Syracuse University **[SURFACE](https://surface.syr.edu/)**

[Mathematics - Faculty Scholarship](https://surface.syr.edu/mat) [Mathematics](https://surface.syr.edu/math) Mathematics

11-3-2009

Area Contraction for Harmonic Automorphisms of the Disk

Ngin-Tee Koh Syracuse University

Leonid V. Kovalev Syracuse University

Follow this and additional works at: [https://surface.syr.edu/mat](https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages)

Part of the [Mathematics Commons](http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages)

Recommended Citation

Koh, Ngin-Tee and Kovalev, Leonid V., "Area Contraction for Harmonic Automorphisms of the Disk" (2009). Mathematics - Faculty Scholarship. 51. [https://surface.syr.edu/mat/51](https://surface.syr.edu/mat/51?utm_source=surface.syr.edu%2Fmat%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages)

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact [surface@syr.edu.](mailto:surface@syr.edu)

AREA CONTRACTION FOR HARMONIC AUTOMORPHISMS OF THE DISK

NGIN-TEE KOH AND LEONID V. KOVALEV

Abstract. A harmonic self-homeomorphism of a disk does not increase the area of any concentric disk.

1. INTRODUCTION

The unit disk $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ can be endowed with the hyperbolic metric

$$
d\sigma = \frac{|dz|}{1 - |z|^2}.
$$

The Schwarz-Pick lemma (e.g., [\[1\]](#page-7-0)) implies that any holomorphic map $f: \mathbb{D} \to$ D does not increase distances in the hyperbolic metric. This is no longer true for harmonic maps, which verify the Laplace equation $\partial \partial f = 0$ but not necessarily the Cauchy-Riemann equation $\partial f = 0$. The harmonic version of the Schwarz lemma([\[5\]](#page-7-1), see also [\[2\]](#page-7-2)) states that any harmonic map $f: \mathbb{D} \to \mathbb{D}$ with normalization $f(0) = 0$ satisfies

$$
|f(z)| \leqslant \frac{4}{\pi} \arctan|z|, \quad z \in \mathbb{D}.
$$

This inequality is sharp [\[4,](#page-7-3) p. 77]. More precisely, for any $r \in (0, 1)$ and any small $\epsilon > 0$ there is a bijective harmonic map $f : \mathbb{D} \to \mathbb{D}$ such that $f(0) = 0$ and

$$
f(r) = -f(-r) = \frac{4}{\pi} \arctan r - \epsilon.
$$

This map is not a contraction in either Euclidean or hyperbolic metric. With respect to either metric, the diameter of the disk $\mathbb{D}_r = \{z \in \mathbb{C} : |z| < r\}$ is strictly less than the diameter of $f(\mathbb{D}_r)$.

In this note we prove that a bijective harmonic map $f: \mathbb{D} \to \mathbb{D}$ does not increase the area of \mathbb{D}_r for any $0 < r < 1$. We write |E| for the area (i.e., planar Lebesgue measure) of a set E.

Theorem 1.1. Let $f: \mathbb{D} \to \mathbb{D}$ be a bijective harmonic map. Then

(1.1) $|f(\mathbb{D}_r)| \leq |\mathbb{D}_r|, \qquad 0 < r < 1.$

If [\(1.1\)](#page-1-0) turns into an equality for some $r \in (0,1)$, then f is an isometry.

Date: November 2, 2009.

²⁰⁰⁰ Mathematics Subject Classification. Primary 31A05; Secondary 30C62, 58E20. Key words and phrases. Harmonic map, homeomorphism, area.

Kovalev was supported by the NSF grant DMS-0913474.

It should be noted that the class of harmonic automorphisms of $\mathbb D$ is much wider than the class of holomorphic automorphisms, which consists of Möbius maps only. Harmonic homeomorphisms of D form an interesting and much-studied class of planar maps, see [\[3,](#page-7-4) [7,](#page-7-5) [8\]](#page-7-6) or the monograph [\[4\]](#page-7-3). Theorem [1.1](#page-1-1) is different from most known estimates for harmonic maps in that it remains sharp when specialized to the holomorphic case.

