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Abstract 
A dynamic botanical air filtration (DBAF) system was developed, tested and 

modeled for indoor air purification. The DBAF system consisted of an 

activated-carbon/hydroculture-based root bed for potted-plant, a fan for driving air 

through the root bed for purification, and an irrigation system for maintaining proper 

moisture content in the root bed. Results from test conducted in a full-scale open 

office space indicated that the filtration system had ability to supply clean air 

equivalent to 80% of required outdoor air supply for the space. The DBAF was 

effective for removing both formaldehyde and toluene at 5 to 32% volumetric water 

content of the root bed. It also performed consistently well over the relatively long 

testing period of 300 days while running continuously.  

In order to improve the understanding of the mechanisms of the DBAF system in 

removing the volatile organic compounds, a series of further experiments were 

conducted to determine the important factors affecting the removal performance, and 

the roles of different transport, storage and removal processes. It was found that 

passing the air through the root bed with microbes was essential to obtain meaningful 

removal efficiency. Moisture in the root bed also played an important role, both for 

maintaining a favorable living condition for microbes and for absorbing water-soluble 

compounds such as formaldehyde. The role of the plant was to introduce and maintain 

a favorable microbe community that effectively degraded the VOCs that were 

adsorbed or absorbed by the root bed. While the moisture in a wet bed had the 

scrubber effect for water-soluble compounds such as formaldehyde, presence of the 



 

 

plant increased the removal efficiency by about a factor of two based on the results 

from the reduced-scale root bed experiments.  

A mathematical model was also developed for predicting the short and long term 

performance of the DBAF with model parameters estimated from the experiments. 

The simulation results showed that the model could describe the pressure drop and 

airflow relationship well by using the air permeability as a model parameter. The 

water source added in the model also lead to the similar bed moisture content and 

outlet air RH as that in real test case. The simulation results also showed that the 

developed model worked well in analyzing the effect of different parameters. It was 

also found that the critical bio-degradation rate constant was 1×10-5 s-1, below which 

the DBAF would not be able to sustain the formaldehyde removal performance. The 

bio-degradation rate constant of the reduced scale DBAF tested was estimated to be in 

the range of 0.8–1.5×10-4 s-1.  

Whole building energy simulation results showed that using the DBAF to 

substitute 80% of the outdoor air supply without adversely affecting the indoor air 

quality could result in 30% saving in heating, 3% in cooling and 0.7% in pump energy 

consumption per year at the climate of Syracuse, NY (Zone 5). A higher percentage of 

energy savings was found to be achievable for climate zones with a higher annual 

heating load (e.g., climate zone 6 and 7).     
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Chapter 1. Introduction 

1.1 Background and Problem Definition 

Indoor air quality (IAQ) is a very important issue today because it can 

significantly affect people’s health, comfort, satisfaction and productivity. U.S. 

Environmental Protection Agency (EPA) studies of human exposure to air pollutants 

indicated that indoor air levels of many pollutants may be two to five times – and 

occasionally, more than 100 times – higher than outdoor level (U.S. EPA, 2000). In 

recent years, comparative risk studies performed by the EPA and science advisory 

board (SAB) have consistently ranked indoor air pollution among the top five 

environmental risks to public health. The importance of indoor air quality is also due 

to the amount of time that people spend indoors. People nowadays in industrialized 

countries spend more than 90% of their lifetimes indoors (NRC, 1981). In the United 

States, for example, every day an average working person spends 22 hours and 15 

minutes indoors and one hour in cars or in other modes of transportation – another 

type of indoor environment (Meyer, 1983).  

Three strategies for improving indoor air quality are commonly used: pollution 

source control, ventilation and air purification. Air purification, as an important part 

of integrated control strategies to improve IAQ in an energy-efficient and 

cost-effective manner, has received more and more attentions in recent years. In 

general, indoor air purification includes removal of particulates, bio-contaminants and 

gaseous contaminants. Volatile organic compounds (VOC), which belong to the 
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category of gaseous contaminants, represent a major class of indoor pollutants and 

can cause offensive odors, skin and membrane irritations and chronic health problems 

including cancer at elevated exposure level. 

