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Abstract

Splines are piecewise polynomial functions defined over a partition of the
real number line. When smoothness conditions are placed on splines de-
fined over a given partition, they form a module over the ring of poly-
nomials with real number coefficients. Studying and characterizing bases
for these modules allow us to better characterize bases for splines defined
over two-dimensional regions, which would aid in the construction of roofs
for complex structures (houses, stadiums, obscurely shaped buildings, etc.)
and plane wings. Over the summer, my research group was able to give
a characterization for a basis of one of these modules. This project takes
that basis and characterizes the scalars that would be used to generate any
spline in the module, then gives a complete characterization for all bases
of the module for a specific partition of intervals. This will help in giving a
complete characterization for the module over any given partition of inter-
vals, which will help in the characterization of bases for modules of splines
defined over two-dimensional regions.
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1 Introduction

1.1 Splines

In this paper, we investigate bases for modules of splines over the polynomial
ring R[x]. A spline is simply a piecewise polynomial function defined over a
partition of the real number line into intervals. For example, the function

f(x) =

{
f1 x ≤ 0
f2 x > 0

is spline defined over the partition of intervals I = (−∞, 0) ∪ (0,∞) where f1
and f2 are both polynomials of one variable (f1, f2 ∈ R[x]). Also, it does not
matter how many intervals are in the partition. So, a spline defined over the
partition I = (−∞, a1)∪ (a1, a2)∪ (a2, a3)∪ · · ·∪ (an−2, an−1)∪ (an−1,∞) would
look like

f(x) =



f1 −∞ < x ≤ a1
f2 a1 < x ≤ a2
f3 a2 < x ≤ a3
...
fn−1 an−2 < x ≤ an−1
fn an−1 < x <∞

where f0, f1, f2, . . . , fn−1, fn ∈ R[x].

Formally, a spline is defined as follows:

Definition: Let I denote the partition of R, I1 ∪ I2 ∪ I3 ∪ · · · ∪ In−1 ∪ In ⊂ R
where I1 = (−∞, a1), I2 = (a1, a2), I3 = (a2, a3), . . . , In−1 = (an−2, an−1), In =
(an−1,∞). A spline over I is a function f : R→ R such that

f |Ii= fi

for all i ∈ {1, 2, . . . , n} where fi ∈ R[x].

For a spline f defined over I, we write f as an n-tuple, f = (f1, f2, f3, . . . , fn−1, fn)
or as a column

f(x) =



f1
f2
f3
...
fn−1
fn

where fi ∈ R[x] is defined over the interval Ii.
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Some basic examples would be as follows:

f(x) =

{
−x −∞ < x ≤ 0
x 0 < x <∞

f(x) =


x −∞ < x ≤ −1
x2 −1 < x ≤ 5
5x+ 3 5 < x ≤ 8
2x2 + 5x+ 7 8 < x ≤ ∞

f(x) =


−x2 −∞ < x ≤ −5
3x −5 < x ≤ 0
x5 + 1 0 < x ≤ 5
5 5 < x <∞

For basic splines, the polynomials do not have to match up at the boundary
points ai of the partition. That is, it is not necessary for fi(ai) = fi+1(ai) for
any i such that 0 ≤ i ≤ n− 1.

The point of this research was to characterize scalars and bases for modules
of splines defined over the polynomial ring. I’ll get into what modules and bases
are later, as well as how applying certain conditions to sets of splines causes
them to have a module structure, but first, why bother to study these things?
In the single dimension case (splines defined over the number line R) character-
izing their bases has many interesting abstract applications in many different
areas of mathematics.
However, the main purpose of studying the one-dimensional case is to take what
we find and try to apply it to splines defined over a region in R2.
In the same way a spline can be defined over a subdivided region of the real
number line, they can be defined in 2-dimensions over a 2-dimensional region.
For example, a spline can be defined over a region like this:
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where f1, f2, f3, and f4 are polynomials of two variables (i.e. f(x, y)) and will
create a 3-dimensional graph over the given region. Thus, instead of the fi’s
being in the polynomial ring R[x], they are in R[x, y]. The two dimensional
region the functions are defined over can be any shape and there can be any
number of subregions.

Characterizing bases in the 2-dimensional case would be incredibly helpful in
the construction of three dimensional objects such as roofs of complex structures
(houses, stadiums, obscurely shaped buildings, etc.) or even plane wings. Splines
are also helpful in approximating general functions, interpolating data, and are
being found to have applications in computer graphics, image processing and
computer aided design.

1.2 Smoothness

Now, let’s focus on splines that are said to be Cr over a given partition of inter-
vals I contained in R.
The r represents a smoothness condition placed on the spline.

Definition: A Cr spline is a spline that has r continuous derivatives.

Since all polynomials are C∞ (have infinite continuous derivatives), to see whether
or not a spline is Cr we need only consider the boundary points ai for i ∈
{1, 2, . . . n− 1}.

If a spline is C0 it matches up on all boundary points ai (i.e. fi(ai) = fi+1(ai)
for all i such that 1 ≤ i ≤ n − 1). If a spline is C1 then it has one degree of
smoothness, meaning it must match up on all of the boundary points for the
spline and its first derivative, so

fi(ai) = fi+1(ai)

and

f ′i(ai) = f ′i+1(ai)

If a spline is C2 then it matches up on all boundary points for 2 derivatives, if
it is C3, 3 derivatives, etc. So if a spline is Cr, the following are true:

fi(ai) = fi+1(ai)

f ′i(ai) = f ′i+1(ai)

f ′′i (ai) = f ′′i+1(ai)

...

f
(r−1)
i (ai) = f

(r−1)
i+1 (ai)

f
(r)
i (ai) = f

(r)
i+1(ai).
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For example, consider:

f(x) =

{
−x x ≤ 0
x x > 0.

Since the partition only contains 2 intervals, we need only consider smoothness
at x = 0.
Computing, we get:

f1(x) = −x
f2(x) = x

V f1(0) = 0 = f2(0)

f ′1(x) = −1

f ′2(x) = 1

V f ′1(0) = −1 6= 1 = f ′2(0).

Thus, this spline has 0 continuous derivatives, and is classified as C0.
A slightly more complex example is the following:

f(x) =


−2x3 + 16x+ 10 −∞ < x ≤ −1
2x3 + 4x+ 2 −1 < x ≤ 0
x3 + 4x+ 2 0 < x ≤ 3
9x2 − 23x+ 29 3 < x <∞.

Computing, we have:

f1(−1) = −4 = f2(−1), f2(0) =2 = f3(0), f3(3) = 41 = f4(3)

f ′1(−1) = 10 = f ′2(−1), f ′2(0) =4 = f ′3(0), f ′3(3) = 31 = f ′4(3)

f ′′1 (−1) = 12 = f ′′2 (−1), f ′′2 (0) =0 = f ′′3 (0), f ′′3 (3) = 18 = f ′′4 (3)

f ′′′1 (−1) = −12 6= 12 = f ′′′2 (−1), f ′′′2 (0) = 12 6= 6 = f ′′′3 (0), f ′′′3 (3) = 6 6= 0 = f ′′′4 (3)

This spline has 2 continuous derivatives, and is considered C2.
This smoothness condition can also be applied to the splines defined over 2-
dimensional regions mentioned in the previous section. The only difference is
that for the two dimensional case, the spline, and its derivatives, must be smooth
along a boundary curve, instead of a boundary point. In this paper, however,
we concentrate only on splines defined over one-dimensional regions.

1.3 The Module Cr(I)

When considering all of the Cr splines defined over a given partition of intervals
I ⊂ R, we get a module structure over the ring R[x], and the module is written
as Cr(I).

