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Abstract 

Cancer is the second leading cause of death in the United States. This 

year, an estimated 577,190 Americans will die as a result of this family of 

diseases.  Finding cancer at its most treatable stage gives patients the greatest 

chance of recovery; novel imaging agents that target primary and metastasized 

tumors offer hope for improved prognoses in the future. Based on the hypothesis 

that vitamin B12 (B12) and its association with specific transport proteins could 

offer selective access to cancer cell lines, a series of B12-based imaging agents 

were synthesized, characterized, and assayed for both in vitro and in vivo 

functions.  A water soluble B12-Re(I) probe that incorporated the thiazole linker-

chelator moiety was used to demonstrate the presence of cubilin in A549 lung 

cancer cells, and a  B12-
64

Cu probe was shown to selectively target tumor cells 

through specific receptors for B12 in a mouse model.  These findings suggest that 

B12-based bioprobes have great promise for cancer cell lines in vitro and targeting 

tumors as imaging agents in vivo. The remarkable B12 bioprobes developed here 

have a future as tools to better understand the biochemistry of B12 specifically and 

the physiology of cancer more generally, a fascinating interface of two discrete 

fields of study.   
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Preface 
 

 

Diseases desperate grown 

By desperate appliance are relieved, 

Or not at all. 

 

 

(From William Shakespeare's Hamlet, Act IV, Scene III) 
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1 Project Overview 

The overarching goal of this research was to synthesize imaging agents 

that selectively target tumor cells through specific receptors for vitamin B12 (B12).  

B12 is essential for cellular metabolism, growth, and division, and all living cells 

require it for survival.
1
 Mammals cannot synthesize B12, so they must obtain it 

through the diet. As a result, the human body has developed a complex dietary 

uptake system based on soluble transport proteins in the mouth (haptocorrin, HC), 

intestine (intrinsic factor, IF) and circulatory system (transcobalamin II, TCII).
2
 

 

The construction of the B12-based probes presented  in the future chapters 

was based on the hypothesis that the B12 pathway can be exploited to offer a 

tropism for cancer cells, due to the fact that certain cancer cell lines overexpress 

uptake receptors for TCII (CD320 receptors) in order to meet the increased B12 

demands of their rapid and uncontrolled growth. In addition, it was recently 

discovered that some cell lines, like those of pancreatic cancer, express 

membrane-bound HC de novo. This HC finding has great potential for an even 

more specific targeting of cancer cells.  

 

The specific aims were to synthesize, characterize, and assay a series of 

B12-based imaging agents for both in vitro and in vivo functions, including a 

fluorescent B12-based probe with which to screen cell lines for receptor targets 

and a radiolabeled B12-based probe with which to target tumors in living 

organisms.  
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2 Cancer 

2.1 Pathology 

Cancer, or malignant neoplasm, describes not just one disease, but a host 

of diseases marked by unrestrained proliferation of abnormal cells.
3
 Unlike 

regular cells, which undergo scheduled differentiation and apoptosis, cancer cells 

divide uncontrollably, invade normal tissues, and may metastasize to other tissues 

and organs.3  The mechanisms by which cells become cancerous are genetic and 

environmental; cancer is thought to occur by DNA mutations which inhibit 

normal cell signaling and apoptosis. Cancer can occur in nearly every tissue in the 

body, and different types of cancers are clinically treated as distinct diseases; each 

is associated with unique risk factors, prognoses, and treatments.
4
  Prostate 

cancer, breast cancer, lung cancer, colorectal cancer, and melanoma are prevalent 

in the US today.
5
 

 

While the epidemiology of cancer is complex to study, it has been shown 

that viral infections such as infection by human papilloma virus
6
, environmental 

factors such as UV radiation from the sun,
7
and  lifestyle factors such as smoking 

tobacco
8
 are associated with the development of cervical cancer, skin cancer, and 

lung cancer, respectively. In order to resolve the genetic mechanisms of cancer, 

scientists are focused on sequencing the cancer genome to identify particularly 

high-risk mutations that contribute to cancer development and recurrence.
9
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2.2 Epidemiology 

The American Cancer Society estimates that 577,190 Americans are 

expected to die as a result of cancer in 2013.4  In 2012, cancer was cited as the 

second leading cause of death in the US.5  Based on rates from 2007-2009, 

41.24% of men and women born today will be diagnosed with a form of cancer at 

some point during their lifetime.5 

 

However, trends in epidemiology reflect advances in the field that allow 

physicians to diagnose and treat cancer more effectively; over the past three 

decades, the 5-year survival rate patients diagnosed with cancer has improved 

from 49% to 67%.4 The NCI emphasizes that finding cancer at its most treatable 

stage gives patients the greatest chance, yet, there is still a great need for 

enhanced methods of detection, early or otherwise.4  Currently, tumors are most 

often detected via blood-work, X-rays, computed tomography scans, magnetic 

resonance imaging scans, and positron emission tomography scans.
10

 

 

Finding novel imaging agents that selectively highlight primary and 

metastasized tumors could radically improve cancer survival rates by permitting 

better diagnoses and earlier intervention. This capstone project identifies new and 

important imaging techniques using B12. 
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2.3 Metastasis 

Metastasis refers to the spread of cancer from the site of a malignant 

tumor in one part of the body to other organs or tissues.
11

 Commonly, a piece of 

the original tumor, termed the primary tumor, breaks away and enters the 

bloodstream or lymphatic system, which circulates these cells to a different part 

of the body via hematogeneous or lymphatic spread, respectfully.
12

  These cells 

can form a tumor in a new site, termed the metastatic tumor.  Because the 

metastatic tumor is composed of cells from the primary tumor, it retains markers 

or antigens on the cell surface that can be used to indicate the primary site of the 

cancer.
13

 There are certain patterns of metastasis that are well-characterized 

(Table 2.1).
12

  The most common sites of metastasis from solid tumors are the 

lungs, bones, liver, and brain.
13

 

Cancer type Common sites of metastasis 

Breast Lungs, liver, bones 

Colon Liver, peritoneum, lungs 

Kidney Lungs, liver, bones 

Lungs Adrenal gland, liver, lungs 

Melanoma Lungs, skin/muscle, liver 

Ovary Peritoneum, liver, lungs 

Pancreas Liver, lungs, peritoneum 

Prostate Bones, lungs, liver 

Rectum Liver, lungs, adrenal gland 

Stomach Liver, peritoneum, lungs 

Thyroid Lungs, liver, bones 

Uterus Liver, lungs, peritoneum 

Table 2.1.Common Metastasis Sites by Cancer Type. 

 

Metastatic cancers are particularly problematic because they are difficult 

to detect and diagnose. Once circulated, metastatic cancer cells can lie dormant 

for long periods of time before growing into a clinically detectable tumor, and 
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metastatic disease may be found before, at the same time as the primary tumor, or 

much later.
12

  If the metastatic tumor is detected first, it is characterized and used 

to identify the primary cancer.  As with primary tumors, therapy for metastatic 

cancer usually involves chemotherapy, radiation therapy, hormone therapy, 

surgery, cryosurgery, or a combination of therapies.
12

  However, current therapies 

are less effective at treating metastatic cancers, and combined with the increased 

difficulty in detecting and treating metastatic cancer, most cancer deaths are due 

to metastatic disease instead of primary tumors.
10

  Discovering ways to image 

these metastatic tumors, along with the primary ones, is hence the crucial step in 

combating cancer more effectively in our society.  
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3 Vitamin B12 (B12) 

3.1 B12 Structure 

B12, also known as cobalamin, is one of the eight B vitamins.
14

 Once 

described as “nature’s most beautiful cofactor,”
15

 B12 is a rare example of an 

organometallic compound in nature, and it is the only vitamin to possess a stable 

metal-carbon bond. In 1964, Dorothy Hodgkin won the Noble Prize in Chemistry 

for solving the crystal structure of the vitamin.
16

 

 

Figure 3.1 shows the molecular structure of the vitamin.
1
 B12 contains a 

six coordinate cobalt(III) atom that is encircled by a tetradentatecorrin ring, a 5,6-

dimethylbenzimidazole with a phosphoribose unit termed the α-ligand, and a 

variable group termed the β-ligand positioned above the plane of the ring.  This 

group can be a cyano, hydroxyl, methyl, or an adenosyl group.
17

  B12 supplements 

are typically sold as cyanocobalamin, but this biologically inactive form can be 

converted into the biologically active forms that carry either a methyl group or a 

d’-deoxadenosyl group.  Like all of the B vitamins, B12 is classified as highly 

water-soluble (10.2 mg/mL).
17
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Figure 3.1. Structure of B12, which includes a cobalt(III) bound to a variable 

group (R= cyano, methyl, adeosyl, or hydroxyl), a tetradentate corrin ring, 

and a 5,6-dimethylbenzamidazole phosphoribose moiety.  

 

3.2 B12 Function 

B12 serves as a cofactor for two distinct enzymatic processes.
18

  In the 

cytoplasm, it is required by methionine synthase to convert homocysteine to 

methionine through a methylation reaction that is married to nucleotide 

synthesis.
18

  Methionine is an essential amino acid. In the mitrochondrion, it is 

required by methylmalonyl-CoA  mutase to convert L-methylmalonyl-CoA to 

succinyl-CoA in the metabolism of fatty acids.
18

 



8 

The devastating effects of B12 deficiencies demonstrate how essential the 

vitamin is to all cells in the body.
18

  Moderate B12 deficiencies may occur as a 

result of limited dietary access or well as medical conditions that result in poor 

absorption and impaired transportation and metabolism of the vitamin,
19

and 

deficiencies commonly occur in individuals who do not consume animal products, 

in infants, and in the elderly.
20

 

 

B12 deficiencies present with neurological symptoms, such as confusion, 

headaches, and depression, and with gastrointestinal symptoms, such as nausea, 

vomiting, and loss of appetite.
18

Additional symptoms include paleness, weakness, 

and fatigue.
18

  Chronic or complete inability to uptake the vitamin leads to 

degeneration of nerve fibers, or pernicious anemia, which confers permanent 

neurological damage.
18

 

 

3.3 B12 Uptake Pathway 

Although mammalian cells require B12 for metabolism and growth, this 

essential cofactor must be obtained from external sources; therefore, mammals 

have evolved a selective uptake pathway that protects B12 from proteolytic 

degradation in the stomach and maximizes absorption and delivery of B12 to the 

cells that require it.  This human B12 uptake pathway, shown as a scheme in 

Figure 3.2, includes three known transport proteins:  intrinsic factor, 

transcobalamin, and haptocorrin.  
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Figure 3.2. Dietary uptake pathway for B12. Abbreviations used are defined 

as: (HC) haptocorrin; (IF) intrinsic factor; (CB) cubilin; (Am) amnionless; 

(MRP1) multi-drug resistance protein 1; (MG) megalin; (TCII) 

transcobalamin II; (CD320) transcobalamin II receptor. 

 

3.3.1 Haptocorrrin (HC) 

When a dietary source of B12 is ingested, it binds to HC, a heavily 

glycosylated protein, in the mouth.
18

  In humans, HC is found in saliva, breast 

milk, and plasma.
18

  HC remains bound to B12 and carries it through the upper 

gastrointestinal tract, protecting it from degradation via hydrolysis in the acidic 

environment of the stomach.
18
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3.3.2 Intrinsic Factor (IF) 

When the HC-B12 exits the stomach and enters the duodenum, pancreatic 

enzymes degrade HC. The freed B12 binds to IF, a protein that is excreted by the 

gastric mucosa and the pancreas.  Unlike HC, IF is not degraded by the pancreatic 

enzymes due to its heavy glycosylation.
18

  The IF-B12 complex is transported 

through the intestine to the terminal ileum, where it is taken up into enterocyte 

cells by a complex composed of cubulin and amnionless known as the cubam 

receptor.  This process is receptor-mediated endocytosis. In the ileal enterocyte, 

the cubilin-bound IF-B12 is broken down to give free B12, which is released into 

the bloodstream through the basolateral side of the cell by the ABC transporter 

MRP1.
18

 

 

IF is critical because it transports B12 to the ileal transport receptor, 

cubam; the cubam receptor does not bind free B12, only the IF-B12 complex. 