Presently, there is no single fully satisfactory method for VOC removal from 

indoor air due to the difficulties linked to the very low concentration (µg/m3 range), 

diversity, and variability at which VOC are typically found in the indoor environment. 

Technologies used in current products for removing gaseous pollutants include: 

sorption by activated carbon, ultraviolet photocatalytic oxidization or UV-PCO, 

plasma ionization, ozone ionization, and bio-trickling filtration. Each of them has its 

own limitation. Sorption by activated carbon is a highly effective way to remove 

indoor VOC, but at the same time it has the problem of high pressure drop and does 

not perform well in removing lighter compound like formaldehyde. Some 

commercially available ionization and UV-PCO were found to have little effect in 

removing VOC (Chen et al., 2005). Plasma and ionization products emit ozone as a 

by-product, which could cause health concerns in rooms with low ventilation rates. In 

ozone ionization, residential ozone due to incomplete reaction is also of concern not 

only because O3 is a harmful compound by itself, but also because of the harmful 

reaction byproducts it can produce. The bio-trickling filtration is usually applied in 

removing high concentration pollutants and specified for water soluble compounds, 

such as acetone and methanol. 

Several studies have demonstrated the potential of biological methods to remove 

indoor VOC (Wolverton et al., 1984; Wolverton et al., 1989; Darlington et al., 2000; 
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Darlington et al., 2001; Chen et al., 2005; Orwell et al., 2006; Wood et al., 2006). 

Nevertheless, there are very limited data available to understand the intrinsic removal 

mechanisms in these systems and there are apparent mismatches between 

experimental observations and theoretical results from transfer-based models (S. M. 

Zarook et al., 1996; Joseph S. Devinny and J. Ramesh, 2005) on biological air 

treatment.  

Common indoor plants may provide a valuable weapon in the fight against rising 

level of indoor air pollution. Wolverton et al (1984 and 1993) found that many 

decorative plants to be surprisingly useful in absorbing potentially harmful gases and 

cleaning the air inside modern buildings. However, there are very limited data 

demonstrating the effectiveness of botanical air filtration at realistic and full-scale 

ventilation conditions and inadequate understanding of the true removal mechanisms 

in these systems (Guieysse et al., 2008).  

How well do house plants perform when they are used as cleaner for improving 

indoor air quality? In the 1990s, a published research indicated that potted plant can 

remove 9.2–90% formaldehyde, benzene or xylene in a small-sealed-chamber 

(Wolverton et al., 1993). The pollutant reduction by plant seems remarkable at first 

glance. Nevertheless, another study clearly explained that the pollutant reduction from 

above research was achieved by a high plant loading in chamber (approximately one 

plant per 0.5 m3), which is far in excess of what would be reasonable for indoor 

environment (Girman et al., 2009). To achieve the results equivalent to those of 

chamber studies, 680 plants would be needed for a 340 m3 (1500 ft3) resident house. 
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Therefore, the authors’ conclusion was that indoor plants have little benefit for 

removing indoor air VOC in residential and commercial buildings.  

Still, because all the studies reviewed by Girman were based on a single potted 

plant and most of these studies focused on the pollutant static removal by plant leaves, 

it is still too early to make the general statement that indoor plant is not efficient to 

remove indoor air VOC. One study has shown that three plants in a real office of 

average area 13 m2 (volume 32.5 m3) were more than enough reduce TVOC by up to 

over 75% (indoor ambient level, without plants, ranging from 80 to 450 ppb), 

maintaining level at below 100 ppb, with or without air-conditioning (Wood et al., 

2006). Studies have shown that VOC could become the potential carbon source for 

microbial communities in soil from the rhizosphere of plant (Wolverton et al., 1989; 

Fan et al., 1993; Holden et al., 1997; Owen et al., 2007). Moreover, assimilation and 

metabolism of formaldehyde by plant leaves appear unlikely to be of value for indoor 

air purification due to the low uptake rate (Schmitz et al., 2000). Especially, studies 

had demonstrated that it was the microorganisms of the potting mix that were the 

primary removal agents, with the plant mainly being responsible for maintaining 

root-zone microbial community (Orwell et al., 2004 & 2006). Therefore, if the 

polluted air also can be introduced into plant root system and degraded by the 

microorganisms there, the removal capacity of the plant would be higher than the 

potted plant with leaf effect only.  

