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ABSTRACT

In this thesis we study two types of complexity of modules over finite-dimensional

algebras.

In the first part, we examine the Ω-complexity of a family of self-injective k-

algebras where k is an algebraically closed field and Ω is the syzygy operator. More

precisely, let T be the trivial extension of an iterated tilted algebra of type H. We

prove that modules over the trivial extension T all have complexities either 0, 1, 2 or

infinity, depending on the representation type of the hereditary algebra H. As part of

the proof, we show that a stable equivalence between self-injective algebras preserves

the complexity of modules.

In the second part, we study the τ -complexity of modules over cluster tilted al-

gebras where τ is the Auslander-Reiten translate. We prove that modules over the

cluster tilted algebra of type H all have complexities either 0, 1, 2 or infinity, depend-

ing on the representation type of the hereditary algebra H.



Copyright c©2011, Marju Purin

All Rights Reserved



Contents

Acknowledgments v

1 Introduction 1

2 Background on Finite-Dimensional Algebras 5

2.1 Quivers and Path Algebras . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 The Auslander-Reiten Translation and the AR quiver . . . . . . . . . 10

3 Complexity of Trivial Extensions 16

3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2 Trivial Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.3 Complexity over Self-Injective Algebras . . . . . . . . . . . . . . . . . 24

3.4 Complexity under Stable Equivalence . . . . . . . . . . . . . . . . . . 31

3.5 Complexity of Trivial Extensions . . . . . . . . . . . . . . . . . . . . 41

3.5.1 Hereditary Algebras . . . . . . . . . . . . . . . . . . . . . . . 41

3.5.2 Iterated Tilted Algebras . . . . . . . . . . . . . . . . . . . . . 51

iv



4 τ-Complexity of Cluster Tilted Algebras 59

4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 Cluster Tilted Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.1 Bounded Derived Category . . . . . . . . . . . . . . . . . . . . 66

4.2.2 Triangulated Categories . . . . . . . . . . . . . . . . . . . . . 68

4.2.3 Cluster Categories . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.4 Cluster Tilted Algebras . . . . . . . . . . . . . . . . . . . . . . 76

4.3 τ -Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5 Appendix 102

5.1 Perl Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.2 Sample Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

v



Acknowledgments

First, I would like to thank my advisor Dan Zacharia for his guidance and support

during my Ph.D. studies. In the fall of 2006 he taught a wonderful course in homo-

logical algebra which eventually led me to my current research. Working with Dan

has been exciting and fun. I thank him for sharing his knowledge and expertise in

the field as well as for sharing his chocolate.

The algebra group at Syracuse University has been very supportive and encour-

aging. Thanks to Steven P. Diaz, Mark Kleiner, Graham Leuschke, Claudia Miller,

and Declan Quinn. I am also grateful to Dieter Happel for his helpful suggestions

and comments.

I thank my fellow graduate students at Syracuse University for their friendship

and support. Special thanks go to Kosmas Diveris for carefully proofreading the

manuscript.
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Chapter 1

Introduction

The notion of complexity gives a way of measuring how ‘complicated’ a module is. We

study two kinds of complexity. The first is Ω-complexity, where Ω denotes the syzygy

operator, and it measures the rate of growth of the syzygies in a minimal projective

resolution of a module. The second type of complexity we call τ -complexity. Here

τ is the Auslander-Reiten translate and τ -complexity measures the rate of growth

of the τ -orbit of a module. In Section 3.3 we see that for self-injective algebras the

two notions of complexity coincide. We refer to both Ω- and τ -complexity as simply

complexity when no confusion can arise.

The concept of Ω-complexity was first introduced by Alperin and Evens in the

realm of group algebras in [AE]. There the authors used group cohomology to show

that given a finite group G and a field k, all modules over the group algebra kG have

finite complexity.

1



CHAPTER 1. INTRODUCTION 2

Recently the study of complexity has sparked a lot of interest for self-injective

algebras. These are algebras where the projective and injective modules coincide.

For example, group algebras of finite groups are self-injective. In 2004 Snashall and

Solberg used Hochschild cohomology and the induced support varieties for certain self-

injective algebras (those with finite generation of cohomology) to extend the results

of Alperin and Evens [SS]. This has lead to a vigorous study of complexity for self-

injective algebras. For recent advances see [Be, EHSST, KZ]. The study of complexity

has also taken on a life of its own in the world of commutative algebra. Avramov,

Buchweitz, Gasharov, Eisenbud, and Peeva have obtained a series of beautiful results

on complexity for complete intersection rings [Av, AvB, AvGP, Eis]. There the

complexity of the residue field is equal to the codimension of the ring which also

serves as an upper bound for the complexity of any module over the ring. In [JL]

Jorgensen and Leuschke obtained results on complexity over Cohen-Macaulay local

rings that are not Gorenstein.

The second type of complexity, τ -complexity, gives a way of analyzing the be-

haviour of the Auslander-Reiten translate τ . It measures the growth of the k-

dimensions of successive powers of τ applied to a nonprojective module. τ -complexity

has been studied by K. Erdmann in the setting of group algebras [E]. O. Kerner

and C. M. Ringel have studied the τ -complexity of AR components in [Ker, R, R2].

More recently, O. Kerner and D. Zacharia obtained results on τ -complexity over self-

injective algebras [KZ]. In all of the above articles, the authors have found that there
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is a strong connection between the shapes of the AR components and the possible

complexities of the modules in those components.

In this thesis we study the complexity of modules over certain families of algebras:

trivial extensions of iterated tilted algebras and cluster tilted algebras. The thesis is

organized as follows.

In Chapter 2 we provide some general background and preliminary results on

finite-dimensional algebras. We introduce the path algebra of a quiver, and the

Auslander-Reiten quiver (AR quiver, for short) of a finite-dimensional algebra.

In Chapter 3 we determine the complexity of modules over a family of self-injective

algebras, namely the trivial extensions of iterated tilted algebras. The Chapter is di-

vided into four sections. In Section 3.2 we introduce trivial extension algebras and

analyze the shape of the Auslander-Reiten quiver of such algebras. Section 3.3 dis-

cusses the properties of complexity over self-injective algebras. Section 3.4 is dedicated

to the study of complexity under stable equivalence between self-injective algebras.

The key result of the section is Theorem 3.4.10 which states that a stable equivalence

between self-injective algebras preserves the complexity of modules. We note that in

general a stable equivalence need not preserve the complexity of modules. Finally,

we combine all of our work in Section 3.5 where we calculate the complexities of all

modules over trivial extensions of iterated tilted algebras. We do this in two steps.

First, we compute the complexities of all modules over trivial extensions of hereditary

algebras in Theorem 3.5.3 and Theorem 3.5.5. Second, we use stable equivalence to
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extend the results to trivial extensions of iterated tilted algebras. The main result

is obtained as Corollary 3.5.14 which shows that non-projective modules over these

algebras can only have complexity 1 if ~4 is a Dynkin graph, complexity 1 or 2 if ~4

is a Euclidean graph, and in all other cases the non-projective modules must have

infinite complexity. Moreover, the only modules of complexity 1 are the modules with

periodic resolutions.

In Chapter 4 we turn to the study of cluster tilted algebras. We begin by providing

some background and introducing the main concepts. In particular, Section 4.2 is

dedicated to the construction of cluster tilted algebras. We then move to the study

of complexity. In the setting of cluster tilted algebras, we consider τ -complexity. In

Section 4.3 we compute the complexities of modules over cluster tilted algebras. The

main result is given in Theorem 4.3.7 where we show that modules over these algebras

can only have τ -complexity 0, 1, 2 or ∞. Moreover, finite τ -complexity occurs if and

only if the algebra is obtained from a directed graph ~4 of Dynkin or Euclidean type.

Our result shows that in terms of τ -complexity the cluster tilted algebras are more

closely related to the hereditary algebras than the tilted algebras.

In the Appendix we discuss the program Cpx.pl that we wrote to extract Betti

numbers from the program Gröbner developed by Ed Green. In Section 5.1 we provide

the Perl code for the program Cpx.pl. The Appendix ends with Section 5.2 which

contains sample files that were created when we used our program to compute the

Betti numbers for the algebra in Example 3.2.1.



Chapter 2

Background on Finite-Dimensional

Algebras

2.1 Quivers and Path Algebras

We study finite-dimensional algebras over an algebraically closed field k. Given such

an algebra Λ, we denote by Λ-mod the category of finitely generated left Λ-modules.

We fix a complete set of nonisomorphic simple modules S(1), . . . , S(n). Denote their

projective covers by P (1), . . . , P (n), and their injective envelopes by I(1), . . . , I(n).

We assume throughout that Λ is basic, that is Pi � Pj for i 6= j. For a module M we

write |M | for the composition length of M i.e. the number of simple modules that

appear in the composition series of M . Further, we denote by dimM its dimension

5
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vector in Zn

dimM = [|HomΛ(P (1),M)| , |HomΛ(P (2),M)| , . . . |HomΛ(P (n),M)|]T

The ith entry of the dimension vector is the number of times the simple module S(i)

appears as a composition factor of M . We define |dimM | to be the sum of the entries

in the vector dimM . Note that |dimM | = |M |.

Throughout this thesis all algebras are finite-dimensional k-algebras where k is an

algebraically closed field, and all modules are finitely generated.

There is a well known correspondence between finite-dimensional k-algebras and

path algebras of quivers which becomes an invaluable tool in our work. For this

purpose we continue by introducing quivers and defining the notion of a path algebra

over a quiver. For basic notions in representation theory we refer to [ARS, ASS].

A finite quiver Q = (Q0, Q1) is an oriented graph with the finite set Q0 consisting

of vertices and the finite set Q1 consisting of arrows between the vertices. If α : i −→ j

is an arrow from vertex i to j we write s(α) = i and t(α) = j for the source and target

of the arrow respectively. A path in the quiver Q is an ordered sequence of arrows

p = αm . . . α1 where t(αi) = s(αi−1) for 1 < i ≤ m. We may thus visualize a path as

a concatenation of compatible arrows

s(αm)
αm−→ t(αm) = s(αm−1)

αm−1−→ . . .
α1−→ t(α1)
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The length of a path is defined to be the number of arrows in the path. Further-

more, we consider ei ∈ Q0 as the trivial path at vertex i and write s(ei) = t(ei) = i.

A path of length at least one whose source and target coincide is called a cycle.

We now define the notion of a path algebra over a quiver. Given a field k we let

kQ denote the k-vector space with the paths of Q as its basis. The product of two

basis vectors p and q is given by the concatenated path pq if t(p) = s(q) and is equal

to zero whenever t(p) 6= s(q). This product extends from the basis of kQ to the entire

space by linearity.

The connection between finite-dimensional k-algebras and path algebras over a

quiver is the following.

Theorem 2.1.1 (Ch.III, Section 1 in [ARS]). Let Λ be a basic finite-dimensional

algebra over an algebraically closed field k, then Λ is isomorphic to a factor algebra of

a path algebra kQ for some finite quiver Q. Conversely, any factor algebra of a path

algebra of a finite quiver Q without oriented cycles is a finite-dimensional algebra.

We assume throughout that Λ is connected. An algebra Λ is said to be connected

if Λ is not a direct product of two algebras. Note that a path algebra kQ is connected

if and only if Q is connected, that is, the underlying graph of Q is connected.

Often we work with finite-dimensional hereditary k-algebras. The assumption that

Λ is hereditary means that the global dimension of Λ is at most one. It is well known

that any basic finite-dimensional hereditary algebra is isomorphic to a path algebra

of a quiver Q with no oriented cycles.
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The notion of representation type will play an important rôle in what follows. We

say that Λ = kQ is of finite representation type if the number of isomorphism classes

of indecomposable Λ-modules is finite. Λ is of infinite representation type if it is not

of finite representation type. Gabriel’s [G] theorem gives a characterization of finite-

dimensional hereditary algebras of finite representation type over an algebraically

closed field. This characterization makes use of some very special diagrams which we

introduce next. See [ASS].

252 Chapter VII. Representation–finite hereditary algebras

finitely many projectives, any indecomposable projective has only finitely

many predecessors.

The sufficiency follows from the fact that the given condition implies that

the radical of any indecomposable projective module is projective. �

VII.2. The Dynkin and Euclidean graphs

Certain graphs are of particular interest in this chapter (and the following

ones).

(a) The Dynkin graphs

Am : ◦ ◦ ◦ · · · ◦ ◦ ◦ m ≥ 1

Dn :

◦
"◦ ◦ · · · ◦ ◦
#◦

n ≥ 4

E6 :
◦

◦ ◦ ◦ ◦ ◦

E7 :
◦

◦ ◦ ◦ ◦ ◦ ◦

E8 :
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
(b) The Euclidean graphs

Ãm :

◦

◦ ◦ · · · ◦ ◦
m ≥ 1

D̃n :

◦ ◦
" #◦ ◦ · · · ◦ ◦
# "◦ ◦

n ≥ 4

Ẽ6 :

◦

◦

◦ ◦ ◦ ◦ ◦

Ẽ7 :

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦

The indices m,n ∈ N count the number of vertices in the corresponding Dynkin

graph.

We now give Gabriel’s Theorem [G]:

Theorem 2.1.2. Let Λ be a connected hereditary algebra over an algebraically closed

field k. Then Λ is of finite representation type if and only if Λ = kQ where the

underlying graph of the quiver Q is a Dynkin diagram.
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Another family of special graphs, the Euclidean graphs, allows us to further sep-

arate the class of representation infinite hereditary algebras. See [ASS].

252 Chapter VII. Representation–finite hereditary algebras

finitely many projectives, any indecomposable projective has only finitely

many predecessors.

The sufficiency follows from the fact that the given condition implies that

the radical of any indecomposable projective module is projective. �

VII.2. The Dynkin and Euclidean graphs

Certain graphs are of particular interest in this chapter (and the following

ones).

(a) The Dynkin graphs

Am : ◦ ◦ ◦ · · · ◦ ◦ ◦ m ≥ 1

Dn :

◦
"◦ ◦ · · · ◦ ◦
#◦

n ≥ 4

E6 :
◦

◦ ◦ ◦ ◦ ◦

E7 :
◦

◦ ◦ ◦ ◦ ◦ ◦

E8 :
◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
(b) The Euclidean graphs

Ãm :

◦

◦ ◦ · · · ◦ ◦
m ≥ 1

D̃n :

◦ ◦
" #◦ ◦ · · · ◦ ◦
# "◦ ◦

n ≥ 4

Ẽ6 :

◦

◦

◦ ◦ ◦ ◦ ◦

Ẽ7 :

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦
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Ẽ8 :

◦

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
The index in the Dynkin graphs always refers to the number of points

in the graph, whereas in the Euclidean, it refers to the number of points

minus one (thus, Am has m points while Ãm has m + 1 points). In fact, a

Euclidean graph can be constructed from the corresponding Dynkin graph

by adding one point. Dynkin graphs and Euclidean graphs are also called

Dynkin diagrams and Euclidean diagrams, respectively (see [41] and [72]).

We are interested in the path algebras of quivers having one of the pre-

ceding as underlying graph, that is, of quivers arising from arbitrary orienta-

tions of these graphs (excluding the orientation making Ãm an oriented cy-

cle; this orientation gives an infinite dimensional path algebra). As pointed

out in the introduction, the main result of this chapter says that the path

algebra of a quiver Q is representation–finite if and only if the underlying

graph Q of Q is a Dynkin graph.

We start with a purely combinatorial lemma.

2.1. Lemma. Let Q be a finite, connected, and acyclic quiver. If the

underlying graph Q of Q is not a Dynkin graph, then Q contains a Euclidean

graph as a subgraph.

Proof. We show that if Q contains no Euclidean subgraph, then Q is a

Dynkin graph. The exclusion of Ãm implies that Q is a tree. The exclusion

of D̃4 implies that no point in Q has more than three neighbours, and

the exclusion of D̃n with n ≥ 5 implies that at most one point has three

neighbours. Hence Q is of the following form

◦

◦
|
...
|

◦ ◦ · · · ◦︸ ︷︷ ︸ ◦ ◦ · · · ◦ ◦︸ ︷︷ ︸ ,
s t




r

where we may assume without loss of generality that r ≤ s ≤ t. The

exclusion of Ẽ6 gives r ≤ 1. If r = 0, then Q = As+t+1. If r = 1, the

exclusion of Ẽ7 gives 1 ≤ s ≤ 2. If s = 1, then Q = Dt+3. Finally, if s = 2,

the exclusion of Ẽ8 gives 2 ≤ t ≤ 4, so that Q is equal to E6, E7 or E8. �
We use this lemma to show that if A ∼= KQ is representation–finite,

then Q is a Dynkin graph. To do so, we start by showing that if Q′ is a

In the case of the Euclidean graphs the indices m,n refer to the number of vertices

minus 1. We mention that the Euclidean graphs are also known as extended Dynkin

graphs. Indeed, by removing any single vertex from an extended Dynkin graph we

obtain a union of Dynkin graphs.

We separate representation infinite hereditary algebras into two disjoint classes:

Λ is of tame representation type (or tame, for short) if the underlying graph of the

quiver Q is a Euclidean diagram. In all other cases Λ is of wild representation type (or

wild, for short). For further discussion of the tame and wild dichotomy of algebras

see the paper by Y. Drozd [Dr].
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2.2 The Auslander-Reiten Translation and the AR

quiver

In order to introduce the Auslander-Reiten translation, we must first define the trans-

pose Tr of a module. Given M ∈ Λ-mod, we construct its transpose as follows. Let

P 1 p1−→ P 0 p0−→M −→ 0 be a minimal projective presentation of M , that is, an exact

sequence with p0 : P 0 −→ M and p1 : P 1 −→ Ker p0 projective covers. Apply the

functor ( )∗
def
= HomΛ ( ,Λ) to obtain an exact sequence

0 −→M∗ p∗0−→ P 0∗ p∗1−→ P 1∗ −→ Coker (p∗1) −→ 0

The transpose of M , denoted by TrM , is defined to be the cokernel Coker (p∗1).