Medical conditions such as autoimmune attack of the parietal cells or inborn 

errors of IF protein production demonstrate the importance of IF for B12 

absorption, as these conditions result in a complete lack of B12 absorption and 

pernicious anemia.
18

 

 

3.3.3 Transcobalamin (TCII) 

Once in the plasma, free B12 binds to either TCII or HC, though the 

circulating TCII is responsible for transporting B12 to the cells of the body that 

require it. These cells take up the TCII-B12 through the transmembrane CD320 
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protein, a member of the LDL receptor family, which binds only B12-bound TCII 

(holo-TCII). This receptor is present on the cell surface in virtually all tissues
21

  

and is expressed in proportion to the rate at which cells are proliferating.
22

  Upon 

receptor-mediated endocytosis, the TCII-B12 is broken down in the acidic 

environment of the lysosome and free B12 is released into the cell for subsequent 

methylation or adenosylation and use in the cell.  

 

3.4 Using B12 as a Probe for Cancer 

Due to several inherent properties of both cancer cells (as reviewed 

above), the vitamin, B12 is ideal to use to target cancer cells for the delivery of 

imaging agents with minimum background uptake and harm to the host organism.  

 

3.4.1 Increased TCII Receptors 

Ideal cancer diagnostics therapeutics are those that selectively affect 

cancer cells but leave normal tissues unharmed; as such, it is important to identify 

and exploit characteristics of cancer cells that distinguish them from healthy cells.  

One such characteristic is the increased expression of vitamin receptors.  In 

particular, it has been shown that the expression level of the receptor for the TCII, 

the CD320 receptor, is related to the rate at which the cell is growing and 

dividing.
22

  Alberto et al.  showed that rapidly growing and dividing cancer cells 

require excessive amounts B12, and aggressive tumors have a high density of these 

CD320 receptors.
23

  It is hypothesized that the increased expression of the CD320 

receptor helps cells obtain B12 which is required for the biosynthesis of 
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nucleotides for increased cell proliferation.
18

  This finding shows that the B12 

pathway can be exploited to offer a tropism for cancer cells for the targeted 

delivery of imaging agents or therapeutics to rapidly growing tumors. 

 

3.4.2 De Novo Expression of HC 

Certain cancer cell lines express membrane-bound HC de novo.
1
 Unlike 

the other transport proteins intrinsic factor and transcobalamin, HC binds B12 and 

B12 fragments.
18

  The physiological role of HC is not yet fully known.
18

  Waibel et 

al. analyzed HC expression in different tumor types and normal tissues, 

demonstrating strong HC positivity in seminoma of the testis, breast cancer, lung 

cancer, sarcoma, ovarian cancer, skin cancer, thyroid cancer, uterine cancer, and 

kidney cancer, among others.
1
  By contrast, strong HC positivity of benign tissue 

was exclusively found in the liver. As a unique property of cancer cells, the de 

novo expression of HC in these specific tumors makes them attractive targets for 

B12  probes that would bind to the selectively expressed HC.
1
  

 

3.4.3 Biocompatibility 

B12  probes, which exploit the vitamin’s supply route to target regions of 

extreme cell growth, are ideal due to high solubility in aqueous in vitro and in 

vivo conditions and a lack of toxicity dangers to the host.
17

  There are no known 

cases of cytotoxicity associated with B12.
1
  In addition, because B12 is so essential, 

the uptake pathway is unlikely to be modified by mutation, suggesting that this 

vitamin-based probe would find long-term use in the field.
1
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3.4.4 Conjugation Sites on B12 

The B12 molecule offers several sites for conjugation chemistry, including 

the cobalt metal center, the 5,6-dimethylbenzimidazole phosphoribose unit, and 

the propionamide side chains.
1
  The conjugation site was selected to minimize 

interference with B12’s ability to bind with its transport proteins, ensuring that the 

probe would be recognized, transported, and internalized properly.  Thus, instead 

of derivatizing the cobalt metal center or functionalizing the amides, conjugations 

were carried out at the 5’ hydroxyl group of the phosphoribose moiety of B12.  

This site was previously shown to be reactive in a coupling reaction with 1,1-

dicarbonyl-di-(1,2,4-triazole) (CDT) coupling agent, and conjugates retained 

binding with IF and TCII.
24
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4 Fluorescence Imaging for In Vitro Imaging 

4.1 Rhenium  

The radioisotope of technetium, 99m-technicium (
99m

Tc), has been 

described as the “medical isotope of choice for nuclear imaging.”
25

  Produced by 

the beta decay of 
99

Mo in a commercial generator,  
99m

Tc has a half-life of ~6 

hours, which is long enough to be useful in diagnostic procedures but not so long 

as to be dangerous to the patient.
25

  However, there is no stable isotope of 

technetium, so scientists use “cold” rhenium studies as a surrogate test that can 

then be translated to technetium for the development of a nuclear imaging 

diagnostic probe.   

 

As congeners of group 7, technetium and rhenium have similar physical 

properties and coordination chemistry.  While 
186

Re(I)  is not a commonly used 

fluorophore, is has a distinct excitation and emission profile, and the fluorescent 

186
Re(I) can be used in vitro to test the efficacy of ligands for direct translation to 

radioactive 
99m

Tc for use in vivo.  Rhenium (and technetium) fac-tricarbonyl 

bearing polypyridyl ligands have been developed and studied for use in the field 

of cellular imaging.
25,26,27

 

 

4.2 Utility of a B12-based Fluorescent Probe 

A fluorescent B12-based probe would find use in a number of research 

settings. In the Doyle lab, such a construct could be used to investigate the 

association and internalization of B12 based therapeutics and imaging agents in a 
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cellular system prior to in vivo models.  Positive uptake would suggest that 

specific chemical modifications to B12 did not critically interfere with transport 

protein binding and recognition and that the B12 conjugate was recognized and 

internalized by living cells.  In research groups around the world, a fluorescent 

B12-based probe would allow for the preliminary screening of cultured cell lines 

to confirm the presence of certain receptors that are important in the B12 uptake 

pathway, such as cubilin. Finally, for laboratories that are studying the differential 

expression of these receptors in varied tissue samples, such a probe would provide 

a confirmation of the receptor on the cellular level—functionality that cannot be 

obtained from biochemical methods such as reverse transcriptase polymerase 

chain reaction (RT-PCR) or Western blot.  

 

4.2.1 Previous B12-based Fluorescent Probe Constructs 

The first generation fluorescent B12-basedprobe for use in vitro studied in 

the Doyle lab was designed to target cubilin expressed in cancerous cells.  This 

probe, B12-BQBA-[Re(CO)3], incorporated a ligand N,N-bis(quinolinoyl) 

(BQBA) to chelate the Re(I).
26

  Doyle et al. synthesized, purified, and 

characterized the probe, and then screened placental choriocarcinoma BeWo cells 

to show uptake of B12-BQBA-[Re(CO)3] via an IF-cubilin receptor mediated 

endocytosis mechanism.
26

  This work was published in 2009 in the Journal of 

Medicinal Chemistry.  

 

 



16 

4.3 B12-[Re(CO)3]-Thiazole 

The utility of the first generation B12-BQBA-[Re(CO)3] probe was 

severely limited by its poor solubility in aqueous solvents, and the second 

generation probe was designed to be more water-soluble and thus more useful in a 

water-based cell system.
27

  Instead of the BQBA, a bifunctionalthiazole ligand 

that was first described by the Valliant group was chosen based on its ability to 

both chelate the Re(I) and offer an amino group for coupling with B12.
27

  This 

ligand was also expected to be more polar, and thus, more water-soluble.  The 

final compound, a water-soluble B12-Re(I) probe incorporating the thiazole linker-

chelator moiety, was used to demonstrate the presence of cubilin in A549 lung 

cancer cells. The entire synthetic scheme is shown in Figure 4.1.  

 

Figure 4.1. Synthesis of B12-[Re(CO)3]-Thiazole. 
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4.3.1 Synthesis, Purification, and Characterization of 1,1, bisthiazole 

(1,4) di-aminobutane 

1,1, bisthiazole (1,4) di-aminobutane (1) was synthesized by combining N-

Boc-1,4-butanediamine (100 mg, 0.53 mmol) and thiazole-4-carboxaldehyde (120 

mg, 1.06 mmol) in 5 mL of anhydrous dichloroethane and stirred under N2(g) at 

room temperature.  After 30 minutes, sodium triacetoxyborohydride (225 mg, 1.5 

mmol) was added and the reaction was stirred for an additional 16 hr.  The solvent 

was removed in vacuo, and the reaction was redissolved in 10% MeOH/10% TFA 

in H2O and stirred for 3 hr.  

 

1 was purified by RP-HPLC using an analytical C18 column (Agilent 

Eclipse XDB-C18 9.4 mm X 250 mm, 3 µm particle size) on an Agilent 1100 

series instrument with a quaternary pump and UV detection at 254 nm. The 

solvents for purification included (A) 0.1% TFA/water and (B) 0.1% TFA/MeCN, 

and the flow rate was 1 mL/min.  The method was a gradient of 0-20% B over 5 

min, followed by an increase to 40% B over another 4 min.  Under these 

conditions, 1 eluted with a Tr of 3.4 min. The yield of 1 was 60%. 

 

Purity of 1 was confirmed via 
1
H NMR and MALDI-ToF/MS.  An 

1
H 

NMR spectra, taken in deuterium oxide (D2O) at 300 MHz, confirmed the 

proposed structure of 1, showing 
1
H NMR peaks (in δ): 9.06 s, 2H; 7.83 s, 2H; 

4.57 m, 4H; 3.24 t, 2H; 3.00 t, 2H; 1.92 m, 2H; 1.67 m, 2H.  MALDI-ToF/MS 
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showed a peak consistent with 1 at 283.15 m/z, the expected M[H]
+
 value of  

283.1 amu.  

 

4.3.2 Synthesis, Purification, and Characterization of Re(CO)3-1,1, 

bisthiazole (1,4) di-aminobutane complex  

The purified ligand 1 was labeled with rhenium to give Re(CO)3-1,1, 

bisthiazole (1,4) di-aminobutane complex (2).  1 (20 mg, 0.07 mmol) and 

Re(H2O)3(CO)3Br (3 mg, 0.07 mmol) were dissolved in MeOH and refluxed for 3 

h. The solvent was removed in vacuo and the residue was redissolved in 10% 

MeOH in H2O. 

  

2 was purified by RP-HPLC using an analytical C18 column (Agilent 

Eclipse XDB-C18 9.4 mm X 250 mm, 3 µm particle size) on an Agilent 1100 

series instrument with a quaternary pump and UV detection at 254 nm. The 

solvents for purification were (A) 0.1% TFA/water and (B) 0.1%TFA/MeCN, and 

the flow rate was 1 mL/min.  The method was a gradient of 0-20% B over 5 

minutes, followed by an increase to 40% B over another 4 minutes.  Under these 

conditions, 2 eluted with a Tr of 5.2 min.  The yield of 2 was 73%.  

 

Purity of 2 was confirmed via 
1
H NMR and MALDI-ToF/MS.  An 

1
H 

NMR spectrum taken in deuterium oxide (D2O) at 300 MHz, confirmed the 

proposed structure of 2, showing 
1
H NMR peaks (in δ): 9.57 s, 2H; 7.67 s, 2H; 

4.67 m, 4H; 3.8 t, 2H; 2.90 t, 2H; 1.94 m, 2H; 1.70 m, 2H. MALDI-ToF/MS 
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showed a peak consistent with 2 at 553.05 m/z, the expected M[H]
+
 of 553.04 

amu.  