A dynamic botanical air filtration system based on the principle of absorption by 

wet-scrubbers, physical adsorption by activated carbon, and VOC consumption by 
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microbes in the plant’s root system was developed (Figure 1-1). The system applies 

mixture of activated carbon and porous shale pebbles as root bed of some special 

plants, which will have microbes growing in the root system. The filtration system is 

operated with periodical irrigation and airflow passing-through, therefore indoor gas 

pollutant, especially VOC will be adsorbed by the activated carbon sorbent, and the 

wet root bed will be a scrubber for formaldehyde, which is a water soluble compound. 

The adsorbed and/or absorbed organic compound can be degraded by the 

microorganisms, which will regenerate the sorbent based root bed. At the same time, 

the purified air will be returned to indoor environment to improve indoor air quality.  
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Figure 1-1 Main mechanisms of the air purification in this combined technique 

 

In general, the VOC transport, adsorption/absorption and decomposition 

mechanism in the whole bio-filtration system may include: 

VOC Mass Transfer between Pellets. In fixed-bed adsorption, in addition to 

convection by mean airflow, diffusion and mixing of adsorbates in fluid occur as a 

result of the adsorbate concentration gradients and the nonuniformity of fluid flow. 

This effect gives rise to the dispersion of adsorbates, which takes place along both the 

direction of main fluid flow (axial dispersion) and the direction transverse to the main 
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flow direction (radial dispersion).  

VOC Interphase Mass Transfer. The transport of adsorbable compounds from 

the bulk of the gas phase to the external surface of adsorbent pellets (activated carbon) 

constitutes an important step in the overall uptake process. 

VOC Absorption by Wet-scrubbing. In the context of air-pollution control, 

absorption involves the transfer of a gaseous pollutant from the air into a contacting 

liquid, such as water. The liquid serves as a solvent for the pollutant. Water film 

formed on the surface of pebbles or activated carbon pellets act as wet scrubbers, on 

which water soluble compounds like formaldehyde in the air can be absorbed.  

VOC Physical Adsorption by Activated Carbon. Activated carbon is a widely 

used adsorbent to remove indoor air VOC. When indoor air passes through the 

sorbent bed, these water insoluble compounds like toluene will be physically adsorbed 

by activated carbon.  

VOC Consumption by Microorganisms. The microbes formed by the root 

system of plant may consume the absorbed or adsorbed VOC as a food source. In this 

way, the saturated activated carbon might be reactivated, which means more VOC 

could be removed and there is no need to replace the activated carbon as long as the 

microorganisms remain active. 
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1.2 Objectives and Scopes 

The primary goal of the present study was to improve the understanding of VOC 

removal mechanisms and factors impacting the performance of dynamic botanical air 

filtration system, and model the processes involved in the filter system, including 

VOC adsorption, absorption and their biodegradation by microorganisms in the plant 

root under realistic conditions. This was attempted through the following specific 

objectives: 

1. Characterize the air flow, thermal and moisture conditions in the root bed and 

their effect on VOC removal efficiency, as well as indoor air temperature and 

humidity; 

2. Study the influence of water content (WC) of sorbent material on the 

adsorption of water soluble/insoluble VOC, such as formaldehyde/toluene; 

3. Conduct experimental investigation of the performance of the full-scale filter 

in laboratory condition (relatively high concentration level: 1~3 ppm), as well as in 

real-world condition (relatively low concentration level: 2~17 ppb); 

