
Syracuse University Syracuse University 

SURFACE SURFACE 

Mathematics - Faculty Scholarship Mathematics 

8-3-2010 

Existence of Energy-Minimal Diffeomorphisms Between Doubly Existence of Energy-Minimal Diffeomorphisms Between Doubly 

Connected Domains Connected Domains 

Tadeusz Iwaniec 
Syracuse University and University of Helsinki 

Ngin-Tee Koh 
Syracuse University 

Leonid V. Kovalev 
Syracuse University 

Jani Onninen 
Syracuse University 

Follow this and additional works at: https://surface.syr.edu/mat 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
Iwaniec, Tadeusz; Koh, Ngin-Tee; Kovalev, Leonid V.; and Onninen, Jani, "Existence of Energy-Minimal 
Diffeomorphisms Between Doubly Connected Domains" (2010). Mathematics - Faculty Scholarship. 52. 
https://surface.syr.edu/mat/52 

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for 
inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, 
please contact surface@syr.edu. 

https://surface.syr.edu/
https://surface.syr.edu/mat
https://surface.syr.edu/math
https://surface.syr.edu/mat?utm_source=surface.syr.edu%2Fmat%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=surface.syr.edu%2Fmat%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/mat/52?utm_source=surface.syr.edu%2Fmat%2F52&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu


ar
X

iv
:1

00
8.

06
52

v1
  [

m
at

h.
C

V
] 

 3
 A

ug
 2

01
0

EXISTENCE OF ENERGY-MINIMAL DIFFEOMORPHISMS

BETWEEN DOUBLY CONNECTED DOMAINS

TADEUSZ IWANIEC, NGIN-TEE KOH,
LEONID V. KOVALEV, AND JANI ONNINEN

Abstract. The paper establishes the existence of homeomorphisms be-
tween two planar domains that minimize the Dirichlet energy.

Among all homeomorphisms f : Ω onto
−→ Ω∗ between bounded doubly

connected domains such that Mod Ω 6 Mod Ω∗ there exists, unique up
to conformal authomorphisms of Ω, an energy-minimal diffeomorphism.

No boundary conditions are imposed on f . Although any energy-
minimal diffeomorphism is harmonic, our results underline the major
difference between the existence of harmonic diffeomorphisms and the
existence of the energy-minimal diffeomorphisms. The existence of glob-
ally invertible energy-minimal mappings is of primary pursuit in the
mathematical models of nonlinear elasticity and is also of interest in
computer graphics.
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2 IWANIEC, KOH, KOVALEV, AND ONNINEN

1. Introduction

Throughout this text Ω and Ω∗ will be bounded domains in the complex

plane C. The Dirichlet energy of a diffeomorphism f : Ω onto−→ Ω∗ is defined
and denoted by

(1.1) E [f ] =
∫

Ω
|Df |2 = 2

∫

Ω

(
|∂f |2 + |∂̄f |2

)

where |Df | is the Hilbert-Schmidt norm of the differential matrix of f . The
primary goal of this paper is to establish the existence of a diffeomorphism

f : Ω onto−→ Ω∗ of smallest (finite) Dirichlet energy. The behavior of such an
energy-minimal diffeomorphism f resembles that of a conformal mapping.
Indeed, a change of variables in (1.1) yields

(1.2) E [f ] = 2

∫

Ω
Jf (z) dz + 4

∫

Ω
|∂̄f |2 > 2|Ω∗|

where Jf stands for the Jacobian determinant and |Ω∗| is the area of Ω∗.
A conformal mapping of Ω onto Ω∗; that is, a homeomorphic solution of
the Cauchy-Riemann system ∂̄f = 0, would be an obvious choice for the
minimizer of (1.2). Unfortunately, for generic multiply connected domains
there is no such mapping. The existence of an energy-minimal diffeomor-

phism f : Ω onto−→ Ω∗ may be interpreted as saying that the Cauchy-Riemann
equation ∂̄f = 0 admits a diffeomorphic solution in the least squares sense,
meaning that ‖∂̄f‖L2 assumes its minimum. For this reason energy-minimal
diffeomorphisms are known under the name least squares conformal map-
pings in the computer graphics literature [27, 34]. They are also of great
interest in the theory of nonlinear elasticity due to the principle of nonin-
terpenetration of matter [4, 38].

An energy-minimal diffeomorphism may fail to exist when a minimizing
sequence collapses, at least partially, onto the boundary of Ω∗. This phenom-
enon was observed in the papers [2, 18] for a pair of circular annuli. A related
phenomenon occurs in free boundary problems for minimal graphs, where it
is called edge-creeping [6, 13, 39]. Since the boundary of Ω∗ plays a crucial

role in the minimization of energy among diffeomorphisms f : Ω onto−→ Ω∗, our
questions are essentially different from widely studied variational problems
for mappings between Riemannian manifolds where the target is usually as-
sumed to have no boundary [5, 22, 23, 26]. We do not prescribe boundary
values of f , nor do we suppose that it has a continuous boundary extension.

Any energy-minimal diffeomorphism satisfies Laplace’s equation, since
one can perform first variations while preserving the diffeomorphism prop-
erty. However, the existence of a harmonic diffeomorphism does not imply
the existence of an energy-minimal one, see Example 9.1. This is why our
necessary condition for the existence of an energy-minimal diffeomorphism,
Theorem 2.4, is more restrictive than the corresponding result for harmonic
diffeomorphisms in [15].
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As we have already pointed out, energy-minimal diffeomorphisms for sim-
ply connected domains are obtained from the Riemann mapping theorem.
The doubly connected case, being next in the order of complexity, is the
subject of our main result.

Theorem 1.1. Suppose that Ω and Ω∗ are bounded doubly connected do-
mains in C such that ModΩ 6 ModΩ∗. Then there exists an energy-

minimal diffeomorphism f : Ω onto−→ Ω∗, which is unique up to a conformal
change of variables in Ω.

Hereafter ModΩ stands for the conformal modulus of Ω. Any bounded
doubly connected domain Ω ⊂ C is conformally equivalent to some circular
annulus {z : r < |z| < R} with 0 6 r < R < ∞. The ratio R/r, being inde-
pendent of the choice of conformal equivalence, defines ModΩ := logR/r.
The conformal modulus is infinite precisely when the bounded component
of C \ Ω degenerates to a point. We call such domain a punctured domain.
Theorem 1.1 has the following corollary.

Corollary 1.2. For any bounded doubly connected domain Ω and any punc-

tured domain Ω∗ there exists an energy-minimal diffeomorphism f : Ω onto−→
Ω∗, which is unique up to a conformal change of variables in Ω.

In the converse direction we show (Theorem 2.4) that there exists no
energy-minimal diffeomorphism when ModΩ∗ 6 Φ(ModΩ). Here Φ: (0,∞) →
(0,∞) is a certain function asymptotically equal the identity at infinity,
lim
t→∞

Φ(t)/t = 1. It is in this asymptotic sense that Theorem 1.1 is sharp.

It is rather surprising that our existence result for energy-minimal diffeo-
morphisms relies only on the conformal modulus of the target. Indeed, the
energy minimization problem is invariant only with respect to a conformal
change of variable in the domain, not in the target.

Yet in other perspectives, the classical Teichmüller theory is concerned

with the existence of quasiconformal mappings g : Ω∗ onto−→ Ω with smallest
L∞-norm of the distortion function

Kg(w) =
|Dg(w)|2
2Jg(w)

, a.e. w ∈ Ω∗.

Analogous questions about L1-norm of Kg lead to minimization of the
Dirichlet energy of the inverse mapping via the transformation formula

(1.3) ‖Kg‖L1(Ω∗) = E [f ], where f = g−1 : Ω onto−→ Ω∗

For rigorous statements let us recall that a homeomorphism g : Ω∗ onto−→ Ω of
Sobolev class W 1,1(Ω∗) has integrable distortion if

(1.4) |Dg(w)|2 6 2K(w)Jg(w) a.e. in Ω∗

for some K ∈ L1(Ω∗). The smallest such K : Ω∗ → [1,∞), denoted by Kg,
is referred to as the distortion function of g.
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It turns out that the inverse of any mapping with integrable distortion
has finite Dirichlet energy and the identity (1.3) holds. As a consequence of
Theorem 1.1 we obtain the following result.

Theorem 1.3. Let Ω and Ω∗ be bounded doubly connected domains in C

such that ModΩ 6 ModΩ∗. Among all homeomorphisms g : Ω∗ onto−→ Ω there
exists, unique up to a conformal automorphism of Ω, mapping of smallest
L1-norm of the distortion.

We conclude this introduction with a strategy of the proof of Theorem 1.1.
The natural setting for our minimization problem is the Sobolev space
W 1,2(Ω). In this paper functions in the Sobolev spaces are complex-valued.
Let us reserve the notation H

1,2(Ω,Ω∗) for the set of all sense-preserving

W 1,2-homeomorphisms h : Ω onto−→ Ω∗. When this set is nonempty, we define

(1.5) EH(Ω,Ω
∗) = inf{E [h] : h ∈ H

1,2(Ω,Ω∗)}.
By virtue of the density of diffeomorphisms in H

1,2(Ω,Ω∗), see [16], the
minimization of energy among sense-preserving diffeomorphisms leads to
the same value EH(Ω,Ω

∗). A homeomorphism h ∈ H
1,2(Ω,Ω∗) is energy-

minimal if it attains the infimum in (1.5). Let us emphasize that the set
H
1,2(Ω,Ω∗) ⊂ W 1,2(Ω) is unbounded. Even bounded subsets of H1,2(Ω,Ω∗)

are lacking compactness, due to the loss of injectivity in passing to a limit
of homeomorphisms. One way out of this difficulty is to consider the weak
closure of H

1,2(Ω,Ω∗) ∩ B where B is a sufficiently large ball in W 1,2(Ω)
whose size depends only on EH(Ω,Ω

∗). This is the approach undertaken
in [17, 24]. However, the presence of B creates problems of its own. For
instance, the resulting class of mappings is not closed under compositions
with self-diffeomorphisms of Ω; inner variation of such mappings would be
inadmissible.

That is why we introduce the class of so-called deformations. These are
sense-preserving surjective mappings of the Sobolev class W 1,2 that can be
approximated by homeomorphisms in a certain way. The precise definition
is given in §3. A deformation is not necessarily injective. In addition, an
energy-minimal deformation need not be harmonic, since one cannot perform
first variations f + ǫϕ within the class of deformations. This is why we rely
on inner variations, which yield that the Hopf differential (§6) of an energy-
minimal deformation is holomorphic in Ω and real on its boundary. We gain
additional information about the Hopf differential from the Reich-Walczak-
type inequalities (§5) which is where the conformal moduli of Ω and Ω∗ enter
the stage.