An immediate consequence of [\(1.1\)](#page-1-0) is $|f(\mathbb{D} \setminus \mathbb{D}_r)| \geq |\mathbb{D} \setminus \mathbb{D}_r|$. If f is sufficiently smooth, we can divide by $1 - r$ and let $r \to 1$ to obtain the following.

Corollary 1.2. Let $f: \mathbb{D} \to \mathbb{D}$ be a bijective harmonic map that is continuously differentiable in the closed disk $\overline{\mathbb{D}}$. Then

$$
\int_{|z|=1} |\det Df| \, |dz| \geq 2\pi,
$$

where det $Df = |\partial f|^2 - |\bar{\partial} f|^2$ is the Jacobian determinant of f.

Corollary [1.2](#page-2-0) was proved in a different way in [\[6\]](#page-7-7) where it serves as an important part of the proof of Nitsche's conjecture on the existence of harmonic homeomorphisms between doubly-connected domains. In fact, Corollary [1.2](#page-2-0) is what led us to think that [\(1.1\)](#page-1-0) might be true.

If $f: \mathbb{D} \to \mathbb{D}$ is holomorphic, then [\(1.1\)](#page-1-0) holds without the assumption of f being bijective. Indeed, in this case $f(\mathbb{D}_r)$ is contained in a hyperbolic disk D of the same hyperbolic radius as \mathbb{D}_r . Since the density of the hyperbolic metric increases toward the boundary, it follows that the Euclidean radius of D is at most r , which implies [\(1.1\)](#page-1-0).

Question 1.3. Does the area comparison [\(1.1\)](#page-1-0) hold for general harmonic maps $f: \mathbb{D} \to \mathbb{D}$? Does it hold in higher dimensions?

We conclude the introduction by comparing the behavior of $|f(\mathbb{D}_r)|$ for holomorphic and harmonic maps. If $f: \mathbb{D} \to \mathbb{C}$ is holomorphic and injective, one can use the power series $f(z) = \sum c_n z^n$ to compute

$$
|f(\mathbb{D}_r)| = \sum_{n=1}^{\infty} n|c_n|^2 r^{2n}.
$$

Since the right-hand side is a convex function of r^2 , it follows that

$$
(1.2) \t\t |f(\mathbb{D}_r)| \leq r^2 |f(\mathbb{D})|,
$$

which includes (1.1) as a special case. However, (1.2) fails for harmonic maps. Indeed, let $f(z) = z + c\overline{z}^2$ where $0 < |c| < 1/2$. It is easy to see that $f: \mathbb{D} \to \mathbb{C}$ is harmonic and one-to-one, but

$$
|f(\mathbb{D}_r)| = r^2 - 2|c|^2r^4
$$

is a strictly concave function of r^2 . Therefore, $|f(\mathbb{D}_r)| > r^2 |f(\mathbb{D})|$ for $0 <$ $r < 1$. This example does not contradict Theorem [1.1](#page-1-1) since $f(\mathbb{D})$ is not a disk.

2. Preliminaries

Let f be as in Theorem [1.1.](#page-1-1) We may assume that f is orientationpreserving; otherwise consider $f(\bar{z})$ instead. In this section we derive an identity that relates the area of $f(\mathbb{D}_r)$ with the boundary values of f, which exist a.e. in the sense of nontangential limits.

