere.

Proof. Consider x0 ∈ ∂K. Suppose we have an arbitrary ball centered at x0. Then

it contains a point y0 which does not belong to K. Take r0 = ||y0 − x0||.

From now on we will call B = B(x0, r0) and let B denote the closure of B. Let

H be the hyperplane tangent to B at y0. It is given by the equation H = {x ∈ Rn :

〈x, y0−x0〉 = r20}, where 〈, 〉 is the standard inner product on Euclidean space. Let us

find the maximal t < r0 such that the hyperplane Ht = {x ∈ Rn : 〈x, y0 − x0〉 = tr0}

contains some point x1 ∈ K ∩B. Since x0 ∈ K the number t ≥ 0.

There are two possibilities: firstly, x1 ∈ B or, secondly, x1 ∈ ∂B. In the first case

for every sufficiently small r > 0 all points y of the sphere S(x1, r) for which 〈y, y0 −
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x0〉 > tr0 lie in the complement Kc of K. Hence σ(S(x1, r) ∩ Kc) > σ(S(x1, r))/2

and

lim inf
r→0

σ(S(x1, r) ∩Kc)

σ(S(x1, r))
≥ 1

2
.

In the second case, we take a small neighborhood V of y1 in ∂B, lying in the set

{y ∈ ∂B : 〈y, y0−x0〉 > tr0} and note that due to convexity all points of the intervals

connecting x1 with y ∈ V , except x1, lie in the set {y ∈ B : 〈y, y0 − x0〉 > tr0}

and, consequently, in Kc. Since the rays x1 + sy, s > 0, y ∈ V , form a cone of

positive aperture with vertex at x1 we see that there is a constant c > 0 such that

σ(S(x1, r) ∩Kc) > csn−1r
n when r > 0 is sufficiently small. Hence

lim inf
r→0

σ(S(x1, r) ∩Kc)

σ(S(x1, r))
≥ c > 0.

There is a standard criteria for thinness [20, Corollary 5.6.5, p. 227] which states that

if E is thin at a point x then

lim inf
r→0

σ(S(x, r) ∩ E)

σ(S(x, r))
= 0.

Thus Kc is non-thin at x1, which means that x1 is in the fine boundary of K.

3.3 Harmonic Measure on a Compact Set

To use the exterior definition of H(K) we will commonly want to approximate K by

a decreasing sequence of regular domains. A decreasing sequence of regular domains

{Uj} is said to be converging to K if for every ε > 0 there is a j0 such that Uj lies in
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the ε-neighborhood Kε of K when j ≥ j0 and contains K. Furthermore, we require

that Uj+1 is compactly contained in Uj, i.e. U j+1 ⊂ Uj, for all j. The existence of

such a sequence is provided by [21, Prop 7.1].

The next theorem will allow us to define a harmonic measure on K. For a de-

creasing sequence of regular domains {Uj}, we will let ωUj
(z, ·) denote the harmonic

measure on Uj with barycenter at z ∈ Uj.

Theorem 3.6. If {Uj} is a sequence of regular domains converging to a compact

set K ⊂ Rn, then for every z ∈ K the harmonic measures ωUj
(z, ·) converge weak∗.

Furthermore, this limit does not depend on the choice of the sequence of domains

{Uj}.

Proof. Since ωUj
are measures of unit mass supported on a compact set in Rn, by

Alaoglu’s Theorem they must have a limit point. To show that this point is unique

it suffices to show that for every z ∈ K the limit

lim
j→∞

∫
∂Uj

u(ζ) dωUj
(z, ζ) (3.1)

exists for every u ∈ C(U1).

First, we show the limit in (3.1) exists when u is continuous and subharmonic in

a neighborhood of K. The solution uj of the Dirichlet problem on Uj with boundary

value u is equal to

uj(z) =

∫
∂Uj

u(ζ) dωUj
(z, ζ).
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Since u is subharmonic, we have uj ≥ u on Uj. Then as uj+1 = u on ∂Uj+1 and

uj ≥ u = uj+1 on ∂Uj+1, the maximum principle for harmonic functions implies that

uj ≥ uj+1 on Uj+1. Thus {uj} is a decreasing sequence on K and we see that for

every z ∈ K the limit in (3.1) exists.

If u ∈ C2(U1), then we may represent u as a difference of two C2(U1) functions

which are subharmonic on U1. By the argument above the limit in (3.1) exists.

Since C2(U1) is dense in C(U1) we see that the limit in (3.1) always exists.

Definition 3.5. We define the harmonic measure ωK(z, ·) on a compact set K with

z ∈ K as the weak∗ limit of ωUj
(z, ·) chosen as above.

To use this definition for the Dirichlet problem we must check that the support

of ωK(z, ·) lies on the boundary of K. Actually in Section 3.2 we will be able to give

more specific information about ωK(z, ·), see Corollary 3.12.

Lemma 3.7. The support of ωK(z, ·) is contained in ∂K.

Proof. Let W be a neighborhood of ∂K. Let {Uj} be a sequence of domains converg-

ing to K and take a sequence zj ∈ ∂Uj. Then there exists a subsequence {zjk} which

must be converging to some z0 ∈ K. As zj ∈ ∂Uj, then zj is not in K. Therefore the

limit of zjk cannot be in the interior of K. Thus z0 is in ∂K ⊂ W . Consequently,

there is j0 such that ∂Uj ⊂ W for each j ≥ j0,

Let x ∈ Rn \ ∂K and take W to be a neighborhood of ∂K so that x 6∈ W . There

is an r > 0 so that B(x, r) ∩W = ∅. Since ωUj
(z, ·) has support on ∂Uj, which is
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contained is W for large j, we have ωUj
(z, B(x, r)) = 0. Since B(x, r) is open, the

Portmanteau Theorem shows

lim inf
j→∞

ωUj
(z,B(x, r)) ≥ ωK(z,B(x, r)).