The crucial idea of the proof of Theorem 1.1 is to consider a one-parameter
family of variational problems in which Ω changes continuously while Ω∗

remains fixed. We establish strict monotonicity of the minimal energy as
a function of the conformal modulus of Ω (§7). The proof of Theorem 1.1
together with its more refined variant, Theorem 2.3, is completed in §8.
The proof of the nonexistence theorem, Theorem 2.4, is presented in §9.
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The interested reader is invited to look upon the open questions collected
in §11.

2. Statements

A homeomorphism of a planar domain is either sense-preserving or sense-
reversing. For homeomorphisms of the Sobolev class W 1,1

loc (Ω) this implies
that the Jacobian determinant does not change sign: it is either nonnegative
or nonpositive at almost every point [3, Theorem 3.3.4], see also [12]. The
homeomorphisms considered in this paper are sense-preserving unless stated
otherwise.

Let Ω and Ω∗ be bounded domains in C. To every mapping f : Ω → Ω∗

we associate a boundary distance function δf (z) = dist(f(z), ∂Ω∗) which is
set to 0 on the boundary of Ω.

The following concept, which interpolates between c-uniform (i.e., uniform
on compact subsets) and uniform convergence, proves to be effective.

Definition 2.1. A sequence of mappings hj : Ω → Ω∗ is said to converge

cδ-uniformly to h : Ω → Ω∗ if

• hj → h uniformly on compact subsets of Ω and

• δhj
→ δh uniformly on Ω.

We designate it as hj
cδ−→ h.

Definition 2.2. A mapping h : Ω → Ω∗ is called a deformation if

• h ∈W 1,2(Ω);
• The Jacobian Jh := detDh is nonnegative a.e. in Ω;
•
∫
Ω Jh 6 |Ω∗|;

• there exist sense-preserving homeomorphisms hj : Ω
onto−→ Ω∗, called

an approximating sequence, such that hj
cδ−→ h on Ω.

The set of deformations h : Ω → Ω∗ is denoted by D(Ω,Ω∗).

The first thing to note is H
1,2(Ω,Ω∗) ⊂ D(Ω,Ω∗). Outside of some de-

generate cases, the set of deformations is nonempty by Lemma 3.15 and is
closed under weak limits in W 1,2(Ω) by Lemma 3.13. Define

(2.1) E(Ω,Ω∗) = inf{E [h] : h ∈ D(Ω,Ω∗)}
where E [h] is as in (1.1). A deformation that attains the infimum in (2.1) is
called energy-minimal. It is obvious that EH(Ω,Ω

∗) > E(Ω,Ω∗), but whether
the equality holds is not clear. We are now in the position to state the
existence Theorem 1.1 more precisely.

Theorem 2.3. Suppose that Ω and Ω∗ are bounded doubly connected do-
mains in C such that ModΩ 6 ModΩ∗. There exists a diffeomorphism
h ∈ H

1,2(Ω,Ω∗) that minimizes the energy among all deformations; that is,
E [h] = E(Ω,Ω∗) and hence, EH(Ω,Ω

∗) = E(Ω,Ω∗). Moreover, h is unique
up to a conformal automorphism of Ω.
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In opposite direction, for every ǫ > 0 there exists a pair of smooth bounded
doubly connected domains Ω,Ω∗ with ModΩ∗ > log coshModΩ − ǫ, for
which there is no energy-minimal homeomorphism in H

1,2(Ω,Ω∗). See [2,
Corollary 3] or Example 9.1. More generally, we have the following counter-
part to Theorem 2.3.

Theorem 2.4. There is a nondecreasing function Υ: (0,∞) → (0, 1) such
that lim

τ→∞
Υ(τ) = 1 and the following holds. Whenever two bounded doubly

connected domains Ω and Ω∗ in C admit an energy-minimal diffeomorphism

h : Ω onto−→ Ω∗, we have

(2.2) ModΩ∗ > (ModΩ) ·Υ(ModΩ).

Specifically, one can take

Υ(τ) = exp

(
−π

2

2τ

)
·Λ
(
coth

π2

2τ

)
, where

Λ(t) =
log t− log(1 + log t)

2 + log t
, t > 1.

(2.3)

In §11 we conjecture that (2.2) can be specified as ModΩ∗ > log coshModΩ,
which would be the sharp bound, known to be true for circular annuli [2].

3. Basic properties of deformations

In this section we establish the essential properties of the class of deforma-
tions D(Ω,Ω∗) introduced in Definition 2.2. Among them is that D(Ω,Ω∗)
is sequentially weakly closed and its members satisfy a change of variable
formula (3.9).

Deformations enjoy two distinct properties, both of which are commonly
known in literature as monotonicity. The topological monotonicity is the
subject of Lemma 3.7. To avoid confusion, in the following definition we use
the term oscillation property.

Definition 3.1. Let U be an open subset of C. A continuous function
f : U → C is said to have oscillation property if for every compact setK ⊂ U
we have

(3.1) diam f(K) = diam f(∂K).

Note that for real-valued functions (3.1) can be stated as

min
K

f = min
∂K

f 6 max
∂K

f = max
K

f.

The relevance of this property to Sobolev mappings hinges on the fol-
lowing continuity estimate. If f ∈ W 1,2(U) has the oscillation property,
then

(3.2) |f(z1)− f(z2)|2 6
C
∫
2D|Df |2

log
(
e+ diamD

|z1−z2|

) ,
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with z1, z2 ∈ D for a pair of concentric disks D ⊂ 2D ⊂ U . The constant C
is universal. See, e.g., Corollary 7.5.1 [19].

The oscillation property (3.1) obviously holds for all homeomorphisms and
is preserved under c-uniform limits. Therefore, deformations satisfy (3.1)
and consequently (3.2): the local modulus of continuity of a deformation is
controlled by its energy.

Our approach to energy-minimal deformations involves the comparison of
energies of h and h ◦ f , where f is a diffeomorphism or (more generally) a
quasiconformal homeomorphism [1, 3, 25]. It is important to observe that
h ◦ f is also a deformation.

Lemma 3.2. Let Ω, Ω∗ and Ω◦ be bounded domains in C. If f : Ω◦
onto−→ Ω

is a quasiconformal mapping then for any h ∈ D(Ω,Ω∗) we have h ◦ f ∈
D(Ω◦,Ω

∗).

Proof. Since a K-quasiconformal mapping distorts the Dirichlet integral
only by a factor up to K, it follows that h ◦ f ∈ W 1,2(Ω). That the Ja-
cobian of h ◦ f is nonnegative follows from the chain rule detD(h ◦ f) =

(detDh)(detDf). Finally, observe that if hj
cδ−→ h in Ω, then hj◦f cδ−→ h◦f in

Ω◦; this purely topological fact only requires f to be a homeomorphism. �

Let us recall a change of variable formula for Sobolev mappings, found
in [3, Corollary 3.3.6], [19, Theorem 6.3.2] and [9].

Lemma 3.3. Let Ω and Ω∗ be bounded domains in C. Suppose that h : Ω →
Ω∗ is continuous and belongs to W 1,1

loc (Ω). Then for any measurable function

v : Ω∗ → [0,∞) we have

(3.3)

∫

Ω
v
(
h(z)

)
|Jh(z)| dz 6

∫

C

v(w)NΩ(h,w) dw.

where NΩ(h,w) is the cardinality of the preimage h−1(w). If, in addition, h
satisfies Lusin’s condition (N) then the equality holds in (3.3).

Lusin’s condition (N) means that |f(E)| = 0 whenever |E| = 0.
Hereafter degΩ(h,w) stands for the degree of a mapping h with respect

to a point w [28]. The degree is well-defined provided that h ∈ C(Ω) and
w /∈ h(∂Ω). However, we work with mappings that are not necessarily
continuous up to the boundary. In that case degΩ(h,w) still makes sense
as long as the values of h near ∂Ω are bounded away from w. Specifically,

degΩ(h,w) := degΩ̃(h,w) where Ω̃ ⋐ Ω is any compactly contained domain
such that inf

Ω\Ω̃
|h− w| > 0.

Lemma 3.4. For any h ∈ D(Ω,Ω∗) we have h(Ω) ⊃ Ω∗.

Proof. We will prove the stronger statement

(3.4) degΩ(h,w) = 1 for all w ∈ Ω∗.
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Pick a point w ∈ Ω∗ and let δ = dist(w, ∂Ω∗). Consider the open set

U =
{
z ∈ Ω: δh(z) >

δ

4

}
⋐ Ω.

Let {hj} be an approximating sequence for h. For sufficiently large j we have

|δhj
− δh| < δ

4 in Ω and |h − hj | 6 δ
4 in U . For all z ∈ Ω \ U , δhj

(z) 6 δ/2,
hence

(3.5) |hj(z)− w| > δ

2
for z ∈ Ω \ U.

Since hj is a homeomorphism it attains the value w at some point z◦ in U .
Let U◦ be the component of z◦ in U . Clearly, degU◦

(hj , w) = 1. On the
boundary ∂U◦ we have |hj − h| 6 δ/4, which together with (3.5) imply

degU◦
(h,w) = degU◦

(hj , w) = 1.

It remains to observe that h(z) 6= w for z ∈ Ω \ U◦. Indeed, by (3.5)
the preimage of the open disk D(w, δ/2) under the homomorphism hj is a
connected subset of U , hence a subset of U◦. It follows that

|h(z) −w| > |hj(z)− w| − δ

4
>
δ

4
, z ∈ Ω \ U◦

as desired. �

Definition 3.5. A continuous mapping f : X → Y between metric spaces
X and Y is monotone if for each y ∈ f(X) the set f−1(y) is compact and
connected.

Proposition 3.6. [40, VIII.2.2] If X is compact and f : X onto−→ Y is mono-
tone then f−1(C) is connected for every connected set C ⊂ Y.

See [31, 32, 40] for the background on monotone mappings. Deforma-
tions are closely related to monotone mappings of S2 onto itself. Given two
k-connected bounded domains Ω and Ω∗ in C, we choose and fix homeomor-
phisms

(3.6) χ : Ω onto−→ S
2 \ P and χ∗ : Ω∗ onto−→ S

2 \ P
where P ⊂ S

2 consists of k points referred to as punctures. A homeomor-

phism h : Ω onto−→ Ω∗ induces unique homeomorphism
⊲⊳

h : S2 onto−→ S
2 such that

(3.7)
⊲⊳

h ◦ χ = χ∗ ◦ h.