The Poisson kernel for $\mathbb D$ will be denoted $P_r(t)$,

$$
P_r(t) = \frac{1 - r^2}{1 - 2r\cos t + r^2}, \quad 0 \le r < 1, \ t \in \mathbb{R}.
$$

We represent f by the Poisson integral

(2.1)
$$
f(re^{i\theta}) = \frac{\omega}{2\pi} \int_0^{2\pi} e^{i\xi(t)} P_r(\theta - t) dt,
$$

where $\xi : [0, 2\pi) \to [0, 2\pi)$ is a nondecreasing function and ω is a unimodular constant. By Green's formula we have

$$
|f(\mathbb{D}_r)| = \frac{1}{2} \int_0^{2\pi} \text{Im} \left(\overline{f(re^{i\theta})} f_{\theta}(re^{i\theta}) \right) d\theta,
$$

where f_{θ} indicates the derivative with respect to θ . Since

$$
f_{\theta}(re^{i\theta}) = \frac{\omega}{2\pi} \int_0^{2\pi} e^{i\xi(t)} P'_r(\theta - t) dt,
$$

it follows that

$$
(2.2) \quad \overline{f(re^{i\theta})} f_{\theta}(re^{i\theta}) = \frac{1}{4\pi^2} \int_0^{2\pi} \int_0^{2\pi} e^{-i\xi(t)} e^{i\xi(s)} P_r(\theta - t) P'_r(\theta - s) dt ds.
$$

Integrating (2.2) with respect to θ and reversing the order of integration, we find

(2.3)
$$
|f(\mathbb{D}_r)| = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r \sin(\xi(s) - \xi(t)) dt ds
$$

where \mathcal{K}_r is a function of r, s, and t,

$$
\mathcal{K}_r = \frac{1}{2\pi} \int_0^{2\pi} P_r(\theta - t) P'_r(\theta - s)
$$

Recall that the Poisson kernel has the semigroup property [\[9,](#page-7-8) p.62],

(2.4)
$$
P_{r\sigma}(t) = \frac{1}{2\pi} \int_0^{2\pi} P_r(s) P_\sigma(t-s) \, ds, \quad 0 \le r, \sigma < 1.
$$

We will only use [\(2.4\)](#page-3-1) with $\sigma = r$. Differentiation with respect to t yields

(2.5)
$$
\frac{1}{2\pi} \int_0^{2\pi} P_r(s) P'_r(t-s) ds = P'_{r^2}(t) = -\frac{2r^2(1-r^4)\sin t}{(1-2r^2\cos t + r^4)^2}.
$$

Identity [\(2.5\)](#page-3-2) provides an explicit formula for \mathcal{K}_r ,

(2.6)
$$
\mathcal{K}_r = \mathcal{K}_r(s-t) = \frac{2\rho^2(1-\rho^4)\sin(s-t)}{(1-2\rho^2\cos(s-t)+\rho^4)^2}.
$$

Now we can rewrite [\(2.3\)](#page-3-3) as

(2.7)
$$
|f(\mathbb{D}_r)| = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(s-t) \sin(\xi(s) - \xi(t)) dt ds.
$$

In the next section we will estimate [\(2.7\)](#page-4-0) from above.

3. Proof of Theorem [1.1](#page-1-1)

We continue to use the Poisson representation [\(2.1\)](#page-3-4). The function ξ , originally defined on $[0, 2\pi)$, can be extended to R so that $\xi(t+2\pi) = \xi(t)+2\pi$ for all $t \in \mathbb{R}$. By [\(2.7\)](#page-4-0) we have

(3.1)
$$
|f(\mathbb{D}_r)| = \frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(s-t) \sin(\xi(s) - \xi(t)) dt ds.
$$

When f is the identity map, (3.1) tells us that

$$
\frac{1}{4\pi} \int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(s-t) \sin(s-t) dt ds = |\mathbb{D}_r|.
$$

The desired inequality $|f(\mathbb{D}_r)| \leq |\mathbb{D}_r|$ now takes the form

(3.2)
$$
\int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(s-t) \left\{ \sin(s-t) - \sin(\xi(s) - \xi(t)) \right\} dt ds \ge 0.
$$

Neither the kernel \mathcal{K}_r , which is defined by [\(2.6\)](#page-3-5), nor the other factor in the integrand are nonnegative. We will have to transform the integral in [\(3.2\)](#page-4-2) before effective pointwise estimates can be made. It will be convenient to use the notation

