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AREA CONTRACTION FOR HARMONIC

AUTOMORPHISMS OF THE DISK

NGIN-TEE KOH AND LEONID V. KOVALEV

Abstract. A harmonic self-homeomorphism of a disk does not increase
the area of any concentric disk.

1. Introduction

The unit disk D = {z ∈ C : |z| < 1} can be endowed with the hyperbolic
metric

dσ =
|dz|

1 − |z|2
.

The Schwarz-Pick lemma (e.g., [1]) implies that any holomorphic map f : D →
D does not increase distances in the hyperbolic metric. This is no longer
true for harmonic maps, which verify the Laplace equation ∂∂̄f = 0 but
not necessarily the Cauchy-Riemann equation ∂̄f = 0. The harmonic ver-
sion of the Schwarz lemma ([5], see also [2]) states that any harmonic map
f : D → D with normalization f(0) = 0 satisfies

|f(z)| 6
4

π
arctan|z|, z ∈ D.

This inequality is sharp [4, p. 77]. More precisely, for any r ∈ (0, 1) and any
small ǫ > 0 there is a bijective harmonic map f : D → D such that f(0) = 0
and

f(r) = −f(−r) =
4

π
arctan r − ǫ.

This map is not a contraction in either Euclidean or hyperbolic metric. With
respect to either metric, the diameter of the disk Dr = {z ∈ C : |z| < r} is
strictly less than the diameter of f(Dr).

In this note we prove that a bijective harmonic map f : D → D does not
increase the area of Dr for any 0 < r < 1. We write |E| for the area (i.e.,
planar Lebesgue measure) of a set E.

Theorem 1.1. Let f : D → D be a bijective harmonic map. Then

(1.1) |f(Dr)| 6 |Dr|, 0 < r < 1.

If (1.1) turns into an equality for some r ∈ (0, 1), then f is an isometry.
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It should be noted that the class of harmonic automorphisms of D is
much wider than the class of holomorphic automorphisms, which consists
of Möbius maps only. Harmonic homeomorphisms of D form an interesting
and much-studied class of planar maps, see [3, 7, 8] or the monograph [4].
Theorem 1.1 is different from most known estimates for harmonic maps in
that it remains sharp when specialized to the holomorphic case.

An immediate consequence of (1.1) is |f(D \ Dr)| > |D \ Dr|. If f is
sufficiently smooth, we can divide by 1 − r and let r → 1 to obtain the
following.

Corollary 1.2. Let f : D → D be a bijective harmonic map that is contin-

uously differentiable in the closed disk D. Then
∫

|z|=1
|detDf | |dz| > 2π,

where det Df = |∂f |2 − |∂̄f |2 is the Jacobian determinant of f .

Corollary 1.2 was proved in a different way in [6] where it serves as an im-
portant part of the proof of Nitsche’s conjecture on the existence of harmonic
homeomorphisms between doubly-connected domains. In fact, Corollary 1.2
is what led us to think that (1.1) might be true.

If f : D → D is holomorphic, then (1.1) holds without the assumption of f
being bijective. Indeed, in this case f(Dr) is contained in a hyperbolic disk
D of the same hyperbolic radius as Dr. Since the density of the hyperbolic
metric increases toward the boundary, it follows that the Euclidean radius
of D is at most r, which implies (1.1).

Question 1.3. Does the area comparison (1.1) hold for general harmonic
maps f : D → D? Does it hold in higher dimensions?

We conclude the introduction by comparing the behavior of |f(Dr)| for
holomorphic and harmonic maps. If f : D → C is holomorphic and injective,
one can use the power series f(z) =

∑
cnzn to compute

|f(Dr)| =

∞∑

n=1

n|cn|
2r2n.

Since the right-hand side is a convex function of r2, it follows that

(1.2) |f(Dr)| 6 r2|f(D)|,

which includes (1.1) as a special case. However, (1.2) fails for harmonic
maps. Indeed, let f(z) = z + cz̄2 where 0 < |c| < 1/2. It is easy to see that
f : D → C is harmonic and one-to-one, but

|f(Dr)| = r2 − 2|c|2r4

is a strictly concave function of r2. Therefore, |f(Dr)| > r2|f(D)| for 0 <
r < 1. This example does not contradict Theorem 1.1 since f(D) is not a
disk.
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2. Preliminaries

Let f be as in Theorem 1.1. We may assume that f is orientation-
preserving; otherwise consider f(z̄) instead. In this section we derive an
identity that relates the area of f(Dr) with the boundary values of f , which
exist a.e. in the sense of nontangential limits.

The Poisson kernel for D will be denoted Pr(t),

Pr(t) =
1 − r2

1 − 2r cos t + r2
, 0 6 r < 1, t ∈ R.