 

4.3.3 Synthesis of B12-[Re(CO)3]-Thiazole (2) 

2 was coupled to the 5’ hydroxyl of the ribose group of B12 via 1,1’-carboyl-

di-(1,2,4-triazole) (CDT) coupling to give B12-[Re(CO)3]-Thiazole(3).  B12 (10 

mg, 0.006 mmol) and CDT (2 mg, 0.010 mmol) were dissolved in dry DMSO and 

heated to 40°C for 1 hr under N2(g) to activate the hydroxyl group for coupling 

with an amino group.  2 (4 mg, 0.007 mmol) was added to the reaction and the 

reaction was left stirring under N2(g) overnight (Figure 4.2).  After 16 hr, the 

reaction was precipitated using acetone and diethyl ether to give a deep red 

precipitate that was redissolved in 10% MeOH in H2O.  

 

Figure 4.2.  CDT-Coupling of 2 to B12. 

 

3 was purified by RP-HPLC using an analytical C18 column (Agilent 

Eclipse XDB-C18 9.4 mm X 250 mm, 3 µm particle size) on an Agilent 1100 

series instrument with a quaternary pump and UV detection at 254 nm. The 

solvents for purification included (A) 0.1% TFA/water and (B) 0.1%TFA/MeCN, 

and the flow rate was 1 mL/min.  The method was a gradient of 0-20% B over 5 
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minutes, followed by an increase to 40% B over another 4 minutes.  Under these 

conditions, 3 eluted with a Tr of 7.3 min (Figure 4.3).  The yield of 3 was 13%.  

 

Figure 4.3.  RP-HPLC trace. 3 elutes at 7.3 minutes. 

 

Purity of 3 was confirmed via 
1
H NMR and MALDI-ToF/MS.  An 

1
H 

NMR spectrum, taken in deuterium oxide (D2O) at 300 MHz, confirmed the 

proposed structure of 3, showing 
1
H NMR peaks (in δ): 9.19 d, 2H; 7.74 s, 2H; 

7.24 s, 1H, 7.04 s, 1H; 6.48 s, 1H; 6.26 s, 1H, 6.02 s, 1H.  MALDI-ToF/MS 

showed a peak consistent with 3 at 1907.24 m/z, the expected M
+
[-CO] of 1907 

(Figure 4.4 and 4.5).  
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Figure 4.4.MALDI-ToF/MS of 3, showing expected mass at 1907 amu for the 

M[H]
+
.  

 

 

Figure 4.5.  The calculated (left) and experimental (right) isotopic patterns of 

3, without one CO group, are equivalent and consistent with M[H]
+
. 
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4.4 Fluorescent Studies of 3 

Fluorescence spectroscopy was carried out on a Horiba JobinYvon 

(Kyoto, Japan) FluoroMax-4 spectrofluorometer in PBS buffer. 3 had an 

absorption maximum of 466 nm (Figure 4.6).  The fluorescence emission 

spectrums of 3 were measured with excitation at 458 nm (Figure 4.7) and 488 nm 

(Figure 4.8).  

 

Figure 4.6. Excitation wavelength scan (200-600 nm) for 3. 
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Figure 4.7.  Emission spectrum of 3 upon excitation at 458 nm. 

 

Figure 4.8.  Emission spectrum of 3 upon excitation at 488 nm. 

 

Compared to the unconjugated rhenium-labeled fluorescent tag 2, the full 

probe 3 showed weaker fluorescence intensity. The likely cause for the decrease 

in fluorescence upon conjugation with B12 is quenching by the B12 molecule.
28
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When IF was added, the fluorescence improved significantly in terms of intensity 

and emission maximum, suggesting that IF binding to 3 relieves the quenching 

effect.  Upon IF addition, a 15-fold increase in fluorescence intensity was 

observed, and the emission maximum blueshifted ~30 nm from ~555 to ~525 nm.  

 

The quenching nature of B12 was further confirmed by adding excess B12 

to IF-3.  A decrease in fluorescence was observed when a 100-fold excess of pure 

B12 was added to IF-3, as the excess B12 resulted in a loss of binding of IF to 3.   

Figure 4.9 shows the fluorescent emission spectrum of 3, IF-3, and IF-3 with 100x 

excess of free B12.  When bovine serum albumin (BSA) was added as a control, 

the fluorescence intensity increased only 5% and the emission maximum did not 

shift (Figure 4.10).  
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Figure 4.9.  Fluorescent emission spectrum of 3 (blue), IF-3 (red), and IF-3 

with 100-fold excess of free B12(green), demonstrating a quenching effect by 

excess B12. 

 

 
Figure 4.10. Fluorescent emission spectrum of 3 (blue) and bovine serum 

albumin (BSA)/3 (red).  Unlike IF, the addition of BSA did not alter the 

emission maxima, suggesting that 3 can be used to follow IF binding in a 

facile manner. 
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The quenching issue observed for free 3 is not a concern for in vitro or in 

vivo experiments because 3 must be bound to IF in order to be recognized and 

internalized by the cubilin receptor; IF binding relieves the quenching and 

maximizes the fluorescent signal.  However, the dramatic effects of IF binding on 

the photophysical properties of 3 could be exploited to monitor binding of IF to 3 

in other studies.   

 

4.5 Screening of A549 Lung Cancer Cells with IF-3 

After fluorescence studies, IF-3 was added to A549 lung cancer cells and 

studied via confocal microscope to look for uptake of IF-3.  

 

4.5.1 Cell lines and culture conditions 

The A549 lung cancer cell line (ATCC CCL-185) was cultured in Millipore 

250 mL culture bottles with vented lids and incubated in a VWR mammalian 

incubator at 5% CO2 and 95% humidity, conditions meant to mimic physiological 

conditions. Cells were grown in F-12K media supplemented with penicillin (10 

000 U), 10 mg mL
-1

 streptomycin, and 10% fetal bovine serum (FBS). Prior to 

testing, cells were passed in this F12K media and penicillin–streptomycin 

solution.  

 

For confocal experiments, 200,000 cells were plated onto MatTek 35 mm 

glass bottom culture dishes and incubated overnight. The media was then replaced 

with phosphate-buffered saline (PBS) containing 100 µmol of IF-3 and incubated 
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for 1 hour. After incubation, the cells were washed with PBS to remove any 

excess and unbound IF-3.  

 

4.5.2 Confocal Microscopy 

Cells were viewed under a Zeiss LSM 710 Pascal confocal microscope 

with Zen 2009 image analysis software equipped with argon ion and HeNe lasers. 

Fluorescence was observed with a 63X objective with an excitation at 458 nm and 

488 nm lasers. The laser power was set to 20% 458 nm and 35% 488 nm. The 

signal was detected using a 493–630 nm filter, with the master gain set to 281 and 

the digital game set to 9.86 with a pinhole of 49 µm.  

 

Initially, when the cells excitation was carried out by either a 458 nm laser 

or a 488 nm laser, the confocal microscopy conditions needed to detect the weak 

fluorescent signal of IF-3 also produced natural cellular fluorescence in A549 

control cells.  This background autofluorescence is thought to be from molecules 

naturally present in the cell, such as flavins, porphyrins, and other aromatic 

compounds.
29

  Because it was difficult to distinguish the autofluoresence from the 

fluorescent signal of IF-3, excitation was attempted at both 458 nm and 488 nm 

simultaneously. This dual-excitation produced a maximized signal, kept both 

pinhole and detector gain low, and did not produce background fluorescence in 

the control cells. The control cells are shown in Figure 4.11. These conditions 

successful eliminated the potential for a false positive result. 
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Figure 4.11.  63X magnification of A549 cell controls (i.e. no addition of IF-3) 

under matching confocal microscope test conditions. 

 

Under these conditions, it was shown that the IF-3 was internalized in 

A549 cells with clear cytoplasmic localization (Figure 4.12).  No localization in 

the nucleus was observed.   
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Figure 4.12. 63x magnification image of uptake of IF-3 in A549 cancer cell 

line with dual excitation at 458 and 488 nm at room temperature (compare to 

Figure 4.11 control). IF-3 is localized in the cytoplasm.  

 

In order to confirm that the IF-3 was targeting the cubilin receptor and that 

the observed uptake was due to receptor-mediated endocytosis, the experiment 

was repeated at 4 °C.  At 4 °C, uptake due to receptor mediated endocytosis 

would be halted, while uptake due to passive diffusion would not be affected.  

The cells were pre-chilled for 30 minutes, after which time a chilled solution of 



30 

IF-3 was added.  The cells were incubated at 4 °C for 1 hr and visualized via 

confocal microscopy under the same conditions.  The cells showed no 

internalization of the IF-3, but cell surface binding was still observed—an 

expected result, as receptor recognition is not lost at low temperature (Figure 

4.13). 

 

Figure 4.13. 63x magnification image showing uptake studies of IF-3 in A549 

cells performed at 4 °C. No internalization was observed.  

 

Based on the quenching effect of free B12, a B12 challenge experiment was 

determined to be of limited utility.  Excess B12 was expected to quench the 

fluorescence of IF-3, thereby potentially yielding a false negative which would be 

difficult to distinguish from blocked uptake. 

 



31 

4.6 RT-PCR and Western Blot Analyses 

Expression of cubilin was independently confirmed by reverse 

transcriptase polymerase chain reaction (RT-PCR) and western blotting through 

collaboration with the University of Aarhus in Denmark.   

 

4.6.1 RT-PCR 

RT-PCR was carried out to confirm the expression of cubilin on the level 

of mRNA. RNA from A549 cells was extracted using QiagenRNeasy mini kit as 

per manufacturer’s instructions (Qiagen). The ‘One step RT-PCR kit’ (Qiagen) 

was used. Total PCR reaction volumes were 25 mL and reaction included: 200 ng 

of RNA template, 5x Buffer [Tris.Cl, KCl, (NH4)2SO4, 12.5 mM MgCl2, DTT; pH 

8.7], 1xQ solution, 0.4 mM of each deoxynucleotide triphosphate (dNTP), 15 

pmol of each primer, 1.0 µL enzyme mix (Omniscript and Sensiscript Reverse 

Transcriptases, HotStartTaq DNA polymerase). Non-template controls were 

performed for each set of primers and template.  The reverse transcription and 

amplification were carried out under the following incubation program: 30 min at 

50 °C, 15 min at 95 °C, 35 cycles at 94 °C for 1 min, 50 °C for 1 min, 72 °C for 3 

min, and finally 10 min at 72°C. Amplification products (20 µL) were analyzed 

on a 2% agarose gel and visualized using SybrGreen.  The sizes of the separated 

bands were estimated by comparison with a 100 bp DNA marker. Cubilin mRNA 

was detected in A549 cells by RT-PCR.  
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4.6.2 Western Blot  

A western blot was carried out to confirm the expression of cubilin on the 

protein level. A549 cells were lysed on ice in PBS buffer (10 mm NaH2PO4, 150 

mm NaCl, 6 mm CaCl2) including 1% Triton X-100 (Merck) and complete mini 

EDTA-free protease inhibitor cocktail tablets (Roche Diagnostics), pH 7.4. 

Protein samples were then boiled in sample buffer (20 mm Tris, pH 6.8, 5% SDS, 

17.4% glycerol and pyronin Y) and separated by sodium dodecyl sulpate-

polyacrylamide gel electrophoresis (SDS-PAGE) using 3-8% acrylamide gels.  

After the gel electrophoresis, proteins were blotted onto a 

polyvinylidenedifluoride membrane. Immunoblotting was performed using anti-

cubilin antibody (at 2 µg/ml) as primary antibody and alkaline phosphatase-

conjugated anti-rabbit (1:50,000). Proteins were visualized using 5-bromo-4-

chloro-3-indolyl-phosphate-nitro blue tetrazolium.  