Hence ωK(z, B(x, r)) = 0 and x is not in the support of ωK(z, ·).

The following theorem brings our study back to the topic of Jensen measures.

Theorem 3.8. The harmonic measure on K is a Jensen measure on K.

Proof. Since ωK(z, ·) is defined as the weak∗ limit of probability measures, ωK(z, ·) is

a probability measure.

Recall that for z ∈ K we have defined Jz(K) = ∩Jz(U), where K ⊂ U . However

it is sufficient to see that Jz(K) = ∩Jz(Uj) where {Uj} is any sequence of domains

converging to K. We will show ωK(z, ·) ∈ Jz(Uj) for all j.

Pick some j. Then let f be a continuous subharmonic function on Uj. Then

f(z) ≤
∫
∂Ul

f(ζ) dωUl
(z, ζ),

for all l > j. Then by taking the weak∗ limit, we have that

f(z) ≤
∫
∂K

f(ζ) dωK(z, ζ).

Then ωK(z, ·) satisfies the sub-averaging inequality for every continuous subharmonic

function on Uj and ωK(z, ·) is a probability measure with support contained in Uj.

Thus ωK(z, ·) must be in J c
z (Uj), which is equal to Jz(Uj) by Theorem 2.1. Therefore

ωK(z, ·) ∈ Jz(K).
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Following [16, p. 16] a partial ordering on the set of Jensen measures is defined

below. The notation J (K) is used to stand for the union of all Jensen measures on

K, that is

J (K) =
⋃
z∈K

Jz(K).

Definition 3.6. For µ, ν ∈ J (K) we say that µ � ν if for every φ ∈ S(K) we have

µ(φ) ≥ ν(φ). Furthermore, a Jensen measure µ is maximal if there is no ν � µ with

ν 6= µ where ν ∈ J (K).

We start with a simple observation.

Lemma 3.9. If µ ∈ Jz1(K) and ν ∈ Jz2(K) with z1 6= z2 then µ and ν are not

comparable.

Proof. To see this simply recall that the coordinate functions πi are harmonic. As

z1 6= z2 they must differ in at least one coordinate, say the ith. Assume with out loss

of generality that πi(z1) > πi(z2). Then µ(πi) > ν(πi). However −πi is also harmonic

and so ν(−πi) > µ(−πi). Therefore µ and ν are not comparable and if µ � ν then

they have the common barycenter.

We will now show that the harmonic measure is maximal with respect to this

ordering. The maximality of harmonic measure proved below is the Littlewood Sub-

ordination Principle (see [11, Theorem 1.7]) when K is the closed unit ball in the

plane.

Theorem 3.10. For all z ∈ K, the measure ωK(z, ·) is maximal in J (K).
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Proof. By Lemma 3.9 it suffices to show that for any z ∈ K, ωK(z, ·) is maximal in

Jz(K).

Pick any z0 ∈ K. Now we will show that ωK(z0, ·) majorizes every measure

µ ∈ Jz0(K). Consider a decreasing sequence of regular domains {Uj} converging to

K. Take any φ ∈ S(K). By Proposition 3.2 we may find a sequence φj ∈ S(Uj)∩C(Uj)

increasing to φ. Furthermore we extend φ as φ̃ ∈ C0(Rn) while keeping φ̃ ≥ φj for all

j. Define harmonic functions Φj on Uj by

Φj(x) =

∫
∂Uj+1

φj(ζ) dωUj+1
(x, ζ).

Therefore as φj is subharmonic, Φj ≥ φj on Uj+1, so∫
∂Uj+1

φj(ζ) dωUj+1
(z0, ζ) = Φj(z0) = µ(Φj) ≥ µ(φj).

As φ̃ ≥ φj, we have ∫
∂Uj+1

φ̃(ζ) dωUj+1
(z0, ζ) ≥ µ(φj), (3.2)

for all j. By taking weak∗ limits, we have that

lim
j→∞

∫
∂Uj+1

φ̃(ζ) dωUj+1
(z0, ζ) =

∫
∂K

φ(ζ) dωK(z0, ζ).

The Lebesgue Monotone Convergence Theorem provides

lim
j→∞

µ(φj) = µ(φ).

Therefore by taking the limit by j of 3.2 we see∫
∂K

φ(ζ) dωK(z0, ζ) ≥ µ(φ).
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We now have ωK(z0, ·) � µ. If any ν ∈ Jz0(K) has the property ν � ωK(z0, ·), by the

antisymmetry property of partial orderings ν = ωK(z0, ·). Thus the measure ωK(z0, ·)

is maximal in Jz0(K).

The maximality of harmonic measures implies that they are trivial at the points

z ∈ K such that Jz(K) = {δz}, which by Lemma 3.3 are precisely the fine boundary

points.

Corollary 3.11. The harmonic measure ωK(z0, ·) = δz0 if and only if Jz0(K) = {δz0}.

Proof. Suppose ωK(z0, ·) = δz0 . Consider the function ρ(z) = ||z − z0||2 ∈ Sc(K).

Then for any µ ∈ Jz0 , by the maximality of ωK(z0, ·) we have

0 = ρ(z0) ≤ µ(ρ) ≤
∫
∂K

ρ(ζ) dωK(z0, ζ) = ρ(z0) = 0.

As ρ(z) > 0 for all z 6= 0 and as µ is a probability measure, we see that µ = δz0 . Thus

Jz0(K) = {δz0}.

For the reverse implication we have already proved Theorem 3.8 that ωK(z0, ·) ∈

Jz0(K).

In general the fine boundary is not closed, as Example 4.1 will show. So we cannot

claim that it is the support of measures. Moreover, as Theorem 3.5 just showed the

closure of ∂fK is the boundary of K. In particular, it may coincide with K for porous

Swiss cheeses, see [17, pg. 25-26].