We represent f by the Poisson integral

(2.1) f(reiθ) =
ω

2π

∫ 2π

0
eiξ(t)Pr(θ − t) dt,

where ξ : [0, 2π) → [0, 2π) is a nondecreasing function and ω is a unimodular
constant. By Green’s formula we have

|f(Dr)| =
1

2

∫ 2π

0
Im

(
f(reiθ)fθ(re

iθ)
)
dθ,

where fθ indicates the derivative with respect to θ. Since

fθ(re
iθ) =

ω

2π

∫ 2π

0
eiξ(t)P ′

r(θ − t) dt,

it follows that

(2.2) f(reiθ)fθ(re
iθ) =

1

4π2

∫ 2π

0

∫ 2π

0
e−iξ(t)eiξ(s)Pr(θ − t)P ′

r(θ − s) dt ds.

Integrating (2.2) with respect to θ and reversing the order of integration, we
find

(2.3) |f(Dr)| =
1

4π

∫ 2π

0

∫ 2π

0
Kr sin(ξ(s) − ξ(t)) dt ds

where Kr is a function of r, s, and t,

Kr =
1

2π

∫ 2π

0
Pr(θ − t)P ′

r(θ − s)

Recall that the Poisson kernel has the semigroup property [9, p.62],

(2.4) Prσ(t) =
1

2π

∫ 2π

0
Pr(s)Pσ(t − s) ds, 0 6 r, σ < 1.

We will only use (2.4) with σ = r. Differentiation with respect to t yields

(2.5)
1

2π

∫ 2π

0
Pr(s)P

′
r(t − s) ds = P ′

r2(t) = −
2r2(1 − r4) sin t

(1 − 2r2 cos t + r4)2
.

Identity (2.5) provides an explicit formula for Kr,

(2.6) Kr = Kr(s − t) =
2ρ2(1 − ρ4) sin(s − t)

(1 − 2ρ2 cos(s − t) + ρ4)2
.
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Now we can rewrite (2.3) as

(2.7) |f(Dr)| =
1

4π

∫ 2π

0

∫ 2π

0
Kr(s − t) sin(ξ(s) − ξ(t)) dt ds.

In the next section we will estimate (2.7) from above.

3. Proof of Theorem 1.1

We continue to use the Poisson representation (2.1). The function ξ,
originally defined on [0, 2π), can be extended to R so that ξ(t+2π) = ξ(t)+2π
for all t ∈ R. By (2.7) we have

(3.1) |f(Dr)| =
1

4π

∫ 2π

0

∫ 2π

0
Kr(s − t) sin(ξ(s) − ξ(t)) dt ds.

When f is the identity map, (3.1) tells us that

1

4π

∫ 2π

0

∫ 2π

0
Kr(s − t) sin(s − t) dt ds = |Dr|.

The desired inequality |f(Dr)| 6 |Dr| now takes the form

(3.2)

∫ 2π

0

∫ 2π

0
Kr(s − t)

{
sin(s − t) − sin(ξ(s) − ξ(t))

}
dt ds > 0.

Neither the kernel Kr, which is defined by (2.6), nor the other factor in the
integrand are nonnegative. We will have to transform the integral in (3.2)
before effective pointwise estimates can be made. It will be convenient to
use the notation

(3.3) α = s − t, and γ = γ(α, t) = ξ(α + t) − ξ(t),

so that the integral in (3.2) becomes
∫ 2π

0

∫ π−t

−π−t

Kr(α) (sin α − sin γ) dα dt.

Since the integrand is 2π-periodic with respect to α, our goal can be equiv-
alently stated as

(3.4)

∫ 2π

0

∫ 2π

0
Kr(α) (sin α − sin γ) dα dt > 0.

Note that γ ∈ [0, 2π] for all α, t ∈ [0, 2π].
Step 1. We claim that

(3.5)

∫ 2π

0

∫ 2π

0
Kr(α)(γ − α) cos α dα dt = 0.

Indeed, the function ζ(t) := ξ(t) − t is 2π-periodic, which implies

(3.6)

∫ 2π

0
{ζ(α + t) − ζ(t)} dt = 0
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for every α ∈ R. Multiplying (3.6) by Kr(α) cos α and integrating over
α ∈ [0, 2π], we obtain

∫ 2π

0

∫ 2π

0
Kr(α){ζ(α + t) − ζ(t)} cos αdα dt = 0

It remains to note that ζ(α+t)−ζ(t) = γ−α, completing the proof of (3.5).
We take advantage of (3.5) by adding it to (3.4), which reduces our task

to proving that

(3.7)

∫ 2π

0

∫ 2π

0
Kr(α) {sin α + (γ − α) cos α − sin γ} dα dt > 0.

Step 2. Let us now consider the function

(3.8) H(α, β) := sinα + (β − α) cos α − sin β, (α, β) ∈ [0, 2π] × [0, 2π]

which appears in (3.7). It has a simple geometric interpretation in terms of
the graph of the sine function y = sinx. Indeed, the tangent line to this
graph at x = α has equation y = sinα+(x−α) cos α. The quantity H(α, β)
represents the difference in the y-values of the tangent line and the graph
at x = β. Since the sine curve is strictly concave on [0, π], it follows that

(3.9) H(α, β) > 0, 0 6 α, β 6 π,

with equality only when α = β. The upper bound on β in (3.9) can be
weakened to β 6 2π − α thanks to the monotonicity with respect to β,

∂H

∂β
= cos α − cos β > 0, 0 6 α 6 π, α 6 β 6 2π − α.