Note that
⊲⊳

h takes punctures into punctures in a one-to-one correspon-
dence, though it may permute the elements of P . We claim that if a se-

quence of homeomorphisms hj : Ω
onto−→ Ω∗ converges cδ-uniformly, then the

mappings
⊲⊳

hj converge uniformly on S2. Indeed, fix a small ǫ > 0 such that
the ǫ-neighborhood of the punctures, denoted Ni(ǫ), i = 1, . . . , k, are dis-
joint. The uniform convergence of {δhj

} allows us to choose σ > 0 such that

each neighborhood Ni(σ) is mapped by
⊲⊳

hj into the union
⋃

iNi(ǫ) when j
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is large. Being connected, the set
⊲⊳

hj(Ni(σ)) must be contained in Nπ(i)(ǫ)
where π is a permutation of the set {1, . . . , k}, possibly dependent on j.
But in fact, π does not depend on j when j is large enough, due to uniform

convergence of
⊲⊳

hj on the boundaries of Ni(σ).

Thus we conclude that the sequence {
⊲⊳

hj} converges uniformly to a sur-

jective mapping, denoted by
⊲⊳

h, which leaves the set P invariant but may
permute its elements. In a summary, for any deformation h ∈ D(Ω,Ω∗) there

exists a unique mapping
⊲⊳

h : S2 onto−→ S
2 satisfying (3.7). Being a uniform limit

of self-homeomorphisms of S2, this mapping is monotone [40, IX.3.11]. The

monotonicity of
⊲⊳

h has direct implications for h, which we state as a lemma
for future references.

Lemma 3.7. Let Ω and Ω∗ be bounded k-connected domains in C, k =

1, 2, . . . and h ∈ D(Ω,Ω∗). Then
⊲⊳

h is monotone. Consequently, for any
connected set C ⊂ Ω∗ the preimage h−1(C) is also connected. Moreover, for
every continuum C ⊂ Ω∗ the set h−1(C)∪Γ1∪· · ·∪Γℓ is a continuum, where
Γ1, . . . ,Γℓ are those selected components of ∂Ω which intersect the closure
of h−1(C).

Concerning Lemma 3.7 we remark that h : Ω → Ω∗ is not necessarily
monotone; however, the restriction of h to h−1(Ω∗) is.

Next we turn to analytic properties of deformations.

Lemma 3.8. Let Ω and Ω∗ be bounded domains in C. If h ∈ D(Ω,Ω∗),
then h satisfies Lusin’s condition (N) and NΩ(h,w) = 1 for almost every
w ∈ Ω∗. Also Jh = 0 almost everywhere in Ω \ h−1(Ω∗).

Proof. By Theorem A in [29] Lusin’s condition (N) is true for all continuous
W 1,2-mappings that satisfy the oscillation inequality (3.1). Since the latter
holds for any deformation (Lemma 3.12), the condition (N) is satisfied.

By the definition of a deformation,
∫

Ω
Jh(z) dz 6 |Ω∗|

Invoking Lemmas 3.3 and 3.4 we arrive at

(3.8) |Ω∗| >
∫

Ω
Jh(z) dz =

∫

C

NΩ(h,w) dw >

∫

Ω∗

NΩ(h,w) dw > |Ω∗|.

Therefore, equality holds throughout in (3.8). This yields NΩ(h,w) = 1 a.e.
in Ω∗ and Jh = 0 a.e. in Ω \ h−1(Ω∗), as claimed. �

Corollary 3.9. Let Ω and Ω∗ be bounded domains in C. If h ∈ D(Ω,Ω∗)
and v : Ω∗ → [0,∞) is measurable, then

(3.9)

∫

Ω
v
(
h(z)

)
Jh(z) dz =

∫

Ω∗

v(w) dw.
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Proof. Let G = h−1(Ω∗). Combining Lemmas 3.3 and 3.8 we have
∫

Ω
v
(
h(z)

)
Jh(z) dz =

∫

G
v
(
h(z)

)
Jh(z) dz =

∫

C

v(w)NG(h,w) dw

=

∫

Ω∗

v(w) dw. �

In general, a deformation may take a part of Ω into ∂Ω∗. This is the
subject of our next lemma.

Lemma 3.10. Suppose that h ∈ D(Ω,Ω∗) where Ω and Ω∗ are bounded dou-
bly connected domains. Let G = {z ∈ Ω: h(z) ∈ Ω∗}. Then G is a domain
separating the boundary components of Ω. Precisely, the two components of
∂Ω lie in different components of C \G.

Proof. The setG is open by the continuity of h, and connected by Lemma 3.7.
Let ∂IΩ

∗ and ∂OΩ
∗ be the inner and outer components of the boundary of

Ω∗. The function

δ(z) :=
dist(h(z), ∂IΩ

∗)

dist(h(z), ∂IΩ∗) + dist(h(z), ∂OΩ∗)
, z ∈ Ω,

extends continuously to C by setting the values 0 and 1 in the components
of C \Ω. The disjoint open sets {z ∈ C : |δ(z)| < 1/2} and {z ∈ C : |δ(z)| >
1/2} cover C \G in such a way that each of them contains one and only one
boundary component of Ω. Thus G separates the components of ∂Ω. �

In order to prove that D(Ω,Ω∗) is sequentially weakly closed, we need an
estimate near the boundary stated as Proposition 3.11 below. For Sobolev
homeomorphisms a similar result was proved in [17] in all dimensions. The
extension beyond homeomorphisms is deferred to §12.

Proposition 3.11. Let Ω and Ω∗ be bounded k-connected domains, 2 6

k < ∞. Denote their boundary components by Γi and Γ∗
i , i = 1, . . . , k.

Assume that diamΓi > 0 for all 1 6 i 6 k. Then there exist functions ηi,
1 6 i 6 k, continuous in C and vanishing on Γi, such that the following
holds. If h : Ω → Ω∗ is a continuous W 1,2-mapping such that h(Ω) ⊃ Ω∗, h
is monotone on the set h−1(Ω∗), and

(3.10) dist(h(z),Γ∗
i ) → 0 as dist(z,Γi) → 0, i = 1, . . . , k,

then

(3.11) dist(h(z),Γ∗
i ) 6 ηi(z)

√
E [h], i = 1, . . . , k.

Lemma 3.12. Let Ω and Ω∗ be bounded k-connected domains, 2 6 k <∞.
Assume that the boundary components of Ω do not degenerate into points.
If a family of deformations F ⊂ D(Ω,Ω∗) is bounded in W 1,2(Ω) then it is
equicontinuous on compact subsets of Ω and the family ∆F := {δh : h ∈ F}
is equicontinuous on Ω.
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Proof. The equicontinuity of F on compact subsets of Ω is readily seen
from (3.2). It follows that ∆F is equicontinuous on compact subsets as well.
To show that it is actually equicontinuous on Ω it remains to prove that for
any ǫ > 0 there is a compact set K ⊂ Ω such that δh < ǫ on Ω \K for all
h ∈ F . This is exactly what Proposition 3.11 delivers. �

Lemma 3.13. Let Ω and Ω∗ be bounded k-connected planar domains, 2 6

k < ∞. Assume that the boundary components of Ω do not degenerate into
points. If a sequence {hj} ⊂ D(Ω,Ω∗) converges weakly in W 1,2(Ω), then
its limit belongs to D(Ω,Ω∗)

Proof. Let h be the weak limit of hj ∈ D(Ω,Ω∗). Its Jacobian determinant
Jh is nonnegative a.e. in Ω due to L1-weak convergence of Jacobians under
W 1,2-weak limits [19, Theorem 8.4.2]. The weak convergence also implies
that

∫
Ω Jh 6 |Ω∗|. It remains to show that h has an approximating sequence

of homeomorphisms. For this it is enough to prove that hj
cδ−→ h in Ω.

Indeed, each hj being a cδ-uniform limit of homeomorphisms, the diagonal
selection will produce the desired approximating sequence.

By Lemma 3.12 the sequence {hj} is equicontinuous on any compact
subset of Ω. With the help of the Arzelà-Ascoli theorem it is routine to
prove that hj → h c-uniformly. In particular, δhj

→ δh pointwise. The

convergence is uniform because the functions δhj
are equicontinuous in Ω by

virtue of Lemma 3.12. It follows that hj
cδ−→ h as claimed. �

Due to the weak lower semicontinuity of the Dirichlet energy, Lemma 3.13
has a useful corollary.

Corollary 3.14. Under the hypotheses of Lemma 3.13 there exists h ∈
D(Ω,Ω∗) such that E [h] = E(Ω,Ω∗).

Note that Lemma 3.13 fails for k = 1. Indeed, the Möbius transformations

fa(z) =
z − a

1− az̄

converge weakly in W 1,2 to a constant mapping (not a deformation) as
a → 1. We conclude this section with a promised remark on the existence
of homeomorphisms of class H1,2(Ω,Ω∗).

Lemma 3.15. Let Ω and Ω∗ be bounded doubly connected domains in C.
Then H

1,2(Ω,Ω∗) is nonempty, except for one degenerate case when ModΩ =

∞ and ModΩ∗ <∞. In this case there is no homeomorphism h : Ω onto−→ Ω∗

of Sobolev class W 1,2(Ω).

Proof. Suppose that the degenerate case takes place. Then Ω = V \ {z0}
where V is a simply connected domain. Since isolated points are removable
for monotone W 1,2 functions [17, Theorem 3.1], the mapping h has a con-
tinuous extension to V . But then Ω∗ = h(V ) \ {h(z0)}, which contradicts
the finiteness of ModΩ∗.
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Conversely, suppose that the degenerate case fails. If ModΩ = ModΩ∗ =

∞, then there exists a conformal mapping h : Ω onto−→ Ω∗ for which E [h] =
2|Ω∗| <∞ by virtue of (1.2). The remaining case is when both domains have
finite modulus. Then we map them conformally onto circular annuli A and

A∗ and compose them with a radial quasiconformal mapping ψ : A onto−→ A∗,

ψ(z) = |z|α−1z, α =
ModΩ∗

ModΩ
.

This creates an element in H
1,2(Ω,Ω∗). �

4. Harmonic replacement

Let Ω be a domain in C and U ⋐ Ω a bounded simply connected domain.
For any continuous function f : Ω → C there exists a unique continuous
function PUf : Ω → C, called the Poisson modification of f , such that PUf
is harmonic in U and agrees with f on Ω \U . Indeed, the Dirichlet problem
with continuous boundary data has a continuous solution in any simply
connected domain, e.g., [33, Theorem 4.2.1] or [8, Ch.III]. Furthermore,
PUf ∈ W 1,2(Ω) whenever f ∈ W 1,2(Ω). Although the latter fact is surely
known, we give an explanation. The function PUf can be constructed by
the Wiener method [8, Theorem III.5.1] as a c-uniform limit

(4.1) PUf = lim
n→∞

PUnf, U1 ⋐ U2 ⋐ . . .

where {Un} is an exhaustion of U by smooth Jordan domains. Since the
differencePUnf−f vanishes on the smooth boundary ∂Un, it extends by zero
to a function inW 1,2(Ω). Adding f to it, we conclude that PUnf ∈W 1,2(Ω),
with a uniform bound on the W 1,2-norm thanks to Dirichlet’s principle.
Thus, {PUnf} contains a subsequence that converges weakly in W 1,2(Ω).
Its limit must be PUf since PUnf → PUf uniformly.