Recall that a measure µ ∈ M(K) is concentrated on a set E, if for every set

F ⊂ K \E, µ(F ) = 0. A probability measure µ is concentrated on a set E if and only
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if µ(E) = 1. From [16, p. 19] we know that all maximal measures are concentrated

on ChS(K)K = ∂fK. With this observation, the next corollary immediately follows

from Theorem 3.10 which stated that the harmonic measure is maximal.

Corollary 3.12. For every z in K, the harmonic measure with barycenter at z is

concentrated on ∂fK.

3.4 On the Green function associated to a compact

set

We now proceed to study the Green function on K. Recall [10, Theorem (b) 1.VII.6,

p. 94] that if D is an open Greenian set in Rn so that {Dj} is a decreasing sequence of

open sets converging toD, then the sequence {GDj
(·, y)} of Green functions associated

to {Dj} is decreasing to GD(·, y) for every y ∈ D. By analogy one can define a Green

function on a compact set K as the limit of the sequence {GDj
(·, y)} where y ∈ K

and {Dj} is any decreasing sequence of open sets converging to K. In the article [22]

Poletsky defines a Green function on a compact set in this way.

Recall, [10, p. 90], that for a regular open set D the associated Green function

GD(·, y) extends continuously as ĜD(·, y) to Rn for any y ∈ D where ĜD(·, y) = 0 on

{D, the complement of D, and this extension ĜD(·, y) is subharmonic on Rn \ {y}.

In the following proposition we outline some of the basic properties of ĜK .
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Proposition 3.13. For all y ∈ K, the function ĜK(·, y) : Rn → [0,∞] defined as

ĜK(·, y) = lim infj ĜDj
(·, y) has the following properties:

i. ĜK(x, y) = 0 when x ∈ {K := Rn \K and y ∈ K,

ii. ĜK does not depend on the sequence {Dj} chosen,

iii. ĜK ≥ 0 and ĜK(y, y) = +∞ for all y ∈ K,

iv. ĜK is symmetric, i.e. ĜK(x, y) = ĜK(y, x), for all x, y ∈ K,

v. ĜK(·, y) is super-averaging on K, i.e. ĜK(x, y) ≥
∫
ĜK(ζ, y) dµ(ζ) for all

µ ∈ Jx(K) with x ∈ K, and

vi. ĜK(·, y) is subharmonic on Rn \ {y}.

proof of i. This follows from the fact that ĜDj
(x, y) = 0 whenever x /∈ Dj.

proof of ii. If D1 ⊃ D2 then ĜD1(·, y) ≥ ĜD2(·, y) for any Greenian sets D1 and D2.

Alternatively we could have defined ĜK by

ĜK(·, y) = inf{ĜD(·, y) : D ⊃ K,D Greenian}, y ∈ K.

proof of iii. As ĜD ≥ 0 and ĜD(y, y) = +∞ for all x, y ∈ D for any Greenian D.

proof of iv. Since ĜD(x, y) = ĜD(y, x) for all x, y ∈ D for any Greenian D.

proof of v. For any Greenian set D the function ĜD(·, y) is superharmonic on D.

Then ĜD(x, y) ≥
∫
ĜD(ζ, y) dµ(ζ) for all µ ∈ Jx(D) with ζ ∈ D. If Dj is a decreasing
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sequence of domains converging to K, then ĜDj
(·, y) is decreasing to ĜK(·, y). There-

fore by the Lebsegue Monotone Convergence Theorem ĜK(x, y) ≥
∫
ĜK(ζ, y) dµ(ζ)

for all µ ∈ ∩jJx(Dj) := Jx(K) with x ∈ K.

proof of vi. Let {Dj} be a decreasing sequence of regular domains converging to K.

Then ĜDj
(·, y) is continuous, and so ĜK(·, y) must be upper semicontinuous. For any

j and any y ∈ Dj, by [10, p. 90] the extension ĜDj
(·, y) of Green function ĜDj

(·, y)

by 0 is subharmonic on Rn \ {y}. Therefore by the Lebesgue Monotone Convergence

Theorem ĜK(·, y) is subaveraging on Rn\{y} as it is the decreasing limit of a sequence

of subharmonic functions. Since ĜK(·, y) is upper semicontinuous and subaveraging,

ĜK(·, y) is subharmonic on Rn \ {y}.

It was shown in [13] that every bounded fine open set U admits a fine Green

function which we shall denote by Gf
U(x, y). The following result shows that for a

compact set K the functions ĜK(x, y) and Gf
intfK

(x, y) are scalar multiples of each

other.

Theorem 3.14. For any compact set K ⊂ Rn there is c > 0 such that ĜK(x, y) =

cGf
intfK

(x, y) for any y ∈ intfK.

Proof. Fuglede has given a simple characterization of the fine Green function up to

multiplication by a positive constant. Indeed, if a function g : U × U → R has the

following properties

1. g(·, y) is a nonnegative finely superharmonic function on U ,
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2. if v is finely subharmonic on U and v ≤ g(·, y), then v ≤ 0,

3. g(·, y) is finely harmonic on U \ {y} for any y ∈ U , and

4. g(y, y) = +∞

then g(x, y) = cGf
U(x, y) for some c > 0 for all x, y ∈ U .

Hence to prove the theorem we need only to check these properties. Firstly, we

note that by Lemma 3.13 ĜK(·, y) is subharmonic (and thereby finely subharmonic)

on Rn \ {y}, which implies ([12, Theorem 9.10]) fine continuity on Rn \ {y}.

In fact, we will shall now see that ĜK(·, y) is finely continuous at y when y ∈

intfK. Every bounded fine open set admits a fine Green function, cf. [13, 15]. Let

Gf
intfK

denote the fine Green function corresponding to the bounded fine open set

intfK. Since intfK ⊂ Dj we have Gf
intfK

(·, y) ≤ ĜDj
(·, y). As ĜK(·, y) is the

decreasing limit of ĜDj
(·, y) we have the inequalities

Gf
intfK

(·, y) ≤ ĜK(·, y) ≤ ĜDj
(·, y),

for all y ∈ intfK. Since Gf
intfK

(·, y) and ĜDj
(·, y) are finely continuous, ĜK(·, y) must

be finely continuous at y as

∞ = f - lim
x→y

Gf
intfK

(x, y) ≤ f - lim
x→y

ĜK(x, y) ≤ f - lim
x→y

ĜDj
(x, y) =∞.