We denote by τ the Auslander-Reiten translation τ = D Tr where D is the ordinary

duality Homk ( , k) and Tr is the transpose. τ induces a bijection between the iso-

morphism classes of indecomposable nonprojective Λ-modules and the isomorphism

classes of the indecomposable noninjective Λ-modules. The inverse of τ is τ−1 = Tr D.

An indecomposable Λ-module M is preprojective (preinjective) if τ iM = 0 for some

i > 0 (τ−iM = 0 for some i > 0, respectively). A Λ-module is called preprojec-

tive (preinjective) if all of its direct summands are preprojective (preinjective). For

instance, every projective module is preprojective.

There is a convenient way of organizing indecomposable modules and the maps

between them by constructing what is called the Auslander-Reiten quiver (or AR
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quiver, for short). Before we give the definition of the AR quiver, we need the notions

of an irreducible morphism and an almost split sequence.

A morphism f : A −→ B in Λ-mod is called irreducible if f is neither a split

monomorphism nor a split epimorphism, and if f = ts for some s : A −→ X and

t : X −→ B is a factorization of f , then s is a split monomorphism or t is a split

epimorphism.

A morphism f : A −→ B in Λ-mod is left almost split if f is not a split monomor-

phism, and any morphism A −→ Y which is not a split monomorphism factors

through f . Similarly, a morphism g : B −→ C in Λ-mod is right almost split if g is

not a split epimorphism and any morphism Y −→ C which is not a split epimorphism

factors through g.

A morphism f : A −→ B in Λ-mod is called left minimal if any endomorphism

h ∈ End(B) such that hf = f must be an automorphism. Similarly, a morphism

g : B −→ C in Λ-mod is right minimal if any endomorphism h ∈ End(B) such that

gh = g must be an automorphism.

We say that a morphism f : A −→ B in Λ-mod is left minimal almost split if it is

both left minimal and left almost split. A morphism g : B −→ C in Λ-mod is right

minimal almost split if it is both right minimal and right almost split.

We are now ready to introduce almost split sequences. A short exact sequence

0 −→ A
f−→ B

g−→ C −→ 0 is called an almost split sequence if f is left almost split

and g is right almost split. This definition is equivalent to requiring the sequence
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0 −→ A
f−→ B

g−→ C −→ 0 to be exact and the morphism g to be minimal right

almost split (equivalently, one may require that f be minimal left almost split). A

consequence of these definitions is that both of the end terms of an almost split

sequence are indecomposable.

Almost split sequences exist in Λ-mod. In fact, for any indecomposable nonpro-

jective module C, there is an almost split sequence 0 −→ τC −→ B −→ C −→ 0.

Similarly, for any indecomposable noninjective module A, there is an almost split

sequence of the form 0 −→ A −→ B −→ τ−1A −→ 0.

Furthermore, almost split sequences are unique up to a commutative diagram.

This means that whenever we have two almost split sequences

0 −→ A −→ B −→ C −→ 0 and 0 −→ A −→ B′ −→ C ′ −→ 0

starting at the same term A, then the two exact sequences are isomorphic

0 // A // B

∼=
��

// C

∼=
��

// 0

0 // A // B′ // C ′ // 0

Similarly, whenever we have two almost split sequences ending at the same term

C, then the two short exact sequences are isomorphic. [ARS]

Now that we have defined irreducible morphisms and almost split sequences we

can give a connection between these notions.
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Lemma 2.2.1 (Thm. 5.3, Ch. V in [ARS]). Let Λ be a finite-dimensional k-algebra.

(i) Let A be an indecomposable module. Then a morphism f : A −→ B is irre-

ducible if and only if there exists some morphism f ′ : A −→ B′ such that the

morphism (f, f ′)T : A −→ B
⊕

B′ is minimal left almost split.

(ii) Let C be an indecomposable module. Then a morphism g : B −→ C is irre-

ducible if and only if there exists some morphism g′ : B′ −→ C such that the

morphism (g, g′) : B
⊕

B′ −→ C is minimal right almost split.

The concepts of irreducible maps and almost split sequences lead us to the con-

struction of the Auslander-Reiten quiver of a k-algebra Λ. The AR quiver of Λ,

denoted Γ(Λ), is a quiver that has vertices the isomorphism classes of indecompos-

able Λ-modules where we denote the vertex corresponding to a module X by [X].

There is an arrow [X] −→ [Y ] in Γ(Λ) if and only if there is an irreducible morphism

X −→ Y . The map τ = D Tr induces a map from the ‘nonprojective vertices’ to the

‘noninjective vertices’ where we say that a vertex [X] is projective (injective) if the

corresponding module X is projective (injective, respectively).

The stable subquiver Γs(Λ) of Γ(Λ) is the quiver obtained by deleting all vertices

[X] (and related arrows) for which τ i(X) is injective or projective for some i ∈ Z. Two

indecomposable modules X and Y are said to be related by an irreducible morphism

if there exists an irreducible morphism X −→ Y . An equivalence class under the

equivalence relation generated by this relation is called a component of the AR quiver.

In the case when Λ is a connected hereditary algebra, we have some information
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about the components of the AR quiver. Namely, Γ(Λ) has a preprojective component

P(Λ) which contains all of the indecomposable projective Λ-modules, and a preinjec-

tive component I(Λ) which contains all of the indecomposable injective Λ-modules.

All other components are called regular. For a hereditary algebra of tame representa-

tion type, all regular components of the AR quiver of Λ are stable tubes i.e. for some

n ∈ N we have τn(X) ∼= X for all X in the same regular component. For a hereditary

algebra of wild representation type, all regular components of the AR quiver are of

type ZA∞. These components have the following shape

...
...

...
...

...

•
""

•
""

•
""

•
""

•

· · · •

<<

""

•
""

<<

•
""

<<

•
""

<<

· · ·

•
""

<<

•

<<

""

•

<<

""

•

<<

""

•

· · · •

<<

""

•

<<

""

•

<<

""

•

<<

""

· · ·

•
""

<<

•
""

<<

•
""

<<

•
""

<<

•

· · · •

<<

""

•

<<

""

•

<<

""

•

<<

""

· · ·

•

<<

•

<<

•

<<

•

<<

•

For proofs and further discussion see [R].

We end this section by giving a connection between the Auslander-Reiten transla-

tion and a special transformation, called the Coxeter transformation. First, we must

discuss the Cartan matrix of an algebra.
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The Cartan matrix C associated to a k-algebra Λ is the matrix with ith column

dimP (i) i.e. C = (ci,j) where ci,j = dimk Hom(P (i), P (j)). If Λ is a connected hered-

itary k-algebra, then the determinant det C = 1 and therefore the Cartan matrix is

invertible over Z. The Coxeter matrix Φ associated to Λ is the matrix Φ = −CT C−1.

The set of eigenvalues of the matrix Φ is called the spectrum of Φ and is denoted

σ(Φ). The largest of the absolute values of these eigenvalues is the spectral radius

ρ = max {|λ| : λ ∈ σ(Φ)}. The Coxeter transformation is a transformation Zn −→ Zn

whose matrix with respect to the standard basis is Φ.

We now give the promised connection between the Auslander-Reiten translation

τ and the Coxeter transformation. Namely, for any indecomposable nonprojective

Λ-module M we have Φ (dimM) = dim τM . See [R].



Chapter 3

Complexity of Trivial Extension

Algebras

In this chapter we study the complexity of modules over a particular family of finite-

dimensional self-injective algebras, namely the trivial extensions of iterated tilted

algebras. The study of trivial extensions of artin algebras began in the work of

Fossum, Griffith, and Reiten [FGR]. See also [Y, Y2, Y3]. More recently, in 2006

Skowroński used them in his study of tame self-injective algebras [Skow2]. Fernández

and Platzeck presented a method in [FP] for constructing trivial extension algebras

from directed graphs ~4.

The main goal of this chapter is to prove the following theorem:

Theorem. Let Λ be an iterated tilted algebra from a hereditary algebra H. Let X

be an indecomposable non-projective module over the trivial extension algebra T(Λ).

16
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Then the complexity of X satisfies the following

(i) If H is of finite representation type, then X has complexity 1.

(ii) If H is of tame representation type, then the complexity of X is 1 or 2. Fur-

thermore, there always exist modules of each complexity.

(iii) If H is of wild representation type, then the complexity of X is infinite.

We further point out that the only indecomposable modules of complexity 1 are

the periodic modules.

The proof consists of several stages. First, we use Coxeter matrices to deter-

mine the complexities of all modules over trivial extensions of hereditary algebras in

Theorem 3.5.3 and Theorem 3.5.5. After obtaining this result, we proceed to show

that a stable equivalence between self-injective algebras preserves the complexity of

modules. Finally, in Corollary 3.5.14 we combine our previous work to obtain the

Main theorem. We use a result of Tachikawa and Wakamatsu [TW] to obtain a sta-

ble equivalence between the trivial extension of a hereditary algebra and the trivial

extension of an iterated tilted algebra. Information about the complexities of the

modules over the first algebra allows us to determine the complexities of the modules

over the second.
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3.1 Preliminaries

We recall our assumptions that all algebras are finite-dimensional algebras over an

algebraically closed field k. All algebras are assumed to be basic and connected. All

modules are finitely generated. We write τΛ (or, simply τ) for the Auslander-Reiten

translate (AR translate, for short) in Λ-mod. We use Γ(Λ) to denote the Auslander-

Reiten quiver (AR quiver, for short) of Λ-mod.

3.2 Trivial Extensions

For a k-algebra Λ we denote by T its trivial extension algebra T = Λ n D(Λ). The

trivial extension T has elements ordered pairs (a, b) with a ∈ Λ, b ∈ D(Λ) where

addition is componentwise and multiplication is given by (a, b)(a′, b′) = (aa′, ab′+ba′).

We may view the trivial extension T as a an extension

0 −→ D(Λ) −→ T −→ Λ −→ 0

of Λ by the nilpotent bimodule D(Λ). We identify Λ-modules with the T-modules

annihilated by D(Λ).

The trivial extension is a symmetric algebra and hence self-injective. Here we use

the definition that a k-algebra Λ is symmetric if Λ is isomorphic to its dual D(Λ) as a

two-sided Λ-module. It follows then that every artin algebra is a homomorphic image

of some symmetric artin algebra.
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We proceed to give a couple of useful properties of self-injective algebras. The

most important of these for our purposes will be a connection between the syzygy

operator Ω and the Auslander-Reiten translate τ = D Tr.

We begin by recalling the notion of a stable module category of Λ-mod which we

will denote by Λ-mod. Let P denote the projective objects in Λ-mod. Then the

objects of Λ-mod are the objects in the quotient Λ-mod/P . In other words, we may

think of the non-zero objects in Λ-mod as the non-projective objects in Λ-mod.

In order to describe the morphisms we need a definition. We say that a map

f : M −→ N factors through a projective module if f = hg where we have two maps

g : M −→ P and h : P −→ N with P a projective module. For Λ-modules M and N ,

let P(M,N) denote those morphisms in HomΛ(M,N) which factor through a projec-

tive module. We denote the quotient HomΛ(M,N)/P(M,N) by HomΛ(M,N). The

morphisms of the stable module category Λ-mod are the morphisms in HomΛ(M,N).

In summary, the non-zero objects in Λ-mod correspond to the non-projective

objects of Λ-mod and the non-zero morphisms in Λ-mod correspond to the morphisms

in Λ-mod that do not factor through a projective module. Since for self-injective

algebras the projective and injective modules coincide, we may also say that the

non-zero objects in Λ-mod correspond to the non-injective objects and the non-zero

morphisms in Λ-mod are correspond to the morphisms in Λ-mod that do not factor

through an injective module. Finally, we remark that the syzygy operator Ω is a

functor on the factor category Λ-mod.
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Before we can provide the connection between the syzygy functor Ω and the

Auslander-Reiten translate τ = D Tr, we need to discuss what is known as the

Nakayama automorphism. Note that if Λ is a self-injective algebra, then the func-

tor HomΛ ( ,Λ) : Λ-mod −→ Λ-modop is a duality. The Nakayama automorphism

ν : Λ-mod −→ Λ-mod is an equivalence which is defined as the composition of the

dualities D HomΛ ( ,Λ) where D = Homk ( , k) as before. Furthermore, ν takes inde-

composable projectives to indecomposable injectives, and preserves length.

We now give the promised connection between the syzygy functor and the Auslander-

Reiten translation. Namely, for a self-injective algebra the functors τ = D Tr, Ω2
Λν,

and νΩ2
Λ from Λ-mod to Λ-mod are isomorphic. We point out that since ν is an

automorphism, we have the equality |τ(X)| = |Ω2(X)| for X ∈ Λ-mod.

We furnish an example of a hereditary algebra and its trivial extension algebra.

Example 3.2.1. Let Λ = kQ be the hereditary algebra given by the path algebra of

the quiver Q

1

!!

3

2

}} !!

==

4 5

The trivial extension T of Λ is the path algebra of the quiver

1
a
!!

3eoo

2

c}} d !!

b ==

4

f

OO

5

g

JJ
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modulo the ideal generated by the set of relations {abea, acfa, adga, eac, fab, gab,

gac, ead, fad, be-cf, cf-dg, dg-be}.

Here we have used the description of E. Fernández and M. Platzeck to construct

the path algebra of the trivial extension of Λ [FP].

In the case when Λ is hereditary, there is a very nice relationship between the

Auslander-Reiten quiver of Λ and that of its trivial extension algebra. Tachikawa has

proved that the stable AR quiver of Λ embeds into that of T (See also [Y, Y2]).

Before stating this theorem, we provide notation and a brief description for two

of the components in the stable AR subquiver of the trivial extension algebra T. The

first of these is the component Is which consists of all of the preinjective Λ-modules as

well as the T-syzygies of the preprojective Λ-modules. The second is the component

Ps consisting of all of the preprojective Λ-modules as well as the T-syzygies of the

preinjective Λ-modules. The components Ps and Is will play a central rôle later on.

We now give the result of Tachikawa.

Lemma 3.2.2. Let Λ be a hereditary k-algebra and let T = Λ n D Λ be its trivial

extension algebra.

(i) The irreducible maps and almost split sequences in Λ-mod remain so in T -mod.

(ii) The stable AR subquiver of Γ(T) is given by the disjoint union

Γs(T) = Γs(Λ) ∪ ΩT(Γs(Λ)) ∪ Ps ∪ Is
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There is a lot of information in this lemma. First of all, we have that for any

indecomposable Λ-module X, computing the AR translation of X over Λ is the same

as computing the AR translation of X as a T-module i.e. τΛ(X) = τT(X). Second,

any module in the stable AR quiver of T belongs to one of Γs(Λ), ΩT(Γs(Λ)), Ps, or

Is. Here ΩT(Γs(Λ)) is obtained by applying ΩT to the component Γs(Λ) remembering

that ΩT preserves almost split sequences up to a projective summand of the middle

term. It is interesting to note that the regular components of Λ remain so in T.

Later on we will be using these observations to analyze the complexity of various

T-modules. We now provide an example of an application of Tachikawa’s theorem to

obtain the stable AR quiver of T.

Example 3.2.3. In the case of the hereditary algebra from Example 3.2.1 the pre-

projective and preinjective component of Λ are shown below.

Figure 3.1: The preprojective component of Γ(Λ)

In Example 3.2.1 the underlying quiver of Λ is a Euclidean diagram of type D̃4

and thus the hereditary algebra Λ is of tame representation type. Hence, the regular
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Figure 3.2: The preinjective component of Γ(Λ)

components of the AR quiver of Λ are tubes [R].

We now use the information about the AR quiver of Λ that we have gathered

above, to construct the stable AR quiver of its trivial extension algebra T. We

employ Tachikawa’s result Lemma 3.2.2 which tells us that the component Ps of the

stable AR quiver of the trivial extension T is

Figure 3.3: The component Ps of the stable AR quiver Γs(T)
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The component Is of the stable AR quiver of the trivial extension T is

Figure 3.4: The component Is of the stable AR quiver Γs(T)

Since the regular components of the AR quiver of Λ are tubes, all other components

of the stable AR quiver of T are tubes.

3.3 Complexity over Self-Injective Algebras

We are interested in the complexity of modules over a self-injective algebra Λ. Recall

that if

. . .→ P n δn→ P n−1 → . . .→ P 0 δ0→M → 0

is a minimal projective resolution of a finitely generated Λ-module M , then the ith

Betti number of M , βi(M), equals the number of indecomposable summands of P i.

We write Ωi for the ith syzygy of M i.e. Ωi = Ker(δi−1). We remark that βi is equal
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to the number of simple modules appearing in the top of Ωi, that is, βi = |Ωi/radΩi|.

Finally, the complexity of M over Λ is defined as

cxΛM = inf
{
t ∈ N0 | ∃ α ∈ R such that βi(M) ≤ αit−1 for i� 0

}

where N0 denotes the nonnegative integers. Thus, complexity measures how fast the

sequence of Betti numbers βi is growing. When no such t ∈ N0 exists, we say that

the complexity is infinite and write cxΛM = ∞. Notice that cxΛM = 1 means

that the Betti numbers are bounded, cxΛM = 0 means that M has finite projective

dimension. In the case where the algebra is self-injective, cxΛM = 0 is equivalent to

M being projective.