The following lemma generalizes the well-known Radó-Kneser-Choquet
Theorem on the univalence of harmonic extensions. The added generality is
in that the domain U is not required to be Jordan.

Lemma 4.1 (Modification Lemma). Let U and D be bounded simply con-
nected domains in C with D convex. Suppose that f is a homeomorphism
from U onto D with continuous extension f : U → D. Then there exists a

unique harmonic homeomorphism h : U onto−→ D which agrees with f on the
boundary. Specifically, h has a continuous extension to U which coincides
with f on ∂U .

Proof. The existence and uniqueness of a continuous harmonic extension
h of f

∣∣
∂U

are well known. Also h(U) ⊃ D by a straightforward degree

argument and h(U) ⊂ D by the maximum principle. Thus the essence of
the lemma is injectivity of h.

Let {Dn} be an exhaustion of D by convex domains and define Un =
f−1(Dn), which is a Jordan domain. By the Radó-Kneser-Choquet Theo-
rem [7, p. 29] the mapping hn := PUnf is harmonic homeomorphism of Un
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onto Dn. As n→ ∞, hn → PUf =: h c-uniformly on U , see [8, Ch.III]. The
convergence of harmonic functions implies the convergence of their deriva-
tives. Therefore Jhn → Jh pointwise, in particular Jh > 0. This means that
the holomorphic functions hz and hz̄ satisfy the inequality |hz̄ | 6 |hz |. This
is only possible when either |hz̄ | < |hz| in U or |hz̄ | ≡ |hz| in U . The sec-
ond case cannot occur, for it would yield Jh ≡ 0, contradicting h(D) ⊃ U .
Therefore Jh > 0, so the mapping h is a local diffeomorphism. Being also a
c-uniform limit of homeomorphisms, h is a diffeomorphism of U . �

We are now in the position to apply the Poisson modification to deforma-
tions.

Lemma 4.2. Let Ω and Ω∗ be bounded k-connected domains, 1 6 k < ∞.
Suppose that h ∈ D(Ω,Ω∗) satisfies h(Ω) = Ω∗. Let D be a convex domain
such that D ⊂ Ω∗. Denote U = h−1(D) and g = PUh. Then

(i) g ∈ D(Ω,Ω∗)
(ii) The restriction of g to U is a harmonic diffeomorphism onto D.
(iii) E [g] 6 E [h] with equality if and only if g ≡ h.

Proof. We use the notation of (3.6) and (3.7). By Lemma 3.7 the induced

mapping
⊲⊳

h : S2 onto−→ S
2 is monotone, so we can apply Theorem II.1.47 in [32].

According to which there exists a monotone mapping f : S2 onto−→ S
2 which

takes χ(U) homeomorphically onto χ∗(D) and agrees with
⊲⊳

h on S
2 \ χ(U).

This allows us to apply the Modification Lemma 4.1 to h. Thus the Poisson
modification g = PUh performs a harmonic diffeomorphism of U onto D.

Clearly,
⊲⊳
g : S2 onto−→ S

2 is monotone. Any such mapping can be uniformly
approximated by homeomorphisms [32, Theorem II.1.57]. We can actually
alter slightly these homeomorphisms so as to obtain a sequence of homeo-

morphisms gj : S
2 onto−→ S

2 that agree with
⊲⊳
g at the punctures P ⊂ S

2, and

still gj → ⊲⊳
g uniformly on S

2. Every such homeomorphism gj : S
2 onto−→ S

2

is represented by a homeomorphism hj : Ω
onto−→ Ω∗ by the rule gj =

⊲⊳

hj,

where
⊲⊳

hj is determined from the equation (3.7);
⊲⊳

hj ◦ χ = χ∗ ◦ hj . The

uniform convergence of gj implies that hj
cδ−→ g in Ω. Thus we conclude

that g ∈ D(Ω,Ω∗). The inequality E [PUh] 6 E [h] is merely a restatement
of Dirichlet’s principle. �

5. Reich-Walczak-type inequalities

The Reich-Walczak inequalities [35] provide the upper and lower bounds
for the conformal modulus of the image of a circular annulus under a qua-
siconformal homeomorphism. Propositions 5.1 and 5.2 provide such bounds
for deformations, which are in general neither quasiconformal nor homeo-
morphisms. We also treat Sobolev homeomorphisms inW 1,1

loc , for which simi-
lar inequalities were established in [30] in the context of self-homeomorphisms
of a disk that agree with the identity mapping on the boundary. However,
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we work with doubly connected domains and do not prescribe boundary
values.

Let us introduce notation for several quantities associated with the deriva-
tives of a mapping f . We make use of polar coordinates ρ and θ and the
associated normal and tangential derivatives

fN = fρ and fT =
fθ
ρ
.

In these terms the Wirtinger derivatives fz and fz̄ are expressed as

fz =
e−iθ

2
(fN − ifT ) fz̄ =

eiθ

2
(fN + ifT )

Also, the Jacobian determinant of f is

Jf = |fz|2 − |fz̄|2 = Im fNfT .

Except for the origin, where polar coordinates collapse, we may define the
normal and tangential distortion of f as follows.

Kf
N :=

|fz + z̄
zfz̄|2

Jf
=

|fN |2
Jf

(5.1)

Kf
T :=

|fz − z̄
zfz̄|2

Jf
=

|fT |2
Jf

(5.2)

By convention these quotients are understood as 0 whenever the numerator
vanishes. Naturally, they assume the value +∞ if the Jacobian vanishes but
the numerator does not. For a mapping f ∈ W 1,1

loc the quantities fN , fT ,

and Jf are finite a.e., and therefore Kf
N and Kf

T are unambiguously defined
at almost every point of the domain of definition of f .

Proposition 5.1. Let Ω and Ω∗ be bounded doubly connected domains such
that Ω separates 0 and ∞. Suppose that either

(a) f ∈ D(Ω,Ω∗) or

(b) f : Ω onto−→ Ω∗ is a sense-preserving homeomorphism of class W 1,1
loc (Ω,Ω

∗).

Then

(5.3) 2πModΩ∗ 6

∫

Ω
Kf

N

dz

|z|2 .

Proof. There is nothing to prove if the integral in (5.3) is infinite, so we as-

sume Kf
N <∞ a.e. There exists a conformal mapping Φ: Ω∗ → A(r∗, 1) =:

A
∗ where 0 6 r∗ < 1 is such that ModΩ∗ = log 1/r∗. Let G = {z ∈

Ω: f(z) ∈ Ω∗} and define g : G → A
∗ by g = Φ ◦ f . Note that G = Ω if we

are in the case (b).
Fix ǫ > 0. We claim that

(5.4)

∫

G

|gN |
|g|+ ǫ

dz

|z| > 2π log
1 + ǫ

r∗ + ǫ
.
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Let ℓθ = {ρeiθ ∈ G : ρ > 0}, θ ∈ [0, 2π]. For almost every θ ∈ [0, 2π] the
mapping g is locally absolutely continuous on ℓθ. The image of ℓθ under g is a
union of curves in A

∗ which approach the boundary of A∗ in both directions.
At least one of them connects two boundary components of A∗ because G
separates the boundary components of Ω by Lemma 3.10. Therefore the
function |g| attains all values between r∗ and 1 when restricted to some
connected component of ℓθ ∩G. It follows that

∫

ℓθ∩G

|gN |
|g|+ ǫ

> log
1 + ǫ

r∗ + ǫ
.

Integration with respect to θ yields (5.4). Using the normal distortion in-
equality |gN |2 6 Kg

NJg and the Cauchy-Schwarz inequality we obtain

(∫

G

|gN |
|g| + ǫ

dz

|z|

)2

6

(∫

G

(Kg
NJg)

1/2

|g|+ ǫ

dz

|z|

)2

6

∫

G

Jg
(|g| + ǫ)2

∫

G
Kg

N

dz

|z|2

6

∫

G

Jg
(|g|+ ǫ)2

∫

Ω
Kg

N

dz

|z|2 .

Since Φ is conformal, Kg
N = Kf

N . Thus we infer from (5.4) that

(5.5)

(
log

1 + ǫ

r∗ + ǫ

)2

6
1

(2π)2

∫

Ω
Kf

N

dz

|z|2
∫

G

Jg
(|g|+ ǫ)2

.

From Lemmas 3.3 and 3.8 we obtain

(5.6)

∫

G

Jg
(|g| + ǫ)2

6

∫

A∗

dw

(|w| + ǫ)2
6 2π log

1 + ǫ

r∗ + ǫ
.

It follows from (5.5) and (5.6) that

log
1 + ǫ

r∗ + ǫ
6

1

2π

∫

Ω
Kf

N

dz

|z|2 .

Letting ǫ→ 0 completes the proof. �

Unlike Proposition 5.1, our lower bound for the modulus of the image
under a deformation depends on the rectifiability of the boundary of Ω∗.
We do not know if this assumption is redundant.

Proposition 5.2. Let A = A(r,R) be a circular annulus, 0 6 r < R < ∞,
and Ω∗ a bounded doubly connected domain with finite modulus. Suppose
that either

(a) f ∈ D(A,Ω∗) and Ω∗ is bounded by rectifiable Jordan curves, or

(b) f : A onto−→ Ω∗ is a sense-preserving homeomorphism of class W 1,1
loc (A,Ω

∗).

Then

(5.7)

∫

A

Kf
T

dz

|z|2 > 2π
(ModA)2

ModΩ∗
.
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Before proving Proposition 5.2 we collect some results concerning the
Hardy space H1(A) on a circular annulus A = A(r,R), 0 < r < R < ∞. In
what follows Tρ = {z ∈ C : |z| = ρ}, ρ > 0. By definition, a holomorphic
function ψ : A → C belongs to H1(A) if the integrals

∫
Tρ
|ψ| are uniformly

bounded for r < ρ < R. Such a function ψ has nontangential limits a.e. on
∂A [36, p.6], and ψ 6= 0 a.e. on ∂A unless ψ ≡ 0 [36, pp.10–12]. The relation
between H1(A) and domains with rectifiable boundaries is summarized in
the following proposition which is a version of classical theorems due to
F. and M. Riesz and V. I. Smirnov. Below H1 denotes the one-dimensional
Hausdorff measure, not to be confused with the Hardy space.