(3.3)
$$
\alpha = s - t, \text{ and } \gamma = \gamma(\alpha, t) = \xi(\alpha + t) - \xi(t),
$$

so that the integral in [\(3.2\)](#page-4-2) becomes

$$
\int_0^{2\pi} \int_{-\pi-t}^{\pi-t} \mathcal{K}_r(\alpha) \left(\sin \alpha - \sin \gamma \right) d\alpha \, dt.
$$

Since the integrand is 2π -periodic with respect to α , our goal can be equivalently stated as

(3.4)
$$
\int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(\alpha) \left(\sin \alpha - \sin \gamma \right) d\alpha \, dt \geq 0.
$$

Note that $\gamma \in [0, 2\pi]$ for all $\alpha, t \in [0, 2\pi]$. Step 1. We claim that

(3.5)
$$
\int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(\alpha)(\gamma - \alpha) \cos \alpha \, d\alpha \, dt = 0.
$$

Indeed, the function $\zeta(t) := \xi(t) - t$ is 2π -periodic, which implies

(3.6)
$$
\int_0^{2\pi} {\{\zeta(\alpha + t) - \zeta(t)\} dt = 0}
$$

for every $\alpha \in \mathbb{R}$. Multiplying [\(3.6\)](#page-4-3) by $\mathcal{K}_r(\alpha)$ cos α and integrating over $\alpha \in [0, 2\pi]$, we obtain

$$
\int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(\alpha) \{ \zeta(\alpha + t) - \zeta(t) \} \cos \alpha \, d\alpha \, dt = 0
$$

It remains to note that $\zeta(\alpha+t)-\zeta(t)=\gamma-\alpha$, completing the proof of [\(3.5\)](#page-4-4).

We take advantage of (3.5) by adding it to (3.4) , which reduces our task to proving that

(3.7)
$$
\int_0^{2\pi} \int_0^{2\pi} \mathcal{K}_r(\alpha) \left\{ \sin \alpha + (\gamma - \alpha) \cos \alpha - \sin \gamma \right\} d\alpha dt \geq 0.
$$

Step 2. Let us now consider the function

(3.8)
$$
H(\alpha, \beta) := \sin \alpha + (\beta - \alpha) \cos \alpha - \sin \beta, \quad (\alpha, \beta) \in [0, 2\pi] \times [0, 2\pi]
$$

which appears in [\(3.7\)](#page-5-0). It has a simple geometric interpretation in terms of the graph of the sine function $y = \sin x$. Indeed, the tangent line to this graph at $x = \alpha$ has equation $y = \sin \alpha + (x - \alpha) \cos \alpha$. The quantity $H(\alpha, \beta)$ represents the difference in the y -values of the tangent line and the graph at $x = \beta$. Since the sine curve is strictly concave on [0, π], it follows that

(3.9)
$$
H(\alpha, \beta) \geq 0, \qquad 0 \leq \alpha, \beta \leq \pi,
$$

with equality only when $\alpha = \beta$. The upper bound on β in [\(3.9\)](#page-5-1) can be weakened to $\beta \leq 2\pi - \alpha$ thanks to the monotonicity with respect to β ,

$$
\frac{\partial H}{\partial \beta} = \cos \alpha - \cos \beta \ge 0, \quad 0 \le \alpha \le \pi, \ \alpha \le \beta \le 2\pi - \alpha.
$$

Note that the product $\mathcal{K}_r(\alpha)H(\alpha,\beta)$ is invariant under the central symmetry of the square $[0, 2\pi] \times [0, 2\pi]$, i.e., the transformation $(\alpha, \beta) \mapsto (2\pi - \alpha, 2\pi - \beta)$. Hence

$$
(3.10) \qquad \mathcal{K}_r(\alpha)H(\alpha,\beta) \geq 0, \qquad (\alpha,\beta) \in ([0,2\pi] \times [0,2\pi]) \setminus (T_1 \cup T_2)
$$

where

$$
T_1 = \{ (\alpha, \beta) \colon 0 < \alpha < \pi, \ 2\pi - \alpha < \beta \leqslant 2\pi \};
$$
\n
$$
T_2 = \{ (\alpha, \beta) \colon \pi < \alpha < 2\pi, \ 0 \leqslant \beta < 2\pi - \alpha \}.
$$