A couple of observations about complexity over self-injective algebras will be useful

to us.

Lemma 3.3.1. Let Λ be a self-injective algebra. Then

(i) A module and its syzygies have the same complexity.

(ii) For any short exact sequence 0 −→ A −→ B −→ C −→ 0, the complexity of

each term is at most the maximum of the complexity of the other two terms.

Proof. (i) The statement follows from the fact that the projective resolutions of a

module and one of its syzygies only differ by finitely many terms. Complexity, how-

ever, describes the asymptotic behaviour of a projective resolution.

(ii) We begin by showing cxB ≤ max {cxA, cxC}.
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Let . . . → P 2
A → P 1

A → P 0
A → A → 0 denote the minimal projective resolution of

A and let . . . → P 2
C → P 1

C → P 0
C → C → 0 be the minimal projective resolution of

C. We may arrange these resolutions in a diagram which we complete to an exact

commutative diagram by the Horseshoe Lemma.

...

��

...

��

...

��
0 // P 1

A

��

// P 1
A ⊕ P 1

C

��

// P 1
C

��

// 0

0 // P 0
A

��

// P 0
A ⊕ P 0

C

��

// P 0
C

��

// 0

0 // A //

��

B //

��

C //

��

0

0 0 0

The middle column provides a projective resolution (though not necessarily min-

imal) of C from which we deduce cxB ≤ max {cxA, cxC} since for each i ≥ 0 we

have the inequality βi(B) ≤ βi(A) + βi(C).

We will now show cxC ≤ max {cxA, cxB}. Let P 0
B → B → 0 be the projective

cover of B. We have a commutative diagram with an exact row and exact columns

where Q denotes a projective module.
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0

��

0

��
Ω1(B)

��

Ω1(C)⊕Q

��
P 0
B

��

P 0
B

��
0 // A // B //

��

C //

��

0

0 0

We complete this to a commutative diagram with exact rows and columns

0

��

0

��
Ω1(B)

��

// Ω1(C)⊕Q

��
P 0
B

��

P 0
B

��
0 // A // B //

��

C //

��

0

0 0

and apply the Snake Lemma to obtain the short exact sequence

0 −→ ΩB −→ ΩC ⊕Q −→ A −→ 0
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We already showed that the complexity of the middle term of a short exact se-

quence is at most the maximum of the complexity of the end terms. We apply this

along with part (i) to the last sequence to obtain the inequalities

cxC = cx(ΩC ⊕Q) ≤ max {cxA, cxB}

Finally, we repeat this entire process beginning with the short exact sequence

0 −→ Ω1(B) −→ Ω1(C)⊕Q −→ A −→ 0 to obtain yet another short exact sequence

0 −→ Ω2(C) −→ Ω1(A) ⊕ Q
′ −→ Ω1(B) −→ 0 which then yields the inequality

cxA ≤ max {cxB, cxC}.

We have the following well-known result for self-injective algebras. We include

the proof for the reader’s convenience. Recall from our earlier discussion that if Λ is

self-injective, then τ = νΩ2 = Ω2ν where ν is the Nakayama automorphism and ν

preserves length.

Lemma 3.3.2. Let Λ be a self-injective algebra. All modules in the same component

of the stable AR quiver of Λ have the same complexity.

Proof. Let X −→ Y be an irreducible map between the indecomposable modules X

and Y . We then have an almost split sequence 0 −→ τY −→ X
⊕

X ′ −→ Y −→ 0 for

some X ′ ∈ Λ-mod. It follows from Lemma 3.3.1 that cxΛX ≤ max {cxΛ Y, cxΛ τY}.

Since Λ is self-injective τY = νΩ2Y and therefore cxΛ τY = cxΛ Y , whence the
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inequality cxΛX ≤ cxΛ Y . But we also have an irreducible map τY −→ X and by

repeating the process we get cxΛ Y = cxΛ τY ≤ cxΛX. We have obtained the two

inequalities cxΛX ≤ cxΛ Y and cxΛ Y ≤ cxΛ X which tell us that X and Y must,

in fact, have the same complexity. Finally, since a component of an AR quiver is

by definition connected, repeating this argument shows that all modules in the same

component of the stable AR subquiver of a self-injective algebra Λ have the same

complexity.

It follows that when we have a self-injective algebra, we may talk about the com-

plexity of a component. Namely, since all modules in the same component of the

stable AR quiver have the same complexity we can define this common complexity

to be the complexity of the component.

We often make use of the following two observations.

Remark 3.3.3. Let the following be a minimal projective resolution of a finitely

generated Λ-module X

. . .→ P n δn→ P n−1 → . . .→ P 0 δ0→ X → 0

Then the sequence of even Betti numbers grows with the same complexity as the

sequence of odd Betti numbers. This follows easily from the observation that for any

n ∈ N, we have Ω2n(X) ⊆ P 2n−1(X):

We recall that each P 2n−1(X) is a finite direct sum of indecomposable projective
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modules where β2n−1 counts the number of these summands. As we mentioned earlier,

β2n = |top Ω2n(X)| and we may thus write

β2n =
∣∣top Ω2n(X)

∣∣ ≤
∣∣Ω2n(X)

∣∣

≤
∣∣P 2n−1(X)

∣∣ ≤ β2n−1 |Λ|

Similarly,

β2n+1 =
∣∣top Ω2n+1(X)

∣∣ ≤
∣∣Ω2n+1(X)

∣∣

≤
∣∣P 2n(X)

∣∣ ≤ β2n |Λ|

These calculations show that

β2n+1

|Λ| ≤ β2n ≤ β2n−1 |Λ|

and therefore the sequence of even Betti numbers has the same complexity as the

sequence of odd Betti numbers.

Remark 3.3.4. For a self-injective algebra Λ the complexity of Betti numbers βn(X)

is the same as the complexity of the sequence |τn(X)| = |Ω2nX| where n ∈ N. This
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follows from the facts that τ = νΩ2 and ν preserves length, and the inequalities

β2n =
∣∣top Ω2n(X)

∣∣ ≤
∣∣Ω2n(X)

∣∣

≤
∣∣P 2n(X)

∣∣ ≤ β2n |Λ|

3.4 Complexity under Stable equivalence

In this section Λ and Γ are two self-injective algebras over an algebraically closed field

k. We prove that if Γ is stably equivalent to Λ, then the complexity of modules is

preserved under the stable equivalence.

We begin by discussing the notion of a stable equivalence. Recall that the stable

module category of Λ-mod, denoted by Λ-mod, has objects in Λ-mod/P where P

denotes the projective objects in Λ-mod. The morphisms of the stable module cat-

egory are the morphisms in HomΛ(M,N) = HomΛ(M,N)/P(M,N) where P(M,N)

denotes those morphisms in HomΛ(M,N) which factor through a projective module.

We can now give the definition of a stable equivalence. Let Λ-mod and Γ-mod

be two module categories. We say that Λ-mod and Γ-mod are stably equivalent if

there exists an equivalence S : Λ-mod −→ Γ-mod where by an equivalence we mean

a covariant functor that is full, faithful, and dense.

Stable equivalence has several important properties which we shall now introduce.

Theorem 3.4.1 (Prop. 1.1, Ch. X in [ARS]). Let S : Λ-mod −→ Γ-mod be a stable
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equivalence between self-injective k-algebras Λ and Γ. Then Λ is of finite representa-

tion type if and only if Γ is of finite representation type.

We will only make use of the above theorem, but we mention that more is known.

In fact, H. Krause has shown in [Kr] that stable equivalence always preserves the

representation type of the algebra.

Stable equivalence also behaves well with regard to irreducible morphisms and

almost split sequences.

Theorem 3.4.2 (Cor. 1.9, Ch. X in [ARS]). Let S : Λ-mod −→ Γ-mod be a stable

equivalence between self-injective k-algebras Λ and Γ. If Λ is of infinite representation

type, then Λ and Γ have isomorphic stable AR quivers.

Before giving the next theorem, we need to introduce one more piece of nota-

tion. We will use Λ-modP to denote the full subcategory of Λ-mod consisting of

modules without projective summands. Since Λ is self-injective, this coincides with

the subcategory of Λ-modules without injective summands. The stable equivalence

S : Λ-mod −→ Γ-mod from the above Theorem induces a correspondence between

the objects of Λ-modP and Γ-modP . Moreover, S has an important feature:

Theorem 3.4.3 (Prop. 1.12, Ch. X in [ARS]). If Λ and Γ are self-injective, then

the correspondence S between objects in Λ-modP and Γ-modP from above commutes

with the syzygy functor Ω.

Remark 3.4.4. It follows that stable equivalence between self-injective algebras pre-

serves both τ - and Ω-periodicity. We know from Thm. 3.4.2 that if a component C
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in the stable AR quiver of Λ-mod is a τ -periodic, then S(C) is also τ -periodic in

the stable AR quiver of Γ-mod. In addition, Thm. 3.4.3 says that stable equivalence

between self-injective algebras also preserves Ω-periodicity. We mention that for sym-

metric algebras, where τ = Ω2, τ - and Ω-periodicity coincide, but this is not the case

for all self-injective algebras. For a detailed discussion of periodicity for self-injective

algebras consult [Skow1].

Remark 3.4.5. In general, a stable equivalence need not preserve the complexity of

modules. For example, set Λ to be the path algebra of the quiver 1α 99 modulo the

ideal generated by the relation 〈α2〉. Let Γ be the hereditary algebra given by the

path algebra of the quiver 1 // 2 . Then Λ and Γ are stably equivalent (Section

1, Ch. X in [ARS]). Yet, the simple module over Λ has infinite complexity while all

Γ-modules have finite projective resolutions and hence complexity 0.

We proceed to show that a stable equivalence S : Λ-mod −→ Γ-mod between the

stable module categories of two self-injective algebras Λ and Γ preserves complexity.

In short, given a Λ-module M we have cxΛM = cxΓ S(M).

Every nonprojective indecomposable module over a self-injective algebra of finite

representation type is periodic. In view of Remark 3.4.4, we then know that also all

nonprojective Γ-modules are periodic. In the case that Λ has finite representation

type, we see that the stable equivalence S : Λ-mod −→ Γ-mod preserves complexity.

In what follows we assume that Λ has infinite representation type. We proceed

with a couple of lemmas and a proposition to see how stable equivalence behaves with
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regard to k-dimensions of modules.

We are using slightly modified arguments from [KrZw]. Recall our conventions:

|M | denotes the k-dimension of the Λ-module M and S1, S2, . . . , Sn form a complete

set of nonisomorphic simple Λ-modules. We write mi(M) for the multiplicity of the

simple module Si, 1 ≤ i ≤ n, as a factor in the composition series of M .

Lemma 3.4.6. Let X and Y be Λ-modules. Then

|HomΛ(X, Y )| ≤
n∑

i=1

mi(X) |HomΛ(Si, Y )|

where mi(X) is the multiplicity of the simple module Si, 1 ≤ i ≤ n, as a factor in the

composition series of X.

Proof. If X is a simple module, then the statement holds trivially. In general, X has

a composition series:

0 ⊂ Xt ⊂ Xt−1 . . . ⊂ X1 ⊂ X0 = X

for some t ∈ N.

We form short exact sequences

0 −→ Xj+1 −→ Xj −→ Xj/Xj+1 −→ 0

for each 0 ≤ j ≤ t− 1. Notice that each Xj/Xj+1 is a simple module.
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Applying the contravariant functor HomΛ( , Y ) gives the exact sequences

0 −→ HomΛ(Xj/Xj+1, Y ) −→ HomΛ(Xj, Y ) −→ HomΛ(Xj+1, Y ) −→ . . .

From here we obtain the inequalities

|HomΛ(Xj, Y )| ≤ |HomΛ(Xj/Xj+1, Y )|+ |HomΛ(Xj+1, Y )|

Writing down the above inequality for each j = 0, . . . , t− 1 and then replacing at

each step the term |HomΛ(Xj+1, Y )| on the right hand side with the next inequality

|HomΛ(Xj+1, Y )| ≤ |HomΛ(Xj+1/Xj+2, Y )|+ |HomΛ(Xj+2, Y )|

yields

|HomΛ(X, Y )| ≤ |HomΛ(X0/X1, Y )|+ |HomΛ(X1/X2, Y )|+ . . .

+ |HomΛ(Xt−1/Xt, Y )|+ |HomΛ(Xt, Y )|

where Xj/Xj+1 are exactly the composition factors of X.

We thus have

|HomΛ(X, Y )| ≤
n∑

i=1

mi(X) |HomΛ(Si, Y )|
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Lemma 3.4.7. Let X be a Λ-module without nonzero projective summands and let

S be a simple Λ-module. Then HomΛ(S,X) = HomΛ(S,X).

Proof. Let X 6= 0 be a Λ-module without projective summands. We show that if

f : S −→ X factors through a projective module, then f = 0.

Suppose for purposes of contradiction that there exists some nonzero f : S −→ X

that factors through a projective module. That is, we have a commutative diagram

S
f //

��

X

I

<<

where we may take I to be the injective envelope of S remembering that the projective

and injective modules coincide.

Notice that f is a monomorphism and maps S into socX. Since S = soc I and

the diagram commutes, we have an inclusion soc I ↪→ socX and thus an inclusion

I ↪→ X. But I is injective and must then be a direct summand of X. This contradicts

our assumption that X has no nonzero injective summands. Hence, f = 0 and

HomΛ(S,X) = HomΛ(S,X).

In the following Proposition and Corollary we show that a stable equivalence

S : Λ-mod −→ Γ-mod preserves the k-dimension of modules within some finite fixed

error bounds.

Proposition 3.4.8. Let S : Λ-mod −→ Γ-mod be a stable equivalence between self-
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injective k-algebras Λ and Γ. Then there exists some c ∈ N such that for each non-

projective V ∈ Λ-mod we have the following inequality

|S(V )| ≤ c |V |

Proof. This is a slight modification of Theorem 1 in [KrZw]. Take V ∈ Λ-mod and let

W = S(V ) be its image in Γ-mod. Denote by Si, 1 ≤ i ≤ n, a complete set of non-

isomorphic simple Λ-modules and by Tj, 1 ≤ j ≤ m, a complete set of non-isomorphic

simple Γ-modules. Next, pick and fix a set of Uj ∈ Λ-mod such that S(Uj) = Tj for

each j = 1 . . .m. Note that the Uj may no longer be simple modules.

Set c =

n,m∑

i,j=1

mj(Γ)mi(Uj). We prove the inequality

|S(V )| ≤ c |V |

First, from Lemmas 3.4.6 and 3.4.7 we obtain

|W | = |HomΓ(Γ,W )|

≤
m∑

j=1

mj(Γ) |HomΓ(Tj,W )|

=
m∑

j=1

mj(Γ) |HomΓ(Tj,W )|
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Next, since S is an equivalence, and S(Uj) = Tj and S(V ) = W we have

m∑

j=1

mj(Γ) |HomΓ(Tj,W )| =
m∑

j=1

mj(Γ) |HomΓ(S(Uj),S(V ))|

=
m∑

j=1

mj(Γ) |HomΛ(Uj, V )|

The inequality |HomΛ(Uj, V )| ≤ |HomΛ(Uj, V )| always holds. Using this and

Lemma 3.4.6 we get

m∑

j=1

mj(Γ) |HomΛ(Uj, V )| ≤
m∑

j=1

mj(Γ) |HomΛ(Uj, V )|

≤
m∑

j=1

mj(Γ)
n∑

i=1

mi(Uj) |HomΛ(Si, V )|

=

n,m∑

i,j=1

mj(Γ)mi(Uj) |HomΛ(Si, V )|

≤
n,m∑

i,=1

mj(Γ)mi(Uj) |HomΛ(Λ, V )|

=

n,m∑

i,=1

mj(Γ)mi(Uj) |V |

= c |V |

remembering that c =

n,m∑

i,j=1

mj(Γ)mi(Uj).

Finally, combining all of our calculations yields the desired inequality

|S(V )| ≤ c |V |
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Corollary 3.4.9. Let S : Λ-mod −→ Γ-mod be a stable equivalence between self-

injective algebras. Then there exist constants c and c′ such that for any nonprojective

V ∈ Λ-mod we have the inequalities

c′ |V | ≤ |S(V )| ≤ c |V |

Proof. The inequality on the right comes directly from Prop. 3.4.8.

Let L be the inverse equivalence L : Γ-mod −→ Λ-mod. To get the left inequality,

we apply Prop. 3.4.8 to L and the module S(V ) ∈ Γ-mod. This gives us the inequality

|L(S(V ))| ≤ d |S(V )|

where d ∈ N does not depend on S(V ). Since S and L are inverse equivalences,

L(S(V )) ∼= V . Therefore |L(S(V ))| = |V | and the inequality above becomes

|V | ≤ d |S(V )|

Finally, taking c′ = 1/d yields c′ |V | ≤ |S(V )|.

We are now ready to prove that a stable equivalence between self-injective k-

algebras preserves complexity.

Theorem 3.4.10. Let S : Λ-mod −→ Γ-mod be a stable equivalence between self-

injective k-algebras Λ and Γ. Let M be a Λ-module. Then cxΛM = cxΓ S(M).
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Proof. Let M be a nonprojective Λ module, otherwise cxΛ M = 0 = cxΓ S(M) holds.