7



To understand what this means, we must first look at the definitions of a ring
and a module.

Definition: A nonempty set R is considered to be a ring with identity ele-
ment 0 if for all a, b, c ∈ R the following axioms hold:

• (a+ b) + c = a+ (b+ c)

• 0 + a = a+ 0 = a (0 is the identity)

• a+ b = b+ a (+ is commutative)

• for each a ∈ R there exists −a ∈ R such that a + (−a) = (−a) + a = 0
(−a is the inverse element of a)

• Multiplication is associative ( (a ∗ b) ∗ c = a ∗ (b ∗ c))

• Multiplication distributes over addition: a ∗ (b+ c) = (a ∗ b) + (a ∗ c) and
(a+ b) ∗ c = (a ∗ c) + (b ∗ c)

It is trivial to show that these characteristics hold for the set of polynomials
with real number coefficients (R[x]).

Now, on to modules. For those with some knowledge of linear algebra, a module
M is basically vector space in which the scalars used for multiplication come
from a ring R instead of a field. The scalars from the ring are distributive and
associative with the elements of M . A key difference between modules and vec-
tor spaces, however, is that vector spaces always have bases whereas modules
need not. This is because a ring R is not required to have multiplicative in-
verses, thus it is not always the case that elements of the module can be used
to generate the rest of the module under the defined scalar multiplication. A
module with a basis is said to be a free module, and the modules we deal with
in this paper are all free modules.

Definition: A module over a ring R (also known as an R-module) is a set M
with a binary operation (normally written as addition) and scalar multiplication
with scalars coming from the ring R, that satisfies the following conditions:

• M is closed under addition and scalar multiplication

• M is an abelian group under addition*

• For all a ∈ R and all f ,g ∈M , a(f + g) = af + ag

• For all a,b ∈ R and all f ∈M , (a+ b)f = af + bf

• For all a,b ∈ R and all f ∈M , (ab)f = a(bf)

• If 1 is the multiplicative identity in R, 1f = f for all f ∈M
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*An abelian group is simply a set A, together with a binary operator (normally
addition or multiplication) such that it it is closed (for a, b ∈ A, a + b ∈ A),
the elements are associative and commutative, and there exists an identity and
inverse elements.

Now, we will consider a simple version of Cr(I), two splines with the necessary
conditions, and two polynomials from R[x] in order to get a basic understanding
of how addition and scalar multiplication work among the elements. Then, I
will arbitrarily select two splines and two polynomials in order to prove that the
simple example is in fact a module.

Consider the partition of intervals I = (−∞, a1) ∪ (a1,∞)

with smoothness condition r = 1.
For f ∈ C1(I) we write f as a 2-tuple f = (f1, f2) where f1, f2 ∈ R[x] are defined
over the partition I as shown below:

and have the conditions:

f1(a1) = f2(a1)

f ′1(a1) = f ′2(a1)

(since there is one degree of smoothness).

Let us look at the case when a1 = 1, f and g are defined such that f = (x2+1, 2x)
and g = (6x + 3, 2x3 + 7), p(x) = x3 + 3x + 1 and q(x) = 3x2 + 4x − 6
(p(x), q(x) ∈ R[x] are the scalars).
Simple computations show that

f1(1) = 2 = f2(1) , g1(1) = 9 = g2(1)

f ′1(1) = 2 = f ′2(1) , g′1(1) = 6 = g′2(1)

so both f and g have smoothness of degree at least 1, thus f, g ∈ C1(I) for
I = (−∞, 1) ∪ (1,∞).
Now we can play around a little with f, g, p(x), and q(x) in order to see how
addition and scalar multiplication work amongst the elements of C1(I).
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First, consider f + g:

(f + g) = ((x2 + 1) + (6x+ 3), (2x) + (2x3 + 7))

= ((x2 + 6x+ 4, 2x3 + 2x+ 7)

and we have

(f + g)1(1) =11 = (f + g)2(1)

(f + g)′1(1) =8 = (f + g)′2(1)

so (f + g) ∈ C1(I) as well. Next, consider p(x), f , and p(x)f to look at scalar
multiplication (p(x) being the scalar):

p(x)f = (x3 + 3x+ 1)(x2 + 1, 2x)

= ((x3 + 3x+ 1)(x2 + 1), (x3 + 3x+ 1)(2x))

= (x5 + 4x3 + x2 + 3x+ 1, 2x4 + 6x2 + 2x)

And we have:

p(x)f1(1) =10 = p(x)f2(1)

p(x)f ′1(1) =22 = p(x)f ′2(1)

so p(x)f ∈ C1(I).

For p(x), f , and g, we can see that

p(x)(f + g) = (x3 + 3x+ 1)(x2 + 6x+ 4, 2x3 + 2x+ 7)

=((x3 + 3x+ 1)(x2 + 6x+ 4), (x3 + 3x+ 1)(2x3 + 2x+ 7))

=((x3 + 3x+ 1)((x2 + 1) + (6x+ 3)), (x3 + 3x+ 1)((2x) + (2x3 + 7)))

=((x3 + 3x+ 1)(x2 + 1) + (x3 + 3x+ 1)(6x+ 3),

(x3 + 3x+ 1)(2x) + (x3 + 3x+ 1)(2x3 + 7))

=((x3 + 3x+ 1)(x2 + 1),

(x3 + 3x+ 1)(2x)) + ((x3 + 3x+ 1)(6x+ 3), (x3 + 3x+ 1)(2x3 + 7))

=(x3 + 3x+)(x2 + 1, 2x) + (x3 + 3x+ 1)(6x+ 3, 2x3 + 7)

=p(x)f + p(x)g

and for p(x), q(x), and f :

(p(x) + q(x))f = (x3 + 3x+ 1 + 3x2 + 4x− 6)f

= x3f + 3xf + f + 3x2f + 4xf − 6f

= (x3 + 3x+ 1)f + (3x2 + 4x− 6)f

= p(x)f + q(x)f

and

(p(x)q(x))f = p(x)(q(x)f) simply by multiplicative associativity.
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The additive inverses of f and g would be −f = (−x2 − 1,−2x) and −g =
(−6x− 3,−2x3 − 7), and the multiplicative identity would be (1, 1).

Next, let’s look at arbitrarily selected f, g ∈ C1(I) and p, q ∈ R[x], and let
a1 be an arbitrary boundary point on the partition of intervalsl I instead of
having a1 = 1. Let f = (f1, f2) and g = (g1, g2).
Since f, g ∈ C1(I) they satisfy

f1(a1) = f2(a1) , g1(a1) = g2(a1)

f ′1(a1) = f ′2(a1) , g′1(a1) = g′2(a1)

First, we will look at (f + g) = (f1 + g1, f2 + g2):

(f1 + g1)(a1) = f1(a1) + g1(a1) = f2(a1) + g2(a1) = (f2 + g2)(a1)

and

(f1 + g1)
′(a1) = (f ′1 + g′1)(a1)

= f ′1(a1) + g′1(a1) = f ′2(a1) + g′2(a1)

= (f ′2 + g′2)(a1) = (f2 + g2)
′(a1)

so (f + g) ∈ C1(I) and C1(I) is closed under addition.

For scalar multiplication, consider pf = (pf1, pf2):

pf1(a1) = p(f1(a1)) = p(f2(a1)) = pf2(a1)

and

pf ′1(a1) = p(f ′1(a1)) = p(f ′2(a1)) = pf ′2(a1)

so pf ∈ C1(I) and C1(I) is closed under scalar multiplication.