Cubilin protein was detected by western blot, although the level of 

expression was low overall, compared to the previously characterized cubilin 

expression in the Brown Norway rat yolk sac cell line BN16.  The cubilin protein 

detected in A549 cells was compared with purified cubilin control protein purified 

by IF-B12-affinity chromatography from human kidney. The protein from A549 

cells appeared to be full length and of the same size as the kidney control protein. 

The Western blot is shown in Figure 4.14.  
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Figure 4.14.  Western blot analysis of lysate of A549 cells. Lane 1: lysate of 

A549 cells. Lane 2: control cubilin protein purified from human kidney by 

IF-B12 affinity chromatography. 

 

 This work was published in Chemical Communications in 2011 in a paper 

titled “A water soluble vitamin B12-Re(I) fluorescent conjugate for cell uptake 

screens: use in the conformation of cubilin in the lung cancer line A549.
v
 

Chemical Communications is the premier journal of the Royal Society of 

Chemistry. 

 

4.7 Future work: Translation of in vitro Probes for in vivo use with Re(I) to 

99m
Tc 

The Re(I) -B12 probe can be readily translated to in vivo studies with 

minimal modifications to the overall ligand and conjugation process. The Re(I) 

coordinated to the thiazole ligand can be readily switched to a radioactive 
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derivative containing 
99m

Tc and studied using single photon emission computer 

tomography (SPECT) scanning.
30

 With ideal nuclear properties for clinical 

application and commercial availability, 
99m

Tc is used in most diagnostic 

procedures today, and this system could be used as a targeted therapeutic in 

nuclear medicine.
25

 

 

The functional role cubilin in lung cancer cells is unknown, and the 

finding of cubilin in these cells warrants further investigation.  Looking forward 

into the development of therapeutics, these results on the presence of cubilin in 

lung cells also suggests the possibility of targeting drugs in lung cancer cells in 

vivo by aerosolizing B12-drug conjugates—a substantial advance in cancer 

treatment. 
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5 Positron-Emission Topography In Vivo Imaging 

5.1 PET Scanning 

Within nuclear medicine, there exist two main non-invasive imaging 

techniques: single photon emission computer tomography (SPECT) and positron-

emission tomography (PET) scanning.
25

 Of the two, PET scanning provides 

higher resolution and sensitivity.
25

  PET uses a radioactive element, such as 

fluorine-18, oxygen-15, carbon-11, or nitrogen-13, which decays through the 

emission of a positron that collides with an electron to produce gamma rays. 

These gamma rays are detected and compiled by a PET scanner and used to 

reconstruct a computerized image of the body. Clinically, the most commonly 

used radioactive imaging agent is fluorine-18 tagged to fluorodeoxyglucose 

(FDG), and the use of PET technique has grown since the late 1990s, when the 

FDA approved FDG and PET scanners were made mobile.
31

 

 

As a diagnostic tool, PET scanning is valuable because it can be adjusted 

to detect and monitor a variety of physiological processes in various organs and 

parts of the body.
32

  The increased sensitivity of PET scanning allows for the use 

of doses of radiolabelled imaging agents that are too small to cause 

pharmacological effects.
32

 

 

5.2 Copper-64  

In the growing field of molecular imaging, research has focused on 

developing, screening, and testing radiolabelled target agents for clinical use. In 
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particular, attention has been focused on PET imaging agents incorporating 

copper-64, (
64

Cu), a radioactive isotope of copper.
32

 
64

Cu has a half-life of 12.7 

hours, which is long enough to allow for regional distribution but is not so long 

that the patient is at risk for prolonged radiation exposure.
32

  In addition, it is 

readily synthesized on a cyclotron and a number of different ligands can be 

adapted for its use.
32

 

 

However, copper is an important metal physiologically, and copper 

homeostasis is tightly regulated by both intracellular and extracellular copper-

binding molecules. Therefore, it is essential that any radiolabeled copper species 

does not disturb other copper-dependent processes in the body. A viable copper 

chelate for biological use must be both thermodynamically stable and kinetically 

inert to prevent the release of the copper metal.
33

 

 

Many of the current radiopharmaceuticals incorporating copper 

radioisotopes are bifunctional chelators that provide both a site for stable copper 

labeling and also chemical groups to covalently attach to biologically active 

molecules.
34

  The chelators most commonly utilized for labeling copper 

radionuclides to biomolecules are analogues of 1,4,8,11-tetraazacyclotetradecane-

1,4,8,11-tetraacetic acid (TETA).
34

  However, these “non-bridged” macrocyclic 

ligands show limited in vivo stability.
34

  Recent literature reports a higher degree 

of kinetic stability using bicyclic tetraazamacrocycles, the ethylene “cross-
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bridged” cyclam (CB-cyclam) derivatives,
34

 which showed no decomposition and 

rapid clearance from all tissues.
34

 

 

5.3 B12-ethylenediamine-1,4,7,10-tetraazacyclododecane-N’,N’’,N’’’,N’’’’-

tetraacetic acid (B12enDOTA)  

Because these copper radionuclides covalently attached to biological 

molecules hold such great promise for diagnostic imaging and targeted 

radiotherapy, a B12-based probe was constructed by conjugating B12 with a linker 

molecule, ethylenediamine (en), and a metal-chelating macrocyclic ligand, 

1,4,7,10-tetraazacyclododecane-N’,N’’,N’’’,N’’’’-tetraacetic acid (DOTA).  The 

resulting compound, B12enDOTA (1), offers a site for the labeling to produce a 

radio labeled probe. 1 was purified by a two-step method involving an analytical 

anion exchange column and a C18 analytical column on reverse phase HPLC 

(RP-HPLC).  The purity of 1 was confirmed by nuclear magnetic resonance 

spectrometry (
1
H NMR) and matrix-assisted laser desorption/ionization-time of 

flight mass spectrometry (MALDI-TOF MS). In collaboration with the 

Washington University Medical School in St. Louis, Missouri, 1 was labeled with 

64
Cu.  Given the strong success of my initial 

64
Cu-labeling experiments—showing 

100% radiolabeling—the labeled analogue of 1 was tested in vivo in a mouse 

model.   
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5.3.1 Synthesis of 1 

The first step of the synthesis was to functionalize the 5’hydroxyl group 

on the ribose moiety of B12 to an amine group for future peptide coupling 

reactions with the macrocyclic ligand.  B12 (cyanocobalamin, 100.0 mg, 73.8 

mmol) was activated with 1.45 equivalents of 1,1’-carboyl-di-(1,2,4-triazole) 

(CDT) (17.6 mg, 107.3 mmol) in 6 mL dry dimethyl sulfoxide (DMSO) at 40 °C 

for 1 hr under N2 (g). Ethylenediamine (en) (4.59 µL, 68.7 mmol) and 

triethylamine (TEA) (9.59 µL, 68.8 mmol) were diluted in 1 mL dry DMSO. The 

CDT-activated B12 was added drop-wise over 30 min to the en solution. The 

reaction solution was stirred under N2 (g) for 3 hr at 40 °C. After 3 hr, the reaction 

product was crashed out of DMSO using 4:1 diethyl ether/acetone solution, spun 

down at 4000 rpm for 10 min, and dried in vacuo overnight.  

 

In the second synthesis reaction, the carboxylic acid arm of the 

macrocyclic ligand (DOTA) was conjugated to the free amino group of the B12en 

conjugate via peptide coupling to give 1. Because DOTA offers reactive four 

carboxylic acid arms, the DOTA was added in two equivalents excess to 

encourage the formation of  a 1:1 B12en:DOTA conjugate, assuming a yield of 

100% for the B12-ethylenediamine (B12en) reaction, (106 mg, 73.8 mmol).  

 

DOTA was activated using the water soluble 3-

(ethyliminomethyleneamino)-N,N-dimethyl-propan-1-amine (EDC) coupling 

agent with N-hydroxysulfosuccinimide (sulfo-NHS) to increase coupling 
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efficiency. Two equivalents of DOTA (59.4 mg, 0.147 mmol) and 2.5 equivalents 

of sulfo-NHS (47.9 mg, 0.221 mmol) were dissolved in 1 mL 100 µM sodium 

phosphate (pH 6.5). EDC (30.9 mg, 0.162 mmol) was dissolved separately in 50 

µL of the same buffer and added drop-wise over 20 min to the DOTA and sulfo-

NHS solution. After the solution was allowed to activate at room temperature for 

30 min, B12en was dissolved in 2 mL 100 µM sodium phosphate (pH 6.5) and was 

added to the activated DOTA. The reaction was left stirring overnight at room 

temperature.  Figure 5.1 shows the entire synthesis of 1. 

 

Figure 5.1: Schematic of the Synthesis of 1 

 

5.3.2 Purification of 1 

A two-step purification scheme was to first separate 1 from unreacted B12 

and B12en, and second from other oligomers that formed. Both purifications were 

performed on RP-HPLC.  The first used a Zorbax Sax analytical anion exchange 

(ANX) column (4.6 mm x 250 mm) on an Agilent 1200 series instrument with a 
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quaternary pump and UV detection at 254 nm. Solvents for elution included (A) 

water and (B) 0.5 M sodium chloride. At a flow of 1.0 mL/min, the gradient was 

(1) 100% A for 6 min then (2) 100 % B for 22 min (Figure 5.2).  

 

 

Figure 5.2.  ANX Purification of 1 by RP-HPLC, with elution of 1 beginning 

at 13 min.  

 

Each peak was collected and characterized by MALDI-ToF/MS, which 

suggested that the ANX HPLC peak with a retention time of 13–14.5 min was 1 

(showing major MALDI-ToF/MS peaks at 1801.7 m/z, indicative of [M
+
–CN]).  

However, this peak also showed MALDI-ToF/MS peaks at 2770.1 m/z, and 

3198.3 m/z, suggesting that other impurities had eluted with the 1, including 

B12enB12 and B12enDOTAenB12.  The target peak was dried in vacuo and 

redissolved in H2O (0.1 % TFA) to uniformly protonate the three unbound 

carboxylic acid arms of DOTA in preparation for a second C18 RP-HPLC 

purification to isolate 1 from the ANX impurities.  
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Figure 5.1.  C18 Purification of B12enDOTA (1) by RP-HPLC, with elution of 

B12enDOTA (1) at 7.17 min. 

 

The second purification was performed using a Zorbax C18 analytical 

column (42 mm x 10 mm) at a flow rate of 1.0 mL/min. Solvents for elution 

included (A) H2O (0.1 % TFA) and (B) MeCN (0.1% TFA). The method was a 

linear gradient of 10% B to 20% B over 10 min. Under this method, 1 showed a 

Tr= 7.17 min (Figure 5.3). This peak was collected and dried in vacuofor 

characterization. The yield of 1 was ~11% based on B12.  

 

5.3.3 Characterization of 1 

Purity of 1 was confirmed via 
1
H NMR and MALDI-ToF/MS.  An 

1
H 

NMR spectra, taken in deuterium oxide (D2O) at 300 MHz, confirmed the 

proposed structure of 1 and showed a downfield shift of the ethylene protons of 

DOTA. 
1
H NMR peaks (in δ) included: 7.306 (1H, s), 7.126 (1H, s), 6.517 (1H, 

s), 6.361 (1H, s), and 6.111 (1H, s) (Figure 5.4).  
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Figure 5.4.  
1
H NMR  of 1 in D2O at 300 MHz. 

 

The MALDI-ToF/MS of the HPLC peak at Tr= 7.17 min contained a peak 

at 1801.7 m/z, consistent with the theoretical molecular mass of [M
+
] = 1827.9 

minus the cyano group of cyano-B12, [M
+
–CN] = 1802.08 m/z (Figure 5.5).  The 

isotopic distribution pattern of this peak was consistent with that of the calculated 

isotopic distribution pattern of 1, based on the formula C82H120CoN20O22P (Figure 

5.6).  
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Figure 5.5. MALDI-ToF/MS showing a peak at 1802 m/z consistent with 1 

without the cyano group of B12. 