Therefore ĜK(·, y) is finely continuous on Rn when y ∈ intfK.

Thus ĜK(·, y) is finely superharmonic on intfK as it is finely continuous and the

decreasing limit of {ĜDj
(·, y)}, a sequence of finely superharmonic functions on intfK

and this implies that 1. holds.
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Suppose that Ĝ(x0, y) > 0 for x0 ∈ ∂fK. Then there is a fine neighborhood V of

x0 such that ĜK(x, y) > 0 for all x ∈ V . By definition x ∈ ∂fK if and only if {K

is non-thin at x. As x0 ∈ ∂fK, this means that V ∩ {K 6= ∅. However by Lemma

3.13, ĜK(x, y) = 0 for x ∈ {K and y ∈ K, a contradiction. Therefore ĜK(x, y) = 0

for all x ∈ ∂fK and y ∈ intfK. So ĜK is a fine potential on intfK by the minimum

principle [4, III.4.1] (see also [12, Theorem 9.1]) and this implies 2.

We have seen above that ĜK(·, y) is finely superharmonic on intfK. By Propo-

sition 3.13.vi ĜK(·, y) is finely subharmonic on intfK \ {y}. Therefore ĜK(·, y) is

finely harmonic on intfK \ {y} and we checked 3.

The property 4. follows immediately from Proposition 3.13.iii and the theorem is

proved.

Proposition 3.15. The Green function ĜK(x, y) > 0 for x, y ∈ K if and only if x

and y are in the same fine connected component of intfK.

Proof. By the previous proposition ĜK(·, y) is finely superharmonic on intfK. If

ĜK(x, y) = 0, then by [12, Theorem 12.6] for all ζ in the fine component of y we have

ĜK(ζ, y) = 0. Therefore ĜK(·, y) > 0 on the fine component containing y.

Suppose that intfK has multiple components. Each component is fine open and

therefore has its own Green function. We can define a function g(x, y) on intfK by

g(x, y) =


Gf
Qx

(x, y), y ∈ Qx

0, y ∈ (intfK) \Qx
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where Qx is the fine component containing x. Since fine subharmonicity and fine

harmonicity are local properties, g satisfies the requirements mentioned in the proof of

Theorem 3.14 to be a positive multiple of the fine Green function on intfK. Therefore

Gf
intfK

(x, y) is positive if and only if x and y are in the same fine component of intfK.

So ĜK(x, y) = 0 when x and y are in different fine connected components.

In the proof of the previous proposition we proved that ĜK(x, y) = 0 for x ∈ ∂fK

and y ∈ K \ {x}.

In [22] Poletsky introduced the sets

Q(x) = {y ∈ K : ĜK(x, y) > 0},

for every x ∈ K. The following corollary directly follows from Proposition 3.15 and

characterizes these sets in terms of the fine topology.

Corollary 3.16. For all x ∈ intfK, the set Q(x) is the fine connected component

of intfK which contains x. Additionally the point x ∈ K is in ∂fK if and only if

Q(x) = {x}.



Chapter 4

A Dirichlet problem on compact

sets

In the classical setting we know that any continuous function in the boundary of a

domain D ⊂ Rn extends harmonically to D and continuously to D if and only if

every point of the boundary is regular. For general compact sets in Rn we have the

following result.

From this result it also follows that the swept-out point mass at z onto the com-

plement of K is just ωK(z, ·).

Theorem 4.1. If K is a compact set in Rn then any function φ ∈ C(∂fK) extends

to a function in H(K) if and only if the set ∂fK is closed. Moreover, the solution is

given by

Φ(z) =

∫
∂fK

φ(ζ) dωK(z, ζ) z ∈ K
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and H(K) is isometrically isomorphic to C(∂fK).

Proof. Suppose that the set ∂fK is closed. Consider a continuous function φ on ∂fK.

Let

Φ(z) =

∫
∂fK

φ(ζ) dωK(z, ζ) z ∈ K.

As ∂fK is closed, by Theorem 3.5, we have ∂fK = ∂K. Also as ωK(z, ·) = δz for

every z ∈ ∂fK, we see that Φ = φ on ∂fK.

Let zj be a sequence in K converging to z0 ∈ ∂fK. As z0 is in ∂fK = ChS(K)K,

so Jz0(K) = {δz0}. Since (see [16, p. 3]) J (K) is weak∗ compact, any sequence of

measures µj ∈ Jzj(K) must converge weak∗ to δz0 . In particular, ωUj
(zj, ·) is weak∗

converging to δz0 . Hence Φ(zj) is converging to Φ(z0) = φ(z0), and Φ is continuous

at the boundary of K.

As ∂fK is closed, we have φ ∈ C(∂fK) = C(∂K). We extend φ continuously as

φ̃ ∈ C0(Rn), and then define the harmonic functions

hj(z) =

∫
∂Uj

φ̃(ζ) dωUj
(z, ζ).

As φ̃ is continuous and ωUj
(z, ·) converges weak∗ to ωK(z, ·),

lim
j→∞

hj(z) = lim
j→∞

∫
∂Uj

φ̃(ζ) dωUj
(z, ζ) =

∫
∂K

φ(ζ) dωK(z, ζ) = Φ(z).