Proposition 5.3. Let Ω be a doubly connected domain bounded by rectifiable
Jordan curves and let Ψ: A = A(r,R) → Ω be conformal. Then

(i) Ψ′ ∈ H1(A)
(ii) for any Borel set E ⊂ ∂A we have H1(Ψ(E)) =

∫
E |Ψ′|

(iii) H1(Ψ(E)) = 0 if and only if H1(E) = 0.

Proof. Part (i) is proved in exactly the same way as the corresponding result
for the disk [8, p. 200]. Since Ψ′ ∈ H1, the continuous extension of Ψ to ∂A
is absolutely continuous, i.e., (ii) holds. Part (iii) follows from (ii) because
Ψ′ 6= 0 a.e. on ∂A. �

Proof of Proposition 5.2. There is nothing to prove if the integral in (5.3) is

infinite, so we assume Kf
T <∞ a.e. Let G = {z ∈ A : f(z) ∈ Ω∗}. Note that

G coincides with A if we are in the case (b). On the set A \G the Jacobian

Jf vanishes by Lemma 3.10. Since Kf
T is finite a.e., it follows that fθ = 0

a.e. on A \ G. There exists a conformal mapping Φ: Ω∗ → A(r∗, 1) =: A∗,
where 0 < r∗ < 1 is determined by ModΩ∗ = log 1/r∗. In case (a) Φ extends
to a homeomorphism Φ: Ω∗ → A∗. In either case (a) or (b) we can define
g = Φ ◦ f : A → A∗.

We claim that

(5.8)

∫

G

|gT |
|g|

dz

|z| > 2πModA.

Indeed, for almost every circle Tρ ⊂ A the mapping f is absolutely contin-
uous on Tρ and

(5.9) fθ = 0 a.e. on Tρ \G.
For any such ρ we are going to prove the inequality

(5.10)

∫

Tρ∩G

|gT |
|g| > 2π,

from which (5.8) will follow by integration.
In the case (b) the inequality (5.10) is a direct consequence of the fact

that the curve g(Tρ) separates the boundary components of A∗; indeed, the
length of any such curve in the logarithmic metric |dz|/|z| is at least 2π.
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We now turn to the case (a). Let w◦ be an interior point of the bounded
component of C\Ω∗. Choose an approximating sequence {hj}j∈N ⊂ H

1,2(Ω,Ω∗)
that converges to f . Note that for each j the multivalued function arg(hj(z)−
w◦) increases by 2π on Tρ. Letting j → ∞ we obtain the same for f ; in

particular, f(Tρ) separates w◦ from ∞. Since Φ: Ω∗ → A∗ is a homeomor-

phism, g(Tρ) is a closed curve in A∗ which separates 0 from∞. Therefore, its
length in the logarithmic metric |dz|/|z| is at least 2π. By virtue of (5.9) the
intersection of f(Tρ) with ∂Ω

∗ has zero length. By part (iii) of Theorem 5.3
we have H1(g(Tρ)∩ ∂A∗) = 0. Hence, the part of g(Tρ) that is contained in
A
∗ has logarithmic length at least 2π. This is exactly what (5.10) claimed.
Now that (5.8) is at our disposal, we proceed as in the proof of Proposi-

tion 5.1. The Cauchy-Schwarz inequality yields

(∫

G

|gT |
|g|

dz

|z|

)2

6

(∫

G

(Kg
TJg)

1/2

|g|
dz

|z|

)2

6

∫

G

Jg
|g|2

∫

G
Kg

T

dz

|z|2

6 2π log
1

r∗

∫

A

Kg
T

dz

|z|2 = 2πModΩ∗

∫

A

Kg
T

dz

|z|2 .
(5.11)

where the second to last inequality follows from (5.6). It remains to com-
bine (5.8) and (5.11). �

6. Hopf differentials

We call a deformation h ∈ D(Ω,Ω∗) stationary if

(6.1)
d

dt

∣∣∣∣
t=0

E [h ◦ φ−1
t ] = 0

for every family of diffeomorphisms φt : Ω → Ω which depend smoothly on
the parameter t ∈ R and satisfy φ0 = id. It should be emphasized that
apart from φ0, the diffeomorphisms φt need not agree with the identity on
the boundary. The derivative in (6.1) exists for any h ∈ W 1,2(Ω), see [37,
p. 158]. Every energy-minimal deformation is stationary. Indeed, h ◦ φ−1

t

belongs to D(Ω,Ω∗) by virtue of Lemma 3.2. The minimal property of h
implies E [h ◦ φ−1

t ] > E [h], from where (6.1) follows.
The key property of the stationary mapping in (6.1) is that:

• The function ϕ := hzhz̄ , a priori in L1(Ω), is actually holomorphic.
• If ∂Ω is C1-smooth then ϕ extends continuously to Ω, and the qua-
dratic differential ϕdz2 is real on each boundary curve of Ω.

See [23, Lemma 1.2.5] for the proof of the above facts and [21, Chapter III]
for the background on quadratic differentials and their trajectories. Let us
consider the special case Ω = A(r,R) with 0 < r < R < ∞. Since ϕdz2

is real on each boundary circle, the function z2ϕ(z) is real on ∂Ω. By the
maximum principle

(6.2) z2ϕ(z) ≡ c ∈ R.

We state this as a lemma for the ease of future references.
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Lemma 6.1. Let Ω = A(r,R) be a circular annulus, 0 < r < R < ∞, and
Ω∗ a bounded doubly connected domain. If h ∈ D(Ω,Ω∗) is a stationary
deformation, then

(6.3) hzhz̄ ≡ c

z2
in Ω.

where c ∈ R is a constant. Furthermore,

(6.4)

{
|hN |2 6 Jh, if c 6 0

|hT |2 6 Jh, if c > 0.

Proof. The validity of (6.3) with some c ∈ R was already recognized in (6.2).
Separating the real and imaginary parts in (6.3) we arrive at two equations

|hN |2 − |hT |2 =
4c

|z|2 ;(6.5)

Re(hNhT ) = 0.(6.6)

Recall that Jh = ImhNhT > 0, which in view of (6.6) reads as

(6.7) Jh = |hN ||hT |
Combining this with (6.5) the claim (6.4) follows. �

Lemma 6.1 together with Propositions 5.1 and 5.2 give the following corol-
lary.

Corollary 6.2. Under the hypotheses of Lemma 6.1, we have

• if ModΩ < ModΩ∗, then c > 0
• if ModΩ > ModΩ∗ and Ω∗ is bounded by rectifiable Jordan curves,
then c < 0.

7. Monotonicity of the minimum energy function

Due to the conformal invariance of the Dirichlet integral and of the
class of deformations (Lemma 3.2), the minimal energy level E(Ω,Ω∗), de-
fined by (2.1), depends only on the conformal type of Ω as long as Ω
is bounded and Ω∗ is fixed. This leads us to consider a one-parameter

family of extremal problems for homeomorphisms A(τ) onto−→ Ω∗ of annuli
A(τ) = A(1, eτ ), 0 < τ <∞. In this section we are concerned with the quan-
tity E(τ,Ω∗) := E(A(τ),Ω∗) as a function of τ , called the minimum energy
function. When Ω∗ has finite conformal modulus, E(τ,Ω∗) attains its mini-
mum at τ = ModΩ∗. Indeed, by (1.2) for every τ we have E(τ,Ω∗) > 2|Ω∗|,
with equality if and only if Ω and Ω∗ are conformally equivalent; that is, for
τ = ModΩ = ModΩ∗. The following monotonicity result, which extends
this observation, will be of crucial importance in the proof of Theorem 2.3.

Proposition 7.1. Let Ω∗ be a bounded doubly connected domain. The func-
tion τ 7→ E(τ,Ω∗) is strictly decreasing for 0 < τ < ModΩ∗. If, in addition,
Ω∗ is bounded by rectifiable Jordan curves, then E(τ,Ω∗) is strictly increasing
for τ > ModΩ∗.
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The proof of Proposition 7.1 requires auxiliary results concerning the
normal and tangential energies

EN [h] =

∫

Ω
|hN |2, ET [h] =

∫

Ω
|hT |2.

Clearly E [h] = EN [h] + ET [h]. Unlike E [h], both quantities EN [h] and ET [h]
transform in a straighforward way under composition with the power stretch
mapping

(7.1) ψα(z) := |z|α−1z, 0 < α <∞.

Specifically,

(7.2) EN [h ◦ ψ] = α EN [h], ET [h ◦ ψ] = 1

α
ET [h].

The direct verification of (7.2) is left to the reader. We only note that the
domain of definition of h here is irrelevant as the computation is local.

Lemma 7.2. Let Ω∗ be a bounded doubly connected domain, τ◦ ∈ (0,∞).
Suppose that h◦ ∈ D(A(τ◦),Ω

∗) is an energy-minimal deformation. Then
for all 0 < τ <∞ we have

(7.3) E(τ,Ω∗) 6
τ◦
τ
EN [h◦] +

τ

τ◦
ET [h◦].

Proof. Let α = τ◦
τ and note that ψα defined by (7.1) is a quasiconformal

mapping of A(τ) onto A(τ◦). By Lemma 3.2 the composition h◦◦ψα belongs
to D(A(τ),Ω∗) and by (7.2) we have

E(τ,Ω∗) 6 E [h◦ ◦ ψα] = α EN [h◦] +
1

α
ET [h◦]. �

Let us apply Lemma 7.2 with τ◦ = ModΩ∗. In this case h◦ : Ω onto−→ Ω∗ is
conformal so EN [h◦] = ET [h◦] = |Ω∗|. We obtain a simple upper bound for
the minimal energy function,

(7.4) E(τ,Ω∗) 6

(
ModΩ∗

τ
+

τ

ModΩ∗

)
|Ω∗|, 0 < τ <∞.

Corollary 7.3. The function E(τ,Ω∗) is locally Lipschitz for 0 < τ <∞.

Indeed the existence of h◦ in Lemma 7.2 is assured by Corollary 3.14.
From Lemma 7.2 for arbitrary 0 < τ◦, τ <∞ we have

E(τ,Ω∗)− E(τ◦,Ω
∗) 6

τ◦
τ
EN [h◦] +

τ

τ◦
ET [h◦]− EN [h◦]− ET [h◦]

= (τ − τ◦)

{ET [h◦]
τ◦

− EN [h◦]

τ

}(7.5)

from where the local Lipschitz property is readily seen.
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Proof of Proposition 7.1. Since E(τ,Ω∗) is locally Lipschitz, its derivative
exists for almost every τ ∈ (0,∞). Fix such a point of differentiablity, say
0 < τ◦ < ModΩ∗. Let h◦ ∈ D(A(τ◦),Ω

∗) be an energy-minimal deformation.
By Lemma 6.1

|h◦N |2 = |h◦T |2 +
4c

|z|2 , hence upon integration EN [h◦] = ET [h◦] + 8cπτ◦.