Apply Cor. 3.4.9 to M and its syzygies Ωi(M) to get

c′
∣∣Ωi

ΛM
∣∣ ≤

∣∣S(Ωi
ΛM)

∣∣ ≤ c
∣∣Ωi

ΛM
∣∣

for each i ≥ 0.

From Thm. 3.4.3 we know that the syzygy functor Ω commutes with the stable

equivalence S. We then have

c′
∣∣Ωi

ΛM
∣∣ ≤

∣∣Ωi
ΓS(M)

∣∣ ≤ c
∣∣Ωi

ΛM
∣∣

for each i ≥ 0.

Since for each i ≥ 0 we have βi(M) ≤ |Ωi
ΛM | ≤ βi(M) |Λ| we obtain

c′βi(M) ≤
∣∣Ωi

ΓS(M)
∣∣ ≤ cβi(M) |Λ|

Also, since for each i ≥ 0 we have βi(S(M)) ≤ |Ωi
ΓS(M)| ≤ βi(S(M)) |Γ| we get

c′βi(M) ≤ βi(S(M)) |Γ| and βi(S(M)) ≤ cβi(M) |Λ|

Rearranging these two inequalities yields

c′

|Γ|βi(M) ≤ βi(S(M)) ≤ βi(M)c |Λ|
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for all i ≥ 0.

In other words, the Betti numbers of the Λ-module M and the Betti numbers of

Γ-module S(M) have the same rate of growth. Therefore, cxΛM = cxΓ S(M).

3.5 Complexity of Trivial Extension Algebras

In this section we determine the complexities of all modules over trivial extensions of

iterated tilted algebras. We accomplish this by first computing the complexities of all

modules over trivial extensions of hereditary algebras. Then we extend our results to

trivial extensions of iterated tilted algebras.

3.5.1 Trivial Extensions of Hereditary Algebras

We study the complexity of modules over the trivial extension algebra T = ΛnD(Λ)

of hereditary algebra Λ. H. Tachikawa has shown that if Λ is of finite representation

type, then so is its trivial extension T [T]. See also [Y2]. In fact, the AR quiver

of T-mod consists of a single periodic component i.e. every nonprojective T-module

is τ -periodic. Since T is a symmetric algebra we know that τ = Ω2 and thus any

nonprojective T-module has a periodic resolution. In terms of complexity, this means

that any T-module has complexity less than or equal to 1.

Here we study the case when Λ is of infinite representation type. We will show

that if Λ is tame hereditary, then any indecomposable T-module has complexity at

most 2; and if Λ is wild hereditary, then any indecomposable nonprojective T-module
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has infinite complexity.

Proposition 3.5.1. Let Λ be of wild representation type and let X be an indecom-

posable preinjective or regular Λ-module. Then viewed as a T-module the complexity

of X is infinite.

Proof. Let Φ be the Coxeter transformation associated with Λ and let ρ denote its

spectral radius (See Section 2.2 for the definitions). Since Λ is wild the spectral

radius ρ > 1 [A, R2]. Let X 6= 0 be either a preinjective or a regular indecomposable

Λ-module. It has been shown that

lim
n−→∞

1

ρn
dim τnX = ~y

where ~y is a strictly positive vector [A, R2] (See also [Ker]). Since ρ > 1 we know

|dim τnΛX| grows exponentially. We saw in Lemma 3.2.2 that the AR quiver of Λ

embeds into that of its trivial extension T and we have τΛX = τTX. So |dim τnTX|

grows exponentially. Since the trivial extension algebra T is symmetric it follows

from Remarks 3.3.3 and 3.3.4 that also the sequence of Betti numbers βn(X) grows

exponentially and therefore cxT X =∞.

In the following proposition we obtain an upper bound for the complexity of

nonprojective modules in the case when Λ is of tame representation type. We mention

that we have a different proof that we present in our article [P], but here we provide

a simple proof using linear algebra.



CHAPTER 3. COMPLEXITY OF TRIVIAL EXTENSIONS 43

Proposition 3.5.2. Let Λ be of tame representation type. Let X be an indecompos-

able nonprojective Λ-module. Then viewed as a T-module the complexity of X is at

most 2.

Proof. We assume X is an indecomposable nonprojective Λ-module. Let Φ be the

Coxeter transformation associated with Λ and let ρ denote its spectral radius. R.

Stekolshchik, V. Subbotin (see [S] for the results as well as a discussion of the history

of this problem), J. Coleman [C], and R. B. Howlett [How] have shown that the

eigenvalues λi of the Coxeter matrix associated with a tame algebra are roots of

unity. Furthermore, if the underlying graph of Λ is a tree, then the Jordan form J

of Φ contains only one 2 × 2 Jordan block and its eigenvalue is 1 [S]. In the case of

the cycle Ãn, A. J. Coleman has shown in [C] that the Jordan form J of Φ contains a

2× 2 Jordan block with eigenvalue 1 and all other Jordan blocks are of size at most

2× 2 [S]. Hence, we can write Φ as a product of matrices Φ = B J B−1 where

J =




J1,1 0 . . . 0 0 . . . 0
0 J2,2 0 0 0
0 0 0 0 0

1 1 0
0 1 0

...
... 0 0 0

0 0 . . . 0 0 . . . Jn,n




where Jt,t =
(
λt 1
0 λt

)
is a 2 × 2 matrix if the eigenvalue λt has multiplicity 2 and the

corresponding eigenvector is simple i.e. has multiplicity 1, otherwise Jt,t = (λt) is a

1× 1 matrix.
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Then Φi(dimX) = (B J B−1)i dimX = B Ji B−1 dimX where J i is of the form

J i =




J i1,1 0 . . . 0 0 . . . 0
0 J i2,2 0 0 0
0 0 0 0 0

1 i . . . 0
0 1 0

...
... 0 0 0

0 0 . . . 0 0 . . . J in,n




where J it,t =
(
λit iλ

i−1
t

0 λit

)
if Jt,t =

(
λt 1
0 λt

)
, and J it,t = (λit) otherwise.

Multiplying the last equation on the left by [1 . . . 1] ∈ Zn yields

∣∣dim Φi(X)
∣∣ = [1 . . . 1] B Ji B−1 dimX

To simplify our notation, we will denote by ‖A‖ the matrix having entries equal to

the modulus of the entries of the matrix A.

We obtain the inequality

∣∣dim Φi(X)
∣∣ ≤ ‖[1 . . . 1] B‖

∥∥Ji
∥∥∥∥B−1 dimX

∥∥

Letting C1 and C2 be the largest entries in the vectors ‖[1 . . . 1] B‖ and
∥∥B−1 dimX

∥∥

respectively, allows us to write
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∣∣dim Φi(X)
∣∣ ≤ C1 [1 . . . 1]

∥∥Ji
∥∥C2 [1 . . . 1]T

≤ C1C2 [1 . . . 1]
∥∥Ji
∥∥ [1 . . . 1]T

= C1C2

∑
js,t

where js,t are the entries in
∥∥Ji
∥∥.

We recall that the non-zero entries of Ji are the powers λit of the eigenvalues λt

for t = 1 . . . n along with entries iλi−1
s coming from the blocks of size 2 × 2. Using

the fact that all of the eigenvalues λit are roots of unity, we see that Ji has non-zero

entries only of modulus 1 and i. This tells us that the sum of the entries of
∥∥Ji
∥∥ is

equal to the sum, C3, of the entries of Ji with modulus 1 plus the sum, C4, of the

entries of Ji with modulus i. We emphasize the fact that the number of entries of

each type is independent of i. We can now write
∑
js,t = C3 + C4i ≤ C5i for some

constant C5 sufficiently large. We obtain the inequality

∣∣dim Φi(X)
∣∣ ≤ C1C2C5i

Denoting the constant C1C2C5 by C ′ we can write

∣∣dim Φi(X)
∣∣ ≤ C ′i
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But dim Φi(X) = dim τ iΛ(X) and by the result of H. Tachikawa, Lemma 3.2.2,

τΛ(X) = τT(X) which then yields

∣∣dim τ iT(X)
∣∣ ≤ C ′i

Therefore the sequence |dim τ iT(X)| grows with complexity at most 2. Finally,

since T is a symmetric algebra we use Remarks 3.3.3 and 3.3.4 to conclude that the

sequence of Betti numbers βi also grows with complexity at most 2 i.e. we have the

inequality cxT(X) ≤ 2.

We can now use the previous results to prove that if Λ is tame hereditary, then

any indecomposable T-module has complexity at most 2; and if Λ is wild hereditary,

then any indecomposable nonprojective T-module has infinite complexity. The proof

involves Auslander-Reiten quivers and Lemma 3.2.2

Theorem 3.5.3. Let Λ be a hereditary k-algebra. Let X be an indecomposable non-

projective module over the trivial extension T of Λ.

(i) If Λ is tame, then complexity of X is at most 2.

(ii) If Λ is wild, then X has infinite complexity.

Proof. Let X be an indecomposable nonprojective T-module. From Lemma 3.2.2 we

know that the stable AR subquiver of Γ(T) is given by the disjoint union

Γs(T) = Γs(Λ) ∪ ΩT(Γs(Λ)) ∪ Ps ∪ Is
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We recall that the component Is contains all of the preinjective Λ-modules as

well as all of the T-syzygies of preprojective Λ-modules. The component Ps contains

all of the preprojective Λ-modules as well as all of the T-syzygies of the preinjective

Λ-modules.

We now use the above description of the stable AR subquiver of Γ(T) to find

the complexity of X. We recall the following two observations from Lemma 3.3.2.

First, for a self-injective algebra all modules in the same component of the AR quiver

have the same complexity. Second, a module and its syzygy always have the same

complexity.

We first consider the case when X ∈ Ps ∪ Is. We observe that complexity is

constant on Ps ∪ Is. Namely, if X ∈ Is pick M ∈ I(Λ). Then X and M belong

to the same component and cxT(X) = cxT(M) = cxT(ΩT(M)). But ΩT(M) is in

the component Ps which tells us that Ps and Is have the same complexity. Since

M belongs to I(Λ), M is preinjective and we may apply Prop. 3.5.1 and Prop. 3.5.2

to conclude that if Λ is wild cxT(X) = cxT(M) = ∞, and if Λ is tame we get

cxT(X) = cxT(M) ≤ 2.

We now consider the case when X ∈ Γs(Λ) ∪ ΩT(Γs(Λ)). Since modules in

ΩT(Γs(Λ)) are syzygies of those in Γs(Λ), we may pick a module M ∈ Γs(Λ) with

cxT(X) = cxT(M). Since M is a regular Λ-module we can apply Prop. 3.5.1 and

Prop. 3.5.2 to conclude that if Λ is wild cxT(X) = cxT(M) = ∞, and if Λ is tame

cxT(X) = cxT(M) ≤ 2.
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We can now compute the complexity of each component of the stable AR quiver

of the trivial extension algebra T of a hereditary algebra of tame representation type.

One of the ingredients of the proof is the following theorem by W. Crawley-Boevey

given as Corollary F in [C-B].

Theorem 3.5.4. Let Λ be a finite-dimensional algebra over an algebraically closed

field k. If Λ is of tame representation type, then every component of the Auslander-

Reiten quiver of Λ contains only finitely many isomorphism classes of indecomposable

modules of each dimension.

In the case where Λ is of tame representation type, we can find the complexity of

each component in the stable Auslander-Reiten quiver of the trivial extension. Once

again, we use the description obtained by Tachikawa for the stable AR quiver of a

trivial extension of a hereditary algebra.

Theorem 3.5.5. Let Λ be a hereditary k-algebra of tame representation type. Then

the components in the stable Auslander-Reiten quiver of its trivial extension T have

the following complexities: cxT(Is) = 2, cxT(Ps) = 2, all other components have

complexity 1.

Proof. We begin by recalling that since T is self-injective, all modules belonging to

the same component of the stable AR quiver of T must have the same complexity.

We proceed by exhibiting a module of the appropriate complexity in each of the

components of the stable AR quiver.
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We start with the component Is which we recall contains all of the injective Λ-

modules. In particular, since Λ is of tame representation type, there exists a simple

injective Λ-module S with τ iΛS 6= 0 for any i ∈ N. Also, observe that since S is

injective, S is not τ -periodic that is to say τ iΛS � τ jΛS for i 6= j.

We claim that |τ iΛS| are unbounded. Assume to the contrary that there is some

B ∈ N with |τ iΛS| ≤ B for all i ∈ N. Since τ iS 6= 0 for any i ∈ N and τ iS � τ jS for

i 6= j, we see that τ iΛS are infinitely many non-isomorphic indecomposable Λ-modules.

By assumption |τ iΛS| ≤ B. This means that for some positive integer c ≤ B there

exist infinitely many non-isomorphic indecomposable modules of the same length c

and hence of the same k-dimension. Furthermore, all of the modules lie in the same

component of the Auslander-Reiten quiver of Λ. But this brings us to a contradiction

with Crawley-Boevey’s theorem. Therefore, |τ iΛS| must be unbounded.

Lemma 3.2.2 tells us τ iΛS = τ iTS and therefore the sequence |τ iTS| must be un-

bounded. Finally, since T is symmetric Remarks 3.3.3 and 3.3.4 tell us that also the

sequence of Betti numbers, βi, is unbounded. In other words, viewed as a T-module,

S has complexity greater than 1. In light of Thm. 3.5.3, where we saw that any inde-

composable T-module has complexity at most 2, we conclude that S has complexity

exactly 2. Therefore, also cxT Is = 2.

Next, we consider the component Ps which contains the syzygies of the injective

Λ-modules, ΩT (I(Λ)). By the above, injective Λ-modules have complexity 2 when

viewed as T-modules. Since a module and its syzygy always have the same complexity,
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we know cxT(Ps) = 2.

Any other component of the stable AR quiver of T is either a regular component

of Λ, thus belonging to Γs(Λ), or a component in ΩT(Γs(Λ)). Since Λ is of tame

representation type, the regular components of Λ are tubes. M. Auslander and I.

Reiten showed in [AR] that ΩT applied to a stable tube is also a stable tube. It

follows that any component of the stable AR quiver of T that belongs to Γs(Λ) or

ΩT(Γs(Λ)) is a stable tube. This means that any indecomposable T-module X in

Γs(Λ)∪ΩT(Γs(Λ)) is τ -periodic. i.e. τ tT(X) ∼= X for some t ∈ N . But τ iTX = Ω2i
T (X)

for i = 1, 2, 3, . . .. In particular, X ∼= Ω2t
T (X), so that X has a periodic resolution

over T. In terms of complexity this means that X has complexity 1.

We point out as a separate corollary a part of what we proved above.

Corollary 3.5.6. If Λ is of tame representation type, then the only T -modules with

complexity 1 are the periodic modules.

Note that in general it is possible to have modules of complexity 1 that are not

Ω-periodic. An example was given by R. Schulz in [Sch] where he studied algebras

of the form k 〈x, y〉 / (x2, xy + qyx, y2) where k is a field and q a nonzero element in k

that is not a root of unity. Examples over commutative local rings have been provided

by V. Gasharov and I. Peeva in [GP].

It is also interesting to note that if Λ is tame, then all allowed complexities occur

for some T-module.
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Corollary 3.5.7. If Λ is of tame representation type, then there exist T -modules with

every allowed complexity i.e. complexities 0, 1, and 2.

Proof. Any projective T -module realizes complexity 0. Any module in the component

Ps or Is has complexity 2. All other modules have complexity 1.

3.5.2 Trivial Extensions of Iterated Tilted Algebras

In this section Λ is an iterated tilted algebra from a finite-dimensional k-algebra where

k is algebraically closed. We follow our convention that all modules are left modules.

When we wish to discuss right Λ-modules, we will view them as left Λop modules

instead. Let T(Λ) denote the trivial extension algebra of Λ. In this section we will

use our previous work to show that the stable AR components of T(Λ) can only have

complexities 1, 2, and infinity.

We begin by recalling the notions of a tilting module and a tilted algebra. Denote

by add(T ) the modules that are direct sums of direct summands of a Λ-module T . A

finitely generated left Λ-module T is called a tilting module if it satisfies the following

three conditions:

(i) pdΛT ≤ 1

(ii) Ext1
Λ(T, T ) = 0

(iii) there exists an exact sequence 0 −→Λ Λ −→ T ′ −→ T ′′ −→ 0 where T ′ and T ′′

belong to add(T ).
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The first condition requires the projective dimension of T to be at most 1 i.e. the

first syzygy Ω(T ) has to be zero or projective. Notice that any projective Λ-module

satisfies (i) and (ii). The free module Λ satisfies all three conditions. For basic notions

in tilting theory we refer to [ASS, HR].

The next theorem is the fundamental theorem of tilting theory. It gives a connec-

tion between the algebra Λ and the endomorphism algebra Γ = EndΛ(T )op where

ΛT is a tilting Λ-module. We write the composition of maps as concatenation:

fg means first do f , then do g for any two composable maps f and g. Then

T ∼= HomΛ(Λ, T ) is a right EndΛ(T )-module via the action defined by t ∗ g = tg

for any t ∈ T and g ∈ EndΛ(T ). This makes T a Λ-Γ bimodule as λ(tg) = (λt)g for

each λ ∈ Λ ∼= EndΛ(Λ), g ∈ EndΛ(T ), and t ∈ T ∼= HomΛ(Λ, T ).

Theorem 3.5.8 (Tilting Theorem). [BB, HR] Let T be a tilting Λ-module. Let

Γ = EndΛ(T )op. Then T is a tilting Γ-module and there is an algebra isomorphism

Λ ∼= EndΓ(T )op.