With p, f , and g we have:

p(f + g) = p(f1 + g1, f2 + g2)

= (p(f1 + g1), p(f2 + g2))

= (pf1 + pg1, pf2 + pg2)

= (pf1, pf2) + (pg1, pg2)

= p(f1, f2) + p(g1, g2)

= pf + pg

11



and with p, q, and f :

(p+ q)f = (p+ q)(f1, f2)

= ((p+ q)f1, (p+ q)f2)

= (pf1 + qf1, pf2 + qf2)

= (pf1, pf2) + (qf1, qf2)

= p(f1, f2) + q(f1, f2)

= pf + qf

and

(pq)f = (pq)(f1, f2)

= ((pq)f1, (pq)f2)

= (p(qf1), p(qf2))

= p(qf1, qf2)

= p(qf)

Thus, the elements of R[x] are distributive and associative with the elements of
C1(I).

For the characteristics of an abelian group, we know that it is closed from above
(showed f, g ∈ Cr(I)⇒ (f + g) ∈ Cr(I)), we know the elements are associative
and commutative since polynomial addition is associative and commutative, the
identity element is (1, 1), and for all f = (f1, f2) ∈ Cr(I) the inverse element is
−f = (−f1,−f2).

This all proves that C1(I) is a module over R[x].

As stated earlier, when considering f ∈ Cr(I) where I is a partition of in-
tervals such that I = (−∞, a1) ∪ (a1, a2) ∪ (a2, a3) ∪ · · · ∪ (an−1,∞), we write
f = (f1, f2, f3, . . . , fn) where fi (1 ≤ i ≤ n) is the polynomial defined over the
ith interval of the partition (see picture below):

and we know that
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fi(ai) = fi+1(ai)

f ′i(ai) = f ′i+1(ai)

f ′′i (ai) = f ′′i+1(ai)

...

f
(r−1)
i (ai) = f

(r−1)
i+1 (ai)

f
(r)
i (ai) = f

(r)
i+1(ai)

for all i such that 1 ≤ i ≤ n− 1.

In her paper [2] Lindsey Scoppetta provides a proof showing, that Cr(I) is
a finitely generated module over R[x], and then characterizes a basis for the
module.

Definition: A module M is said to be finitely generated if there exists a finite
number of elements s1, s2, s3, . . . , sn in M such that {s1, s2, s3, . . . , sn} generate
M .

This simply means that this set of elements can generate the rest of the el-
ements of M by means of scalar multiplication with the elements of the ring
along with addition and subtraction.

If one can find a generating set S = {s1, s2, s3, . . . , sn} of M , S might form
a basis for the module M . A basis for a module M is simply a generating set
that is linearly independent, and here we provide definitions for linear indepen-
dence and bases.

Definition: A set of module elements s1, s2, . . . , sn ∈ M is said to be linearly
independent if there is no combination of non zero elements α1, α2, . . . , αn ∈ R
such that

α1s1 + α2s2 + · · ·+ αnsn = 0.

If there exists such a combination of non-zero ring elements such that the above
condition holds, the set is not linearly independent, and is said to be linearly
dependent.

Definition: A basis for a module M is a set (denoted B) of linearly inde-
pendent elements of M (denoted {b1, b2, b3, . . . , bn}) such that B generates M .

Basically, if B = {b1, b2, . . . , bn} is a basis for a module M , then b1, b2, . . . , bn
are linearly independent and there exist some α1, α2, . . . , αn ∈ R such that

α1b1 + α2b2 + · · ·+ αnbn = f

for any f ∈M .
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In her paper [1], Lauren Rose proves that all modules of single variable splines
have bases.

1.4 Boundary Splines and the Module C(r,p)(Iδ)

In this section, I will introduce and describe boundary splines. A boundary
spline is simply a regular spline, except over the first and last intervals of the
partition (Iδ) the spline is defined to be 0 and there is a minor change in the
way the smoothness conditions are applied.

To construct Iδ, we look at the two infinite regions of any partition I, and
we split them into two parts with new boundary points a0 and an. The bound-
ary spline defined over Iδ will be defined to be zero over the two new infinite
regions of the partition. Also, the smoothness conditions at the two new bound-
ary points may be different.

For example, first consider the partition I = (−∞, a1)∪ (a1,∞) as shown below:

The corresponding Iδ is written Iδ = (−∞, a0)∪ (a0, a1)∪ (a1, a2)∪ (a2,∞) and
will look like this:

A boundary spline defined over Iδ will be defined as 0 over (−∞, a0) and (a2,∞).
For a partition with an arbitrary amount of intervals I = (−∞, a1) ∪ (a1, a2) ∪
(a2, a3) ∪ · · · ∪ (an−2, an−1) ∪ (an−1,∞)

The corresponding Iδ looks like this:

14



and a boundary spline defined over Iδ will be defined as 0 over (−∞, a0) and
(an,∞). Also, instead requiring the splines to be Cr over Iδ, we require them
to be C(r,p) over Iδ.

Definition: A C(r,p) spline over Iδ is a spline that has r-continuous deriva-
tives (is Cr) at all interior boundary points ai (1 ≤ i ≤ n− 1) and p-continuous
derivatives (is Cp) at the two exterior boundary points a0 and an (p ≤ r).

For example, over the partition of intervals I = (−∞, a1) ∪ (a1,∞) we origi-
nally required a spline to be Cr at a1.

A boundary spline defined over the corresponding Iδ has to be Cr at a1, but it
must also be Cp at a0 and a2 (p ≤ r). So, it will have smoothness conditions
that looks like this:

Thus, for the spline f = (f1, f2) defined over Iδ, we will have

f1(a0) = 0 f1(a1) = f2(a1) f2(a2) = 0
f ′1(a0) = 0 f ′1(a1) = f ′2(a1) f ′2(a2) = 0
...

...
...

f
(p)
1 (a0) = 0 f

(p)
1 (a1) = f

(p)
2 (a1) f

(p)
2 (a2) = 0

...

f
(r−1)
1 (a1) = f

(r−1)
2 (a1)

f
(r)
1 (a1) = f

(r)
2 (a1).

We still write the splines as an n-tuple, so a spline f ∈ C(r,p)(Iδ) for Iδ =
(−∞, a0)∪ (a0, a1)∪ (a1, a2)∪ (a2, a3)∪ · · · ∪ (an−2, an−1)∪ (an−1, an)∪ (an,∞)

f(x) =



0 −∞ < x ≤ a0
f1 a0 < x ≤ a1
f2 a1 < x ≤ a2
...
fn−1 an−2 < x ≤ an−1
fn an−1 < x ≤ an
0 an < x ≤ ∞
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will be written as f = (f1, f2, f3, . . . , fn−1, fn) and will look like this:

a aaa1 2 3 n-1.  .  .a an0

f1 f2 f3 fn

a n-2

fn-10 0

And for the arbitrary case where f = (f1, f2, f3, . . . , fn−1, fn) and Iδ = (−∞, a0)∪
(a0, a1)∪ (a1, a2)∪ (a2, a3)∪· · ·∪ (an−2, an−1)∪ (an−1, an)∪ (an,∞) we will have

f1(a0) = 0 fi−1(a1) = fi(a1) fn(an) = 0
f ′1(a0) = 0 f ′i−1(a1) = f ′i(a1) f ′n(an) = 0
...

...
...

f
(p)
1 (a0) = 0 f

(p)
i−1(a1) = f

(p)
i (a1) f

(p)
n (an) = 0

...

f
(r−1)
i−1 (a1) = f

(r−1)
i (a1)

f
(r)
i−1(a1) = f

(r)
i (a1)

where 2 ≤ i ≤ n− 1.