 

 

Figure 5.6. Calculated (left) and experimental (right) isotopic patterns of 1, 

without the cyano group of B12, are equivalent. 
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The RP-HPLC trace showed an impurity, represented by a second peak 

with Tr=5.11 min. This peak was confirmed by MALDI-ToF/MS to be 1 with a 

proton captured within the DOTA macrocycle, 1801.1 m/z.  An experiment at 

65°C confirmed the proton adduct theory, as the peak disappears in the RP-HPLC 

trace when the proton is driven out of DOTA in higher temperatures. 

 

5.3.4 Radiolabeling of 1 with 
64

Cu for In Vivo Uptake Studies 

 A pure sample of 1 was sent to Dr. Suzanne Lapi and Dr. TayoIkotun of 

the Department of Radiology at Washington University in St. Louis, MO, for 

radiolabeling. 1 was labeled with 
64

Cu to give 
64

Cu-B12enDOTA (2).  At 23 °C, 

both 1 and the impurity at Tr= 5 min (discussed in section 5.3.3) were labeled 

(Figure 5.7).  1 was labeled at 95% efficiency by radiation counts.  

 

At 65 °C, 1 was labeled with 
64

Cu at 100% efficiency, and the impurity 

was no longer seen. As suggested above, it is likely that upon heating, the proton 

was driven out of the DOTA macrocycle and replaced by 
64

Cu  (Figure 5.8).   
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Figure 5.7. RP-HPLC chromatograph following 
64

Cu labeling of 1 at 23 °C. 

 

 

Figure 5.8.  RP-HPLC instruments chromatograph following
64

Cu labeling of 

1 at 65 °C. At 65 °C, the impurity at Tr= 5 min disappears and 100% labeling 

is achieved. 
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5.3.5 Preliminary In Vivo Characterization of 2 in a Mouse Model 

2 was tested on two different cell lines transplanted into mice.  The first, 

B16 mouse melanoma cells, were chosen because they are commonly used to 

study in vivo cancer targeting agents. In addition, these cells express membrane-

associated HC de novo.
1
 The second, human pancreatic cancer PaCa-2 cells, were 

chosen because have been shown to express transcobalamin CD320 receptor for 

TCII.
35

  In combination, the B16 and PaCa-2 cell lines allowed for the study of 

the specific HC and TCII B12 uptake mechanisms, respectfully.  

 

 Two groups of mice were placed on a B12 deficient diet over a period of 

two weeks and implanted with either B16 or PaCa-2 cells.  The cells were 

allowed to grow for up to two weeks.  2 was injected intravenously, and the 

biodistribution was determined at 6 and 24 h by isolation of mouse organs and 

conduction radio counts. The results for the B16 are shown in Figure 5.9, and the 

results for the PaCa-2 cells are shown in Figure 5.10.  
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Figure 5.9.  Biodistribution of radiation counts 6 and 24 h after injection of 2 

into mice with B16 cell tumors, which express membrane-bound HC de novo. 
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Figure 5.10. Biodistribution of radiation counts 6 and 24 hr after injection of 

2 into mice with PaCa-2 cell tumors, which are known to express TCII 

receptors. 

 

In both tumor models, 2 showed about a 2% tumor distribution. A tumor 

distribution of at least 5% would be ideal. However, at 2% tumor distribution, 2 

was successful in visualizing the PaCa-2 tumor.  In order to demonstrate that? 2 

was targeting the cells through a B12 receptor, excess free B12 was added to 

saturate the B12 receptors and block distribution. Figure 5.11 shows the successful 

visualization of the PaCa-2 tumor (left) and block of 2 through the addition of 

excess free B12 (right).   
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Figure 5.11. Left: The PaCa-2 tumor is visualized by intravenous injection of 

2. Right: Addition of free B12 blocked delivery of 2, indicated that a B12 

receptor had been targeted. 

 

Outside of the tumor, significant levels of radiation were detected in the 

liver, kidney, and small and large intestine. The high kidney distribution was 

expected due to a) the kidneys’ role in clearing the drug and b) the high amounts 

of B12 receptors present in the organ.  However, the high distribution in the liver 

and intestines warranted further investigation. The high amount of radiation 

detected in the liver suggested that free 
64

Cu had been released from the DOTA 

macrocyclein vivo, a phenomena that has been reported in literature.
34

 In response 

to the poor stability of 2, a more stable conjugate incorporating a related ligand 

was synthesized (see Section 5.4).  The high distribution in the small and large 

intestine suggested that the animals were actually re-digesting fecal matter 
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containing the cleared radiolabeled drug during the experiment. In order to 

prevent this, metabolic cages will be used in future experiments to prevent 

ingestion of fecal matter.  It is hypothesized that in future experiments, 

incorporating the new conjugate and metabolic cages, a tumor distribution of 

higher than 2% can be achieved.  

 

5.4 B12en(S)-p-SCN-Bn-1,4,7-triazacyclononane-N,N′,N′′-triacetic acid 

(B12enNOTA) 

A more stable chelator molecule was selected for a revised probe construct. 

A related macrocyclic ligand, 1,4,7-triazacyclononane-N,N′,N′′-triacetic acid 

(NOTA), was substituted for the DOTA, to give an optimized compound, 

B12enNOTA (3) with a higher expected degree of kinetic stability in regards to 

chelating the 
64

Cu.  Thus, trials with 3 were expected to show less radiation in the 

liver.  

 

5.4.1 Synthesis of 3 

 In the interest of maximizing reaction yield, the NOTA ligand was 

prepared with a thiocyanate group that is highly reactive with previously prepared 

B12en.  Mole equivalents of B12en (20 mg, 1.38 x 10
–2

mmol) and p-SCN-NOTA 

(6.21 mg, 1.38 x 10
–2

mmol) were dissolved  in 3 mL of 100 mM sodium 

carbonate, pH 10.5, and combined at room temperature. The reaction was left 

stirring under air for 16 h (Figure 5.12).  
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Figure 5.12. Coupling of B12en to p-SCN-NOTA to give 3. The thiocyanate 

group helped increase yield.  

 

5.4.2 Purification of 3 

3 was purified by RP-HPLC using an analytical C18 column (4.6 mm X 

150 mm, 3 µm particle size) on an Agilent 1200 series instrument with a 

quaternary pump and UV detection at 360 nm. The solvents for purification 

included (A) 0.1% TFA/water and (B) MeCN, and the flow rate was 1 mL/min.  

The method was a gradient of 10-25% B over 0-15 min. Under these conditions, 

B12en eluted at about 7 min and 3 eluted at 12.5 min (Figure 5.13). The peak with 

Rt= 12.5 was collected and dried in vacuofor characterization. The yield was 95%.  
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Figure 5.13.  Purification of 3 by RP-HPLC, showing distinct elution of B12en 

at ~7 min (red) and elution of 3 at ~12.5 min (blue).  

 

5.4.3 Characterization of 3 

The identity of 3 was confirmed by 
1
H NMR, infrared spectroscopy (IR), 

and MALDI-ToF/MS. A 
1
H NMR was taken in D2O at 300 MHz, giving peaks (in 

δ) at: 7.283 (s, 2 H), 7.160 (s, 2 H), 7.096 (s, 1 H), 6.455 (s, 1 H), 6.276 (d, 1 H), 

6.00 (t, 1 H).  

 

In the coupling reaction, the isothiocyanate group of the p-SCN-NOTA 

would disappear; IR spectroscopy was utilized to look for the absence of the 

intense characteristic isothiocyanate stretch at 2125 cm
–1

. The IR confirmed that 

this band was gone, and thus that the original reactant containing the group, the p-

SCN-NOTA, had fully reacted with the B12en (Figure 14).  In MALDI-ToF/MS, 

the mass of 3 [M – CN]
+
  was expected to be 1867 m/z.  Figure 5.15 shows a peak 
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at 1867.483 m/z, confirming the identity if 3. 
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Figure 5.14. IR spectrum of 3, showing a lack isothiocyanate group, 

represented by a band at 2125 cm
–1

. 
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Figure 5.15.  MALDI-ToF/MS showing a peak at 1867 m/z, consistent with 3 

without the cyano group of B12. 

 

5.5 Future Work 

It is hypothesized that the tumor distribution of a radiolabeled B12 probe 

will be increased by the incorporation of the NOTA ligand and inclusion of 

metabolic cages in the animal protocol.  The increased stability of the NOTA 

chelate for the 
64

Cu  is expected to lower radiation in the liver, while the 

prevention of fecal ingestion is expected to lower radiation in the small and large 

intestine.  These experiments are currently underway in collaboration with Dr. 

Lapi and Dr. Ikotun at Washington University.  
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6 B12 Monocarboxylic Acid Derivatives 

6.1 Introduction 

While B12-based  imaging agents have experimentally labeled tumor tissue 

through successful receptor-mediated endocytosis of the TCII-bound B12 

conjugate,
35

 significant background levels of radioactivity were detected in 

normal tissue.
1
  In particular, high uptake is seen in the kidneys and the liver 

because these organs are responsible for clearing and storing B12, respectfully.
1
  

High uptake of radiolabeled compounds in the kidney may lead to radiation 

toxicity, and the radiation dose to the kidney is often the “dose-limiting” factor for 

the clinical use of nuclear medicine.
1  

 

However, the highest expression of CD320 is seen in the kidneys, which 

poses a problem for the development of B12-based therapeutics.  A solution to this 

problem would be to knock out the B12 conjugate’s ability to bind with TCII, yet 

maintain binding with other important transport proteins.  Additionally, Waibel et 

al. suggest that a B12-based probe with decreased binding with TCII would clear 

from the blood more quickly than the transport protein-bound form, decreasing 

overall systemic toxicity.
1  

 

In response to the demand for a more specific imaging agent, there has 

been a focus on synthesizing B12-based probes incorporating monocarboxylic acid 

derivatives of B12 (MCAs).  Mild acid hydrolysis of B12 produces a mixture of 

MCAs derived from the b, d, and e propionamide side chains; these side chains 
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are more susceptible to the hydrolysis than the  a, c, and g side chains.
1
  While the 

MCAs retain vitamin function and normal interaction with HC, modification 

certain propionamide side chains affects B12’s ability to bind with TCII, 

decreasing relative affinity by less than a factor of 10 for conjugates of the b-

isomer of the MCA.
1,2

 By disrupting the binding of B12 to its transfer protein TCII 

and inhibiting uptake by TCII receptors, building B12–based conjugates 

incorporating MCAs are ideal to prevent non-targeted organ uptake and target the 

cancer cells that express HC de novo with a high signal-to-noise ratio.
1
 

 

6.2 Synthesis of MCAs 

Marques and Scooby investigated the optimal reaction conditions for the 

generation of MCAs, reporting that maximum conversion (42% yield) of B12 to 

the e, b, and d MCA isomers occurred in 1 M hydrochloric acid (HCl) at 50°C for 

2 hours.
36

 

 

B12 (cyanocobalamin, 50 mg, 36.9 mmol) was dissolved in 5mL of 1 M 

HCl and allowed to react for 2 h at 50°C (Figure 6.1).  The reaction was 

neutralized with 1 M sodium hydroxide (NaOH) and loaded on Amberlite ion 

exchange resins for desalting. The reaction was eluted from the resins in 100% 

MeOH, dried in vacuo, and redissolved in 10 mL H2O. 
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Figure 6.1. The conversion of B12 to B12 MCA via acid hydrolysis (the b-acid 

isomer is shown). 