An algebra Λ is said to be a tilted algebra if there exists a hereditary algebra H and

a tilting module HT such that Λ ∼= EndH(T )op. Notice that all hereditary algebras

are tilted algebras (just take HT = H in the definition).

We give an example of a tilted algebra and its AR quiver.
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Example 3.5.9. Let H be the path algebra of the quiver of type D̃4

3
''
2 // 1

4

77

The AR quiver of H is then given by

Take T = P (4)⊕ I(1)⊕P (4)/S(1)⊕S(4). Then T is a tilting module. The tilted

algebra Λ = EndH(T )op is given by the path algebra of the quiver

2 β

''
4

α
77

γ ''

1

3 δ

77

with the relations ρ = 〈αβ − γδ〉. Note that Λ is no longer a hereditary algebra.
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The AR quiver of Λ is given by

Once we have obtained a tilted algebra Λ from the hereditary algebra H via a

tilting H-module, we may repeat the process to form yet another algebra via a tilting

Λ-module. This process leads us to the notion of an iterated tilted algebra.

An algebra Λ is called an iterated tilted algebra if there exists a sequence of algebras

Λ = Λt,Λt−1, . . . ,Λ0 = H where H is hereditary and a sequence of tilting modules

Λi
T (i), 0 ≤ i ≤ t−1, such that Λi+1 = EndΛi

(T (i))op for each i. Iterated tilted algebras

were introduced by I. Assem and D. Happel [AH] (See also [HR]).

Complexity over trivial extensions of iterated tilted algebras.

We now turn to the study of complexity over trivial extensions of iterated tilted

algebras. Recall that for a finite-dimensional k-algebra Λ we denote by T(Λ) its

trivial extension algebra T(Λ) = ΛnD(Λ). H. Tachikawa and T. Wakamatsu proved

in [TW] the following theorem:

Theorem 3.5.10. Let Λ be a finite-dimensional k-algebra and let T be a tilting
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module over Λ. Let Γ be the endomorphism algebra EndΛ(T )op. Then there exists

an equivalence between the stable module categories of the trivial extension algebras

S : T(Λ)-mod −→ T(Γ)-mod.

We illustrate this theorem in the following example.

Example 3.5.11. The trivial extension algebra T(H) of the hereditary algebra H in

the previous example Ex. 3.5.9 is the path algebra of the quiver

3

α &&
2

γ // 1

ε
ll

δrr

4

β 88

with relations ρ = 〈δα− εβ, βγδ, αγε, αγδα, γδαγ, δαγδ〉.

The AR quiver of T(H) is

The projective T(H)-modules are P (1) =
1
34
2
1

, P (2) =
2
1
34
2

, P (3) =
3
2
1
3
, and P (4) =

4
2
1
4
.
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The trivial extension algebra T(Λ), where Λ is the tilted algebra from Exam-

ple 3.5.9, is the path algebra of the quiver

2
β

&&
4

α
88

γ &&

1ε
oo

3
δ

88

with relations ρ = 〈αβ − γδ, αβεα, βεαβ, εαβε, βεγ, δεα〉.

The AR quiver of T(Λ) is

The projective T(Λ)-modules are Q(1) =
1
4
23
1

, Q(2) =
2
1
4
2
, Q(3) =

3
1
4
3
, and Q(4) =

4
23
1
4

.

Observe that the stable AR quiver of T(H) is isomorphic to the stable AR quiver of

T(Λ).

Assume now that Λ is an iterated tilted algebra. We wish to relate the stable

module category T(Λ)-mod to the stable module category of a trivial extension of a

hereditary algebra. We have the following proposition.
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Proposition 3.5.12. Let Λ be an iterated tilted algebra and let T(Λ) denote its trivial

extension algebra. Then there exists a hereditary algebra H and a stable equivalence

S : T(Λ)-mod −→ T(H)-mod where T(H) is the trivial extension of the hereditary

algebra H.

Proof. Let Λ be an iterated tilted algebra. Then there exists a sequence of algebras

Λ = Λt,Λt−1, . . . ,Λ0 = H where H is a hereditary algebra and a sequence of tilting

modules Λi
T (i), 0 ≤ i ≤ t− 1, such that Λi+1 = EndΛi

(T (i))op for each i.

Applying Thm. 3.5.10 to the pairs of algebras Λi and Λi+1, gives a stable equiva-

lence Si : T(Λi)-mod −→ T(Λi+1)-mod for 0 ≤ i ≤ t− 1.

The composition S = St−1 . . .S1S0 is the desired equivalence. In summary, we

have a stable equivalence S : T(H)-mod −→ T(Λ)-mod where H is a hereditary

algebra.

We proved earlier that a stable equivalence between the stable module categories

of self-injective algebras preserves complexity. We can now use our previous work to

analyze the complexities of modules over the trivial extension algebra of an iterated

tilted algebra.

Theorem 3.5.13. Let Λ be an iterated tilted algebra from a hereditary algebra H.Then

cxT(Λ) S(M) = cxT(H) M for each M ∈ T(H)-mod.

Proof. This follows from the observation that T(H) and T(Λ) are both symmet-

ric algebras and by Proposition 3.5.12 we know that there exists a stable equiv-
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alence S : T(H)-mod −→ T(Λ)-mod. By Theorem 3.4.10 stable equivalence be-

tween self-injective algebras preserves complexity of modules and we have the equality

cxT(Λ) S(M) = cxT(H) M for all M ∈ T(H)-mod.

Corollary 3.5.14. Let Λ be an iterated tilted algebra from a hereditary algebra H.

Let C be a component in the stable AR quiver of the trivial extension algebra T(Λ).

Then the complexity of C satisfies the following

(i) If H is of finite representation type, then Λ is of finite representation type and

cxΛ C = 0.

(ii) If H is of tame representation type, then cxT(Λ) C = 2 if C = S(Ps) or C = S(Is)

where Ps and Is are the two special components of T(H) that we described in

the discussion preceding Lemma 3.2.2. For all other components, cxT(Λ) C = 1.

Furthermore, the only complexity 1 components are the stable tubes.

(iii) If H is of wild representation type, then cxT(Λ) C =∞.

We point out as separate corollaries the following observations.

Corollary 3.5.15. If T(Λ) is a trivial extension of an iterated tilted algebra, then

the only T(Λ)-modules of complexity 1 are the periodic modules.

Corollary 3.5.16. If Λ is an iterated tilted algebra from a hereditary algebra of tame

representation type, then there exist T(Λ)-modules with every allowed complexity i.e.

complexities 0, 1, and 2.



Chapter 4

τ-Complexity of Cluster Tilted

Algebras

In this chapter we study the τ -complexity of modules over cluster tilted algebras.

These algebras were introduced by Buan, Marsh, Reineke, Reiten, and Todorov in

their seminal papers on cluster categories [BMR, BMRRT] from 2006 and 2007. Clus-

ter tilted algebras were inspired by the theory of cluster algebras which were intro-

duced by Fomin and Zelevinski in [FZ]. Recently, Assem, Brüstle, and Schiffler have

found connections between relation extensions of tilted algebras and cluster tilted

algebras [ABS]. P. Bergh and S. Oppermann have proposed two different definitions

of complexity: one for the cluster category and one for the bounded derived category

of a cluster tilted algebra in [BO]. In this Chapter we study a different definition of

complexity for cluster tilted algebras– the τ -complexity. While the authors of [BO]

59
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study the transjective component in the cluster category, our approach and methods

are different and allow us to determine the complexity of all modules over a cluster

tilted algebra.

Our goal is to prove that the behaviour of τ -complexity over a cluster tilted algebra

is directly related to the representation type of the underlying hereditary algebra H.

The main theorem of the chapter is the following:

Theorem. Let H = k4 be a finite-dimensional hereditary k-algebra where k is an

algebraically closed field and 4 is a finite quiver without oriented cycles. Let T be a

tilting object in the corresponding cluster category C. Denote by Ĉ the cluster tilted

algebra EndC(T )op. Let X be a module over Ĉ.

(i) If H is of finite representation type, then cxX = 0 or 1, depending on the choice

of the tilting object T .

(ii) If H is of tame representation type, then cxX = 0, 1 or 2.

(iii) If H is of wild representation type, then either cxX = 0, or X has infinite

τ -complexity.

We remark that the only modules of τ -complexity 1 are the τ -periodic modules.

In the case when H is tame, there exist Ĉ-modules of each allowed complexity i.e. 0,

1, and 2. In the case when H is wild, all modules of non-zero complexity over Ĉ have

infinite complexity.
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This theorem is somewhat surprising since cluster tilted algebras are a general-

ization of tilted algebras. Yet, the behaviour of τ -complexity over tilted algebras is

not directly related to the representation type of the underlying hereditary algebra.

There are many examples of hereditary algebras of infinite representation type whose

tilted algebras are of finite representation type. The first algebras have modules of

positive τ -complexity while the second do not. Our main result then shows that in

terms of τ -complexity the cluster tilted algebras are in a way more closely related to

the hereditary algebras than the tilted algebras.

We provide an example of a hereditary algebra of infinite representation type

whose tilted algebra is of finite representation type. See Section 4.8 in Chapter VIII

of [ASS]:

Example 4.0.17. Let H be the path algebra of the Euclidean quiver of type Ã3

2

xx
1 4

xx

ff

3

ff

Let T be the tilting module T = 1⊕ 4
3
1
⊕ 4

2
1
⊕ 4. The corresponding tilted algebra

C = EndH(T )op is given by the path algebra of the quiver

2
β

xx
1 4

γxx

α
ff

3
δ

ff
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modulo the relations 〈αβ, γδ〉. Here H is of tame representation type, while C is of

finite representation type.

We remark that it is possible to use the work of Assem, Brüstle, and Schiffler

[ABS2] to obtain some of our results concerning those AR components of the clus-

ter tilted algebra that arise as the quotients of the transjective components in the

bounded derived category of H-mod. Our approach, however, gives a direct proof

and determines the τ -complexity of all AR components of the cluster tilted algebra.

4.1 Preliminaries

We recall our assumptions that all algebras are finite-dimensional algebras over an

algebraically closed field k. We write τΛ (or, simply τ) for the Auslander-Reiten

translate (AR translate, for short) in Λ-mod. We use Γ(Λ) to denote the Auslander-

Reiten quiver (AR quiver, for short) of Λ-mod.

Recall also that the τ -complexity of a Λ-module M measures the rate of growth

of the sequence of the dimensions of τ iM ,

cxM = inf
{
t ∈ N0 | ∃ α ∈ R such that

∣∣τ i(M)
∣∣ ≤ αit−1 for i� 0

}

where N0 denotes the nonnegative integers. When no such t ∈ N0 exists, we say that

the complexity is infinite and write cxM =∞. Notice that cxM = 1 means that the

dimensions in the τ -orbit of a module M are bounded, and cxM = 0 means that M
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has τ iM is projective for some i > 0.

We define the τ -complexity of an algebra Λ as the supremum

cx Λ = sup {cxM |M ∈ Λ-mod}

We say that an AR component has complexity 0 if each module in the component

has complexity 0. Furthermore, it will follow from [Ker] and our results in this chapter

that all modules of non-zero τ -complexity in the same AR component have the same

τ -complexity. Therefore, when a component contains modules of non-zero complexity

we define this common value to be the complexity of the component. In this chapter

the term complexity always refers to τ -complexity.

Here we study the complexity of modules over a certain family of algebras, namely

the cluster tilted algebras.

4.2 Cluster Tilted Algebras

In this section we introduce cluster tilted algebras and collect some preliminary re-

sults. Cluster tilted algebras were introduced in [BMR, BMRRT] as a generalization

of tilted algebras. We gave the definition of a tilted algebra in subsection 3.5.2. If the

algebra H is hereditary, then a finitely generated module T over a hereditary algebra

H is a tilting module if it satisfies the two conditions

(i) Ext1(T, T ) = 0 and
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(ii) There exists an exact sequence 0 −→ H −→ T ′ −→ T ′′ −→ 0 where T ′ and T ′′

belong to add(T ).

We assume throughout this chapter that T is basic i.e. the indecomposable sum-

mands of T are pairwise non-isomorphic. Condition (ii) may be replaced by the

requirement that the number of indecomposable summands of T is equal to the rank

of the Grothendieck group K0(H). Remark that addT = add(T ′ ⊕ T ′′). Otherwise

we could remove a summand of T and still obtain a tilting module T1, but then T1

would not have |K0(H)| summands which is a contradiction.

Recall that the endomorphism algebra C = EndH(T )op is called a tilted algebra,

and the adjoint pair of additive functors

HomH(T, ) : H-mod→ C-mod

⊗C T : C-mod→ H-mod

allows us to pass between the two module categories H-mod and C-mod.

A pair (T ,F) of full subcategories of H-mod is called a torsion theory if the

following conditions are satisfied:

(i) HomH(M,N) = 0 for all M ∈ T and N ∈ F

(ii) HomH(M,N) = 0 for each N ∈ F implies that M ∈ T

(iii) HomH(M,N) = 0 for each M ∈ T implies that N ∈ F
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The objects in T are called torsion objects and the objects in F are called torsion-

free objects.

We can always form a torsion theory from any given tilting module T over an

algebra H. Namely, the full subcategory of H-mod defined by letting the torsion

objects be T = {M |Ext1
H(T,M) = 0} is a torsion class with the corresponding

torsion-free class F = {M |HomH(T,M) = 0}. See [ASS].

Setting tM to be the largest torsion submodule of a Λ-module M gives rise to a

canonical sequence

0 −→ tM −→M −→M/tM −→ 0

a short exact sequence where the module tM ∈ T and M/tM ∈ F .

Lemma 4.2.1. Let T be a tilting module over a hereditary algebra H. Then for any

H-module M we have the isomorphisms

(i) HomH(T,M) ∼= HomH(T, tM)

(ii) Ext1
H(T,M) ∼= Ext1

H(T,M/tM).

Proof. Applying the covariant functor HomH(T, ) to the canonical sequence yields

the long exact sequence

0 −→ HomH(T, tM) −→ HomH(T,M) −→ HomH(T,M/tM) −→

−→ Ext1
H(T, tM) −→ Ext1

H(T,M) −→ Ext1
H(H,M/tM) −→

−→ Ext2
H(T, tM) −→ . . .
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Here HomH(T,M/tM) = 0 since M/tM ∈ F , Ext1
H(T, tM) = 0 since tM ∈ T , and

Ext2
H(T, tM) = 0 since H is hereditary. In other words, we have the isomorphisms

HomH(T, tM) ∼= HomH(T,M) and Ext1
H(T,M) ∼= Ext1

H(T,M/tM).

For results on tilting theory we refer to [ASS, BB, HR]. In [BMR, BMRRT]

the authors take tilting modules and tilted algebras to a more general setting by

introducing a new category called a cluster category and a tilting object in this

category. A cluster tilted algebra is the endomorphism algebra of this tilting object.

Before we can introduce the notions of a cluster category and cluster tilted algebra,

we must discuss another category, namely the bounded derived category.

4.2.1 Bounded Derived Category

Let H be a hereditary k-algebra. We construct the bounded derived category of

H-mod. Recall that a complex X• over H is a sequence of H-modules X i and mor-

phisms δi = X i → X i+1 such that δi+1δi = 0 for all i ∈ Z. We write

X• : . . . Xn−1 δn−1

−→ Xn δn−→ Xn+1 δn+11

−→ Xn+2 −→ . . .

A complex X• is bounded below if X i = 0 for all but finitely many i < 0 and bounded

above if X i = 0 for all but finitely many i > 0. A complex is bounded if it is both

bounded below and bounded above. In this manner we obtain the category of bounded

complexes over H. An object in this category is a bounded complex over H and a
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morphism between two complexes f : X• → Y • is a family of morphisms f i : X i → Y i

in H-mod such that δiY f
i = f i+1δiX . A complex X• is called a stalk complex if there

exists s ∈ Z such that Xs 6= 0 while Xj = 0 whenever j 6= s. The object Xs is

then called the stalk of the complex X•. Note that we can view an H-module X as

a bounded complex by identifying it with the stalk complex X• with stalk X0 = X.

For each i ∈ Z the ith shift of a complex X• is a new complex X•[i] whose degree j

term is X[i]j = X i+j for each j ∈ Z.

Recall that the ith cohomology group of the complex X• is defined as

H i(X•) = Ker δi/ Im δi−1

for each i ∈ Z.

In addition, a morphism of complexes f : X• → Y • induces group homomorphisms

H i(f) : H i(X) → H i(Y ) for each i ∈ Z. If these induced morphisms H i(f) are

isomorphisms for all i ∈ Z, then the morphism of complexes f is called a quasi-

isomorphism.

Next, we need to pass to the homotopy category. First, recall that two morphisms

f •, g• : X• −→ Y • are called homotopic if there exist morphisms hi : X i −→ Y i−1

for all i ∈ Z satisfying

f i − gi = δiXh
i+1 + hiδi−1

Y

In this case we say that f • and g• are homotopic via the homotopy h. The homotopy
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category has the same objects, but the morphisms are obtained by defining f • and g•

to be equivalent if they are homotopic. We may think of the objects in the homotopy

category as complexes, and the maps as the maps of complexes modulo homotopy.

Finally, the bounded derived category of H-mod is obtained from the homotopy

category by formally inverting all of the quasi-isomorphisms. By abuse of language

we may say that the objects of the bounded derived category Db(H) are the bounded

complexes of H-modules but now homotopic maps are equal and we have new maps

obtained by localizing the category of bounded complexes by the class of quasi-

isomorphisms. The indecomposable objects in Db(H) are the stalk complexes with

indecomposable stalks. [H]

4.2.2 Triangulated Categories

Let us write Db(H) (or, simply D) for the bounded derived category of H-mod.