1.5 Important Summer Results

During our workshop last summer at Bard College, my group worked to charac-
terize bases for the module C(r,p)(Iδ). An interesting part about bases for Cr(I)
and C(r,p)(Iδ) (also proved in [1]) is that for Cr(I) bases will have the same
number of elements as the partition I has intervals and bases for C(r,p)(Iδ) will
have the same number of elements as the partition Iδ has interior intervals.
Thus, a basis for Cr(I) or C(r,p)(Iδ) where

I =

Iδ =

will have 6 elements (B = {b1, b2, b3, b4, b5, b6}).

In order to understand my group’s results as well as how we proved them, we
must define the polynomial Q ∈ R[x]. However, first it is necessary to define the
Algebraic Condition for Continuity that holds true for all modules Cr(I) and
C(r,p)(Iδ).
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As stated before, a spline f ∈ C(r,p)(Iδ) defined over a partition Iδ has to be
p-times smooth at the exterior boundary points a0 and an and r-times smooth
at all interior boundary points a1, a2, . . . , an−1.

In order to determine whether or not this is true, the following algebraic condi-
tion can be checked. Since we are working over a single-dimensional partition
Iδ, we can define a linear polynomial that represents a vertical line at all of
the boundary points ai (where 0 ≤ i ≤ n) as (x − ai). For simplicity, we let
li = (x− ai).

Theorem 1: Let I be a partition with n−1 intervals and let f = (f1, f2, f3, . . . , fn)
be a spline defined over I. Then, f is Cr if and only if

lr+1
i | fi − fi+1

for all i such that 0 ≤ i ≤ n.

For proof, see Theorem 3.0.18 of [2].

This Theorem, with a couple of small additions, holds true for C(r,p) splines,
and we get:

For any given Iδ, f = (f1, f2, f3, . . . , fn) is C(r,p) if and only if

lp+1
0 |0− f1 = f1

lr+1
i |fi − fi+1

lp+1
n |fn − 0 = fn

for all i such that 0 ≤ i ≤ n− 1. Now, we can define the polynomial Q.
(The notation lr+1

i | fi − fi+1 simply means that lr+1
i divides fi − fi+1, or more

simply, lr+1
i = α(fi−fi+1) for some α ∈ R where R is the polynomial ring R[x]).

Definition: Let Iδ be given. The polynomial Q is defined as the product

Q = lp+1
0 (

n−1∏
i=0

lr+1
i )lp+1

n

For example, consider Iδ = (−∞,−2)∪(−2,−1)∪(−1, 0)∪(0, 1)∪(1, 2)∪(2,∞)
so that a C(r,p) spline over Iδ has the following smoothness conditions:
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The polynomial Q for the module C(r,p)(Iδ) will then look like this:

Q = (x+ 2)p+1(x+ 1)r+1(x)r+1(x− 1)r+1(x− 2)p+1

For Iδ with n+ 1 intervals, (I = (−∞, a0) ∪ (a0, a1) ∪
(a1, a2)∪, . . . ,∪(an−2, an−1) ∪ (an−1, an) ∪ (an,∞)) the smoothness conditions
will look like

and the polynomial Q for C(r,p)(Iδ) will look like this:

Q = (x−a0)p+1(x−a1)r+1(x−a2)r+1 . . . (x−an−2)r+1(x−an−1)r+1(x−an)p+1.

Next, we must introduce determinants. A determinant is a value associated with
a square (n× n) matrix which can be computed from the entries of the matrix
by a specific arithmetic expression. When taking the determinant of a basis B
for a module M we write the determinant as

det[b1, b2, . . . , bn]

where the row vector bi represents the ith column of the matrix form of B and
det[b1, b2, . . . , bn] ∈ R[x]. I will go over how to compute the determinants we use
a little later in this section.

We can now introduce the following proposition, a proof of which can be found
on page 10 of my group’s paper.

Proposition: A linearly independent setB = {b1, b2, b3, . . . , bn} with b1, b2, b3, . . . bn ∈
C(r,p)(Iδ) forms a basis of C(r,p)(Iδ) if and only if

Q | det[b1, b2, b3, . . . , bn].

So consider C(r,p)(Iδ) where Iδ = (−∞,−1) ∪ (−1, 0) ∪ (0, 1) ∪ (1,∞). Then,
the linearly independent set B = {b1, b2} where b1, b2 ∈ C(r,p)(Iδ) is a basis for
C(r,p)(Iδ) if and only if

Q = (x+ 1)p+1(x)r+1(x− 1)p+1 | det[b1, b2]
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and where Iδ = (−∞, a0) ∪ (a0, a1) ∪ (a1, a2)∪, . . . ,∪(an−1, an) ∪ (an,∞), the
linearly independent set B = {b1, b2, . . . , bn} where b1, b2, . . . , bn ∈ C(r,p)(Iδ)
forms a basis for C(r,p)(Iδ) if and only if

Q = (x− a0)p+1(x− a1)r+1 . . . (x− an−1)r+1(x− an)p+1 | det[b1, b2, . . . , bn].

Using this Proposition, my group was able to prove the following Theorem about
C(r,0)(Iδ):

Theorem 2: Let Iδ be given, let

g0(ai) = (x− a0)
(
(x− an)xr − (x− ai)r+1

)
and let

gn(ai) = (x− an)
(
(x− a0)xr − (x− ai)r+1

)
.

Then the vectors

b1 = {g0(a1), gn(a1), ..., gn(a1)}
b2 = {g0(a2), g0(a2), gn(a2), ..., gn(a2)}

...

bi = {g0(ai), ..., g0(ai), gn(ai), ..., gn(ai)}
...

bn−1 = {g0(an−1), ..., g0(an−1), gn(an−1)}
bn = {(x− a0)(x− an), (x− a0)(x− an), ..., (x− a0)(x− an)}

form a basis B = {b1, b2, ..., bn} for C(r,0)(Iδ).

In order to understand how this basis works and what it ends up looking
like, we will consider the simple cases of C(0,0)(Iδ) and C(1,0)(Iδ) where Iδ =
(−∞,−1) ∪ (−1, 0) ∪ (0, 1) ∪ (1,∞).

We know that a basis for these modules will be a linear independent set of
the form B = {b1, b2}. Also, we know that the polynomial Q for these modules
will look like this:

Q = (x+ 1)p+1(x)r+1(x− 1)p+1.

So, for C(0,0)(Iδ),
Q = x(x+ 1)(x− 1)

and for C(1,0)(Iδ),
Q = x2(x+ 1)(x− 1).
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From the Theorem, we know that for C(0,0)(Iδ)

g0(ai) = (x+ 1)((x− 1)x0 − (x))

= (x+ 1)((x− 1)1− (x))

= (x+ 1)(x− 1− x)

= (x+ 1)(−1)

= −(x+ 1)

and

gn(ai) = (x− 1)((x+ 1)x0 − (x))

= (x− 1)((x+ 1)(1)− (x))

= (x− 1)(x+ 1− x)

= (x− 1)(1)

= (x− 1).

So we have
b1 = (g0(a1), gn(a1)) = (−(x+ 1), (x− 1)), b2 = ((x+ 1)(x− 1), (x+ 1)(x− 1))
and

B = {(−(x+ 1), (x− 1)), ((x+ 1)(x− 1), (x+ 1)(x− 1))}.

For C(1,0)(Iδ)

g0(ai) = (x+ 1)((x− 1)x1 − (x)2)

= (x+ 1)((x− 1)x− x2)
= (x+ 1)(x2 − x− x2)
= (x+ 1)(−x)

= −x(x+ 1)

and

gn(ai) = (x− 1)((x+ 1)x1 − (x)2)

= (x− 1)((x+ 1)x− x2)
= (x− 1)(x2 + x− x2)
= (x− 1)(x)

= x(x− 1).