 

6.3 Purification of MCAs 

The crude reaction was purified by fast protein liquid chromatography 

(FPLC) using a 5 mL diethylaminoethyl (DEAE) Sepharose Hi Trapanion-

exchange column chromatographyon an AKTA prime plus liquid instrument with 

an automated fraction collector and UV detection at 280 nm (GE Healthcare). All 

runs were carried out at 4°C.  The reaction was filtered through a 0.64µm filter 

and loaded at 0.5 mL/min in 100% H2O. After the initial flow-through peak 

(confirmed by MALDI-TOF/MS to be unreacted B12), the MCAs were eluted at 

2.5 mL/min at 2% 1 M NaCl and collected as a single fraction for subsequent 

purification by HPLC.  B12-dicarboxylic and tricarboxlic acids (confirmed by 

MALDI-TOF/MS) were eluted together at 100% 1 M NaCl (Figure 6.2).   
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Figure 6.2. FPLC trace of crude B12 MCA reaction. The MCAs elute at 2% 1 

M NaCl in the second peak at 36 min. 

 

The peak that eluted at 2% 1 M NaCl (36 min) was dried in vacuo and 

redissolved in 5 mL H2O for a second purification by reversed-phase high-

performance liquid chromatography (RP-HPLC) using an Semiprep Eclipse 

XDB-C18 column (9.4 mm X 250 mm, 5 µm particle size) (Agilent Technologies, 

Santa Clara, CA) on an Agilent 1200 series instrument with a quaternary pump 

and UV detection at 360 nm. This purification was optimized to separate the 

MCA isomers. 

 

The solvents that were used for elution included (A) 50 mM phosphate 

buffer pH 6.5 and (B) MeCN.  At a flow rate of 3.0 mL/min, the gradient was (1) 

5–15% B over 0–15 min, (2) 15% B for 15-20 min, (3) 15–50% B over 20-26 
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min, and (4) 50–5% B over 26–32 min.  The trace is shown in Figure 6.3. Three 

prominent peaks at Tr=14.89 min, 15.87 min, and 17.12 min were collected, dried 

in vacuo, and loaded on Amberlite ion exchange resins for desalting. Each peak 

was eluted from the resins in 100% MeOH, dried in vacuo, and characterized by 

MALDI-ToF/MS and 2D Heteronuclear Single Quantum Coherence NMR (2D 

NMR HSQC).  

 

6.4 Characterization of MCAs 

The purity of the MCAs were confirmed by MALDI-ToF/MS, with significant 

peaks seen at 1330.6 m/z [M
+
 - CN] and 991.4 [M

+
 -CN-base-sugar-PO4]. 

Unreacted B12 from the reaction gave related yet distinctly different peaks at 

1329.6 m/z [M
+
 - CN] and 990.5 [M

+
 -CN-base-sugar-PO4]. 
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Figure 6.3.  MALDI-ToF/MS spectrum of peak 3 from RP-HPLC. 

 

Isomer assignments, based on 2D NMR HSQC taken in deuterium oxide 

(D2O), were: Peak 1 (Tr=14.89 min) as B12 e-MCA, Peak 2 (Tr= 15.87 min) as B12 

d-MCA, and Peak 3 (Tr= 17.12 min) as B12 b-MCA.  These assignments are 

consistent with literature.
36

 The yields (by mass) of each  isomer are reported  in 

Table 6.1.  

 

MCA Isomer RT-HPLC Retention 

Time (Tr) in min 

Yield 

e-acid 14.89 13.9% 

d-acid 15.87 12.5% 

b-acid 17.12 15.1% 

Table 6.1.  Yield of RT-HPLC Purified MCA Isomers. 
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6.5 Future Work: Construction of B12 MCA Probes 

Because the MCAs bind only to HC, it is hypothesized that MCA-based 

probes will demonstrate improved in vivo selectivity and lower systemic toxicity. 

The in vivo probes B12enDOTA and B12enNOTA described in Chapter 5 will be 

reconstructed using the b-MCA isomer, tested in regards to binding affinity for 

TCI and TCII, and evaluated on animal models to compare background uptake in 

the kidneys and liver with the unmodified B12 conjugates. In addition, conjugation 

through this b-amide position could be used to generate a fluorescent B12-MCA 

probe for use as a negative control in in vitro cell testing of B12-based fluorescent 

probes, such as those described in Chapter 4.  
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7 Optimization of the B12 based fluorescent probe for in vitro cell 

screens via incorporation of lanthanide metals 

7.1 Challenges of autofluorescence 

While the B12-ReThiazole probe described in Chapter 4 was used to 

successfully demonstrate the presence of the cubilin receptor in a lung cancer cell 

line, the probe was limited by its weak fluorescent signal.  In general, light 

scattering, reflection, and autofluorescence are all problems associated with 

normal fluorescence microscopy, which can decrease the sensitivity and contrast 

of the probe signal.
37

  In particular, the emission of the fluorescent B12-

ReThiazole was difficult to distinguish from background fluorescence of 

molecules naturally present in the cell.
38

 This natural fluorescence that is seen in 

living tissue cultures is due to substances like flavins and porphyrins, which are 

all aromatic compounds that also are excitable in the by wavelengths used to 

excited the fluorophore region.
38

 

 

A solution to this problems associated with fluorescent probes is to use 

phosphorescent molecules that exhibit delayed luminescence, allowing for the 

temporal separation of signals.
39

 Figure 7.1 depicts a simple Jablonski diagram, 

which can be used to illustrate the difference between fluorescence (2) and 

phosphorescence (3) in terms of the electronic and vibrational states of a 

molecule; the processes differ in the way that electrons behave when excited by a 

photon.  In both cases, when a molecule is excited with a photon, electrons move 

from the lowest energy conformation, the ground state, to a state of higher energy, 
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and then relax to the ground state via the emission of a photon.  In fluorescence, 

the electron is excited to the lowest singlet excited state, and it relaxes to the 

ground state without undergoing any spin changes with a decay time of 

milliseconds.
40

  By contrast, the electron in a phosphorescent system undergoes a 

spin flip that is “forbidden” by the quantum mechanical rules of electron 

transition; it is excited to the lowest triplet state and shows a much longer decay 

time on the order of seconds, or longer.  As such, time-resolved spectroscopy can 

be adjusted to detect only the long-lived emission from the phosphorescent 

fluorophore.
41

 

 

Figure 7.1.  Jablonski diagram showing the difference between fluorescent 

emission (2) and phosphorescent emission (3). In the simplest case of 

fluorescence, the excitation wavelength is defined by photon 1, the electron is 

excited to the lowest singlet excited state, and the emission wavelength is 

defined by photon 2. In phosphorescence, the emission photon is photon 4.
42
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7.2 Lanthanides  

The lanthanides (Ln) are the 15 elements from lanthanum to lutetium, 

located in the f series of the periodic table (Figure 7.2).  Existing essentially in 

their trivalent state, Ln
+3

, and bearing a [Xe]4fn electronic configuration, these 

‘hard’ metal ions possess high charge densities and form electrostatic bonds. Ln 

ions display large and variable coordination numbers (CN = 6-12), with 8 and 9 

often being the most common.
43

   As ‘hard’ acids, the Ln ions show preferential 

binding to ‘hard bases’ such as oxygen, nitrogen or fluorine based ligands, rather 

than ‘soft’ bases such as phosphorous, sulphur, or iodine.
43
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Figure 7.2. The lanthanides are found in the f series of the period table. 

Characterized by the gradual filling of their 4f orbitals, which are well 

shielded by the outer core 5s and 5p subshells, these “rare earth elements” 

display similar chemical resemblance but have very different physical 

properties.
43

 Figure redrawn in: McMahon, B. Thesis. Trinity College Dublin. 

Dublin, Ireland. July 2011. 
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7.2.1 Lanthanides as Fluorophores 

Scientists have looked towards the lanthanide metals as flurophores for 

biomedical analysis, medical diagnosis, and cell imaging.
44

 The lanthanides 

exhibit long lived excited states (microseconds for YbIII and NdIII to 

milliseconds for EuIII and TbIII), and the delayed Ln luminescence can be clearly 

distinguished from the much shorter lived (sub-microseconds) background 

fluorescence, giving an improved signal-to-noise ratio for live-tissue work.
45

  

Figure 7.3 represents the time gating procedure for the detection of lanthanide 

luminescence, where excitation occurs via a pulsed lamp or laser, and 

measurements are taken after a programmed time delay, allowing the background 

luminescence to fade.
46

  Luminescent Ln ions such as terbium (TbIII), europium 

(EuIII), samarium (SmIII), which have emissions in the visible region, and 

neodymium (NdIII), ytterbium (YbIII), holmium (HoIII), which have emission in 

the NIR region, have been used as diagnostic tools in biomedical analysis, shift 

reagents for NMR spectroscopy and as luminescent labels for 

fluoroimmunoassays.
43

  GdIII, EuIII and TbIII are reported as the most emissive. 
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Figure 7.3. A graphical representation of the time-gating procedure 

displaying the long lived emission of the Ln ions (redrawn in: McMahon, B. 

Thesis. Trinity College Dublin. Dublin, Ireland. July 2011). 

 

7.2.2 Indirect Excitation of Lanthanides via the Antennae Effect 

In order to maximize the capability of Ln luminescence for fluorescence 

studies, their drawbacks must be recognized, and coordinating ligands designed to 

help overcome these obstacles.
44

  A major problem in using these metal ions is the 

Laporte-forbidden nature of their f-f transitions, resulting in weak absorptions, 

with extinction coefficients of less than 4 M
-1

cm
-1

.
47

 As a result, unless a laser 

excitation source or a high ion concentration is used, both of which present 

challenges for cell work, direct excitation of these ions rarely yields detectable 

luminescence.
47

  One method  used to overcome this problem is the indirect 

excitation of the Ln ion via the “antennae effect.”
48

 

 

The process by which the photophysical emission from the Ln metal is 

produced using a simple aromatic system like a phenyl or aromatic chromophore 
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is summarized in Figure 7.4, which shows a second Jablonski diagram including 

both the sensitizing antenna (Ar) as well as the lanthanide ion (Ln).  The ground 

state sensitizing antenna (Ar) is excited to its singlet excited state (1Ar) when 

absorption of a photon of light of a suitable wavelength occurs. This energy can 

be transferred into the antennas triplet state (
3
Ar) via a spin forbidden intersystem 

crossing that is made possible due to the presence of the heavy Ln ion and 

significant amounts of spin-orbit coupling occurs. Provided that the energy of  the 

triplet state lies at least 1700 cm
-1

 above the accepting Ln energy level, 

subsequent population of  the Ln excited state (*Ln) will occur via an 

intramolecular energy transfer (ET) process. This energy level requirement 

prevents any unwanted thermally activated back-energy transfer to the 
3
Ar state 

which would occur if the energy gap was too small.
49

 However, a compromise 

must be met, as if the energy distance between both  levels is too large, successful 

population of the *Ln state would be hindered.
47
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Figure 7.4.  The sensitization of lanthanides via the antennae effect.
50

 Figure 

redrawn in: McMahon, B. Thesis. Trinity College Dublin. Dublin, Ireland. 

July 2011. 

 

To date, lanthanide complexes have been successfully synthesized and 

their usefulness in a variety of cellular studies has been demonstrated.
50

  These 

complexes have been used as pH probes, anion or cation sensors, as well as for 

the imaging of biological materials.  For example, McMahon et al. explored the 

use of a supramolecular Eu(III) complex as a bioprobe for selective imaging of 

microcracks in bones often caused by constant stress due to medical conditions 

like osteoporosis. The presented cyclen-based bioprobe was found to selectively 

bind to bone in exposed calcium(II) sites.
51

 A cyclen-based Tb (III) bioprobe was 
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developed by Bornhop et al. to detect early-stage oral cancer lesions using a 

hamster model in vivo.
52

  The incorporation of Eu(III) and Tb(III) in engineered 

cyclen framework holds extraordinary potential for the development of  target-

specific bioprobes that can be followed by their characteristic emissions.  