While the module category H-mod has short exact sequences, this need not be true

of the bounded derived category Db(H). An important property of the category of

Db(H) is that it is a triangulated category with Auslander-Reiten triangles [H]. In

a triangulated category the notions of a distinguished triangle and an AR triangle

replace the notions of a short exact sequence and an AR sequence in the module

category.

More generally, given an additive category A and an auto-equivalence of the cat-

egory Σ : A −→ A (called, a suspension or translation), a triangle (X, Y, Z, u, v, w)
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is a sequence of objects and morphisms of the form

X
u−→ Y

v−→ Z
w−→ ΣX

A morphism of triangles is a triple

(f, g, h) : (X, Y, Z, u, v, w) −→ (X ′, Y ′, Z ′, u′, v′, w′)

such that the following diagram commutes

X

f

��

// Y

g

��

// Z

h

��

// ΣX

Σf

��
X ′ // Y ′ // Z ′ // ΣX ′

If the morphisms f , g and h are isomorphisms in A, then (f, g, h) is called an

isomorphism of triangles.

An additive category A with translation Σ is said to be triangulated if there exists

a class of triangles called distinguished triangles satisfying the following axioms TR1

through TR4 [RS, H]:

TR1.

(i) (X,X, 0, 1X , 0, 0) is a distinguished triangle for any object X.

(ii) Every triangle isomorphic to a distinguished one is distinguished.
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(iii) Every morphism X → Y in A can be embedded in a distinguished triangle

(X, Y, Z, u, v, w).

TR2. (Rotation) A triangle (X, Y, Z, u, v, w) is distinguished if and only if

(its rotation) (Y, Z,ΣX, v, w,−Σu) is distinguished.

TR3. (Morphisms) Every commutative diagram of solid arrows

X

f

��

// Y

g

��

// Z

h

��

// ΣX

Σf

��
X ′ // Y ′ // Z ′ // ΣX ′

whose rows are distinguished triangles can be completed to a morphism of tri-

angles by a morphism h : Z → Z ′.

TR4. (The octahedral axiom) Given two morphisms in A

X
u−→ Y and Y

v−→ Z

and the distinguished triangles

(X, Y,X ′, u, u′, w), (X,Z, Y ′, v ◦ u,w, r), and (Y, Z, Z ′, v, v′, t),

there exist morphisms X ′
α−→ Y ′ and Y ′

β−→ Z ′ such that

(X ′, Y ′, Z ′, α, β,Σu′ ◦ t)

is a distinguished triangle and we have a commutative diagram
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X
u // Y

v

��

u′ // X ′

α

��

s // ΣX

X

u

��

v◦u // Z w // Y ′ r //

β

��

ΣX

Σu

��
Y

u′

��

v // Z

w

��

v′ // Z ′ t // ΣY

Σu′

��
X ′

α // Y ′
β // Z ′

Σu′◦t // ΣX ′

A distinguished triangle (X, Y, Z, u, v, w) is called an Auslander-Reiten triangle if

it satisfies:

(i) X and Z are indecomposable

(ii) w 6= 0

(iii) If f : W → Z is not a retraction, then there exists f ′ : W → Y such that

vf ′ = f .

Lemma 4.2.2 ( Section 4, Ch. I in [H]). Let (X, Y, Z, u, v, w) be an AR triangle. If

f : X → W is not a section, then there exists f ′ : Y → W with f = f ′u

We say that a triangulated category has AR triangles if for every indecomposable

object Z there exists a triangle satisfying the above conditions.

In addition to AR triangles, we also have a notion of an irreducible morphism. A

morphism h : Z ′ → Z in an additive category is irreducible if h is neither a section
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or a retraction, but for any factorization h = h′ ◦ h either h′ is a section or h is a

retraction. [H]

The following is the analogue of uniqueness of AR sequences for triangulated

categories.

Proposition 4.2.3 (Section 4, Chapter I [H]). Let X
u−→ Y

v−→ Z
w−→ ΣX be an

AR triangle. Then

(i) Given Z, the AR triangle is unique up to isomorphism of triangles.

(ii) The morphisms u and v are irreducible.

As a consequence of the uniqueness of AR triangles, we may define the AR trans-

late in a triangulated category. Given an AR triangle X
u−→ Y

v−→ Z
w−→ ΣX set

τZ = X and τ−1X = Z.

The concepts of AR triangles and the AR translate τ naturally lead us to the AR

quiver. The AR quiver of a triangulated category has vertices [X] the isomorphism

classes of the indecomposable objects X in the triangulated category. There is an

arrow [X]→ [Y ] in the AR quiver if and only if there exists an irreducible morphism

X → Y in the triangulated category.

The following theorem guarantees the existence of AR triangles for the bounded

derived category Db(H) of a hereditary algebra H.

Theorem 4.2.4 (Section 1, Chapter IV [H]). Let Λ be a finite-dimensional k-algebra

of finite global dimension. Then the derived category Db(Λ) has AR triangles.
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Here we work with the derived category of bounded complexes over a hereditary

algebra H. We have seen that Db(H) is triangulated and has AR triangles. We write

τD (or simply τ when no confusion can arise) for the AR translate and Γ(Db(H)) for

the AR quiver. For a derived category the suspension Σ is the shift of a complex. It

is customary to denote the shift by [1].

We can construct the AR quiver of Db(H) from information about the hereditary

algebra H. It is well known that a hereditary algebra H over algebraically closed field

k is the path algebra of a quiver 4 with no oriented cycles, so we write H = k4.

Furthermore, H is of finite representation type if 4 is a Dynkin diagram, H is of

tame representation type is 4 is a Euclidean diagram. In all other cases we say that

H is of wild representation type and 4 is a wild diagram. [ARS]

Recall that the diagrams 4 help us construct the AR quiver of H-mod. If H is

of finite representation type, then there is a unique connected component in the AR

quiver containing all of the finitely many non-isomorphic indecomposable modules.

If H is of infinite representation type then we have the following description of the

AR quiver of H. There is a preprojective component of type N4 containing all of the

projective H-modules. There is a preinjective component of type N4 containing all

of the injective H-modules. All other components are called regular. If H is of tame

representation type, then they are stable tubes and if H is of wild representation

type, then they are of the form ZA∞. [ARS, R]

We now turn to the components in the AR quiver of Db(H). The theorem below
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follows from Corollary on page 54 in [H].

Theorem 4.2.5. Let H = k4 be a finite-dimensional hereditary k-algebra where k

is an algebraically closed field.

(i) If H is of finite representation type, then Γ(Db(H)) = Z4.

(ii) If H is of tame representation type, then Γ(Db(H)) consists of components of

the form Z4 and ZA∞/τn for n ∈ N.

(iii) If H is of wild representation type, then Γ(Db(H)) consists of components of

the form Z4 and ZA∞

The components of type Z4 are called transjective components because they

are formed by attaching the (shifts of) preprojective and preinjective component

of H-mod. More precisely, for each i ∈ Z we add an arrow from the shifted injective

object I(a)[i] to the shifted projective object P (b)[i + 1] for each arrow from a to b

in the quiver 4. All of the remaining components are called regular. [H]

We now collect some properties of morphisms of Db(H) that become useful to us

later.

Lemma 4.2.6. Let H be a hereditary algebra and Db(H) the bounded derived category

of H-mod. Then for any M,N ∈ H-mod

(i) HomD(M [i], N [i]) = HomD(M,N) for any i ∈ Z

(ii) HomD(M,N [i]) = 0 for i 6= 0, 1
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(iii) HomD(M,N [1]) = Ext1
H(M,N)

(iv) HomD(M,N [0]) = HomH(M,N)

4.2.3 Cluster Categories

Denote the composition of the shift [1] and the translate τ−1 in the bounded derived

category Db(H) by F = τ−1[1] = [1]τ−1. We may then form the factor category

Db(H)/F. This factor category is called the cluster category and we denote it by C.

The objects of C are the F-orbits of objects in Db(H) and the morphisms are

HomC(M̃, Ñ) =
⊕

i∈Z

HomD(M,FiN)

where M̃ and Ñ denote the F-orbits of M and N respectively. The notion of a cluster

category was first introduced in [BMRRT].

In [K] it was proved that C has a triangulated structure induced by the triangulated

structure of Db(H), and in [BMRRT] it was shown that C has AR triangles induced

by those in Db(H). In particular, given an indecomposable object X̃ ∈ C induced by

an indecomposable module X ∈ H-mod, there is an AR triangle in C of the form

τX̃ −→ Ỹ −→ X̃ −→ τX̃[1]

where

0 −→ τX −→ Y −→ X −→ 0
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is an AR sequence in H-mod. We may thus form the AR quiver of the cluster category

C. We write τ for the translation functor in C (when needed, we specify τ = τC).

We obtain the shapes of the components in the AR quiver of C by identifying all

of the vertices in an F-orbit of a vertex in Db(H). Thus, we obtain components that

arise as images of components of type Z4 in Db(H); we refer to these as transjective

components. The remaining AR components arise as images of regular components in

Db(H) and are therefore called regular components in C. Note that in the case when

H is of finite representation type, these identifications result in a single τ -periodic

component. In the case when H is of infinite representation type, the process never

identifies two objects that belong to the same AR component in Db(H).

4.2.4 Cluster Tilted Algebras

A tilting object in the cluster category C is an object T that satisfies the following

two conditions

(i) Ext1
C(T, T ) = 0

(ii) T has a maximal number of non-isomorphic direct summands, in other words

Ext1
C(T ⊕X,T ⊕X) = 0 implies that X ∈ addT .

The endomorphism algebra EndC(T )op = Ĉ is called a cluster tilted algebra.

In [BMRRT] it was shown that one may assume that any tilting object T in C

arises from a tilting module T ∈ H-mod. Therefore, we will use T to denote the

tilting module in H-mod as well as the tilting object in the cluster category C.
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The following theorem was proved in [BMR].

Theorem 4.2.7. Let T be a tilting object in C. Then HomC(T,−) induces an equiv-

alence C/ add(τT ) −→ mod EndC(T )op.

As a particular consequence, we have a way of constructing the AR quiver of Ĉ.

We need to delete the vertices (and related arrows) corresponding to the summands

of τT (and related arrows, respectively) from the AR quiver Γ(C).

We provide two examples of a tilted algebra and the corresponding cluster tilted

algebra.

Example 4.2.8. Let H be given by the path algebra of the quiver

1 // 2 // 3

The the AR quiver of H-mod is

1
2
3

""
2
3

<<

$$

1
2

$$
3

::

2

::

1

Let T be the tilting module T = 3⊕ 1
2
3
⊕ 1 = T1 ⊕ T2 ⊕ T3. The indecomposable

torsion modules are T = {T1, T2, T3, 1
2 }. There is a unique indecomposable torsion-

free module F = {2}. The module 2
3 is neither torsion nor torsion-free.
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The the tilted algebra C = EndH(T )op is the algebra of the quiver

1 2
βoo 3αoo

with the relation αβ = 0.

Next, we compute the images of HomH(T, ) and Ext1
H(T, ). The summands

of the tilting module T are sent to the projective C-modules: HomH(T, T2) = 2
1 ,

HomH(T, T3) = 3
2 , HomH(T, T1) = 1. Applying HomH(T, ) to the short exact se-

quence

0 −→ 3 −→ 1
2
3
−→ 1

2 −→ 0

gives HomH(T, 1
2 ) = 2.

Since H is hereditary, we may use the AR formula (see Thm. 2.13, Ch. IV in

[ASS]) to compute

Ext1
H(T, 2) = DHomH(2, τT ) = DHomH(2, 2) = 3

The AR quiver of the tilted algebra C is

2
1

$$
1

::

2

$$

3

3
2

::
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We now construct the corresponding cluster tilted algebra. The AR quiver of the

triangulated category Db(H) is

1
2
3

""

3[1]

""

2[1]

""

1[1]

· · · 2
3

<<

""

1
2

""

<<

2
3 [1]

""

<<

1
2 [1]

""

<<

· · ·

3

<<

2

<<

1

<<

1
2
3
[1]

<<

3[2]

We can now build the AR quiver in the cluster category C. We identify the

indicated objects to obtain a Möbius band in C .

1
2
3

""

3[1]

""

2[1] ∼= 3

""

1[1] ∼= 2

2
3

<<

""

1
2

""

<<

2
3 [1]

""

<<

1
2 [1] ∼= 2

3

""

<<

3

<<

2

<<

1

<<

1
2
3
[1]

<<

3[2] ∼= 1
2
3

The cluster tilted algebra Ĉ = EndC(T )op where T is as before, is given by the

path algebra of the quiver

1

γ

772
βoo 3αoo

with relations αβ = 0, βγ = 0, γα = 0.

Theorem 4.2.7 allows us to construct the AR quiver of the cluster tilted algebra

Ĉ directly from the AR quiver of the cluster category C. The general shape of the
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AR quiver of Ĉ is obtained by simply removing the vertices corresponding to the

summands of τT . In the illustration below the summands of T are boxed, the vertices

that need to be deleted are marked by an asterisk ∗.

1
2
3

##

∗
##

2[1] ∼= 3

##
2
3

;;

""

1
2

""

;;

2
3 [1]

""

;;

1
2 [1] ∼= 2

3

""

3

<<

∗

<<

1

<<

∗

<<

3[2] ∼= 1
2
3

Next, we compute the image of HomC(T, ) to obtain the AR quiver of the clus-

ter tilted algebra Ĉ. The summands of T are sent to the projective Ĉ-modules:

HomC(T, 3) = 1
3 , HomC(T,

1
2
3
) = 2

1 , HomC(T, 1) = 3
2 . The rest of the objects are

mapped as follows: HomC(T, 2
3 ) = 1, HomC(T, 2

3 [1]) = 3, HomC(T, 1
2 ) = 2.

We illustrate these computations by showing HomC(T, 1
2 ) = 2. By the definition

of morphisms in the cluster category

HomC(T, 1
2 ) =

⊕

i

HomD(T, ([1]τ−1)i 1
2 )

By the properties of morphisms in the bounded derived category Db(H), the right-
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hand side is nonzero only for i = 0, 1. Hence,

HomC(T, 1
2 ) = HomD(T, 1

2 )⊕ HomD(T, [1]τ−1 1
2 )

= HomH(T, 1
2 )⊕ Ext1

H(T, τ−1 1
2 )

= 2⊕ Ext1
H(T, 0) = 2

Finally, the AR quiver of the cluster tilted algebra Ĉ is given below. Again, the

ends are identified and we obtain a periodic component.

1
3

$$

2
1

$$

3
2

$$

1
3

1

::

2

::

3

::

Example 4.2.9. Let H be given by the path algebra of the quiver ~4

3

1 // 2

::

$$

// 4

5

The the AR quiver of H-mod consists of a preprojective component P , a prein-

jective component I, and stable tubes.



CHAPTER 4. τ -COMPLEXITY OF CLUSTER TILTED ALGEBRAS 82

3

��

2
45

��

1
22

3245

4

$$

2
35

$$

1
22

3425

2
345

$$

��

::

DD

1
23

324252

::

DD

$$

��

· · ·

5

::

2
34

::
1
22

3452

1
2

345

CC

22
345

The preprojective component P .

1
22
45

��

1
2
3

��

1
22
35

$$

1
2
4

$$· · · 12

23
345

$$

��

::

CC

1
2

��

1
22
34

::

1
2
5

::

12

22
345

CC

2

CC

1

The preinjective component I.

We will now construct the cluster tilted algebra and its AR quiver. First, we

need the AR quiver of the bounded derived category Db(H). The transjective com-

ponents are formed by gluing together the components I[i] and P [i+1] by identifying

τ−1(Ij)[i] = Pj[i+ 1] for each vertex j in the quiver ~4.
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1
22
45

[i]

��

1
2
3
[i]

��

3[i+1]

��

2
45 [i+1]

1
22
35

[i]
$$

1
2
4
[i]

$$

4[i+1]

$$

2
35 [i+1]

· · · 12

23
345

[i]

$$

��

::

CC

1
2 [i]

��

$$

CC

::

2
345 [i+1]

CC

::

��

$$

· · ·
1
22
34

[i]

::

1
2
5
[i]

::

5[i+1]

::

2
34 [i+1]

12

22
345

[i]

CC

2[i]

CC

1[i]

CC

1
2

345
[i+1]

The family of transjective components of Db(H).

Each of the tubes T in the AR quiver of H gives rise to a family of shifted tubes

T [i] with i ∈ Z of the same rank in the AR quiver of Db(H). Note that this is true

of any situation where the hereditary algebra H is tame.

We proceed to construct the AR quiver of the cluster category C. The identifi-

cation τ−1[1]X = X for all objects X ∈ Db(H) collapses the family of transjective

components of Db(H) into a single component of C. Objects in the cluster category

C are then the τ−1[1]-orbits of objects in Db(H). Notice that for the case when H is

of infinite representation type this identification process never identifies two objects

that belong to the same component in Db(H). This means that the action of τC in the

cluster category is given exactly by the action of τDb(H) on the representative objects

in the derived category Db(H).

Similarly, each family of tubes T [i] in Db(H) collapses to a single tube in the
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cluster category C. Furthermore, the rank of this tube in the cluster category is the

same as the rank of the original tubes in H-mod.