So b1 = (g0(a1), gn(a1)) = (−x(x+1), x(x−1)), b2 = ((x+1)(x−1), (x+1)(x−1))
and

B = {((−x(x+ 1), x(x− 1)), ((x+ 1)(x− 1), (x+ 1)(x− 1))}.

To show these are bases, we need only prove that Q | det[b1, b2].
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For these scenarios, it is easy to compute det[b1, b2]. First, put B = {b1, b2}
into matrix form, so for C(0,0)(Iδ),

B =

(
−(x+ 1) (x+ 1)(x− 1)
x− 1 (x+ 1)(x− 1)

)
.

To take the determinant of a 2×2 matrix (which is the only type of determinant
we will take in the entirety of this paper) where matrix A looks like

A =

(
a b
c d

)
and a, b, c, and d are elements of the ring R that the module M is defined over,
we do

det(A) = ad− bc.

Thus, the determinant of B is simply

det(B) = −(x+ 1)(x+ 1)(x− 1)− (x− 1)(x+ 1)(x− 1).

Now, we can manipulate det(B) as follows:

− (x+ 1)(x+ 1)(x− 1)− (x− 1)(x+ 1)(x− 1)

= −(x2 + 2x+ 1)(x− 1)− (x2 − 2x+ 1)(x+ 1)

= −(x3 + 2x2 + x− x2 − 2x− 1)− (x3 − 2x2 + x+ x2 − 2x+ 1)

= −x3 − 2x2 − x+ x2 + 2x+ 1− x3 + 2x2 − x− x2 + 2x− 1

= −2x3 + 2x

= −2x(x2 − 1)

= −2x(x+ 1)(x− 1)

and since Q = x(x+ 1)(x− 1) we get

det(B)/Q = −2.

So it is clear that Q | det(B), and B is a basis.

Similarly for C(1,0)(Iδ), we put B into matrix form to get

B =

(
−x(x+ 1) (x+ 1)(x− 1)
x(x− 1) (x+ 1)(x− 1)

)
.

Then compute det(B):

det(B) = −x(x+ 1)(x+ 1)(x− 1)− x(x− 1)(x+ 1)(x− 1)

and by virtually the same method, manipulate det(B) to get

det(B) = −2x2(x+ 1)(x− 1).
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Since Q = x2(x+ 1)(x− 1), we have

det(B)/Q = −2

so Q | det(B), and B is a basis for C(1,0)(Iδ).

For the remainder of this paper, the only Iδ used was such that had 2 inte-
rior intervals (Iδ = (−∞, a0) ∪ (a0, a1) ∪ (a1, a2) ∪ (a2,∞)).
Thus, the bases considered are all of the form B = {b1, b2} for the module
C(r,0)(Iδ).
Also, without loss of generality, one can assume that one of the a′is in any par-
tition of intervals Iδ is equal to 0. For the partition described above, we will
assume that a1 = 0. Thus, we will be working with the partition of intervals
Iδ = (−∞, a0) ∪ (a0, 0) ∪ (0, a2) ∪ (a2,∞).

For the basis described in the Theorem above, it was possible to character-
ize what the scalars from R[x] looked like as well as provide another basis that
can be used to generate bases for the module C(r,0)(Iδ).

2 Scalar Characterization

We now have the partition of intervals Iδ that looks like this:

where a0 and a2 will either be given or represent arbitrary constants.
Thus, we know that any spline f ∈ C(r,0)(Iδ) must be of the form f = (F1, F2) =
((x− a0)f1(x), (x− a2)f2(x)) for any f1(x), f2(x) ∈ R[x] such that:

F1(0) = F2(0)

F ′1(0) = F ′2(0)

F ′′1 (0) = F ′′2 (0)

...

F
(r−1)
1 (0) = F

(r−1)
2 (0)

F
(r)
1 (0) = F

(r)
2 (0).

Also, for any f ∈ C(r,0)(Iδ), we know for any basis B = {b1, b2} the following is
true for the scalars p(x), q(x) ∈ R[x]:

p(x)b1 + q(x)b2 = f = (F1, F2) = ((x− a0)f1(x), (x− a2)f2(x)).

With this, is it possible to completely characterize what p(x) and q(x) look like
for the basis of C(r,0)(Iδ) characterized during my group’s summer research.
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For a basic example, let’s consider C(0,0)(Iδ) where Iδ = (−∞,−1) ∪ (−1, 0) ∪
(0, 1) ∪ (1,∞). We know that a basis for this module is

B = {(−(x+ 1), (x− 1)), ((x+ 1)(x− 1), (x+ 1)(x− 1))}.

So, we know for any f ∈ C(0,0)(Iδ), we will have f = (F1, F2) = ((x+ 1)f1(x),
(x− 1)f2(x)) for any f1(x), f2(x) ∈ R[x] where

F1(0) = F2(0)

and the equation

p(x)

(
−(x+ 1)
(x− 1)

)
+ q(x)

(
(x− 1)(x+ 1)
(x− 1)(x+ 1)

)
=

(
(x+ 1)f1(x)
(x− 1)f2(x)

)
will have a solution for p(x), q(x) ∈ R[x]. This equation generates the system of
two equations with two unknowns:

−p(x)(x+ 1) + q(x)(x− 1)(x+ 1) = (x+ 1)f1(x)

p(x)(x− 1) + q(x)(x− 1)(x+ 1) = (x− 1)f2(x)

which can be simplified to

−p(x) + q(x)(x− 1) = f1(x) (1)

p(x) + q(x)(x+ 1) = f2(x). (2)

Add equation (1) to equation (2) in order to solve for q(x) and get

q(x)(x− 1) + q(x)(x+ 1) = f1(x) + f2(x)

q(x)((x− 1) + (x+ 1)) = f1(x) + f2(x)

q(x)(x− 1 + x+ 1) = f1(x) + f2(x)

q(x)(2x) = f1(x) + f2(x)

q(x) =
f1(x) + f2(x)

2x

Since F1(0) = F2(0), we have

(0 + 1)f1(0) = (0− 1)f2(x)

f1(0) = −f2(0)

f1(0) + f2(0) = 0

which shows there is no constant term in the numerator of q(x). So, the x in
the denominator of q(x) will cancel, showing q(x) ∈ R[x].
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Substitute q(x) into equation (2) to get

p(x) +

(
f1(x) + f2(x)

2x

)
(x+ 1) = f2(x)

p(x) +
f1(x)(x+ 1) + f2(x)(x+ 1)

2x
= f2(x)

p(x) = f2(x)−
(
f1(x)(x+ 1) + f2(x)(x+ 1)

2x

)
p(x) =

f2(x)(2x)− f1(x)(x+ 1)− f1(x)(x+ 1)

2x

p(x) =
f2(x)(2x− x− 1)− f1(x)(x+ 1)

2x

p(x) =
f2(x)(x− 1)− f1(x)(x+ 1)

2x

Again, since F1(0) = F2(0), we get

F1(0)− F2(0) = 0

⇒ F2(0)− F1(0) = 0

f2(0)(0− 1)− f1(0)(0 + 1) = 0

showing that there is no constant term in the numerator of p(x), which is enough
to show p(x) ∈ R[x]. So we have

p(x) =
f2(x)(x− 1)− f1(x)(x+ 1)

2x
and

q(x) =
f1(x) + f2(x)

2x

To see how these work, consider the spline f = (x+ 1, x2− 2x+ 1) ∈ C(0,0)(Iδ).
F1 = x+ 1 and F2 = x2 − 2x+ 1 = (x− 1)(x− 1),
so f1(x) = 1, f2(x) = x− 1 and

p(x) =
(x− 1)(x− 1)− (1)(x+ 1)

2x

=
x2 − 2x+ 1− x− 1

2x

=
x2 − 3x

2x

=
x− 3

2

So p(x) =
(
1
2

)
x− 3

2 ∈ R[x] and

q(x) =
1 + x− 1

2x

=
x

2x

=
1

2
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so q(x) = 1
2 ∈ R[x].