4. Conduct further experimental investigation of VOC removal mechanisms and 

determination of bio-degradation rate by using a small-scale filter; 

5. Develop a numerical model to simulate the processes with a combination of 

VOC adsorption, absorption and bio-degradation that exist in the filter system, and 

improve the filter design; 
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6. Use the model to propose an improved design of a sorbent biofilter system 

and predict potential energy benefit for commercial building due to the use of 

dynamic botanical air filtration system. 
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Figure 1-2 Overview of objectives and scopes 
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Appendix B. Application in Real-world 

Conditions and Test Procedure 

B.1 Source Introduction  

In order to simulate contaminant source in the test room, 48 pieces of unused 

particle board were moved into the test room. The size of each piece was 48 by 32 

inches. Three (3) pieces were used in each cubical, and there were totally 16 

workstations in the test room. The test room was operated At 5% outdoor ventilation 

flow rate with 70 CFM outdoor air and 1400 CFM total supply air. 

 

  

Figure B-1 Contaminant source introduced into the test room by using particleboards 

  

B.2 VOC Identification  

After the particleboards were placed inside the test room, an air sample was 

taken at the return air duct by using a Tenax sorbent tube, and analyzed by GC/MS. 

Table B-1 lists the detail the VOC found in the room. Pentanal, Toluene, Hexanal, 
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Xylene, Alpha-Pinene, (1s)-(b)-Pinene were selected as the target VOC in the room.  

In addition, formaldehyde and acetaldehyde were also chosen as target compounds as 

they are typically identified as major compounds of concern in emission testing of 

composite wood materials. 

 

Table B-1 Test room VOC identification (By GC/MS) 

RT Response area 

Est.Conc. 

(ug/m3) 

VOC Name M.W. Formula CAS# Note 

2.664 169,827,440 8.37 OXIRANE, TRIMETHYL-                      86 C5H10O      5076-19-7     

5.059 86,847,696 4.28 MERCAPTAMINE                             77 C2H7NS      60-23-1       

6.337 118,900,960 5.86 PENTANAL(Valeralde.)                                86 C5H10O      110-62-3      

7.897 147,092,128 7.25 TOLUENE                                  92 C7H8         108-88-3     

room 

bkgd 

8.626 186,059,488 9.17 CYCLOTRISILOXANE, HEXAMETHYL-            222 C6H18O3Si3   541-05-9     

tube 

bkgd 

9.562 1,077,273,088 53.08 HEXANAL                                  100 C6H12O      66-25-1       

11.344 68,134,416 3.36 BENZENEETHANOL, .ALPHA.,.BETA.-DIMETHYL- 150 C10H14O     52089-32-4    

13.019 597,559,104 29.45 .ALPHA.-PINENE                           136 C10H16       80-56-8       

13.714 50,035,800 2.47 CAMPHENE                                 136 C10H16       79-92-5       

14.348 51,328,636 2.53 CYCLOTETRASILOXANE, OCTAMETHYL-          296 C8H24O4Si4   556-67-2      

14.76 448,029,344 22.08 (1s)-(b)-pinene 136 C10H16       18172-67-3  

15.968 61,673,916 3.04 Benzaldehyde     

16.441 134,613,712 6.63 d-limonene     

16.592 88,311,400 4.35 Octanal 128 C8H16O      124-13-0      

17.88 56,756,684 2.80 Undecane    

room 

bkgd 

18.897 108,563,536 5.35 P-TRIMETHYLSILYLOXYPHENYL-BIS(TRIMETHYLS 370 C17H34O3Si3  1000079-08-1  

19.249 79,402,592 3.91 Nonanal 142 C9H18O      124-19-6      
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21.382 95,913,080 4.73 PENTADECANAL-                            226 C15H30O     2765-11-9  

21.518 240,076,816 11.83 2-PROPENOIC ACID, 6-METHYLHEPTYL ESTER   184 C11H20O2    54774-91-3    

 

Table B-2 lists the target compounds that were continuously monitored by PTR-MS. 