We now proceed to build a cluster tilted algebra. Consider the tilting object T

induced by the tilting module

T =
1
2

345
⊕ 2

345 ⊕ 3⊕ 4⊕ 2
34 = T1 ⊕ T2 ⊕ T3 ⊕ T4 ⊕ T5

The AR quiver of the cluster tilted algebra Ĉ = EndC T
op is obtained from the AR

quiver of the cluster category C by deleting the vertices corresponding to the sum-

mands of τT . In the diagram below the representatives in degree 0 of the summands

of the tilting object T are boxed, the vertices that are to be deleted are denoted by

an asterisk.

1
22
45
[-1]

��

∗

��

3

��

2
45

1
22
35
[-1]

$$
∗

$$

4

$$

2
35

· · · 12

23
345

[-1]

$$

��

::

CC

∗

��

$$

CC

::

2
345

CC

::

��

$$

· · ·
1
22
34
[-1]

::
1
2
5
[-1]

::

∗

::

2
34

12

22
345

[-1]

CC

2[-1]

CC

∗

CC

1
2

345

Representatives of the objects in the transjective component of the cluster category.

We provide another diagram as a further illustration. Here the representatives
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in degree 1 of the summands of the tilting object T are the vertices that need to be

deleted: in the cluster category τT [0] = τ−1[1](τT [0]) = T [1]

1
22
45

��

1
2
3

��

∗

��

2
45 [1]

1
22
35

$$

1
2
4

$$

∗
$$

2
35 [1]

· · · 12

23
345

$$

��

::

CC

1
2

��

$$

CC

::

∗

CC

::

��

$$

· · ·
1
22
34

::

1
2
5

::

5[1]

::

∗
12

22
345

CC

2

CC

1

CC

∗

Representatives of the objects in the transjective component of the cluster category.

We see that the image of the transjective component splits into two disjoint AR

components in Ĉ. Furthermore, the tubes in the AR quiver of Ĉ have exactly the

same rank as those in the AR quiver of the cluster category. This is easy to see since

the summands of T do not live in tubes and therefore the shape of these components

is unaffected when passing to the cluster tilted algebra.

We now build the AR quiver of the cluster tilted algebra by computing the image of

HomC(T, ). The summands of T are sent to the projective Ĉ-modules: HomC(T, T1) =

1
2
34

, HomC(T, T2) = 2
345 , HomC(T, T3) = 3, HomC(T, T4) = 4, and HomC(T, T5) =

5
2
34

.

Further calculations yield: HomC(T, 2
45 ) = 2

4 , HomC(T, 2
35 ) = 2

3 , HomC(T,
1
23

324252
) =

15
23

3242
, HomC(T, 1) = 1, HomC(T,

1
2
3
) =

15
2
3

, HomC(T,
1
2
4
) =

15
2
4

, HomC(T, 1
2 ) = 15

2 , and

HomC(T, 5[1]) = 5.

We give the details for the last calculation. By the definition of morphisms in the
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cluster category and by the properties in Lemma 4.2.6 we have

HomC(T, 5[1]) = HomD(T, 5[1])⊕ HomD(T, τ5[0])

= Ext1
H(T, 5)⊕ HomH(T,

1
2
5
[−1])

= 5⊕ 0 = 5

The AR quiver of the cluster tilted algebra Ĉ has the following components:

Stable tubes of the same rank as the tubes in the original algebra, along with the two

components

3

��

2
4

��

15
22

324

4

$$

2
3

$$

15
23

3242

2
34

$$

��

::

DD

15
23

3242

::

DD

$$

��

· · ·
5
2
34

::

1
22
34

1
2
34

CC

5
22
34

1252

23

324

��

15
22
4

��

15
2
3

��

1252

23

342

##

15
22
3

##

15
2
4

##
· · · 1353

25

3242

##

��

;;

DD

1252

23
34

��

##

;;

DD

15
2

##

��

125
23
34

;;

152

22
34

;;

1
2

;;

5

152

23
34

DD

125
22
34

DD

5
2

DD

1

In this example, the transjective component of Db(H) splits into two components
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when passing to the cluster tilted algebra because the summands of the tilting object T

form a a slice of the transjective component. This need not happen in general. When

the tilting object T has summands from regular components, then the component in

Ĉ corresponding to the transjective component in Db(H) remains connected.

4.3 τ-Complexity

In this section we study the τ -complexity of modules over cluster tilted algebras.

We begin by determining the k-dimension of a class of important modules over a

tilted algebra. We then use our results to obtain information about the k-dimension

of corresponding modules over the cluster tilted algebra. Finally, we examine the

shapes of the components that occur in the AR quiver of a cluster tilted algebra and

then compute the complexity of the modules in each component based on the type of

the component.

The following two lemmas relate the k-dimensions of certain modules over the

hereditary algebra H and the tilted algebra C = EndH(T )op.

Lemma 4.3.1. Let T be a tilting module over a hereditary algebra H. Denote by

C = EndH(T )op the corresponding tilted algebra.

(i) There exists a constant c > 0 such that for any torsion module M we have the

inequality c |M | ≤ |HomH(T,M)|.
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(ii) There exists a constant c > 0 such that for any torsion-free module M we have

the inequality c |M | ≤
∣∣Ext1

H(T,M)
∣∣.

Proof. Since T is a tilting module there exists a short exact sequence of the form

0 −→ H −→ T ′ −→ T ′′ −→ 0 where T ′, T ′′ ∈ addT . Denote by t the number of

indecomposable summands of T ′ ⊕ T ′′.

Given a module M apply the contravariant functor HomH( ,M) to the short exact

sequence above to obtain the long exact sequence

0 −→ HomH(T ′′,M) −→ HomH(T ′,M) −→ HomH(H,M) −→ (∗)

−→ Ext1
H(T ′′,M) −→ Ext1

H(T ′,M) −→ Ext1
H(H,M) . . .

Next we obtain the desired inequality depending on whether M is a torsion or a

torsion-free module.

(i) Assume that M is a torsion module. Then Ext1
H(T ′′,M) = 0 in the long

exact sequence because T ′′ is in add(T ) and M is torsion. We obtain the short exact

sequence of C-modules

0 −→ HomH(T ′′,M) −→ HomH(T ′,M) −→ HomH(H,M) −→ 0
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Taking k-dimensions and noting that HomH(H,M) ∼= M as k-vector spaces

|M |+ |HomH(T ′′,M)| = |HomH(T ′,M)|

≤
∣∣HomH(T t,M)

∣∣

= t |HomH(T,M)|

In summary, setting c = 1/t yields c |M | ≤ |HomH(T,M)|.

(ii) Assume that M is torsion-free. In the long exact sequence (∗) above, we now

have HomH(T ′,M) = 0 since M is torsion-free, and Ext1
H(H,M) = 0 since H is

projective. We thus have the short exact sequence

0 −→ HomH(H,M) −→ Ext1
H(T ′′,M) −→ Ext1

H(T ′,M) −→ 0

Taking k-dimensions and noting that HomH(H,M) ∼= M as k-vector spaces yields

|M |+
∣∣Ext1

H(T ′,M)
∣∣ =

∣∣Ext1
H(T ′′,M)

∣∣

≤
∣∣Ext1

H(T t,M)
∣∣

= t
∣∣Ext1

H(T,M)
∣∣

Thus, setting c = 1/t yields c |M | ≤
∣∣Ext1

H(T,M)
∣∣.

In the next lemma we obtain a set of inequalities in the other direction. We first

need a general remark.
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Remark 4.3.2. For any two Λ-modules X and Y over an arbitrary k-algebra Λ we

have these relationships between k-dimensions:

(i) |HomΛ(X, Y )| ≤ |X| |Y |. This holds since X and Y are assumed to be finitely

generated modules over a finite-dimensional k-algebra.

(ii)
∣∣Ext1

Λ(X, Y )
∣∣ ≤ |X| |Y | |Λ|2. Let . . . −→ P1 −→ P0 −→ X −→ 0 be a min-

iminal projective resolution of the Λ-module X. Ext1
Λ(X, Y ) is by definition a

quotient of a subgroup of HomΛ(P1, Y ). But this means that we have the set

of inequalities
∣∣Ext1

Λ(X, Y )
∣∣ ≤ |HomΛ(P1, Y )| ≤ |P1| |Y |. Furthermore, we have

|P1| ≤ |top Ω1(X)| |Λ| ≤ |Ω1(X)| |Λ| as well as |Ω1(X)| ≤ |P0| ≤ |topX| |Λ| ≤

|X| |Λ|. Assembling the above gives
∣∣Ext1

Λ(X, Y )
∣∣ ≤ |X| |Y | |Λ|2.

Lemma 4.3.3. Let T be a tilting module over a hereditary algebra H. Denote by

C = EndH(T )op the corresponding tilted algebra.

(i) There exists a constant c′ > 0 such that for any torsion module M we have the

inequality |HomH(T,M)| ≤ c′ |M |.

(ii) There exists a constant c′ > 0 such that for any torsion-free module M we have

the inequality
∣∣Ext1

H(T,M)
∣∣ ≤ c′ |M |.

Proof. (i) Assume that M is a torsion module. Consider the short exact sequence

0 −→ H −→ Tm −→ T ′′ −→ 0
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where T ′′ is in addT and m > 0. Fix the constant c′ = (|T ′′| + 1)/m. We will

demonstrate that |HomH(T,M)| ≤ c′ |M |.

Apply the contravariant functor HomH( ,M) to get the long exact sequence

0 −→ HomH(T ′′,M) −→ HomH(Tm,M) −→

−→ HomH(H,M) −→ Ext1
H(T ′′,M) −→ . . .

In this long exact sequence we have Ext1
H(T ′′,M) = 0 because M is torsion. We

therefore obtain the short exact sequence of C-modules

0 −→ HomH(T ′′,M) −→ HomH(Tm,M) −→ HomH(H,M) −→ 0

Taking k-dimensions yields

|M |+ |HomH(T ′′,M)| = |HomH(Tm,M)|

which means

m |HomH(T,M)| = |M |+ |HomH(T ′′,M)|

≤ |M |+ |T ′′| |M |

= (|T ′′|+ 1) |M |
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In summary, the inequality |HomH(T,M)| ≤ c′ |M | holds.

(ii) Assume now that M is torsion-free. Consider the short exact sequence

0 −→ H −→ T ′ −→ Tm −→ 0

with T ′ ∈ addT and m > 0. Fix the constant c′ = (|H|2 |T ′| + 1)/m. We will show

that
∣∣Ext1

H(T,M)
∣∣ ≤ c′ |M |.

Apply the contravariant functor HomH( ,M) to the short exact sequence above

to get the long exact sequence

. . . −→ HomH(T ′,M) −→ HomH(H,M) −→ Ext1
H(Tm,M)

−→ Ext1
H(T ′,M) −→ Ext1

H(H,M) −→ . . .

In this long exact sequence we have HomH(T ′,M) = 0 since M is torsion-free,

and Ext1
H(H,M) = 0 since H is projective. We thus get the short exact sequence

0 −→ HomH(H,M) −→ Ext1
H(Tm,M) −→ Ext1

H(T ′,M) −→ 0

Taking k-dimensions gives |M | +
∣∣Ext1

H(T ′,M)
∣∣ =

∣∣Ext1
H(Tm,M)

∣∣. We use Re-
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mark 4.3.2 to obtain

m
∣∣Ext1

H(T,M)
∣∣ = |M |+

∣∣Ext1
H(T ′,M)

∣∣

≤ |M |+ |H|2 |T ′| |M |

≤ (|H|2 |T ′|+ 1) |M |

Thus,
∣∣Ext1

H(T,M)
∣∣ ≤ c′ |M | as desired.

The following Corollary will be of great use to us.

Corollary 4.3.4. Let C = EndH(T )op be a tilted algebra. Then, there exist constants

c, c′ > 0 such that for any H-module M and each i ∈ Z we have the inequalities

c
∣∣τ iM

∣∣ ≤
∣∣HomH(T, τ iM)

∣∣+
∣∣Ext1

H(T, τ iM)
∣∣ ≤ c′

∣∣τ iM
∣∣

Proof. Take the canonical sequence for the module τ iM

0 −→ t(τ iM) −→ τ iM −→ τ iM/t(τ iM) −→ 0

Since k-dimension is additive on short exact sequences, we have the equality

∣∣τ iM
∣∣ =

∣∣t(τ iM)
∣∣+
∣∣τ iM/t(τ iM)

∣∣

Since for all i ∈ Z the modules t(τ iM) are torsion and the modules τ iM/t(τ iM)
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are torsion-free, Lemma 4.3.1 and Lemma 4.2.1 imply that there exists a c > 0 such

that

c
∣∣τ iM

∣∣ = c
∣∣t(τ iM)

∣∣+ c
∣∣τ iM/t(τ iM)

∣∣

≤
∣∣HomH(T, t(τ iM))

∣∣+
∣∣Ext1

H(T, τ iM/t(τ iM))
∣∣

=
∣∣HomH(T, τ iM)

∣∣+
∣∣Ext1

H(T, τ iM)
∣∣

Similarly, Lemma 4.3.3 and Lemma 4.2.1 imply that there exists a c′ > 0 such that

c′
∣∣τ iM

∣∣ = c′
∣∣t(τ iM)

∣∣+ c′
∣∣τ iM/t(τ iM)

∣∣

≥
∣∣HomH(T, t(τ iM))

∣∣+
∣∣Ext1

H(T, τ iM/t(τ iM))
∣∣

=
∣∣HomH(T, τ iM)

∣∣+
∣∣Ext1

H(T, τ iM)
∣∣

Recall that the AR quiver of the cluster tilted algebra Ĉ is obtained from the AR

quiver of the cluster category C by removing the vertices (and the attached arrows)

corresponding to the summands of τT . Denote by M̂ the Ĉ-module HomC(T, M̃)

where M̃ is an object in the cluster category C. Denote by Ẑ an AR component of

Ĉ-mod obtained from a component Z̃ in the cluster category.

The following proposition provides us with the means to calculate the complexity

of modules over cluster tilted algebras.

Proposition 4.3.5. Let Ẑ be obtained from an AR component Z̃ with infinite τ -orbits
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in the cluster category C. Then for any module M̂ in Ẑ with positive τ -complexity we

have for all i� 0

∣∣∣τ i
Ĉ
M̂
∣∣∣ =

∣∣HomH(T, τ iHM)
∣∣+
∣∣Ext1

H(T, τ i−1
H M)

∣∣

Proof. Let M̂ be a module in Ẑ of positive complexity. In particular, τ i
Ĉ
M 6= 0 for

i ≥ 0 and the Ẑ extends infinitely far to the left. Therefore, moving far enough to

the left in the component Z̃ in the cluster category (.i.e. to the left of the summands

τT that reside in the component), Thm. 4.2.7 allows us to assume that for i ≥ 0

the vertices τ i
Ĉ
M̂ in the AR-quiver of the cluster tilted algebra Ĉ are of the form

HomC(T̃ , τ
i
CM̃). We then have

∣∣∣τ i
Ĉ

HomC(T̃ , M̃)
∣∣∣ =

∣∣∣HomC(T̃ , τ
i
CM̃)

∣∣∣

=
∣∣∣HomC(T̃ , τ̃ iDM)

∣∣∣

By the definition of morphisms in the cluster category

∣∣∣HomC(T̃ , τ̃ iDM)
∣∣∣ =

∣∣∣∣∣
⊕

j∈Z

HomD(T,Fjτ iDM)

∣∣∣∣∣
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We now use properties of morphisms in the derived category Db(H) to obtain

∣∣∣∣∣
⊕

j∈Z

HomD(T,Fjτ iDM)

∣∣∣∣∣ =

∣∣∣∣∣
⊕

j∈Z

HomD(T, (τ−jD [j])(τ iDM))

∣∣∣∣∣

=

∣∣∣∣∣
⊕

j∈Z

HomD(T, (τ i−jH M)[j])

∣∣∣∣∣

=
∣∣HomD(T, τ iHM [0])

∣∣+
∣∣HomD(T, τ i−1

H M [1])
∣∣

=
∣∣HomH(T, τ iHM)

∣∣+
∣∣Ext1

H(T, τ i−1
H M)

∣∣

Combining all of the above steps gives

∣∣∣τ i
Ĉ
M̂
∣∣∣ =

∣∣∣τ i
Ĉ

HomC(T̃ , M̃)
∣∣∣

=
∣∣HomH(T, τ iHM)

∣∣+
∣∣Ext1

H(T, τ i−1
H M)

∣∣

We point out a consequence of the previous proposition.

Corollary 4.3.6. Let Ĉ be a cluster tilted algebra from a hereditary algebra H. Let Ẑ

be obtained from an AR component Z̃ with infinite τ -orbits in the cluster category C.

Then for any module M̂ in Ẑ with positive τ -complexity we have cxĈ M̂ ≤ cxHM ≤

cxĈ M̂ + 1.

Proof. We first show cxĈ M̂ ≤ cxHM . Suppose cxHM = t for some t ∈ N ∪ {0}.

Then |τ iHM | ≤ αit−1 for some α ∈ R and for i� 0. But then by Cor. 4.3.4 also

∣∣HomH(T, τ iM)
∣∣ ≤ c′

∣∣τ iHM
∣∣ ≤ c′αit−1
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and similarly

∣∣Ext1
H(T, τ i−1M)

∣∣ ≤ c′
∣∣τ i−1
H M

∣∣ ≤ c′α(i− 1)t−1 ≤ c′αit−1

Combining these observations with Prop. 4.3.5 gives

∣∣∣τ i
Ĉ

(HomC(T, M̃))
∣∣∣ =

∣∣HomH(T, τ iHM)
∣∣+
∣∣Ext1

H(T, τ i−1
H M)

∣∣

≤ c′αit−1 + c′αit−1

≤ 2c′αit−1

In other words, cxĈ M̂ ≤ t = cxHM .