So, for f1(x) and f2(x) we can see how the 2x in the denominator of p(x) and
q(x) cancels out, and we have p(x), q(x) ∈ R[x].

For a more general example, consider C(0,0)(Iδ) with the arbitrary Iδ = (−∞, a0)∪
(a0, 0) ∪ (0, a2) ∪ (a2,∞). Using our basis characterization, we know that

B = {(−a2(x− a0),−a0(x− a2)), ((x− a0)(x− a2), (x− a0)(x− a2))}

is a basis for C(r,0)(Iδ), and the equation for p(x), q(x) ∈ R[x] and f = (F1, F2) =
((x− a0)f1(x), (x− a2)f2(x)) ∈ C(r,p)(Iδ) will be

p(x)

(
−a2(x+ 1)
−a0(x− 1)

)
+ q(x)

(
(x− a0)(x+ a2)
(x− a0)(x+ a2)

)
=

(
(x− a0)f1(x)
(x− a2)f2(x)

)
This generates the system of equations

−p(x)(a2)(x− a0) + q(x)(x− a0)(x− a2) = (x− a0)f1(x)

−p(x)(a0)(x− a2) + q(x)(x− a0)(x− a2) = (x− a2)f2(x)

which simplifies to

−p(x)(a2) + q(x)(x− a2) = f1(x) (3)

−p(x)(a0) + q(x)(x− a0) = f2(x). (4)

Solve equation (3) for p(x) and simplify to get

p(x) =
q(x)(x− a2)− f1(x)

a2
(5)

Then, substitute equation (5) into equation (4) and have

−
(
q(x)(x− a2)− f1(x)

a2

)
(a0) + q(x)(x− a0) = f2(x)

−q(x)(x− a2)(a0) + f1(x)(a0) + q(x)(x− a0)(a2) = f2(x)(a2)

q(x)((x− a0)(a2)− (x− a2)(a0)) = f2(x)(a2)− f1(x)(a0)

−q(x)((a0 − a2)(x)) = f2(x)(a2)− f1(x)(a0)

q(x) =
f1(x)a0 − f2(x)a2

(a0 − a2)x

Since we have F1(0) = F2(0), we know

f1(0)(0− a0) = f2(0)(0− a2)
−a0f1(0) = −a2f2(0)

−a0f1(0) + a2f2(0) = 0

f1(0)a0 − f2(0)a2 = 0
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So there is no constant term in the numerator of q(x), and q(x) ∈ R[x].
Next, substitute q(x) into equation (5) and solve for p(x):

p(x) =

((
f1(x)(a0)−f2(x)(a2)

(a0−a2)(x)

)
(x− a2)− f1(x)

)
(a2)

=
f1(x)(a0)(x− a2)− f2(x)(a2)(x− a2)− f1(x)(a0 − a2)(x)

(a0 − a2)(x)(a2)

=
f1(x) ((a0)(x− a2)− (a0 − a2)(x))− f2(x)(a2)(x− a2)

(a0 − a2)(x)(a2)

=
f1(x)(x− a0)(a2)− f2(x)(a2)(x− a2)

(a0 − a2)(x)(a2)

p(x) =
f1(x)(x− a0)− f2(x)(x− a2)

(a0 − a2)x
.

Again, we know F1(0) = F2(0), so

f1(0)(0− a0) = f2(0)(0− a2)
f1(0)(0− a0)− f2(0)(0− a2) = 0

and there is no constant term in the numerator of p(x), showing p(x) ∈ R[x].
So we end up with

p(x) =
f1(x)(x− a0)− f2(x)(x− a2)

(a0 − a2)x
and

q(x) =
f1(x)a0 − f2(x)a2

(a0 − a2)x
.

If we look at C(1,0)(Iδ) where Iδ is the same as in the previous example, we
know

B = {(−a2x(x− a0),−a0x(x− a2)), ((x− a0)(x− a2), (x− a0)(x− a2))}

and

F1(0) = F2(0)

F ′1(0) = F ′2(0).

We use a nearly identical method to show that

p(x) =
f1(x)(x− a0)− f2(x)(x− a2)

(a0 − a2)x2

and

q(x) =
f1(x)a0 − f2(x)a2

(a0 − a2)x
.
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F1(0) = F2(0) ⇒ f1(0)a0 − f2(0)a2 = 0, so there is no constant term in the
numerator of q(x) and q(x) ∈ R[x].
Also, F1(0) = F2(0)⇒ f1(0)(0− a0)− f2(0)(0− a2) = 0, so there is no constant
term in the numerator of p(x) and we know

F ′1(0) = F ′2(0)

F ′1(0)− F ′2(0) = 0

(f1(0)(0− a0))′ − (f2(0)(0− a2))′ = 0.

So, there is no x term in the numerator of p(x) and p(x) ∈ R[x].

This allows us to then prove the following Theorem:

Theorem 3: For C(r,0)(Iδ) where Iδ = (−∞, a0)∪ (a0, 0)∪ (0, a2)∪ (a2,∞), the
basis given by Theorem 2 is

B = {(−a2xr(x− a0),−a0xr(x− a2)) , ((x− a0)(x− a2), (x− a0)(x− a2))}

and will have scalars of the form

p(x) =
f1(x)(x− a0)− f2(x)(x− a2)

(a0 − a2)xr+1

and

q(x) =
f1(x)a0 − f2(x)a2

(a0 − a2)x
.

Proof:
Since f = (F1, F2) ∈ C(r,0)(Iδ), we know

F1(0) = F2(0)

F ′1(0) = F ′2(0)

F ′′1 (0) = F ′′2 (0)

...

F
(r−1)
1 (0) = F

(r−1)
2 (0)

F
(r)
1 (0) = F

(r)
2 (0).

Start with the equation

p(x)

(
−a2xr(x− a0)
−a0xr(x− a2)

)
+ q(x)

(
(x− a0)(x− a2)
(x− a0)(x− a2)

)
=

(
(x− a0)f1(x)
(x− a2)f2(x)

)
which generates the system of equations

−p(x)a2x
r + q(x)(x− a2) = f1(x) (6)

−p(x)a0x
r + q(x)(x− a0) = f2(x) (7)
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Solve equation (6) for p(x) and get

p(x) =
q(x)(x− a2)− f1(x)

a2xr
(8)

Now, substitute equation (8) into equation (6) and we have

−
(
q(x)(x− a2)− f1(x)

a2xr

)
a0x

r + q(x)(x− a0) = f2(x).

The xr’s cancel, so we are left with(
q(x)(x− a2)− f1(x)

a2

)
a0 + q(x)(x− a0) = f2(x)

and then by the exact same steps that were shown earlier in the section we end
up with

q(x) =
f1(x)a0 − f2(x)a2

(a0 − a2)x
.