Now, for any τ ∈ (0,∞) the estimate (7.5) takes the form

(7.6) E(τ,Ω∗)− E(τ◦,Ω
∗) 6 (τ − τ◦)

{
−8cπ + (τ−1

◦ − τ−1)EN [h◦]
}

Therefore
d

dt

∣∣∣∣
τ=τ◦

E(τ,Ω∗) = −8πc.

Corollary 6.2 completes the proof. �

8. Existence: Theorem 2.3

Proposition 8.1. Let Ω and Ω∗ be bounded doubly connected domains. Sup-
pose that h ∈ D(Ω,Ω∗) satisfies E [h] = E(Ω,Ω∗). Let G = {z ∈ Ω: h(z) ∈
Ω∗}. Then G is a doubly connected domain that separates the boundary
components of Ω. The restriction of h to G is a harmonic diffeomorphism
onto Ω∗.

Proof. The fact that G is a domain separating the boundary components of
Ω was established in Lemma 3.10. Each point z ∈ G has a neighborhood in
which h is a harmonic diffeomorphism. Indeed, otherwise we would be able
to find a deformation with strictly smaller energy by means of Lemma 4.2.

Thus, h : G onto−→ Ω∗ is a local diffeomorphism. On the other hand, for each
w ∈ Ω∗ the preimage h−1(w) is connected by Lemma 3.7. It follows that

h : G onto−→ Ω∗ is a diffeomorphism. Being a diffeomorphic image of Ω∗, the
domain G must be doubly connected. �

Proof of Theorem 2.3. If ModΩ = ModΩ∗, then the domains are confor-
mally equivalent. As observed in §1, a conformal mapping minimizes the
Dirichlet energy. Thus we only need to consider the case ModΩ < ModΩ∗.
In particular ModΩ <∞.

Let h andG be as in Proposition 8.1. The existence of such h is guaranteed
by Corollary 3.14. Since G separates the boundary components of Ω, we
have ModG 6 ModΩ with equality if and only if G = Ω [25, Lemma 6.3].
If ModG < ModΩ, then by Proposition 7.1

∫

G
|Dh|2 > E(ModG,Ω∗) > E(ModΩ,Ω∗) =

∫

Ω
|Dh|2

which is absurd. Thus G = Ω. By Proposition 8.1 the mapping h : Ω → Ω∗

is a harmonic diffeomorphism. The uniqueness statement will follow from
Proposition 10.2. �
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Proof of Theorem 1.3. Suppose ModΩ 6 ModΩ∗ and let f◦ : Ω
onto−→ Ω∗ be

an energy-minimal diffeomorphism provided to us by Theorem 2.3. For

every homeomorphism g : Ω∗ onto−→ Ω with integrable distortion the inverse

map f = g−1 : Ω onto−→ Ω∗ belongs to the Sobolev class W 1,2(Ω) and we
have [10, 11, 20]

(8.1)

∫

Ω∗

Kg(w) dw =

∫

Ω
|Df(z)|2 dz >

∫

Ω
|Df◦(z)|2 dz =

∫

Ω∗

Kg◦(w) dw

where g◦ = f−1
◦ . The latter identity is legitimate because f◦ is a diffeomor-

phism. Thus g◦ is also a C∞-smooth diffeomorphism. It has the smallest
possible L1-norm of the distortion. If equality holds in (8.1) then, by The-
orem 2.3, the mapping f−1

◦ ◦ f is conformal. �

9. Nonexistence: Theorem 2.4

Before proceeding to the proof of Theorem 2.4 we recollect basic facts of
potential theory in the plane which can be found in [33]. A domain Ω has
Green’s function GΩ whenever C \ Ω contains a nondegenerate continuum.
Our normalization is GΩ(z, ζ) = − log|z− ζ|+O(1) as z → ζ. In particular,
GΩ(z, ζ) > 0. Green’s function for the unit disk D is

GD(z, ζ) = log

∣∣∣∣
1− zζ̄

z − ζ

∣∣∣∣ .

If f : Ω → Ω∗ is a holomorphic function, then the subordination principle
holds:

(9.1) GΩ(z, ζ) 6 GΩ∗(f(z), f(ζ)).

Proof of Theorem 2.4. If Ω is degenerate, so is Ω∗ because a point is a remov-
able singularity for W 1,2-homeomorphisms [17, Theorem 3.1]. Therefore we
may assume, by a conformal change of variables in Ω, that Ω = A(R−1, R),
R > 1. By Lemma 6.1

(9.2) hzhz̄ ≡ c

z2
in Ω.

where c is real. If c > 0, then (6.4) yields |hT |2 6 Jh, hence ModΩ∗ > ModΩ
by Proposition 5.2. It remains to consider the case c < 0. Let us write
c = −b2, b ∈ R. Introduce the so-called second complex dilatation

(9.3) ν =
hz̄
hz

which is a holomorphic function from Ω into the unit disk D [7, p. 5].
Equation (9.2) implies that ν does not vanish and

ν =
−b2
z2h2z
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Therefore, ν has a single-valued square root, namely

(9.4) ω =
ib

zhz
.

From (9.3) and (9.4) we have

(9.5) hz =
ib

zω
and hz̄ = − ibω

z̄
.

Now we integrate the differential form dh = hz dz+hz̄ dz̄ over the unit circle

(9.6) 0 =

∫

T

dh = ib

∫

T

(
dz

zω
− ω dz̄

z̄

)
= ib

∫

T

(
1

ω
+ ω

)
dz

z
.

The image of T under the map z 7→ ω
|ω| is an arc Γ ⊂ T. This arc cannot be

contained in any open half-circle, for then the values of the function ω−1 +
ω = ω(1 + |ω|−1) on T would lie in an open halfplane, contradicting (9.6).
Thus there exist points z1, z2 ∈ T such that

(9.7)
ω(z1)

ω(z2)
< 0.

We write wj = ω(zj), j = 1, 2, and invoke a simple lower bound for the
Green function of Ω, derived in [15, (3.9)]:

(9.8) GΩ(z1, z2) > log coth
π2

4 logR
, z1, z2 ∈ T.

By the subordination principle (9.1),

(9.9) GΩ(z1, z2) 6 GD(w1, w2).

Because of symmetry we may assume |w1| 6 |w2|. The right hand side
of (9.9) is estimated from above using (9.7):

(9.10) GD(w1, w2) = log
1 + |w1w2|
|w1|+ |w2|

6 log
1 + |w1|2
2|w1|

.

Combining (9.8)–(9.10) we obtain an upper bound for |ω| on T,

(9.11) |ω(z1)| 6 tanh
π2

8 logR
.

Introduce an auxiliary mapping g = φ◦h, where φ is an affine transformation
chosen so that g becomes conformal at z1; that is, gz̄(z1) = 0. It was proved
in ([15], estimates (3.11) and (3.13)) that

Mod g(Ω) > ModΩ · Λ
(
coth

π2

2τ

)
, Λ(t) =

log t− log(1 + log t)

2 + log t
, t > 1.

From (9.11) we have

Modh(Ω) >
1− |ω(z1)|
1 + |ω(z1)|

Mod g(Ω) = exp

(
− π2

4 logR

)
Mod g(Ω).

Combining the last two lines yields (2.3). �
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We complement Theorem 2.4 with an explicit example of two doubly
connected domains and a harmonic homeomorphism between them, which
do not admit an energy-minimal homeomorphism.

Example 9.1. Consider the annulus Ω = A(1, R), R > 1. Fix 0 < δ < 1 and
let Ω∗ be the image of the annulus A∗ = A(1, 12 (R+R−1)) under the affine
mapping φ(z) = z+δz̄. Then there exists no energy-minimal diffeomorphism

h : Ω onto−→ Ω∗, though there exists a harmonic one.

Proof. The annulus A∗ is the image of Ω under the extremal Nitsche mapping

h∗(z) =
1

2

(
z +

1

z̄

)

which is not only harmonic but also energy-minimal in H
1,2(Ω,A∗) [2, Corol-

lary 2]. The uniqueness part of Theorem 1.1 in [14] states that h∗ is the
unique harmonic homeomorphism from Ω onto A

∗, up to a conformal au-
tomorphism of the annulus Ω, rotation or/and inversion. It follows that
g := φ ◦ h∗ is the unique harmonic diffeomorphism of Ω onto Ω∗, up to
a conformal automorphism of Ω. Thus if H1,2(Ω,Ω∗) admitted an energy
minimizer the mapping g would be one of them. Explicitly,

g(z) =
1

2

(
z +

δ

z
+ δz̄ +

1

z̄

)
.

On the other hand, the Hopf differential of g takes the form

gzgz̄ =
1

4

(
1− δ

z2

)(
δ − 1

z2

)
6≡ c

z2
.

By Lemma 6.1 we see that g cannot be stationary in the annulus Ω. Conse-
quently, there is no energy-minimal homeomorphism in H

1,2(Ω,Ω∗). �

10. Convexity of the minimum energy function

In §7 we proved that for any bounded doubly connected domain Ω∗ the
function E(τ,Ω∗) is decreasing for 0 < τ < ModΩ∗. The minimum of this
function is attained at τ = ModΩ∗, i.e., in the case of conformal equivalence.
In this section we prove:

Theorem 10.1. Let Ω∗ be a bounded doubly connected domain. The func-
tion τ 7→ E(τ,Ω∗) is strictly convex for 0 < τ <ModΩ∗.

The main part of the proof of this theorem needs to be stated separately.
As a by-product it establishes the uniqueness part of Theorem 1.1.

Proposition 10.2. Let Ω∗ be a bounded doubly connected domain. Suppose
that h ∈ D(A(τ◦),Ω

∗) is an energy-minimal deformation. In particular, by
Lemma 6.1,

(10.1) hzhz̄ ≡ c

z2
in A(τ◦).
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Then for any diffeomorphism g : A(τ) → Ω∗ we have

(10.2) E [g]− E [h] > 8πc(τ◦ − τ).

If, in addition, h is a diffeomorphism, then equality holds in (10.2) if and
only if τ = τ◦ and g−1 ◦ h is a conformal mapping of A(τ◦) onto itself.

Proof. First we dispose of the easy case c = 0. In this case h is conformal,
which implies E [h] = 2|Ω∗|. On the other hand, E [g] > 2|Ω∗| with equality
if and only if g is conformal, see (1.2).

It remains to deal with c 6= 0. The composition

f = g−1 ◦ h : A(τ◦) onto−→ A(τ)

lies in W 1,2
loc (A(τ◦)) and is not homotopic to a constant mapping. Moreover,

the restriction of f to the domain G := {z ∈ A(τ◦) : h(z) ∈ Ω∗} is a harmonic
diffeomorphism onto A(τ), by virtue of Proposition 8.1. Thus, f possesses a

right inverse f−1 : A(τ) onto−→ G which is also a diffeomorphism. We estimate
E [g] − E [h] in several steps. The first step is to apply the chain rule to the
derivatives of g = h ◦ f−1(w) at w = f(z).