Therefore Φ is the pointwise limit of a sequence {hj} of functions harmonic in a

neighborhood of K. Furthermore we can take the extension φ̃ of φ in such a way that

the sequence {hj} is uniformly bounded. It now easily follows that Φ is continuous on
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the interior of K. Indeed, consider a point z in the interior of K. Then there exists

a ball B centered at z contained in the interior of K. The hj are harmonic functions

on B and converging pointwise to Φ. Thus Φ is continuous on B by the Harnack

principle, and so Φ is continuous on K. Therefore we have a continuous function Φ

with representation

Φ(z) =

∫
∂K

φ(ζ) dωK(z, ζ) z ∈ K.

Since Φ is continuous on K by [22] to check that Φ ∈ H(K) all that remains is to

show that Φ is averaging with respect to Jensen measures, i.e. the equivalence of the

external definition of H(K) and the definition by Jensen measures. So we need to see

that Φ(z) = µz(Φ) for every µz ∈ Jz(K) and for every z ∈ K. As hj is harmonic on

Uj, hj(z) = µz(hj). However by the Lebesgue Dominated Convergence Theorem

µz(Φ) = lim
j→∞

µz(hj) = lim
j→∞

hj(z) = Φ(z).

Thus Φ ∈ H(K).

For the converse, suppose ∂fK is not closed. Then there is a point z0 ∈ ∂K \∂fK.

Since z0 is not in ∂fK, by Corollary 3.11, ωK(z0, ·) is not trivial. Therefore we can

find a set E ⊂ ∂K such that ωK(z0, E) > 0 with E in the complement of B(z0, r) for

some r > 0. Consider a continuous function f on ∂K such that f = 1 on ∂K outside

B(z0, r) is 1 and f = 0 on B(z0, r/2) ∩ ∂K. Then

∫
∂K

f(ζ) dωK(z0, ζ) > ωK(z0, E) z ∈ K.
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However f(z0) = 0. Thus there can be no function in H(K) which agrees with f on

the boundary of K.

Example 4.1. The following set provides a simple example of a compact set K ⊂ Rn,

n ≥ 3, in which the fine boundary is not closed. The set K is obtained from the closed

unit ball B ⊂ Rn by deleting a sequence {B(zn, rn)}∞n=1 of open balls whose centers

and radii tend to zero. We take the centers to be zn = (2−n, 0, . . . , 0) ∈ Rn and the

radii 0 < rn < 2−n−2. This example is analogous to the “road runner” example of

Gamelin [17, Figure 2, pg 52] and the Lebesgue spine [1, pg 187].

By Theorem 4.1 one can not expect a continuous solution for the Dirichlet problem

on an arbitrary compact set even with continuous boundary data. Therefore at this

point we consider the following broader class of solutions with weaker continuity

requirement.

Definition 4.1. Let fHc(K) denote the class of finely continuous functions on K

which are finely harmonic on the fine interior of K and continuous and bounded on

∂fK.

We have seen (the definition via Jensen measures) that H(K) consists of the

functions in C(K) satisfying the averaging property with respect to J (K) and by the

interior definition of H(K) can also be seen as the C(K) functions which are finely

harmonic on the fine interior of K. Therefore in the definition of fHc(K) we have

maintained the finely harmonic requirement while requiring continuity only on the
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boundary ∂fK (to match the boundary data). In fact Theorem 4.3 below shows that

the functions in fHc(K) also satisfy the averaging property with respect to J (K).

Theorem 4.3 will show that the Dirichlet problem on compact sets K ⊂ Rn is

solvable in the class of functions fHc(K) for boundary data that is continuous and

bounded on ∂fK. The functions which are continuous and bounded on ∂fK will be

denoted Cb(∂fK). For this we will need the following [12, Theorem 11.9] of Fuglede.

Theorem 4.2. The pointwise limit of a pointwise convergent sequence of finely har-

monic functions um in U , a finely open subset of Rn, is finely harmonic provided that

supm |um| is finely locally bounded in U .

Theorem 4.3. For every φ ∈ Cb(∂fK), i.e. continuous and bounded on ∂fK, there

is a unique hφ ∈ fHc(K) equal to φ on ∂fK. Moreover, hφ satisfies the averaging

property for J (K) and in particular

hφ(x) =

∫
∂fK

φ(ζ) dωK(x, ζ), x ∈ K.

Proof. Let φ ∈ Cb(∂fK) and for x ∈ ∂fK define

φ̃(x) = lim sup
y→x, y∈∂fK

φ(y).

Since φ is continuous on ∂fK, if x ∈ ∂fK then φ̃(x) = φ(x). Furthermore, φ̃ is upper

semicontinuous, and as such we may find a decreasing sequence of functions {φk}

which are continuous on ∂fK and converge pointwise to φ̃. Then we extend the φk

to C0(Rn) as φ̂k. By taking φ̃k = min{φ̂1, φ̂2, · · · , φ̂k} we can make the extensions
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be decreasing. Consider a decreasing sequence of regular domains Uj converging to

K. Let uj, k be the solution of the Dirichlet problem on Uj for φ̃k. As the measures

ωUj
(x, ·) weak∗ converge to ωK(x, ·), we have that limj uj, k =

∫
φ̃k dωK := uk. As the

φ̃k are decreasing, uk must also be decreasing. Indeed, we will let hφ = limuk.

Take any µ ∈ J (K). Then µ ∈ Jz0(Uj) for all j and some z0 ∈ K. As uj, k is har-

monic, we have µ(uj, k) = uj, k(z0). However by the Lebesgue Dominated Convergence

Theorem we have limj µ(uj, k) = µ(uk), and so µ(uk) = uk(z0). Since the sequence

{uk} is decreasing pointwise to hφ we have that µ(hφ) = hφ(z0) by the Lebesgue

Monotone Convergence Theorem. Thus hφ satisfies the averaging property on J (K).

As ωK(z, ·) ∈ J (K) for all z ∈ K we see that

hφ(z) =

∫
∂fK

hφ(ζ) ωK(z, ζ).