Now, we substitute q(x) into equation (8) and get

p(x) =

(
f1(x)a0−f2(x)a2

(a0−a2)x

)
(x− a2)− f1(x)

a2xr

=
f1(x)(x− a2)a0 − f1(x)(a0 − a2)x− f2(x)(x− a2)a2

(a0 − a2)(a2)xr+1

=
f1(x)((x− a2)a0 − (a0 − a2)x)− f2(x)(x− a2)a2

(a0 − a2)(a2)xr+1

=
f1(x)(a2(x− a0))− f2(x)(x− a2)a2

(a0 − a2)(a2)xr+1

p(x) =
f1(x)(x− a0)− f2(x)(x− a2)

(a0 − a2)xr+1

F1(0) = F2(0) ⇒ f1(0)a0 − f2(0)a2 = 0, so there is no constant term in the
numerator of q(x) and q(x) ∈ R[x].
Also,

F1(0) = F2(0)⇒ f1(0)(0− a0)− f2(0)(0− a2) = 0

F ′1(0) = F ′2(0)⇒ (f1(0)(0− a0))′ − (f2(0)(0− a2))′ = 0

F ′′1 (0) = F ′′2 (0)⇒ (f1(0)(0− a0))′′ − (f2(0)(0− a2))′′ = 0

...

F
(r−1)
1 (0) = F

(r−1)
2 (0)⇒ (f1(0)(0− a0))(r−1) − (f2(0)(0− a2))(r−1) = 0

F
(r)
1 (0) = F

(r)
2 (0)⇒ (f1(0)(0− a0))(r) − (f2(0)(0− a2))(r) = 0.

This shows that there are no constant, x, x2, . . . , xr−1, or xr terms in the nu-
merator of p(x), which shows p(x) ∈ R[x], proving the Theorem.
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3 The Generating Bases

Let’s go back to our basis for C(0,0)(Iδ) where Iδ = (−∞,−1)∪ (−1, 0)∪ (0, 1)∪
(1,∞). We have

B = {b1, b2} =

{(
−(x+ 1)
x− 1

)
,

(
(x+ 1)(x− 1)
(x+ 1)(x− 1)

)}
Since b1, b2 ∈ C(0,0)(Iδ), if G = {G1, G2} is another basis for C(0,0)(Iδ) then it
can generate both b1 and b2.
So, there must exist polynomials α, β, γ, µ ∈ R s.t.

b1 = αG1 + βG2 (9)

b2 = γG1 + µG2. (10)

It must be such that G1, G2 ∈ C(0,0)(Iδ) in order for G to be a basis, so we
know that G1 = (g1(x+ 1), g2(x− 1)) and G2 = (g3(x+ 1), g4(x− 1)) such that
g1(0) = g2(0) and g3(0) = g4(0) for some g1, g2, g3, g4 ∈ R[x]. Thus, equations
(9) and (10) can be written as(

−(x+ 1)
x− 1

)
=α

(
g1(x+ 1)
g2(x− 1)

)
+ β

(
g3(x+ 1)
g4(x− 1)

)
and(

(x+ 1)(x− 1)
(x+ 1)(x− 1)

)
=γ

(
g1(x+ 1)
g2(x− 1)

)
+ µ

(
g3(x+ 1)
g4(x− 1)

)
.

These generate the system of 4 equations with 4 unknowns:

−(x+ 1) = αg1(x+ 1) + βg3(x+ 1)

x− 1 = αg2(x− 1) + βg4(x− 1)

(x+ 1)(x− 1) = γg1(x+ 1) + µg2(x+ 1)

(x+ 1)(x− 1) = γg3(x− 1) + µg4(x− 1)

that can be simplified to

−1 = αg1 + βg3 (11)

1 = αg2 + βg4 (12)

(x− 1) = γg1 + µg3 (13)

(x+ 1) = γg2 + µg4. (14)

To solve this, start by multiplying equation (11) by γ and equation (13) by −α
to get

−γ = αγg1 + βγg3

−α(x− 1) = −αγg1 − αµg3.
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Add the two equations together and get

−γ − α(x− 1) = βγg3 − αµg3
−(γ + α(x− 1)) = (βγ − αµ)g3

g3 =
−(γ + α(x− 1))

βγ − αµ
.

Next, multiply equation (12) by γ and equation (14) by −α and we have

γ = αγg2 + βγg4

−α(x+ 1) = −αγg2 − αµg4

and add these together and solve for g4:

γ − α(x+ 1) = βγg4 − αµg4
γ − α(x+ 1) = g4(βγ − αµ)

g4 =
γ − α(x+ 1)

βγ − αµ
.

Then, we multiply equation (11) by µ and equation (13) by β and get

−µ = αµg1 + βµg3

−β(x− 1) = −βγg1 − βµg3

and add them together and solve for g1 to get

g1 =
−(µ+ β(x− 1))

αµ− βγ
.

Then, by looking at the pattern between g1, g3, and g4 we can infer that

g2 =
µ− β(x+ 1)

αµ− βγ
.

This means that G = {G1, G2} looks like

G =


(x+ 1)

(
−(µ+β(x−1))

αµ−βγ

)
(x− 1)

(
µ−β(x+1)
αµ−βγ

)  ,

(x+ 1)
(
−(γ+α(x−1))

βγ−αµ

)
(x− 1)

(
γ−α(x+1)
βγ−αµ

) 
where αµ 6= βγ, and since g1, g2, g3, g4 ∈ R[x], deg(αµ−βγ) = 0. When α, β, γ, µ
satisty these conditions, The set G = {G1, G2} will form a basis for C(0,0)(Iδ).

As an example, consider the case where α = x − 2, β = x − 6, γ = x + 2,
and µ = x− 2.
We have

αµ = (x− 2)(x− 2) = x2 − 4x+ 4 6= x2 − 4x− 12 = (x− 6)(x+ 2) = βγ
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and
deg(αµ− βγ) = deg(16) = 0

so the two conditions hold, and we end up with

G =


(x+ 1)

(
−x2+6x−4

16

)
(x− 1)

(
−x2+6x+4

16

) ,

(x+ 1)
(
x2−2x+4

16

)
(x− 1)

(
x2−2x−4

16

) .

It is easy to check and see that G1, G2 ∈ C(0,0)(Iδ) and for C(0,0)(Iδ), we know
that Q = x(x+ 1)(x− 1).

So, to check that G is a basis, we compute det(G) and get

det(G) =

(
1

256

)
(x+ 1)(−x2 + 6x− 4)(x− 1)(x2 − 2x− 4)

−
(

1

256

)
(x+ 1)(x2 − 2x+ 4)(x− 1)(−x2 + 6x+ 4)

=

(
1

256

)
(x+ 1)(x− 1)((−x2 + 6x− 4)(x2 − 2x− 4)

− (−x2 + 6x+ 4)(x2 − 2x+ 4))

=

(
1

256

)
(x+ 1)(x− 1)(−32x)

=

(
−1

8

)
(x)(x+ 1)(x− 1).

Thus, det(G)/Q = −1
8 , G is a basis for C(0,0)(Iδ) and with different α, β, γ, and

µ’s that satisfy the necessary conditions we can generate all bases for C(0,0)(Iδ).

Now, let’s look at C(0,0)(Iδ) where Iδ = (−∞, a0) ∪ (a0, 0) ∪ (0, a2) ∪ (a2,∞).
We know that B = {b1, b2} is

B =

{(
−a2(x− a0)
−a0(x− a2)

)
,

(
(x− a0)(x− a2)
(x− a0)(x− a2)

)}
.

So, for G = {G1, G2} where G1 = (g1(x−a0), g2(x−a2)), G2 = (g3(x−a0), g4(x−
a2)) and α, β, γ, µ ∈ R[x] the equations

b1 = αG1 + βG2

b2 = γG1 + µG2

will generate the system of 4 equations

−a2 = αg1 + βg3 (15)

−a0 = αg2 + βg4 (16)

(x− a2) = γg1 + µg3 (17)

(x− a0) = γg2 + µg4. (18)
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To solve, we go through the same method as before and start by multiplying
equation (15) by γ and equation (17) by −α to get

−γa2 = αγg1 + βγg3

−α(x− a2) = −αγg1 − αµg3.