It also shows the solubility of these compounds in water, which would help to 

understand the filter bed performance in removing water soluble vs. non-soluble 

compounds. 

 

Table B-2 Target compounds monitored by PTR-MS (Ion Mass of 21) 

VOC Name M.W. Formula CAS# Solubility in water  

Formaldehyde 31 CH2O 50-00-0 Soluble 

Acetaldehyde 45 C2H4O 75-07-0 Soluble 

Pentanal (Valeralde.) 86 C5H10O 110-62-3 Very slightly soluble 

Toluene 92 C7H8 108-88-3 Insoluble 

Hexanal 100 C6H12O 66-25-1 Insoluble 

Xylene 106 C8H10 1330-20-7 Insoluble 

Alpha-Pinene 136 C10H16 80-56-8 Insoluble 

 

B.3 Filter Bed Single Pass Efficiency Measurement 

The filter bed single pass efficiency (SPE) would help to understand the change 

of the test room contaminants concentration after the filter system was turned on. The 

single pass efficiency was measured as follows: 
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• The contaminants concentration of the filter upstream was measured for a 

number of five minute intervalsand the average of these five minutes data was 

taken as data 1; 

• The sample system was switched to downstream. The contaminant 

concentration of the filter downstream was measured for five minute intervals 

and the average of these five minutes data was taken as data 2, and it was used 

as the downstream concentration; 

• The monitor was switched back to measure the upstream concentration for the 

next five minutes and the average of these five minutes data was taken as data 

3; 

• The average of data 1 and data 3 was used as the upstream concentration; 

• The filter single pass efficiency could be obtained as one minus downstream 

concentration divided by upstream concentration.  

 

B.4 Effect of Bed Water Content to the Single Pass 

Efficiency 

� The media bed was irrigated with water until it became saturated, which can be 

realized in this way: an automatic irrigation system was setup to achieve this. A 

moisture control sensor was used to continuously monitor the moisture content 

(M.C.) in the filter bed and it was set-up at the saturation level (50%). The 
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irrigation was kept on running until the signal light of the moisture sensor was 

off, which means the media bed was saturated already 

� The fan was kept running at its maximum flow rate(480cfm) until inlet air RH 

was close to the outlet RH: the moisture control sensor was set-up at its minimum 

level to avoid the fan stopping running during the test period, which means get 

the media bed dry gradually 

� In the first half hour, PTR-MS was used to measure the contaminants 

concentration of upstream for five minutes, and the average was taken as data 1, 

and then it was switched to downstream for another 5-minute measurement and 

the average was taken as data 2, after that it was switched back to upstream for 

another fiveminute measurement, and the average was taken as data 3. The 

average of data 1 and data 3 was used as the upstream value, and data 2 was used 

as the downstream value. The single pass efficiency was obtained: one minus 

downstream value divided by upstream value 

� After that, the test period was extended to 10 minutes for each side, then it took 

30 minutes to get one single pass efficiency 

� The procedure of measuring single pass efficiency was repeated every 30 minutes 

until the bed water content was lower than 5%, and then the filter bed single pass 

efficiency at different moisture level could be obtained. 
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B.5 Test Room Contaminants Concentration Monitoring 

� On the first day, PTR-MS  started to monitor the room concentration, and the 

first-two-hour test result was taken as room background, and a GC/MC sample 

was also taken at the same time 

� After two hours, the particleboards were moved in, then four hours later, a 

GC/MS sample was taken to identify the VOCs existing in the room, and hexanal, 

pentanal, toluene, xylene, pinene, formaldehyde and acetaldehyde were selected 

as target compounds 

� In the second day, the room ventilation was adjusted to 5% (70 CFM outdoor air) 

at first, then eight hours later, was increased to 50%( 700 CFM outdoor air); 16 

hours later, it was switched back to 5% 

� Twenty four hours later, the filtration system was turned on and kept running for 

eight hours; then was shut off; and then the filter on/off cycle was repeated two 

more times 

� In the second week, two more tests were done to monitor the room contaminant 

concentration change at ventilation of 25% and 10%. 