We will now show that hφ = φ on ∂fK. For any x ∈ Ok, we know ωK(x, ·) = δx, and

uk(x) = lim
j→∞

uj, k(x) =

∫
φ̃k(ζ) dωK(x, ζ) = φ̃k(x).

Thus uk(x) = φ̃k(x) for all x ∈ ∂fK, and so

hφ(x) = lim
k→∞

uk(x) = lim
k→∞

φ̃k(x) = φ(x),

for all x ∈ ∂fK.

To see that hφ is finely harmonic we use Theorem 4.2. Observe that uk is the

pointwise limits of the harmonic (and therefore finely harmonic) functions uj, k, and

the solution hφ is the pointwise limit of uk. From the construction of these functions

it is clear that they are bounded.
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Corollary 4.4. The set Cb(∂fK) is isometrically isomorphic to fHc(K).

Proof. The previous theorem establishes the homomorphism taking Cb(∂fK) to fHc(K).

Observe that h|∂fK ∈ Cb(∂fK) for every h ∈ fHc(K). The uniqueness of the solution

shows that h|∂fK extends as h. Furthermore, the isometry follows directly from the

integral representation in the previous theorem.



Chapter 5

Restoring properties of harmonic

functions on compact sets

5.1 A return to Jensen measures

Some results from [22] now follow from standard properties of the fine potential theory

and the fine topology. For example [22, Theorem 3.6 (2)] is the partitioning the set K

into the fine connected components of intfK and singleton sets for peak points (i.e.

the set ∂fK) forms an equivalence relation, [22, Theorem 3.6 (3)] is the fine minimum

principle, and [22, Theorem 3.6 (4)] is that fine connected components have positive

measure. We can now extend/rephrase some results of [22] and use them to obtain

some new results.

Theorem 5.1. For x ∈ K and any ε > 0 there exists a µ ∈ Jx(K) with µ(B(y, ε)) > 0

42
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if and only if the point y is in the (Euclidean) closure Q(x) of the fine component of

x.

Proof. In [22] Poletsky defines I(x) as the set of points y ∈ K with the property that

for any ε > 0 there exists a µ ∈ Jx(K) with µ(B(y, ε)) > 0 and in [22, Theorem 3.6

(1)] proves that I(x) = Q(x). The result follows from Corollary 3.16.

The following corollary is an immediate consequence of the previous theorem.

Corollary 5.2. Let K be a compact set in Rn. Then supp(µ) ⊂ Q(x) for all µ ∈

Jx(K).

For use in the following proposition we recall the notion of a reduced function,

see [1, Definition 5.3.1]. Fix a Greenian open set Ω ⊂ Rn. Let U+(Ω) be the set of

non-negative superharmonic functions on Ω. For u ∈ U+(Ω) and E ⊂ Ω, the reduced

function of u relative to E in Ω is defined by

RE
u (x) = inf{v(x) : v ∈ U+(Ω) and v ≥ u on E}, x ∈ Ω.

Also note that R̂E
u is the lower semicontinuous regularization of RE

u .

Proposition 5.3. Let U and V be disjoint fine open sets. Then V ∩U is a polar set.

Proof. It suffices to prove this statement when U and V are bounded. Otherwise, we

may consider intersections of these sets with increasing sequence of open balls.

Let Ω be any open Greenian set containing U and V . Since U is disjoint from V , U

is thin at y for every y ∈ V . Then by [1, Theorem 7.3.5] there is a bounded continuous
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potential u# on Ω with the property that R̂U
u#

(y) < u#(y) for all y ∈ V ∩ U . By

construction RU
u#
≥ u# and RU

u#
(x) = R̂U

u#
(x) = u#(x) for all x ∈ U . Therefore

V ∩U ⊂ {RU
u#
6= R̂U

u#
}, and by [1, Theorem 5.7.1] the set {RU

u#
6= R̂U

u#
} is polar.

Corollary 5.4. For a compact set K ⊂ Rn, let {Ai} be the collection of disjoint fine

connected components of the fine interior of K. Then intf Ai = Ai for all i.

Proof. We will show that intf Ai has only one fine component and so it must be Ai.

Suppose that intf Ai = A∪ V where A is the fine component containing Ai and V is

fine open and disjoint from A. First we note that Ai = A as Ai ⊂ A ⊂ intfK and

Ai is a fine component of intfK. Secondly, V is disjoint from Ai and contained in

intf Ai, hence V ⊂ Ai \ Ai. Therefore by Proposition 5.3, we have that V must be

polar and cannot be fine open.

The following corollary tells us that the only trivial Jensen measures can have sup-

port in the closure of two fine components. We use the notation J (K) := ∪x∈KJx(K)

to denote the collection of all Jensen measures on K.

Corollary 5.5. Let {Aj} be the fine connected components of the fine interior of K.

Then

J (Ai)
⋂
J (Aj) =

⋃
x∈Ai∩Aj

{δx},

where i 6= j.

Proof. Let µ ∈ J (Ai)
⋂
J (Aj) with i 6= j. Then there is an xi ∈ Ai and xj ∈ Aj so

that µ ∈ Jxi(Ai)
⋂
Jxj(Aj). As the coordinate functions are harmonic, this implies
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that xi = xj. Let us call x0 := xi = xj ∈ Ai
⋂
Aj. As Ai and Aj are disjoint, we have

by Corollary 5.4 that x0 must be in the fine boundary of either Ai or Aj. However

the only way that x0 can be in the fine boundary (see Lemma 3.3) is if µ = δx0 .

The following theorem gives sufficient condition on a subset E of K so that the

Jensen measures on K with barycenter x ∈ E belong to the Jensen measures on E.

Theorem 5.6. Let A ⊂ K ⊂ Rn with K compact with A and intfK \ A fine open,

that is A is a union of some of the fine connected components of intfK. Suppose that

supp(µ) ⊂ A for all µ ∈ Jx(K) and all x ∈ A then Jx(K) = Jx(A) for all x ∈ A.