 

7.3 Synthesis of cyclen-based lanthanide complexes for conjugation with B12 

It was hypothesized that replacing the rhenium metal with a lanthanide 

metal along with a suitable sensitizing chromophore would result in a more 

optimized B12-based fluorescent system. In order to design and synthesize a Ln 

metal complex that maximized fluorescence and was suitable for B12 conjugation, 

a collaboration with Professor Thorfinnur Gunnlaugson lab group at Trinity 

College, Dublin was established.  The synthesis of the final compound was 

carried out in a series of reactions, beginning with the synthesis of the 

chromophore and pendant arms, followed by the incorporation of the 

chromophore and special pendant arm into a cyclen molecule; the resulting 

macrocyclic compound was labeled with europium (EuIII) and terbium (TbIII) to 

give the target fluorescent system. Each reaction product was named with initials 

and a number.  

 

7.3.1 Cyclen Framework 

Other non-radiative and radiative pathways are in constant competition 

with the successful population of the *Ln excited state.
38

  Examples of such 

processes include the radiative deactivation of the 
1
Ar singlet excited state to the 



70 

Ar ground state resulting in molecular fluorescence production, non-radiative 

decay of the
 1

Ar singlet excited state through collisions and vibrational 

interactions with surrounding molecules, or the non-radiative decay of the *Ln 

excited state through vibrational interactions with other molecules.
49

  These de-

activation processes can be minimized through the use of a rigid metal-ion 

environment, free of high-energy vibrations, that also protects the Ln ion from 

collisions with the solution molecules.
44

  Thus, the most successful lanthanide 

complexes are based upon the cyclen framework, which forms kinetically inert 

and thermodynamically stable metal complexes (Figure 7.5).
44

  Besides offering a 

high degree of stability, these ligands also fulfill the Ln high coordination number 

requirement, by providing potentially eight coordinating sites, four by the 

macrocyclicnitrogens and four by the flexible pendant arms.   

 

Figure 7.5.  The cyclen molecule. As a ligand, cyclen provides a site to attach 

a variety of functional groups or ligands, allowing for the functionalization of 

the macrocyclic ring and the creation of a phosphorescent system suitable for 

a distinct biological role.
44
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7.3.2 1-aminoanthroquinone Chromophore 

1-aminoanthroquinone was selected as the sensitizing chromophore.  EuIII 

and TbIII, the two most rigorously studied emissive Ln metal ions, have excited 

states that lie at 17200 and 20500 cm
-1

, respectively. Therefore, the chromophore 

needed to have an excited state 1700cm
-1

 above these values.
47

  In addition, the 

molecule had an absorbance maximum at 360 nm, a wavelength compatible with 

the confocal microscope available. The structure of 1-aminoanthroquinone and 

the functionalization of the molecule via reaction with chloroacetyl chloride for 

future incorporation into the cyclen molecule are shown in Figure 7.6.  

 

Figure 7.6.  Synthesis of 1-aminoanthroquinone chromophore.1-

aminoanthroquinone (1 g, 4.48 mmol, 1 equiv) was dissolved in 100 mL of 

DCM with triethylamine (0.49 g/0.69 mL, 4.93 mmol, 1.1equiv). The solution 

was cooled in a liquid nitrogen/ethanol bath.  Chloroacetyl chloride (0.76g/ 

0.54 mL, 6.72 mmol, 1.5 equiv) was added drop-wise to the solution over one 

hour.  Reaction was left stirring overnight. 

 

7.4 Preliminary Data 
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 For cataloging purposes, the products of each reaction were named with 

the prefix ARK and a number that related the order in which they were 

synthesized.  A peptide arm that offered both an ethyl ester-protected carboxylic 

acid for future coupling with B12-ethylenediamine and a reactive chlorine for 

reaction with the nitrogen of the cyclen molecule was constructed by reacting 

glycine ethyl ester with chloroacetyl chloride; this arm was labeled ARK4.  The 

functionalized 1-aminoanthroquinone chromophore was labeled ARK11.  The 

cyclen-based complexes were synthesized in a series of reactions, beginning with 

a monoalkylation of the cyclen framework with the chromophore ARK11, 

followed by full alkylation with the peptide arm ARK4. An overview synthetic 

scheme for the unlabeled lanthanide complex, ARK15, is shown in Figure 7.7.   
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Figure 7.7. Synthesis of cyclen-based complex incorporating a 1-

aminoanthroquinone chromophore and amino acid-based pendant arms 

(bottom left). 

The compound ARK15 was labeled with europium and  terbium to give 

the two distinct lanthanide complexes (Figure 7.8). The Ln metals were expected 

to be coordinated by the four nitrogen atoms of the cyclen molecule and the four 

oxygen atoms on each of the four arms.  
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Figure 7.8.  ARK15 (0.060 g, 0.070 mmol, 1 equiv) was dissolved in 14 mL of 

MeOH with 1:1 molar equivalent of europium triflate (ARK17) or terbium 

triflate (ARK21). The reaction was run in the microwave for 40 min at 70 °C.  

 

 After acid hydrolysis of the ethyl ester, the final lanthanide complexes 

were characterized by 
1
H NMR, mass spectroscopy, and infrared spectroscopy.  In 

addition, the complexes were characterized in terms of absorbance, extinction 

coefficients, phosphorescent emission, fluorescent emission, excitation spectra, 

and the lifetime. Based on the 
1
H NMR, the final lanthanide complexes were not 

pure.  While photophysical experiments showed characteristic emission bands for 

europium and terbium, the lifetime measurements suggested that the final product 

contained at least two distinct species with distinct quantum lifetimes.  

 

7.5 Future work for cyclen-based lanthanide complexes  

The lanthanide complexes must be purified and re-characterized by 

analytical and photophysical measurements. Once pure, the fully characterized 

lanthanide complexes will be conjugated to B12-ethylenediamine via peptide 
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coupling to give an optimized fluorescent probe for in vitro confocal microscopy 

studies.  In addition, these compounds can also be modified so that they may be 

used in vivo.  

 

7.5.1 Conjugation with B12 

In order to advance the project, the purification must be optimized in order 

to yield pure samples of both the EuIII and TbIII compounds.  Once isolated, each 

species can be characterized by 
1
H NMR and MALDI-ToF/MS. Purified 

lanthanide complexes can then be conjugated with B12-ethylenediamine, and then 

entire B12-based lanthanide probe can be purified, characterized, and used in place 

of the rhenium probe as a means to screen cell lines for important B12 receptors.  

 

7.5.2 Near-infrared (NIR)-emitting Lanthanides 

The antennae moiety on the lanthanide complex can be exchanged to alter 

the emission profile of TbIII and EuIII, shifting visible emissions into the near-

infrared region (NIR).  Because NIR radiation can penetrate deep into sample 

matrices with low light scattering, NIR fluorescent materials show great potential 

for in vivo imaging of biological samples with a low background signal.
44

 The 

system would be used in an in vivo, FRET-based detection system that would not 

require the use of X-rays or other potentially harmful forms of electromagnetic 

radiation.   
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8 Implications 

One important route to new cellular probes and medical diagnostics with 

low toxicity that target rapidly dividing cancer cells is by exploiting these cells’ 

voracious  demand for nutrients.  Using vitamin-based pathways for new 

diagnostics requires a biochemical and physiological understand ing of the 

vitamin and the cancer.   With this framework in mind, this project has developed 

and assayed a series of B12-based imaging agents for both in vitro and in vivo 

applications. A water soluble B12-Re(I) probe that incorporated the thiazolate 

linker-chelator moiety was used to demonstrate the presence of cubilin in A549 

lung cancer cells. A B12-
64

Cu probe was also developed and shown to selectively 

target tumor cells through TCII receptors in a mouse model.  

 

My findings show that B12-based bioprobes have great promise for 

penetrating certain cancer cell lines in vitro—opening up certain pathways for 

study for the first time. These remarkable B12 bioprobes developed here also target 

tumors selectively as imaging agents for use in vivo. Together, these discoveries 

confirm the versatility and strong potential of B12 bioprobes for highlighting 

cancers, including the often-elusive metastatic cancers that are so problematic in 

the clinic.  

 

Future research will focused on refining the models presented as opposed 

to developing other probe constructs with varying ligands. The in vitro B12-based  

probe can be modified to improve the signal-to-noise ratio in confocal microscopy 
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for in vitro assays by incorporating a lanthanide metal optimized for 

phosphorescence in place of the weakly fluorescent rhenium complex. The 
64

Cu 

radiolabeled probe can be improved in terms of its targeting availability by using 

B12 derivatives that exclusively bind to HC.  As opposed to the widely expressed 

TCII receptors in other tissues, HC provides a better target because there is no 

membrane-bound HC on noncancerous tissues.    

 

On a cellular level, these compounds can be applied to research questions 

in regards to the binding of B12 to its transport proteins and receptors, the 

localization and fate of B12 internalized in the cell, and the molecular features that 

distinguish cancer cells from normal cells. The in vivo use of these probes allows 

for a greater understanding of B12 on the level of the organism, opening up deeper 

questions into the differential expression of B12 uptake receptors in varied tissue 

types, as well as the mechanisms of B12 storage, clearance, and recycling in the 

body.  Overall, the work presented in this capstone addresses the needs of the 

research and medical communities for probes, which have a future as tools to 

better understand the specific biochemistry of B12,  the physiology of cancer, and 

how these two fields of study overlap to produce an interdisciplinary solution to a 

critical health problem.  

 

The broad implications of these findings are further underscored by our 

ability to chemically modify the B12 molecule, the ligand, and the metal, which 

lends us a great deal of flexibility for future development.  Hence thesee probes 
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can be adapted for specific experiments and research questions across an 

exceptionally broad span of fields, including gastroenterology, oncology, cell 

biology, microbiology, and organometallic chemistry.  Probes that can detect 

cancer far earlier and more reliably are of tremendous significance for improving 

outcomes of this most challenging and devastating group of diseases. 
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Summary of Capstone Project 

The National Cancer Institute (NCI) estimated that ~ 1.5 million 

Americans were diagnosed with cancer in 2012 and more than 0.5 million died, 

making cancer the second leading cause of death in the US.
1
  Based on rates from 

2007-2009, 41.24% of men and women born today will be diagnosed with a form 

of cancer at some point during their lifetime.
2
 

 

However, trends in epidemiology reflect advances in the field that have 

allowed physicians to diagnose and treat cancer more effectively; the five-year 

relative survival rate for all cancers diagnosed between 1999 and 2005 increased 

50% from the same rate in 1975-1977.
1
  The NCI emphasizes that finding cancer 

at its most treatable stage gives patients the greatest chance of recovery.
1
 

Currently, tumors are most detected blood-work, X-rays, computed tomography 

scans, magnetic resonance imaging scans, and positron emission tomography 

scans.
3
 Novel imaging agents that target primary and metastasized tumors offer 

hope for improved prognoses in the future, and there is still a great need for 

enhanced methods of detection, early or otherwise.  