Within the triangles T_1 and T_2 the product $\mathcal{K}_r(\alpha)H(\alpha,\beta)$ may be negative. However, for all $(\alpha, \beta) \in [0, 2\pi] \times [0, 2\pi]$ the following holds.

$$
(3.11)\quad \mathcal{K}_r(\alpha)H(\alpha,\beta) + \mathcal{K}_r(2\pi - \alpha)H(2\pi - \alpha,\beta) = 2\mathcal{K}_r(\alpha)H(\alpha,\pi) \geq 0,
$$

where the last inequality follows from [\(3.10\)](#page-5-2). We will use [\(3.11\)](#page-5-3) to control the contribution of triangles T_1 and T_2 to the integral [\(3.7\)](#page-5-0).

Step 3. For each fixed t the function $\alpha \mapsto \gamma(\alpha, t)$ defined by [\(3.3\)](#page-4-6) is nondecreasing and it maps the interval $[0, 2\pi]$ onto itself. Thus, inequality [\(3.7\)](#page-5-0) will follow once we show that for any nondecreasing function

$$
\Gamma: [0, 2\pi] \to [0, 2\pi]
$$

(3.12)
$$
\int_0^{2\pi} \mathcal{K}_r(\alpha) H(\alpha, \Gamma(\alpha)) d\alpha \geq 0.
$$

The integral in [\(3.12\)](#page-6-0) remains unchanged if we replace $\Gamma(\alpha)$ with $\widetilde{\Gamma}(\alpha) =$ $2\pi - \Gamma(2\pi - \alpha)$. Thus we lose no generality in assuming that $\Gamma(\pi) \leq \pi$. By virtue of [\(3.10\)](#page-5-2) the integrand in [\(3.12\)](#page-6-0) is nonnegative outside of the interval $[\pi, \alpha_0]$, where

$$
\alpha_0 = \sup \{ \alpha \in [\pi, 2\pi] \colon \alpha + \Gamma(\alpha) \leq 2\pi \}
$$

We claim that

(3.13)
$$
\mathcal{K}_r(\alpha)H(\alpha,\Gamma(\alpha)) \geqslant \mathcal{K}_r(\alpha)H(\alpha,\Gamma(\pi)), \quad 2\pi - \alpha_0 < \alpha < \alpha_0.
$$

Indeed, the inequality

$$
\frac{\partial H}{\partial \beta} = \cos \alpha - \cos \beta \leq 0, \quad |\alpha - \pi| \leq |\beta - \pi| \leq \pi,
$$

implies

(3.14)
$$
H(\alpha, \beta_1) \ge H(\alpha, \beta_2), \quad 0 \le \beta_1 \le \beta_2 \le \min(\alpha, 2\pi - \alpha).
$$

To see that [\(3.14\)](#page-6-1) applies in our situation, note that $\Gamma(\alpha) \leq 2\pi - \alpha_0$ for $\alpha < \alpha_0$. Inequality [\(3.14\)](#page-6-1) yields

(3.15)
$$
H(\alpha, \Gamma(\alpha)) \leq H(\alpha, \Gamma(\pi)), \quad \pi \leq \alpha < \alpha_0;
$$

$$
H(\alpha, \Gamma(\alpha)) \geq H(\alpha, \Gamma(\pi)), \quad 2\pi - \alpha_0 < \alpha \leq \pi.
$$

Multiplying [\(3.15\)](#page-6-2) by $\mathcal{K}_r(\alpha)$, we arrive at [\(3.13\)](#page-6-3).