Proof. The inclusion Jx(A) ⊆ Jx(K) is trivial.

We will now check that Jx(K) ⊆ Jx(A). Pick µ ∈ Jx0(K). To see that µ ∈ Jx0(A)

we must show that f(x0) ≤ µ(f) for all f ∈ S(A). Hence we will assume there exists

f ∈ S(A) so that µ(f) < f(x0) and construct h ∈ S(K) with h close to f at x0 and

on a large (dµ) subset of supp(µ). This h will then have the property µ(h) < h(x0)

contradicting that µ ∈ Jx0(K).

Suppose there exists f ∈ S(A) such that µ(f) < f(x0). As cf + c′ is also in S(A)

for c > 0 and since the functions in S(A) are uniform limits of continuous subharmonic

functions defined in neighborhoods of A, we may assume that f ∈ C(G) ∩ S(G) for

some open set G ⊃ A with the properties 0 < µ(f) < f(x0) < 1 and 0 < f < 1. Let

a := f(x0)− µ(f) > 0 and take G′ open with A ⊂ G′ and G′ ⊂ G.

Pick φ ∈ C(Rn) with φ = 0 on A, φ = −1 on Rn \G′ and −1 < φ < 0 on G′ \ A.
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By Edwards Theorem (see [6])

Eφ(y) = sup{f(y) : f ∈ S(K), f ≤ φ} = inf{ν(φ) : ν ∈ Jy(K)}.

By assumption supp(ν) ⊂ A for all ν ∈ Jy(K) and every y ∈ A. So Eφ(y) = 0 for

every y ∈ A. Thus for any 0 < ε < a/3 there exists a g ∈ S(K) with −1 ≤ g ≤ φ ≤ 0

and g(x0) > −ε > −a/3.

Actually we can say a little more. By Corollary 3.4, we know that Jy(K) 6= {δy}

if and only if y ∈ intfK. This allows us to decompose A into three sets; A, ∂1A ⊂ ∂A

where Jy(K) = {δy} for y ∈ ∂1A, and ∂2A = A \ (A ∪ ∂1A). Each point in ∂2A

belongs to intfK \ A. Recall that by hypothesis intfK \ A is fine open. Therefore

∂2A ⊂ A∩ (intfK \A), which means that ∂2A is polar by Proposition 5.3. Since ∂2A

is a polar set, we see that µ(∂2A) = 0.

Thus there exists C a compact neighborhood of x with C ⊂ A ∪ ∂1A so that

µ(C) > 1 − ε. As Eφ|A∪∂1A = 0, trivially Eφ|C = 0. For every y ∈ C there are a

continuous and subharmonic function gy ≤ φ in a neighborhood of K and an open

neighborhood Uy of y with gy > −ε on Uy. The sets Uy cover C, so by compactness

we can pick up y1, . . . , yN so that C ⊂ Uy1 ∪ · · · ∪ UyN . Then g = max{gy1 , . . . , gyn}

has the property g|C > −ε and µ({g < −ε}) < ε.

Consider the function f + g. As g ≤ 0 we have

µ(f + g) = µ(f) + µ(g) ≤ f(x0)− a+ g(x0)− g(x0) < (f(x0) + g(x0))− a+ ε.
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As g ≤ φ, we have that f + g ≥ 0 on K \G′. Note also that

f(x0) + g(x0) = µ(f) + a+ g(x0) > a+ g(x0) > a− ε > 0.

So

h(y) =


0, K \G

max{f + g, 0}, G ∩K

is in C(K), h ≡ 0 on K \G′ and h(x0) = f(x0) + g(x0).

To see that h is in S(K) we use a localization argument. Let V be a covering

of the fine interior of K by fine open sets such that V ∈ V has the property: if

V ∩ G′ 6= ∅ then V ⊂ G. If V ⊂ G, then h = max{f + g, 0} ⊂ S(V ). If V ∩ G′ = ∅

then h ≡ 0 ∈ S(V ). Thus h ∈ S(K, intfK,V) = S(K), by [3, Proposition 3.5].

Thus

µ(h) =

∫
{f+g>0}

(f + g) dµ = µ(f + g)−
∫

{f+g≤0}

(f + g) dµ.

Now µ(f + g) < f(x0) + g(x0)− a+ ε and

∫
{f+g≤0}

(f + g) dµ =

∫
{f+g≤0}

f dµ+

∫
{f+g≤0}

g dµ.

The first integral on the right is positive (as 0 < f < 1) and because −1 < g ≤ 0

∫
{f+g≤0}

g dµ ≥
∫
g dµ.

But the last integral is equal to

∫
{g≥−ε}

g dµ+

∫
{g<−ε}

g dµ ≥ −ε− µ({g < −ε}).
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Recall that µ({g < −ε}) < ε. Thus

µ(h) ≤ f(x0) + g(x0) + a− 3ε < h(x0).

However this contradicts that µ ∈ Jx0(K) and h ∈ S(K). Hence Jx(K) ⊆ Jx(A) for

all x ∈ A.

We also get the following useful restriction property of Jensen measures.

Corollary 5.7. Let K ⊂ Rn be a compact set. For all x ∈ K, we have

Jx(Q(x)) = Jx(K).

Proof. We will show Jx(Q(x)) ⊂ Jx(K) first. Consider µ ∈ Jx(Q(x)) and u ∈ S(K).

Then u|Q(x) ∈ S(Q(x)), so that u(x) ≤ µ(u). Thus µ ∈ Jx(K).

By Corollary 5.2, supp(µ) ⊂ Q(x) for all µ ∈ Jx(K), which by Theorem 5.6 means

that Jx(K) ⊂ Jx(Q(x)).

5.2 Applications

An interesting corollary follows immediately from the proof of Theorem 5.6. For any

cone of functions R, we define the closure R̃ of R as all continuous functions which

can be represented as the supremum of functions from R.