� See Table B-3 for the schedule for the two-week test 
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Table B-3 The schedule for the two-week test 

Test  period Time (h) Procedure 

Week 1 

0 Got PTR-MS started 

2 Moved particle board in 

24 Adjusted outdoor air to 5% 

32 Adjusted outdoor air to 50% 

45 Adjusted outdoor air back to 5% 

72 Turned on the filter 

78 Turned off the filter 

100 Turned on the filter 

108 Turned off the filter 

124 Turned on the filter 

132 Truned off the filer 

Week 2 

0 Got PTR-MS started (with 5% outdoor air) 

8 Adjusted ventilation to 25% 

24 Adjusted ventilation back to 5% 

32 Adjusted ventilation to 10% 

48 Adjusted ventilation back to 5% 

 

Table B-4 Air change rate for different operation modes 

Room 

Volume 
Supply air Operation mode Air change rate (times/h) 

9385 ft3 1400cfm 

50% OA 4.5  

25% OA 2.2  

10% OA 0.9  

5% OA 0.4  
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Appendix C. COE Building Humidity Load 

Calculation 

 

Table C-1 COE building humidity load calculation 

LEAKAGE & INFILTRATION  LOAD   273.12 kg/Hr 

 Formula:  LOAD = (C-B) x 0.0012 x A x D x Ex F    

 A = VOLUME OF CONDITION SPACE (m3) 11854   

 B = DESIGNED HUMIDITY  (g/kg) 12.000   

 C = SURROUNDING HUMIDITY (g/kg) 20.000   

 D = VOLUME  FACTOR ( Note A) 0.2   

 E = PRESSURE  FACTOR ( Note B) 1   

 F = CONSTRUCTION FACTOR ( Note C) 1   

 G= Delta g/kg  factor  ( calculated ) 12.00  0 
 HUMAN LOAD  16.58 kg/Hr 

 Formula:  LOAD = G x H x 0.15    

 G = NUMBER OF PEOPLE 165   

 H = Work Load Coeff  (0.5 Light to 1.6 Heavy) 0.67   

    

 MADE UP AIR LOAD  44.7720 kg/Hr 

 Formula:  LOAD = (K- B) x J x 0.0012    

 J = Air volume in CMH 3731   

 K = MADE UP AIR HUMIDITY  (g/kg)  22.000   

    

 DOOR OPENING LOAD  0.00 kg/Hr 

 Formula: LOAD = (M- B) x 0.0012 x N x P x L x 0.3    

 L = TOTAL DOOR X-SECTION AREA  0   

 M = NEXT DOOR AIR HUMIDITY  (g/kg)  15   

 N = EACH OPENING TIME  ( seconds ) 30   

 P = NUMBER OF OPENING /HOUR 2   

    

 HYGROSCOPIC MATERIAL LOAD  0.00 kg/Hr 

    

 EXPOSED WATER SURFACE LOAD  0.00 kg/Hr 

    

  TOTAL HUMIDITY LOAD   334.47 kg/Hr 
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Table C-2 Determination of note A, B, and C in Talbe C-1 

Note A ( Volume factor) 
Note B ( +ve Pressure factor ) Note C  ( Construction factor )  

<400 CU METER     =0.4 + 0 Pa  = 1 Wooden wall with cracks   = 2 to 3 

1000  CU METER   = 0.3 + 30 Pa = 0.6 Basement               = 1.8 to 2.5 

5000  CU METER  = 0.25 + 60 Pa = 0.3 4 walls exposed to rain     = 1.5 to 2 

>10000 CU METER = 0.22  Ground Floor            = 1.2 to 1.5 

  Gypsum walls             = 1 to 1.3 

  Normal good  walls       = 1 

  Oil based painted wall      = 0.8 to 0.9 

  Double epoxy painted wall  = 0.7 to 0.8 

  Freezer insulated seal wall   =0.6 to 0.8 

    Tight sealed metal frame     = 0.3 to 0.5 
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