Finally, we combine (3.10) , (3.13) , and (3.11) to obtain

(3.16)

$$
\int_0^{2\pi} \mathcal{K}_r(\alpha) H(\alpha, \Gamma(\alpha)) d\alpha \ge \int_{2\pi - \alpha_0}^{\alpha_0} \mathcal{K}_r(\alpha) H(\alpha, \Gamma(\alpha)) d\alpha
$$

$$
\ge \int_{2\pi - \alpha_0}^{\alpha_0} \mathcal{K}_r(\alpha) H(\alpha, \Gamma(\pi)) d\alpha
$$

$$
= 2 \int_{\pi}^{\alpha_0} \mathcal{K}_r(\alpha) H(\alpha, \pi) d\alpha \ge 0,
$$

completing the proof of [\(3.7\)](#page-5-0).

Step 4. It remains to prove the equality statement in Theorem [1.1.](#page-1-1) Suppose that $\Gamma: [0, 2\pi] \to [0, 2\pi]$ is a nondecreasing function such that $\Gamma(\pi) \leq \pi$, and equality holds everywhere in [\(3.16\)](#page-6-4). Returning to the geometric interpretation of $H(\alpha, \gamma)$ in [\(3.8\)](#page-5-4), we note that

$$
\mathcal{K}_r(\alpha)H(\alpha,\pi) > 0, \quad 0 < |\alpha - \pi| < \pi.
$$

This forces $\alpha_0 = \pi$, which by definition of α_0 implies

(3.17)
$$
\mathcal{K}_r(\alpha)H(\alpha,\Gamma(\alpha)) \geq 0, \quad 0 \leq \alpha \leq 2\pi.
$$

Hence, [\(3.17\)](#page-6-5) must turn into an equality for almost all $\alpha \in [0, 2\pi]$. In view of [\(3.9\)](#page-5-1) and of the monotonicity of Γ this is only possible if $\Gamma(\alpha) = \alpha$ for all $\alpha \in [0, 2\pi].$

If $|f(\mathbb{D}_r)| = |\mathbb{D}_r|$, then equality holds in [\(3.7\)](#page-5-0). Then for almost all $t \in$ [0, 2π] the function $\Gamma(\alpha) = \xi(\alpha + t) - \xi(t)$, or its reflection $\Gamma(\alpha) = 2\pi$ – $\Gamma(2\pi - \alpha)$, turns [\(3.16\)](#page-6-4) into an equality. Hence $\xi(\alpha + t) - \xi(t) = \alpha$ for almost all $t \in [0, 2\pi]$ and all $\alpha \in [0, 2\pi]$. Thus ξ is the identity function and $f: \mathbb{D} \to \mathbb{D}$ is an isometry. Theorem [1.1](#page-1-1) is proved.

ACKNOWLEDGEMENTS

We thank Tadeusz Iwaniec and Jani Onninen for valuable discussions on the subject of this paper.

REFERENCES

- 1. L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1973.
- 2. H. Chen, P. M. Gauthier, and W. Hengartner, Bloch constants for planar harmonic mappings, Proc. Amer. Math. Soc. 128 (2000), no. 11, 3231-3240.
- 3. J. Clunie and T. Sheil-Small, Harmonic univalent functions, Ann. Acad. Sci. Fenn. Ser. A I Math. 9 (1984), 3–25.
- 4. P. Duren, Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
- 5. E. Heinz, On one-to-one harmonic mappings, Pacific J. Math. 9 (1959), 101–105.
- 6. T. Iwaniec, L. V. Kovalev, and J. Onninen, The Nitsche conjecture, preprint, [arXiv:0908.1253.](http://arxiv.org/abs/0908.1253)
- 7. D. Kalaj, On harmonic diffeomorphisms of the unit disk onto a convex domain, Complex Var. Theory Appl. 48 (2003), no. 2, 175–187.
- 8. M. Pavlović, Boundary correspondence under harmonic quasiconformal homeomorphisms of the unit disk, Ann. Acad. Sci. Fenn. Math. 27 (2002), no. 2, 365–372.
- 9. E. M. Stein, Singular integrals and differentiability properties of functions, Princeton University Press, Princeton, 1970.

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: nkoh@syr.edu

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: lvkovale@syr.edu