We now show the other inequality cxHM ≤ cxĈ M̂ + 1. Suppose cxĈ M̂ = t for

some t ∈ N ∪ {0}. Then
∣∣∣τ i
Ĉ
M
∣∣∣ ≤ αit−1 for some α ∈ R and for i � 0. But then by

Prop. 4.3.5 we also have

∣∣HomH(T, τ iM)
∣∣ ≤ αit−1 ≤ αit

and

∣∣Ext1
H(T, τ iM)

∣∣ ≤ α(i+ 1)t−1 ≤ αit

for i� 0. So that Cor. 4.3.4 gives

∣∣τ iM
∣∣ ≤

∣∣HomH(T, τ iM)
∣∣+
∣∣Ext1

H(T, τ iM)
∣∣ ≤ 2αit
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In other words, cxHM ≤ t+ 1 = cxĈ M̂ + 1.

We now use our previous results to determine the complexity of modules over the

cluster tilted algebra Ĉ. Given a Ĉ-module M̂ we calculate its complexity based on

the type of AR component in which it resides.

Before giving the next theorem, we set up some terminology and notation. Denote

by K̃ the transjective component in the cluster category C. As we discussed in

Example 4.2.9, passing to the cluster tilted algebra Ĉ the quotient K̃/ add(τT ) may

be a single component or it may split into two disjoint components. In the latter case,

one of the two components, call it K̂ ′, will contain only modules of τ -complexity 0.

Therefore, in either situation we write K̂ for the AR component of Ĉ-mod that

arises from the transjective component of Db(H) and contains modules of positive

complexity.

For each regular component Z̃ in the cluster category C, denote by Ẑ its quotient

in Ĉ-mod.

Recall our convention that we say that an AR component has complexity t if all

of the modules of non-zero complexity in that component have complexity t. In case

when there are no modules of non-zero complexity, we say that the component has

complexity 0.

Theorem 4.3.7. Let H = k4 be a finite-dimensional hereditary k-algebra where k

is an algebraically closed field. Then the complexities of the components of the AR

quiver of Ĉ which we described above satisfy
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(i) If H is of finite representation type, cx K̂ = 0 or 1 depending on the choice of

the tilting object T .

(ii) If H is of tame representation type, then cx K̂ = 2, cx K̂ ′ = 0, and cx Ẑ = 1.

(iii) If H is of wild representation type, then cx K̂ =∞, cx K̂ ′ = 0, and cx Ẑ =∞.

Proof. Recall that if H is of finite representation type, then the transjective compo-

nent K̃ is the unique component of C. Furthermore, K̃ is a periodic component with

finitely many vertices. Thus passing to the cluster tilted algebra via Thm. 4.2.7 may

result in two cases. If the objects τT do not intersect all τ -orbits, then K̂ is a periodic

component and cxK = 1. If the objects in add τT intersect all τ -orbits, then the

corresponding component of the cluster tilted algebra has vertices with τ -complexity

0. This is the case whenever T is a complete slice and the resulting cluster tilted

algebra is hereditary.

We now proceed by analyzing the transjective components arising in the case

when H is of tame or wild representation type. In the first case H = k4 where 4

is a Euclidean diagram and in the second case H = k4 where 4 is a wild diagram.

The transjective component K̃ in C is of the form Z4. The Ĉ-modules with positive

complexity reside in the component K̂ that looks like N4 when we look far enough

to the left (i.e. to the left of the modules τT ). Recall, that in the case when the

quotient K̃/ add(τT ) is not connected, we also obtain a component K̃ ′ containing

only modules of τ -complexity 0.
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We now study the component K̂. Note that any Ĉ-module M̂ of positive complex-

ity in K̂ satisfies Prop. 4.3.5 and Cor. 4.3.6. Furthermore, τ iHM lie in the preinjective

component of H for i ≥ 0.

When H is of tame represenentation type, then we know from the proof of

Thm. 3.5.5 that modules in the preinjective component of H have complexity 2 .

Therefore, Cor. 4.3.6 says that cxĈM ≤ cxHM = 2. We now show that cxĈ M̂ 6= 1.

Suppose on the contrary that cxĈ M̂ = 1 i.e. the dimensions
∣∣∣τ i
Ĉ
M
∣∣∣ are bounded

for all i ≥ 0. But then by Prop. 4.3.5 also the dimensions |HomH(T, τ iHM)| and

∣∣Ext1
H(T, τ i−1

H M)
∣∣ are bounded for all i ≥ 0 which by Cor. 4.3.4 means that also

|τ iHM | are bounded i.e. cxHM ≤ 1. This contradicts the choice of M .

O. Kerner has shown that when H is of wild representation type, then modules in

the preinjective component of H have infinite complexity [Ker]. Then it follows from

Prop. 4.3.5 and Cor. 4.3.6 that cxĈ M̂ =∞.

We now turn to the components Ẑ arising as images of regular components in

C. When H is tame the components Ẑ arise as images of tubes in C. Hence, all

modules in components of type Ẑ of positive complexity are τ -periodic and therefore

cxĈ Ẑ = 1.

When H is wild the components Ẑ arise as images of the regular components in

H-mod (all are of type ZA∞). Regular H-modules have infinite complexity when

H is of wild representation type [Ker]. Any module M̂ of nonzero complexity in a

component of type Ẑ satisfies the hypotheses of Prop. 4.3.5 and Cor. 4.3.6. Therefore
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cxĈ M̂ =∞.

We point out as a separate corollary a part of what we proved in the above

theorem.

Corollary 4.3.8. Let Ĉ be a cluster tilted algebra from a hereditary algebra of type

H. Then the only Ĉ-modules of complexity 1 are the τ -periodic modules.

Proof. Modules of complexity 1 can only occur in the case when H is of finite or tame

representation type. In either case, they reside in a τ -periodic component.
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Appendix

We provide the Perl code for a program that we wrote to extract information on the

Betti numbers of a resolution from the program Gröbner developed by Ed Green.

This program requires the two output files ∗.gph and ∗.res produced by Gröbner. We

provide an example at the end of this section.

5.1 Perl Code

# c© 2008, Marju Purin

# The program requires the Groebner output files

# *.gph and *.res as its input

# See below for descriptions of what each part does.

#********************************************************************

# This part of the program creates from the input file that it reads

102
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# a hash called %arrowendshash whose key is the arrow’s name (a letter)

# and whose value is the ending vertex for that arrow in the quiver.

#First, set initial values for the vertices

$i=1;

$j=1;

$k=1;

$recordedarrows=0;

# Make a hash that holds the alphabet

%alphabethash=(1 => "a", 2 => "b", 3 => "c", 4 => "d",

5 => "e", 6 => "f", 7 => "g", 8 => "h", 9 => "i",

10 => "j", 11 => "k", 12 => "l", 13 => "m", 14 => "n",

15 => "o", 16 => "p", 17 => "q", 18 => "r",

19 => "s", 20 => "t", 21 => "u", 22 => "v",

23 => "x", 24 => "y", 25 => "z");

# Get user input to determine which files to read

# The concatenation operator in perl is ’.’

print "Please enter the name of the Groebner file \n";

# record the input without the newline character that <STDIN>
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# always has at the end

chomp($userinput=<STDIN>);

# Add the appropriate extension for the input files

# that are to be read from Groebner

$filename1=$userinput."\.gph";

$filename2=$userinput."\.res";

# Create the default output file

$filename3=$userinput."\.cpx";

# Get user input for the output file name

# If the user presses enter, then by default the name is

#$filename3 from above.

print "Please enter a name for the output file or press Ent\n";

$userinput2=<STDIN>;

# Record the input without the newline character that <STDIN>

# always has at the end

if ($userinput2 ne "\n")
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{

chomp($userinput2);

$filename3=$userinput2.".cpx";

}

# Access the required files or print an error message.

open(FILE_OUT, "> $filename3") or die "Can’t open output file";

open(FILE_HANDLE, "< $filename1") or die "Can’t open $thisfile";

while (<FILE_HANDLE>)

{

if (m/^(.+) = vert/)

{

# Record the number of vertices

$vertices = $1;

# The next line might be blank, in which case I skip it

$line = <FILE_HANDLE>;

while ($line eq "\n")

{

chomp($line);

$line = <FILE_HANDLE>;
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} #ends nested while

# Obtain arrows from Groebner

# Input is a $vertices x $vertices matrix

# All columns end in same vertex

# Read matrix into an array called @matrix

# Force it to look on the next line in the for loop

for ($i=1; $i<=$vertices; $i++)

{

@matrixrow=split/\s+/, $line;

# Process each entry in $i row of the matrix

for ($j=1; $j<=$vertices; $j++)

{

# jth entry in ith row

# Array entries start at 0 in perl

$matentry=@matrixrow[$j-1];

for ($k=1; $k<=$matentry; $k++)

{
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# However many ($matentry) are in (i,j)-entry of my matrix

# For clarity: pick ($recordedarrows+k)-th

# entry in the alphabet from # the %alphabethash

# Keep track of which letters are already used

$letterentry=$alphabethash{$recordedarrows+$k};

# Create a hash with arrows as keys, and end vertex as values

# At this stage of the nested loops

# all arrows end at vertex j

# %arrowendshash contains arrows and their end vertices

$arrowendshash{$letterentry}=$j;

} #ends for: for ($k=1; $k<=$matentry; $k++)

# Keep track of the total number of arrows

# that have been assigned

$recordedarrows=$recordedarrows + $matentry;

} # ends for: for ($j=1; $j<=$vertices; $j++)

} #ends for ($i=1; $i<=$vertices; $i++)
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} # ends if

} # ends while

#********************************************************************

# Start working with the next part of the code

# This part reads the output files

# from Groeber called *.res

# It will use information from the file *.gph

# that the above piece of code obtained

# Note that it is assumed that

# ’*’ in ’*.gph’ is the same as in ’*.res’

# Initialize counters

$counter = 1;

$thismany=0;

# Prepare the output table, get size information.

# Construct a loop to see how many projectives are needed.

# Make an array for printing @printing
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for ($p=1; $p<=$vertices; $p++)

{

$printing[$p]=" P".$p

}

# Print one copy to the screen, and another to the output file

# Print also the output file name inside the file $filename3

print FILE_OUT "\nFile: $filename3\n\n";

print "\nRepetition Betti#@printing\n\n";

print FILE_OUT "\nRepetition Betti#@printing\n\n";

# Use the user input we got at the very beginning of

# the previous part of the code

# to open the file *.res

# Print an error message, if unsuccessful.

$openfile = $filename2;

open(FILE_HANDLE, "< $openfile") or die "Can’t open $openfile";

while (<FILE_HANDLE>)

{

if (m/repetition #(\d+)/)
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{

$rep=$1;

$line = <FILE_HANDLE>;

chomp($line);

# Skip blank lines

while($line ne "")

{

$line = <FILE_HANDLE>;

chomp($line);

if ($line =~ m/(\d+)(.*)(\w);/g)

{

$colnr = $1;

$colend = $3;

# Store the column ends in an array

# One array per repetition

# It will contain the end letters

# Later it will have the end vertex number

# Counting starts at 0
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# Force $colnr spot to hold that column’s ending letter

# The 0 entry will be empty for me always

@colends[$colnr] = $colend;

if (m/repetition #(\d+)/g)

{

$rep=$1;

}

} #end if statement

} #end while statement

# This is the final array

# of column ends after repetition $rep

# in position i it will have the first column ending

# for this repetition

# Use the hash from first piece of the program to

# replace letters by column ends

# i.e. the indecomposable projective summands
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# Create an array to have in position i the end of

# the arrowend recorded in #@colends

# by checking where that arrow ends in %arrowendshash

# $pos is a position counting variable

# starts at 1

# and ends at the last entry of @colends

# We need to know the size of @colends, or rather the

# last index variable (perl #counts from 0)

$lastcol=$#colends;

# $lastcol is actually also the number of

# indecomposable projective summands

# So, this is the ($rep)-th Betti number

# Create an array of Betti numbers

# Record starting Betti 1,

# the P_1 component of the resoution

# @projectives is a hash

# because of the way I am filling it (out #of order)

# Reset projectives at the end of each repetition



CHAPTER 5. APPENDIX 113

@Betti[$rep]=$lastcol;

# Print once to screen, and once to the output file.

# Print the repetition number and then the Betti number.

print "\n\n rep $rep : $Betti[$rep]";

print FILE_OUT "\n\n rep $rep : $Betti[$rep]";

for ($pos=1; $pos<=$lastcol; $pos++)

{

$projectives[$pos]=$arrowendshash{$colends[$pos]};

}

# Count how many times each occurs by creating

# a hash %totalproj

# Hash key will be the proj and hash value will be

# the number of occurrences

# the variable $vertices from first part of

# program tells us the number of

# distinct indecomposables (i.e. the number of vertices).

# So, there are $vertices many choices to look for.

# Vertices are enumerated starting with 1.
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# Here, $n refers to the proj at vertex $n

# The if counts the number of times projective at $n appears

# remember that string comparison needs ’eq’

for ( $n=1; $n<=$vertices; $n++)

{

for ($pos=1; $pos<=$lastcol; $pos++)

{

if ($projectives[$pos] eq $n)

{

#print " at position $pos $projectives[$pos] = $n \n";

#print " this many before $thismany \n";

$thismany++;

}

} #ends nested if

$totalproj{$n}=$thismany;

# Print the coefficients for each projective P$n

# Once on the screen, and once to the output file
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if ($totalproj{$n} != 0)

{

print " $totalproj{$n}";

print FILE_OUT " $totalproj{$n}";

}

# Print a space to make the array line up

# correctly instead of a zero

if ($totalproj{$n} eq "0")

{

print " ";

print FILE_OUT " ";

}

# reset the counter $thismany

$thismany=0;

} #ends for

# Reset the array to nul before starting the next repetition calculations

@colends=();
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} # finishes if

# Clear the arrays @projectives and @Pprojectives

@projectives=();

@Pprojectives=();

} #finishes the file *.res and the big while statement

# Here all repetitions are completed.

# All Betti numbers are recorded in @Betti

# print once to screen and once to output file

# This ends the program

5.2 Sample Files

Let us consider the trivial extensions algebra from Example 3.2.1. The Gröbner files

that we need as the input for the program Cpx.pl are

• The file trivex5b.gph containing information about the quiver of the trivial
extension algebra. There is an entry in position (i, j) for every arrow in the
quiver from vertex i to vertex j.

5 = vert
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0 1 0 0 0

0 0 1 1 1

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

• The file trivex5b.mod contains information about the module whose resolution

we are interested in. In this particular case, we have selected the simple module

at the vertex 1.

1 1

a;

• Gröbner produces the file trivex5b.gph. We only give the first 6 entries.

input matrix for projective resolution #1

row1

1 + 1 * a;

Matrix1 at repetition #1

row1

1 + 1 * a;

Matrix1 at repetition #2

row1

1 + 1 * bea;

Matrix1 at repetition #3

row1

1 + 1 * b;

2 + 1 * c;

3 + 1 * d;
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Matrix1 at repetition #4

row1

1 - 1 * e;

2 - 1 * e;

row2

1 + 1 * f;

2 ;

row3

1 ;

2 + 1 * g;

Matrix1 at repetition #5

row1

1 + 1 * ad;

2 - 1 * ab;

3 ;

row2

1 ;

2 + 1 * ab;

3 + 1 * ac;

Matrix1 at repetition #6

row1

1 + 1 * ga;

2 ;

3 - 1 * g;

row2

1 ;

2 + 1 * ea;

3 - 1 * e;

row3

1 ;

2 ;

3 + 1 * f;

• We now run the program Cpx.pl and enter the file name trivex5b as the one to
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process. We choose the file name trivex5b[S1] as the file where cpx.pl records

the output.

Please enter the name of the Groebner file

trivex5b

Please enter a name for the output file or press Ent

trivex5b[S1]

• Our program Cpx.pl creates the file trivex5b[S1].cpx which contains all of the
information on Betti numbers.

trivex5b[S1] thesis.txttrivex5b[S1] thesis.txttrivex5b[S1] thesis.txttrivex5b[S1] thesis.txt

FileFileFileFile: : : : trivextrivextrivextrivex5555bbbb[[[[SSSS1111].].].].cpxcpxcpxcpx

      RepetitionRepetitionRepetitionRepetition BettiBettiBettiBetti# # # # PPPP1111    PPPP2222    PPPP3333    PPPP4444    PPPP5555

       rep  rep  rep  rep 1111 : : : : 1111 1111

       rep  rep  rep  rep 2222 : : : : 3333 1111 1111 1111

       rep  rep  rep  rep 3333 : : : : 3333 2222 1111

       rep  rep  rep  rep 4444 : : : : 6666 2222 2222 2222

       rep  rep  rep  rep 5555 : : : : 5555 3333 2222

       rep  rep  rep  rep 6666 : : : : 9999 3333 3333 3333

       rep  rep  rep  rep 7777 : : : : 7777 4444 3333

       rep  rep  rep  rep 8888 : : : : 12121212 4444 4444 4444

       rep  rep  rep  rep 9999 : : : : 9999 5555 4444

       rep  rep  rep  rep 10101010 : : : : 15151515 5555 5555 5555

    

Page 1Page 1Page 1Page 1

We can easily read off the first few terms of the projective resolution of the
simple module S1 from this chart:

. . .→ P3⊕P3⊕P4⊕P4⊕P5⊕P5
δ2→ P1⊕P1⊕P2

δ0→ P3⊕P4⊕P5 → P1
δ0→ S1 → 0
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