 

My research has been aimed at synthesizing imaging agents that 

selectively target tumor cells through specific receptors for vitamin B12 (B12).  B12 

                                                 
1
 American Cancer Society. Cancer Facts and Figures 2012; American Cancer Society: Atlanta, 

Georgia, 2012; pp 1–64. 
2
 Howlader N.; Noone, A.M.; Krapcho, M., Neyman, N., Aminou, R., Altekruse, S.F., Kosary, 

C.L.; Ruhl, J.; Tatalovich, Z.; Cho, H.; Mariotto, A; Eisner, M.P.; Lewis, D.R.; Chen, H.S.; Feuer, 

E.J.; Cronin K.A. SEER Cancer Statistics Review, 1975-2009. National Cancer Institute. 

http://seer.cancer.gov/csr/1975_2009 (accessed on March 16, 2013). 
3
 Talmadge JE, Fidler IJ. AACR centennial series: the biology of cancer metastasis: historical 

perspective. Cancer Research 2010; 70(14):5649–5669. 
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is essential for cellular metabolism, growth, and division, and all living cells 

require B12 for survival.
4
  B12 based probes, which exploit the supply route of B12 

in order to target regions of extreme cell growth, are also ideal due to the low 

toxicity and high water solubility of the vitamin.
4
   

 

Mammalian cells are unable to synthesize B12, and it must be obtained 

through diet. The human body has developed a complex dietary uptake system 

based on soluble transport proteins in the mouth, stomach, intestine, and 

circulatory system.
5
   The two main proteins of interest as it pertains to this 

research are haptocorrin (HC), which binds to B12 and B12 analogues in the 

mouth, stomach and blood serum, and transcobalamin II (TCII), the circulatory 

transport protein that facilitates B12 cellular entry and blood-brain barrier 

passage.
6
    

 

The hypothesis of this research is that the B12 pathway can be exploited to 

offer a tropism for cancer cells; certain cell lines over-express uptake receptors for 

TCII (CD320 receptors) in order to meet the increased B12 demands of rapid and 

uncontrolled growth. In addition, it was recently discovered that some cell lines, 

like those of pancreatic cancer, express membrane-bound HC de novo.
1
  This HC 

                                                 
4
 Waibel, R.; Treichler, H.; Schaefer, N.G.; van Staveren, D.R.; Mundwiler, S.; Kunze, S.; Kuenzi, 

M.; Alberto, R.; Nuesch, J.; Knuth, A.; Moch, H.; Schibli, R.; Schubiger, PA. Cancer Res. 2008, 

68, 2904-2911.  
5
 Pathare, P. M.; Wilbur, D.S.; Heusser, S.; Quadros, E.V.; McLoughlin, P.; Morgan, A.C. 

Bioconjugate Chem. 1996, 7, 217-232. 
6
 Nielsen M.J.; Rasmussen, M.R.; Andersen, C.B.; Nexø, E.; Moestrup, S.K. Vitamin B12 transport 

from food to the body's cells--a sophisticated, multistep pathway. Nat. Rev. Gastroenterol. 

Hepatol. 2012, 9, 345-54. 
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finding has great potential for a more specific targeting of cancer cells. I have 

worked to synthesize, characterize and assay a series of B12-based imaging agents 

for both in vitro and in vivo applications: a fluorescent B12-based probe with 

which to screen cell lines for receptor targets, and also a radiolabelled B12-based 

system to translate this work to living organisms.   

 

For in vitro cancer cell screens to study uptake and localization of B12 

conjugates, I helped to build, purify, and characterize an optimized B12-based 

rhenium I (Re(I)) probe. A fluorescent B12-based probe is useful because it allows 

for preliminary screening of living cells to confirm the presence of certain 

receptors that are important in the B12 uptake pathway, such as cubilin. For lab 

groups that are studying the differential expression of these receptors in varied 

tissues, such a construct provides a confirmation of the receptor functionality that 

cannot be obtained from genetic methods such as RT-PCR or western Blot. I 

synthesized, purified, and characterize a B12-thiazole-Re(I) (1), which 

incorporated a bifunctional thiazole ligand that chelates the Re(I) and links to the 

B12 molecule. We showed that 1, bound to the intestinal transport protein for B12 

termed intrinsic factor, was internalized by lung cancer cells, which reveals its 

great potential as a method of screening living cell lines for the cubilin receptor 

and suggests the possibility of targeting drugs to lung cancer cells by aerosolizing 

B12-drug conjugates.  These results were published in Chemical Communications, 

2011, 47, 9792-9794, in a paper titled “A water soluble vitamin B12-Re(I) 
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fluorescent conjugate for cell uptake screens: use in the conformation of cubilin in 

the lung cancer line A549.”
7
   

 

However, 1 and other B12Re(I) probes were limited by complications of 

working with Re(I).  We subsequently hypothesized that replacing the rhenium 

metal with a lanthanide metal along with a suitable sensitizing chromophore 

would result in a more optimized fluorescent system. As in vitro imaging agents, 

the lanthanides (LnIII) offer long wavelength emissions and relatively long-lived 

excited states (milliseconds).
8
 The delayed fluorescence allows the LnIII signal to 

be distinguished from background autofluorescence. Therefore, my second goal 

was to design a LnIII metal complex that maximized fluorescence and was 

suitable for B12 conjugation. To accomplish this, I traveled to Ireland to work at 

Trinity College, Dublin, in Professor Thorfinnur Gunnlaugsson’s research group. 

Over the eight weeks, I designed, synthesized, and photophysically characterized 

a series of lanthanide complexes suitable for future B12 conjugation. The 

purification and characterization of these compounds remains as future work for 

the project.  

 

For the in vivo imaging of tumors, and in response to the promise for copper 

radionuclides covalently attached to biological molecules for diagnostic imaging 

                                                 
7
 Vortherms, A. R.; Kahkoska,  A. R.; Rabideau, A. E.; Zubieta,  J.; Andersen, L. L.; Madsen, M.; 

Doyle, R. P. A water soluble vitamin B12-Re(I) fluorescent conjugate for cell uptake screens: use 

in the confirmation of cubilin in the lung cancer line A549. Chem. Commun. 2011, 47, 9792-9794. 
8
 Leonard, J. P.; Nolan, C. B.; Stomeo, F.; Gunnlaugsson, T. Photochemistry and Photophysics of 

Coordination Compounds: Lanthanides” Top. Curr. Chem. 2007,  281, 1-43. (Invited Chapter: 

Eds. V. Balzani and S. Campagna). 
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and targeted radiotherapy, I constructed a B12-based probe by conjugating B12 

with a linker molecule, ethylenediamine (en), and a metal-chelating macrocyclic 

ligand, 1,4,7,10-tetraazacyclododecane-N’,N’’,N’’’,N’’’’-tetraacetic acid 

(DOTA).  The resulting compound, B12enDOTA (2), offers a site for facile 

radiolabeling.  2 was purified by a two-step purification method involving an 

analytical anion exchange column and a C18 analytical column on reverse phase 

HPLC (RP-HPLC).  The purity of 2 was confirmed by nuclear magnetic 

resonance spectrometry (
1
H NMR) and matrix-assisted laser 

desorption/ionization-time of flight mass spectrometry (MALDI-TOF/ MS). In 

collaboration with the Washington University Medical School in St. Louis, 

Missouri, 2 was labeled with copper-64 (
64

Cu) , a radioactive derivative of copper 

for use in positron emission topography (PET) scanning.  Initial 
64

Cu-labeling 

experiments were successful, showing 100% radiolabeling, the labeled analogue 

of 2 was tested in vivo in a mouse model, showing 2% tumor distribution in two 

different tumor models. A more stable chelator molecule, 1,4,7-

triazacyclononane-N,N′,N′′-triacetic acid (NOTA), was selected for a revised 

probe construct.  The optimized compound B12enNOTA (3) is expected to show a 

higher expected degree of kinetic stability in regards to chelating the 
64

Cu 

compared to 2.  In vivo experiments with 3 are currently underway at Washington 

University.  

 

While B12-based imaging agents have experimentally labeled tumor tissue 

through successful receptor-mediated endocytosis of the TCII-bound B12 
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conjugate, significant background levels of radioactivity were detected in normal 

tissues.
9
 In particular, high uptake is seen in the kidneys and the liver because 

these organs are responsible for clearing and storing B12, respectively.  High 

uptake of radiolabeled compounds in the kidney may lead to radiation toxicity, 

and the radiation dose to the kidney is often the “dose-limiting” factor for the 

clinical use of nuclear medicine, and the highest expression of CD320 is seen in 

the kidneys, which poses a problem for the development of B12-based 

therapeutics.
9
 A solution to this problem would be to knock out the B12 

conjugate’s ability to bind with TCII, yet maintain binding with other important 

transport proteins.  Additionally, Waibel et al. suggest that a B12-based probe with 

decreased binding with TCII would clear from the blood more quickly than the 

transport protein-bound form, decreasing overall systemic toxicity.
9
 

 

In response to the demand for a more specific imaging agent, there has 

been a focus on synthesizing B12-based probes incorporating monocarboxylic acid 

derivatives of B12 (MCAs).  It is known that mild acid hydrolysis of B12 produces 

a mixture of MCAs derived from the b-, d-, and e- propionamide side chains.  

While the MCAs retain vitamin function and normal interaction with HC, 

modification certain propionamide side chains affects B12’s ability to bind with 

TCII, decreasing relative affinity by less than a factor of 10 for conjugates of the 

                                                 
9
 Waibel, R.; Treichler, H.; Schaefer, N.G.; van Staveren, D.R.; Mundwiler, S.; 

Kunze, S.; Kuenzi, M.; Alberto, R.; Nuesch, J.; Knuth, A.; Moch, H.; Schibli, R.; 

Schubiger, PA. New Derivatives of Vitamin B12 Show Preferential Targeting of 

Tumors. Cancer Res. 2008, 68, 2904-2911 
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b-isomer of the MCA.
10

  By disrupting the binding of B12 to its transfer protein 

TCII and inhibiting uptake by TCII receptors, B12–based conjugates incorporating 

MCAs are ideal to prevent non-targeted organ uptake and target the cancer cells 

that express HC de novo with a high signal-to-noise ratio.
10 

 

 

I have synthesized, purified, and characterized the B12-monocarboxylic 

acids.  Cyanocobalamin was reacted with 5.0M hydrochloric acid for two hours 

under heat (50 °C).  The reaction was neutralized with 5.0M sodium hydroxide 

and desalted using Amberlite ion exchange resins. Purification was a two-step 

process, involving a cation exchange column followed by a C18 analytical column 

(HPLC).  The b-, c-, and e- acids were characterized using MALDI-ToF/MS and 

13
C NMR. 

 

The next step is to synthesize comparable compounds of 1, 2, and 3 

utilizing the b-monocarboxylic acid derivative of B12.  Conjugation through the b-

amide position could be used to generate a fluorescent B12-MCA probe for use as 

a negative control in in vitro cell testing of B12-based fluorescent probes.  Because 

the MCAs bind only to HC, it is hypothesized that MCA-based probes will 

demonstrate improved in vivo selectivity and lower systemic toxicity. The in vivo 

probes B12enDOTA and B12enNOTA will be reconstructed using the b-MCA 

isomer, tested in regards to binding affinity for TCI and TCII, and evaluated on 

                                                 
10

 Pathare, P. M.; Wilbur, D.S.; Heusser, S.; Quadros, E.V.; McLoughlin, P.; Morgan, A.C. 

Synthesis of cobalamin-biotin conjugates that vary in the position of cabalamin coupling. 

Evaluation of cabalamin derivative binding to transcoabalamin II. Bioconjugate Chem. 1996, 7, 

217-232. 
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animal models to compare background uptake in the kidneys and liver with the 

unmodified B12 conjugates. With such derivatives, it is expected that visualization 

in the PaCa-2 cells would be shut down while being increased in the B16 cells.  

 

In conclusion, a series of B12-based imaging agents were synthesized, 

characterized, and assayed for both in vivo and in vitro functions.  A water soluble 

B12-Re(I) probe that incorporated the thiazolate linker-chelator moiety was used 

to demonstrate the presence of cubilin in A549 lung cancer cells, and a  B12-
64

Cu 

probe was shown to selectively target tumor cells through specific receptors for 

B12 in a rat model.  These findings suggest that vitamin B12-based bioprobes have 

great promise for studying the B12 uptake pathway in certain cancer cell lines in 

vitro and targeting tumors as imaging agents in vivo.   
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