∂g

∂w
=
hzfz − hz̄fz̄

Jf
∂g

∂w̄
=
hz̄fz − hz̄fz̄

Jf

(10.3)

Then by change of variables the Dirichlet energy of g in A(τ) reduces to an
integral over G.

E [g] = 2

∫

A(τ)

(
|gw|2 + |gw̄|2

)
dw

= 2

∫

G

|hzfz − hz̄fz̄|2 + |hz̄fz − hzfz|2
Jf

dz

Next, subtract
∫
G|Dh|2 from E [g], use the inequality |hz |2+ |hz̄|2 > 2|hzhz̄|,

and recall (10.1) to obtain

E [g]−
∫

G
|Dh|2 = 4

∫

G

(
|hz |2 + |hz̄ |2

)
|fz̄|2 − 2Re

[
hzhz̄fzfz̄

]

Jf
dz

> 4

∫

G

2|hzhz̄ | |fz̄|2 − 2Re
[
hzhz̄fzfz̄

]

Jf
dz(10.4)

= 4|c|
∫

G

[ |fz − σfz̄|2
Jf

− 1

]
dz

|z|2 , where σ = σ(z) =
cz̄

|c|z
We must also account for the integral of |Dh|2 over A(τ◦) \ G. On this set
Jh = 0 a.e. by Lemma 3.10, which in view of (10.1) implies

|hz|2 + |hz̄|2 = 2|hz |2 =
2|c|
|z|2 .



EXISTENCE OF ENERGY-MINIMAL DIFFEOMORPHISMS 25

Hence

(10.5)

∫

A(τ◦)\G
|Dh|2 = 4|c|

∫

A(τ◦)\G

dz

|z|2 .

Combining (10.4) and (10.5) we arrive at

E [g] − E [h] > 4|c|
∫

G

|fz − σfz̄|2
Jf

dz

|z|2 − 4|c|
∫

A(τ◦)

dz

|z|2

= 4|c|
∫

G

|fz − σfz̄|2
Jf

dz

|z|2 − 8π|c|τ◦.
(10.6)

At this stage the sign of c comes into play. Note that

|fz − σfz̄|2
Jf

=

{
Kf

T if c > 0

Kf
N if c < 0.

Lemma 3.10 tells us that the Jacobian Jh vanishes almost everywhere on
A(τ◦) \G. This together with (6.4) imply that one of directional derivatives
of h must vanish a.e. on A(τ◦)\G: hT = 0 if c > 0 or hN = 0 if c < 0. Since
f = g−1 ◦ h, the same alternative applies to the directional derivatives fT
and fN . In summary, the last integral in (10.6) may as well be taken over
A(τ◦) instead of G.

(10.7) E [g]− E [h] >





4|c|
∫

A(τ◦)
Kf

T

dz

|z|2 − 8π|c|τ◦ if c > 0

4|c|
∫

A(τ◦)
Kf

N

dz

|z|2 − 8π|c|τ◦ if c < 0.

In the case c > 0 we apply Proposition 5.2 to f and obtain the estimate

(10.8)

∫

A(τ◦)
Kf

T

dz

|z|2 > 2π
τ2◦
τ

which together with (10.7) yield

(10.9) E [g]− E [h] > 8πc
τ◦
τ
(τ◦ − τ) > 8πc(τ◦ − τ), 0 < τ◦, τ <∞.

If c < 0, then Proposition 5.1 (b) applies to the restriction of f to G,
yielding

(10.10)

∫

G
Kf

N

dz

|z|2 > 2πτ

which together with (10.6) imply (10.2).
It remains to prove the equality statement. Since h is a sense-preserving

diffeomorphism, we have G = A(τ◦) and |hz | > |hz̄ | everywhere in A(τ◦).
If equality holds in (10.2), then it also holds in (10.4). The latter is only

possible if fz̄ ≡ 0 in A(τ◦). Thus f : A(τ◦)
onto−→ A(τ) is a conformal mapping.

This implies τ◦ = τ , as desired. �
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Proof of Theorem 10.1. Pick τ◦ ∈ (0,ModΩ∗). By Theorem 2.4 there exists
h ∈ H

1,2(A(τ◦),Ω
∗) such that E [h] = E(τ◦,Ω

∗). Consequently, (10.1) holds.
That c > 0 follows from Corollary 6.2. We now claim that

(10.11) E(τ,Ω∗)−E(τ◦,Ω
∗) > −8πc(τ − τ◦), τ ∈ (0,ModΩ∗), τ 6= τ◦

Indeed, by Theorem 2.4 there exists g ∈ H
1,2(A(τ),Ω∗) such that E [g] =

E(τ,Ω∗). Proposition 10.2 is exactly what we need for (10.11).
Inequality (10.11) tells us that E(τ,Ω∗) is strictly convex. Together with (7.5)

it yields the existence of the derivative

d

dτ

∣∣∣∣
τ=τ◦

E(τ,Ω∗) = −8πc,

Incidentally or not, this shows that c depends only on τ◦ and Ω∗, but not on
h. Every convex function, once differentiable everywhere, is automatically
C1-smooth; the theorem is fully established. �

The strict convexity part of Theorem 10.1 fails for τ > ModΩ∗. We
demonstrate this with an example based on the results of [2]. Although
the paper [2] is concerned with the minimization of energy in a somewhat
different class of Sobolev mappings, its approach carries over to our setting
with no changes.

Example 10.3. Let Ω∗ = A(1, R∗) where 1 < R∗ < ∞. The function τ 7→
E(τ,Ω∗) is C2-smooth on (0,∞), strictly convex for 0 < τ < log coshModΩ∗

and affine for τ > log coshModΩ∗.

Proof. Let Ω = A(1, R) where R = eτ . We begin with the case 0 < τ <
log coshModΩ∗. In terms of R this condition reads as

(10.12) R∗ >
1

2

(
R+

1

R

)
, equivalently, R 6 R∗ +

√
R2

∗ − 1.

Let λ ∈ (−1, 1] be determined by the equation

(10.13) R∗ =
1

1 + λ

(
R+

λ

R

)
; that is, λ =

R(R−R∗)

RR∗ − 1
.

By [2, Corollary 2] the infimum of energy E(Ω,Ω∗) is achieved by the map-
ping

(10.14) hλ(z) =
1

1 + λ

(
z +

λ

z̄

)
,

for which we compute

(10.15) E [hλ] = 2π
(R2 − 1)(R2 + λ2)

R2(1 + λ)2
.

which yields

(10.16) E(logR,Ω∗) = 2π
(R2 + 1)[(R2

∗ + 1)− 4RR∗]

R2 − 1
.
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A straightforward computation reveals that the righthand side of (10.16) is a
convex function of logR in the range given by (10.12). Indeed, its derivative
with respect to logR is equal to

(10.17) R
d

dR
E(logR,Ω∗) =

8πR(R−R∗)(RR∗ − 1)

(R2 − 1)2
.

Differentiating (10.17) once again, we find

R
d

dR

(
R
d

dR
E(logR,Ω∗)

)

=
8πR

(R2 − 1)3
{
(R∗R

2 − 2R+R∗)(2RR∗ −R2 − 1)
}
.

(10.18)

The right hand side of (10.18) has the same sign as (2RR∗ −R2− 1), which
proves the claim. For future reference we note that at the transition point
R = R∗+

√
R2

∗ − 1 the equations (10.17) and (10.18) yield one-sided deriva-
tives of E(τ,Ω∗), namely

(10.19)
d

dτ
E(τ,Ω∗) = 2π,

d2

dτ2
E(τ,Ω∗) = 0.

It remains to consider the case τ > log coshModΩ∗. Now it is more
convenient to work with Ω = A(r,R) where R = R∗ +

√
R2

∗ − 1 and r < 1.
By [18, Theorem 1.8] the infimum E(Ω,Ω∗) is realized by a non-injective

deformation h : Ω onto−→ Ω∗.

h =

{
z
|z| for r < |z| 6 1
1
2

(
z + 1

z̄

)
for 1 6 |z| < R

Here the radial projection z 7→ z/|z| hammers A(r, 1) onto the unit circle
while the Nitsche mapping 1

2

(
z + 1

z̄

)
takes A(1, R) homeomorphically onto

Ω∗. The contribution of the radial projection to the energy of h is equal to

(10.20) 2π log
1

r
= 2π(τ − log coshModΩ∗).

This is an affine function of logR whose first derivative equals 2π and the
second derivative vanishes. This result remains in agreement with formu-
las (10.19). Thus E(τ,Ω∗) is a C2-smooth function. �

11. Open questions and conjectures

In (1.5) and (2.1) we defined two infima of energy; the one denoted
EH(Ω,Ω

∗) runs over homeomorphisms and the other, E(Ω,Ω∗), over de-
formations in the sense of Definition 2.2). Clearly EH(Ω,Ω

∗) > E(Ω,Ω∗).
Under the hypotheses of Theorem 2.3 EH(Ω,Ω

∗) = E(Ω,Ω∗).

Question 11.1. For k > 2, is EH(Ω,Ω
∗) = E(Ω,Ω∗) for all k-connected

bounded domains Ω and Ω∗ in C?
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This question has the affirmative answer in the case k = 1 thanks to the
Riemann mapping theorem. Indeed, due to Corollary 3.9 the formula (1.2)
remains valid for all deformations. Therefore, the conformal mapping mini-
mizes the energy.

Theorem 10.1 and Example 10.3 motivate the following conjecture.

Conjecture 11.2. The function τ 7→ E(τ,Ω∗) is convex for 0 < τ <∞.

Note that it would follow from the positive answer to Question 11.1, by
means of Proposition 10.2.

We expect that Theorem 2.4 can be given the following sharp form.

Conjecture 11.3. If two bounded doubly connected domains Ω and Ω∗ in

C admit an energy-minimal diffeomorphism h : Ω onto−→ Ω∗, then

ModΩ∗ > log coshModΩ.

Moreover, if both sides are finite and equal, then Ω∗ is a circular annulus.

Concerning the existence of energy-minimal diffeomorphisms between do-
mains of higher connectivity, we propose a generalization of Theorem 1.1.

Conjecture 11.4. Let Ω and Ω∗ be bounded k-connected domains in C,
where k > 2. Suppose that Ω ⊂ Ω∗ where the inclusion is a homotopy
equivalence. Then there exists an energy-minimal diffeomorphism of Ω onto
Ω∗.