Note that the product Kr(α)H(α, β) is invariant under the central symmetry
of the square [0, 2π]×[0, 2π], i.e., the transformation (α, β) 7→ (2π−α, 2π−β).
Hence

(3.10) Kr(α)H(α, β) > 0, (α, β) ∈
(
[0, 2π] × [0, 2π]

)
\ (T1 ∪ T2)

where

T1 = {(α, β) : 0 < α < π, 2π − α < β 6 2π};

T2 = {(α, β) : π < α < 2π, 0 6 β < 2π − α}.

Within the triangles T1 and T2 the product Kr(α)H(α, β) may be negative.
However, for all (α, β) ∈ [0, 2π] × [0, 2π] the following holds.

(3.11) Kr(α)H(α, β) + Kr(2π − α)H(2π − α, β) = 2Kr(α)H(α, π) > 0,

where the last inequality follows from (3.10). We will use (3.11) to control
the contribution of triangles T1 and T2 to the integral (3.7).

Step 3. For each fixed t the function α 7→ γ(α, t) defined by (3.3)
is nondecreasing and it maps the interval [0, 2π] onto itself. Thus, in-
equality (3.7) will follow once we show that for any nondecreasing function
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Γ: [0, 2π] → [0, 2π]

(3.12)

∫ 2π

0
Kr(α)H(α,Γ(α)) dα > 0.

The integral in (3.12) remains unchanged if we replace Γ(α) with Γ̃(α) =
2π − Γ(2π − α). Thus we lose no generality in assuming that Γ(π) 6 π. By
virtue of (3.10) the integrand in (3.12) is nonnegative outside of the interval
[π, α0], where

α0 = sup{α ∈ [π, 2π] : α + Γ(α) 6 2π}

We claim that

(3.13) Kr(α)H(α,Γ(α)) > Kr(α)H(α,Γ(π)), 2π − α0 < α < α0.

Indeed, the inequality

∂H

∂β
= cos α − cos β 6 0, |α − π| 6 |β − π| 6 π,

implies

(3.14) H(α, β1) > H(α, β2), 0 6 β1 6 β2 6 min(α, 2π − α).

To see that (3.14) applies in our situation, note that Γ(α) 6 2π − α0 for
α < α0. Inequality (3.14) yields

H(α,Γ(α)) 6 H(α,Γ(π)), π 6 α < α0;

H(α,Γ(α)) > H(α,Γ(π)), 2π − α0 < α 6 π.
(3.15)

Multiplying (3.15) by Kr(α), we arrive at (3.13).
Finally, we combine (3.10), (3.13), and (3.11) to obtain

∫ 2π

0
Kr(α)H(α,Γ(α)) dα >

∫ α0

2π−α0

Kr(α)H(α,Γ(α)) dα

>

∫ α0

2π−α0

Kr(α)H(α,Γ(π)) dα

= 2

∫ α0

π

Kr(α)H(α, π) dα > 0,

(3.16)

completing the proof of (3.7).
Step 4. It remains to prove the equality statement in Theorem 1.1. Sup-

pose that Γ: [0, 2π] → [0, 2π] is a nondecreasing function such that Γ(π) 6 π,
and equality holds everywhere in (3.16). Returning to the geometric inter-
pretation of H(α, γ) in (3.8), we note that

Kr(α)H(α, π) > 0, 0 < |α − π| < π.

This forces α0 = π, which by definition of α0 implies

(3.17) Kr(α)H(α,Γ(α)) > 0, 0 6 α 6 2π.

Hence, (3.17) must turn into an equality for almost all α ∈ [0, 2π]. In view
of (3.9) and of the monotonicity of Γ this is only possible if Γ(α) = α for all
α ∈ [0, 2π].
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If |f(Dr)| = |Dr|, then equality holds in (3.7). Then for almost all t ∈

[0, 2π] the function Γ(α) = ξ(α + t) − ξ(t), or its reflection Γ̃(α) = 2π −
Γ(2π − α), turns (3.16) into an equality. Hence ξ(α + t) − ξ(t) = α for
almost all t ∈ [0, 2π] and all α ∈ [0, 2π]. Thus ξ is the identity function and
f : D → D is an isometry. Theorem 1.1 is proved.
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