Corollary 5.8. Let K ⊂ Rn be a compact set with {Aj} the fine connected compo-

nents of the fine interior of K. Then

S(Aj) = ˜S(K)|Aj
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for every component Aj.

Proof. It is clear that S(K)|Aj
⊂ S(Aj). Consider any function f ∈ S(Aj). By

Edwards Theorem (see [6])

f(x) = sup{φ(x) : φ ∈ S(Aj) and φ ≤ f on Aj} = inf{µ(f) : µ ∈ Jx(Aj)},

for all x ∈ Aj. From Corollary 5.7 we have Jx(Aj) = Jx(K) when x ∈ Aj. Therefore

we may apply Edwards Theorem again to see that

f(x) = inf{µ(f) : µ ∈ Jx(K)} = sup{φ(x) : φ ∈ S(K) and φ ≤ f on K},

for x ∈ Aj. Thus f ∈ ˜S(K)|Aj
.

The following theorem shows that the restoring covering of [22] is given by the

fine connected components of intfK.

Theorem 5.9. Let K ⊂ Rn be a compact set with {Aj} denoting the fine components

(fine open, fine connected) of the fine interior of K. For any f ∈ C(K), f ∈ H(K)

if and only if f ∈ H(Aj) for all j.

Proof. Recall that

H(K) = {f ∈ C(K) : f(x) = µ(f) for all µ ∈ Jx(K) and every x ∈ K}

However if x is in Aj by Corollary 5.7 we have that Jx(Aj) = Jx(K) which implies

the result.
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As a corollary we may extend the [18] result to higher dimensions. Recall that for

any compact set E, the set H(E)⊥ is the set of Radon measures µ with supp(µ) ⊂ E

such that µ(h) = 0 for all h ∈ H(E), and if m(E) is any set of Radon measures

with support in E the set ⊥m(E) consists of all f ∈ C(E) such that µ(f) = 0 for all

µ ∈ m(E).

Corollary 5.10. For any K ⊂ Rn compact

H(K)⊥ =
⊕

H(Aj)
⊥

where Aj are the fine components (fine open, fine connected) of the fine interior of

K.

Proof. Consider any µ ∈ ⊕H(Aj)
⊥ and h ∈ H(K). Then h|Aj

∈ H(Aj), so µ(h) = 0.

Thus ⊕H(Aj)
⊥ ⊂ H(K)⊥.

Conversely, suppose that h ∈ C(K) and h ∈ ⊥(⊕H(Aj)
⊥). Then h|Aj

∈

⊥(H(Aj)
⊥) = H(Aj). The restoring property (Theorem 5.9) then implies that

h ∈ H(K). Therefore ⊥(⊕H(Aj)
⊥) ⊂ H(K) and so H(K)⊥ ⊂ ⊕H(Aj)

⊥.

Recall the following definitions of Poletsky [22, Def 3.9, 3.15].

Definition 5.1. A compact set K ⊂ Rn, n ≥ 2, is called Jensen if K = Q(x) for

some x ∈ K, and Wermer if for all x ∈ K, either Q(x) = K or Q(x) = {x}.

It has been shown in [22, Corollary 3.16] that every Jensen set is a Wermer set in

the plane. We can now provide a proof of this in Rn.
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Proposition 5.11. A Jensen set is Wermer.

Proof. Suppose K is Jensen. Then K = Q(x0) for some x0 ∈ K. Every y ∈ K is

either a fine boundary point or in the fine interior. If y is in the fine boundary of K,

then Q(y) = {y} by Corollary 3.16.

We will show that intfK has only one fine component which must be Q(x0).

Suppose that intfK = Q(x0)∪ V were V is fine open and disjoint from Q(x0). Since

Q(x0) = K, by Proposition 5.3, we have that V must be polar and cannot be fine

open.

Thus for any y ∈ intfK, we have Q(y) = Q(x0) and so Q(y) = K.

The set K = [0, 1] ⊂ R2 provides a simple example of a Wermer set that is not

Jensen. Every point is a fine boundary point, so Q(x) = {x} for all x ∈ K. However

there is no point x0 ∈ K such that K = Q(x0). Proposition 5.11 can be interpreted

as saying that if K is Wermer then either H(K) = C(K) or K is Jensen.
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Index

C0(Rn) - continuous functions vanishing

at infinity, 12

ChS(K)K - Choquet boundary, 20

D - open set, 6

H(D) - harmonic functions on an open

set, 8

H(K) - harmonic functions on a compact

set, 16

K - compact set, 16

S(D) - subharmonic functions on an open

set, 8

S(K) - subharmonic functions on a com-

pact set, 16

J (K) - union of Jensen measures over all

points in K, 26

Jz(D) - Jensen measures on an open set,

13

Jz(K) - Jensen measures on a compact

set, 17

M(Rn) - finite signed Radon measures, 12

R-measures, 19

µ(f), 12

� - partial ordering on the set of Jensen

measures, 26

Alaoglu’s Theorem, 13

boundary data, 8

Choquet boundary, 20

convex function, 6

Dirichlet problem, 8

in the fine topology, 11

fine Dirichlet problem, 11

fine topology, 9

finely harmonic, 11

finely subharmonic, 11
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Green function, 29

harmonic, 8

definition via Jensen measures, 17

exterior definition, 16

in the fine topology, 11

interior definition, 17

on a compact set, 16

harmonic measure, 9

on a compact set, 24

Jensen measure, 13

maximal, 26

on a compact set, 17

partial ordering, 26

Littlewood Subordination Principle, 26

maximal Jensen measure, 26

partial ordering on Jensen measures, 26

Perron solution, 8

potential theory, 6

regular domain, 9

Riesz Representation Theorem, 12

subharmonic, 7

definition via Jensen measures, 17

exterior definition, 16

in the fine topology, 11

interior definition, 17

on a compact set, 16

superharmonic, 8

thin, 10

weak∗ convergence, 12
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