For k = 2 Conjecture 11.4 is true, by virtue of Theorem 1.1. In the
converse direction, we propose a qualitative version of Theorem 2.4 for k-
connected domains.

Conjecture 11.5. Let Ω and Ω∗ be bounded k-connected domains in C,
where k > 2. If ǫ > 0 is sufficiently small (depending on both Ω and Ω∗),
then there is no energy-minimal homeomorphism of Ω onto φ(Ω∗), where
φ(x+ iy) = ǫx+ iy.

In other words, if we flatten Ω∗ too much in one direction the injectivity
of energy-minimal deformations f ∈ D(Ω,Ω∗) will be lost.

12. Appendix: Monotone Sobolev mappings

Throughout this section X will be a bounded domain in C whose comple-
ment consists of k mutually disjoint closed connected sets denoted by

C \ X = X1 ∪ · · · ∪ Xk =: X, k > 2.

It then follows that to every Xi there corresponds one and only one compo-
nent of ∂X, precisely equal to ∂Xi,

∂X = ∂X = ∂X1 ∪ · · · ∪ ∂Xk.
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Among those components there is exactly one unbounded. Similarly to X,
we consider a bounded domain in Y ⊂ C whose complement consists of
k-mutually disjoint closed connected sets denoted by

C \Y = Υ1 ∪ · · · ∪Υk =: Υ.

We make one standing assumption on X; namely, none of the components
X1, . . . ,Xk degenerates to a single point.

(12.1) min
16i6k

diamXi = d > 0

Similar assumption on Y will not be required. Let us denote

(12.2) ρ
Y
= inf

α6=β
dist(Υα,Υβ) > 0.

We shall examine the class FY(X) of mappings h : X → C such that

(i) h ∈ C(X) ∩W 1,2(X);
(ii) h(X) ⊃ Y;
(iii) h{∂Xi} ⊂ ∂Υi, i = 1, . . . , k, in the sense of cluster sets;
(iv) the restriction of h to h−1(Y) is monotone.

It follows from (iii) that h−1(Γ) is compact for any compact set Γ ⊂ Y.
If in addition Γ is connected, then h−1(Γ) is connected by Proposition 3.6.

Lemma 12.1. There is a constant c = c(X,Y) > 0 such that

(12.3) E [h] > c(X,Y), for every h ∈ FY(X).

In fact, we have the following explicit bound.
∫

X

|Dh|2 >
ρ2
Y
d

diamX
.

Proof. Choose a bounded component Xi. Let a line segment I with the
end-points in Xi represent the diameter of Xi; thus |I| = diamXi. Through
every point t ∈ I there passes a straight line Lt perpendicular to I. One of
the components of X ∩ Lt, say an open interval γ, connects ∂Xi with ∂Xα,
for some α 6= i. Thus, by condition (iii),

∫

X∩Lt

|Dh| >
∫

γ
|Dh| > dist(Υα,Υi) > ρ

Y
.

This is true for almost every t ∈ I, as long as h is locally absolutely contin-
uous on X ∩ Lt. By Hölder’s inequality

∫

X∩Lt

|Dh|2 >
1

|X ∩ Lt|

(∫

X∩Lt

|Dh|
)2

>
ρ2
Y

diamX
.

Integrating with respect to t ∈ I, by Fubini’s theorem, we conclude that
∫

X

|Dh|2 >
∫

I

(∫

X∩Lt

|Dh|2
)
dt >

diamXi

diamX
ρ2
Y
>

ρ2
Y
d

diamX

as desired. �
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Theorem 12.2. For each i = 1, . . . , k there exists a continuous function
ηi = ηi

X,Y
(z) on C, vanishing on Xi, such that for every h ∈ FY(X) we have

(12.4) dist
(
h(z),Υi

)
6 ηi(z)

√
E [h], z ∈ X.

Proof. It suffices to construct for each i = 1, . . . , k, a function ηi = ηi(z) in
X which is bounded and satisfies the conditions lim

z→Xi

ηi(z) = 0 and (12.4)

for all h ∈ FY(X). Continuity of ηi can easily be accomplished by taking a
continuous majorant. The obvious choice for ηi is:

(12.5) ηi(z) = sup
h∈F(X,Y)

dist
(
h(z),Υi

)
√

E [h]
, i = 0, 1, . . . , k.

By Lemma 12.1 we see that ηi(z) 6
diamY√
c(X,Y)

. Fix an index i and suppose,

to the contrary, that lim
z→Xi

ηi(z) 6= 0. Then ηi(zν) > ǫ > 0 for some sequence

{zν} ⊂ X converging to a point z◦ ∈ Xi. This means that there is a sequence
{hν} of functions in FY(X) such that

(12.6) dist
(
hν(zν),Υi

)
> ǫ

√
E [hν ] > ǫ

√
c(X,Y),

by Lemma 12.1. Obviously, we have

(12.7) E [hν ] 6
(
diamY

ǫ

)2

, ν = 1, 2, . . .

Choose and fix a doubly connected domain G ⊂ Y so that one of the con-
nected components of C \ G is Υi. The following lemma provides us with
what we call a potential function for Υi.

Claim A. There exists a C1-smooth function U : C → [0, 1] such that
U−1{0} = Υi and U−1{1} is precisely the other connected component of
C \G. Moreover, for each 0 < t < 1 the set Γt = U−1{t} is a Jordan curve
separating the boundary components of G.

Proof. Let Φ: G→ A(r,R) be a conformal mapping of G onto a circular an-
nulus A(r,R) or a punctured disk. The function |Φ| has the desired structure
of level sets but may lack smoothness on the boundary. The latter is reme-
died with the help of a smooth strictly increasing function ψ : (r,R) → (0, 1)
such that ψ′ → 0 sufficiently fast at the points r and R. We define U as the
composition ψ(|Φ|), extended by 0 and 1 to the entire plane C. �

For h ∈ FY(X) we consider the continuous function

(12.8) V (z) = Vh(z) =





U(h(z)) if z ∈ X

0 if z ∈ Xi

1 if z /∈ X ∪ Xi.

The continuity of V follows from the condition (iii) after taking into account
that U(Υi) = {0} while U(Υα) = {1} for α 6= i.
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Recall the constant d that was defined in (12.1) as the smallest of the
numbers diamXi, i = 1, . . . , k.

Claim B. For any h ∈ FY(X) and 0 < t < 1 the level set V −1
h {t} is a

continuum of diameter at least d.

Proof. That V −1
h {t} is a continuum follows from the monotonicity assump-

tion (iv). Choose α such that: α = i if Xi is bounded and α 6= i otherwise.
In either case the component Xα is bounded. Consider a straight line L
passing through two points a, b ∈ ∂Xα such that |a− b| = diamXα. The set
L \ (a, b) consists of two closed half-lines La and Lb. We will show that on
each of them Vh attains the value t, which yields

diamV −1
h {t} > |a− b| = diamXα > d.

The half-line La meets a bounded component Xα at the point a, and must
also intersect the unbounded component of C \X. Considering our choice of
α we find that La meets both Xi and some other component of C \X. Thus
Vh attains the values 0 and 1 on La. Being continuous, it also attains the
value t. Similarly we argue with the half-line Lb. �

Claim C. We have V ∈W 1,2
loc (C). Moreover, V has the oscillation property

on every open disk B ⊂ C of diameter not greater than d = min
16α6k

diamXα.

Proof. First note that V ∈W 1,2(X) and we have the pointwise estimate

|∇V (z)| 6 ‖∇U‖L∞(C)|Dh(z)|, z ∈ X.

Recall that V is continuous on C and is constant on each component of C\X.
The classical Sobolev theory tells us that such function belongs to W 1,2

loc (C)
with the energy bound

(12.9)

∫

C
|∇V (z)|2 dz 6 ‖∇U‖∞

∫

X

|Dh|2.

We now proceed to check the oscillation property of V on a disk B ⊂ C.
For this we choose a compact set F ⊂ B. Consider an arbitrary component
of F, denoted F◦. Note that diamF◦ < diamB 6 d. The set V (F◦) is a
compact subinterval of [0, 1] which we denote by [a, b]. We will show that

(12.10) [a, b] ⊂ V (∂F◦).

This is obvious when a = b, for then V is constant on F◦. When a < b,
the inclusion (12.10) will follow once we prove (a, b) ⊂ V (∂F◦) since the
latter set is compact.

Suppose that t ∈ (a, b) but t /∈ V (∂F◦). Then

V −1{t} ⊂ (IntF◦) ∪ (C \ F◦)

where IntF◦ stands for the interior of F◦. By Claim B the set V −1{t}
is a continuum of diameter at least d and therefore cannot be a subset
of IntF◦. Hence V −1{t} ⊂ C \ F◦, but this contradicts the assumption
t ∈ (a, b) ⊂ V (F◦). Completing the proof of (12.10).
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From ∂F◦ ⊂ ∂F it follows that V (F◦) ⊂ V (∂F◦) ⊂ V (∂F). Since F◦ was
an arbitrary component of F, the lemma is proved. �

We now return to the sequence {hν} ⊂ FY(X) defined in (12.6) and the
associated functions

(12.11) Vν(z) = Vhν (z) in C(C) ∩W 1,2
loc (C).

In view of (12.9) and (12.7) we have the uniform bound on the Dirichlet
integrals

∫

C

|∇Vν(z)|2 dz 6 ‖∇U‖∞
diam2

Y

ǫ2
, ν = 1, 2, . . .

Since Vν have the oscillation property on every disk B of diameter d, the
estimate (3.2) applies, yielding

|Vν(a)− Vν(b)|2 6
C‖∇U‖∞ diam2

Y

ǫ2 log
(
e+ d

2|a−b|

)

whenever a, b ∈ C and |a− b| 6 1
2d.

This shows that the functions Vν are equicontinuous on C. By the Arzelà-
Ascoli theorem there is a subsequence, again denoted {Vν}, that converges
uniformly on C to a continuous function V = V (z). In particular,

(12.12) Vν(zν)− V (zν) → 0 as ν → ∞.

Also note that Vν ≡ 0 on Xi so V ≡ 0 on Xi as well. On the other hand, it
follows from the definition of Vν that Vν(zν) = U

(
hν(zν)

)
, and from (12.6)

we know that hν(zν) stay away from Υi, precisely

dist
(
hν(zν),Υi

)
> ǫ

√
E [hν ] > ǫ

√
c(X,Y).

Hence there is t◦ > 0 such that Vν(zν) = U(hν(zν)) > t◦ for all ν = 1, 2, . . . .
Passing to the limit in (12.12) as zν → z◦ ∈ Xi, we obtain a contradiction

t◦ = t◦ − V (z◦) 6 lim
ν→∞

[
Vν(zν)− V (zν)

]
= 0

thus completing the proof of Theorem 12.2. �
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