Add them together and solve for g3 to get

g3 =
(α− γ)a2 − αx

βγ − αµ
.

Next, multiply equation (16) by γ and equation (18) by −α and we have

−γa0 = αγg2 + βγg4

−α(x− a0) = −αγg2 − αµg4

which we add together and solve for g4 to get

g4 =
(α− γ)a0 − αx

βγ − αµ
.

Then, multiply equation (15) by µ and equation (17) by −β to get

−µa2 = αµg1 + βµg3

−β(x− a2) = −βγg1 − βµg3

which we add together and solve for g1 and have

g1 =
(β − µ)a2 − βx

αµ− βγ
.

Finally, multiply equation (16) by µ and equation (18) by −β to get

−µa0 = αµg2 + βµg4

−β(x− a0) = −βγg2 − βµg4

which we add together and solve for g2 to get

g2 =
(β − µ)a0 − βx

αµ− βγ
.

Thus, we end up with

G =


(x− a0)

(
(β−µ)a2−βx
αµ−βγ

)
(x− a2)

(
(β−µ)a0−βx
αµ−βγ

) ,

(x− a0)
(
(α−γ)a2−αx
βγ−αµ

)
(x− a2)

(
(α−γ)a0−αx
βγ−αµ

) .

Once again, it is easy to check that G1, G2 ∈ C(0,0)(Iδ), and we know that
αµ 6= βγ and deg(αµ − βγ) = 0, so αµ − βγ is a constant. Also, we know
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Q = x(x− a0)(x− a2) for C(0,0)(Iδ).
Let αµ− βγ = k ∈ R and compute det(G):

det(G) = (x− a0)(x− a2)(
1

k2
)((β − µ)a2 − βx)((α− γ)a0 − αx)

− (x− a0)(x− a2)(
1

k2
)((β − µ)a0 − βx)((α− γ)a2 − αx)

= (x− a0)(x− a2)(
1

k2
)((β − µ)a2 − βx)((α− γ)a0 − αx)

− ((β − µ)a0 − βx)((α− γ)a2 − αx))

= (x− a0)(x− a2)(
1

k2
)(x(a0 − a2)(−k))

= x(x− a0)(x− a2)(
−1

k
)(a0 − a2)

= x(x− a0)(x− a2)
(
−(a0 − a2)

k

)
So det(G)/Q =

(
−(a0−a2)

k

)
, G is a basis for C(0,0)(Iδ) and with different α, β, γ, µ ∈

R[x] such that αµ 6= βγ and deg(αµ−βγ) = 0 it is possible to generate all bases
for C(0,0)(Iδ).

When considering C(1,0)(Iδ) for Iδ = (−∞, a0) ∪ (a0, 0) ∪ (0, a2) ∪ (a2,∞) we
know that the basis from Theorem 2 is

B =

{(
−a2x(x− a0)
−a0x(x− a2)

)
,

(
(x− a0)(x− a2)
(x− a0)(x− a2)

)}
Thus, the equations

b1 = αG1 + βG2

b2 = γG1 + µG2

will generate the system

−a2x = αg1 + βg3 (19)

−a0x = αg2 + βg4 (20)

(x− a2) = γg1 + µg3 (21)

(x− a0) = γg2 + µg4 (22)

and then, by virtually the same method as in the previous two examples, we can
show

G =


(x− a0)

(
(β−µx)a2−βx

αµ−βγ

)
(x− a2)

(
(β−µx)a0−βx

αµ−βγ

) ,

(x− a0)
(
(α−γx)a2−αx

βγ−αµ

)
(x− a2)

(
(α−γx)a0−αx

βγ−αµ

) .

Once again, it is simple to show that G1, G2 ∈ C(1,0)(Iδ) (I will go through the
steps to do so in the following proof) and, with Q = x2(x − a0)(x − a2) for
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C(1,0)(Iδ), we can show that

det(G)/Q =
−(a0 − a2)

k

proving that G is a basis for C(1,0)(Iδ).

With this in mind, we can prove the following Theorem:

Theorem 4: For C(r,0)(Iδ) where Iδ = (−∞, a0) ∪ (a0, 0) ∪ (0, a2) ∪ (a2,∞)
and α, β, γ, µ ∈ R[x] such that αµ 6= βγ and deg(αµ− βγ) = 0, the set

G =


(x− a0)

(
(β−µxr)a2−βx

αµ−βγ

)
(x− a2)

(
(β−µxr)a0−βx

αµ−βγ

) ,

(x− a0)
(
(α−γxr)a2−αx

βγ−αµ

)
(x− a2)

(
(α−γxr)a0−αx

βγ−αµ

)
forms a basis for C(r,0)(Iδ). Furthermore, all bases will be generated in this way.

Proof:

We must first verify that G1, G2 ∈ C(r,0)(Iδ). Since p = 0, we need only check
that G1(a0) = 0, G2(a0) = 0, G1(a2) = 0, and G2(a2) = 0 in order to verify that
G1 and G2 are Cp at x = a0 and x = a2. Then, to prove G1 and G2 are Cr at
x = 0, we use the Algebraic Condition for continuity to show that

(x− 0)r+1 = xr+1 | g1(x− a0)− g2(x− a2)
and

(x− 0)r+1 = xr+1 | g3(x− a0)− g4(x− a2)

It is clear that g1(x− a0) and g3(x− a0) both equal 0 at x = a0 and g2(x− a2)
and g4(x− a2) both equal 0 at x = a2. Thus, it is also clear that G1 and G2 are
C0 at x = a0 and x = a2.

Since deg(αµ− βγ) = 0, we let αµ− βγ = k ∈ R, and we can compute

g1(x− a0)− g2(x− a2) =

(
−(a2 − a0)

k

)
µxr+1

which is divisible by xr+1, and

g3(x− a0)− g4(x− a2) =

(
−(a2 − a0)

k

)
γxr+1

which is also divisible by xr+1. Therefore, G1 and G2 are Cr at x = a0, and we
know that G1, G2 ∈ C(r,0)(Iδ).
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Now, to verify that this is a basis for C(r,0)(Iδ) for all α, β, γ, µ ∈ R[x] such
that αµ 6= βγ and deg(αµ− βγ) = 0, compute the determinant of G:

det(G) = (x− a0)(x− a2)(
1

k2
)((β − µxr)a2 − βx)((α− γxr)a0 − αx)

− (x− a0)(x− a2)(
1

k2
)((β − µxr)a0 − βx)((α− γxr)a2 − αx)

= (x− a0)(x− a2)(
1

k2
)(((β − µxr)a2 − βx)((α− γx)a0 − αx)

− ((β − µxr)a0 − βx)((α− γxr)a2 − αx))

= (x− a0)(x− a2)(
1

k2
)((β − µxr)(αx)(a0 − a2)− βx(α− γxr)(a0 − a2))

= (x− a0)(x− a2)(
1

k2
)(a0 − a2)(αβx− αµxr+1 − αβx+ βγxr+1)

= (x− a0)(x− a2)(
1

k2
)(a0 − a2)(−k)(xr+1)

= xr+1(x− a0)(x− a2)
(
−(a0 − a2)

k

)
We know that for C(r,0)(Iδ), Q = xr+1(x− a0)(x− a2), so

det(G)/Q =

(
−(a0 − a2)

k

)
.

Therefore, G is a basis for C(r,0)(Iδ).

To prove the ”furthermore” statement, start with our Theorem 2 basis B =
{b1, b2} for C(r,0)(Iδ):

B =

{(
−a2xr(x− a0)
−a0xr(x− a2)

)
,

(
(x− a0)(x− a2)
(x− a0)(x− a2)

)}
.

Let G = {G1, G2} where G1 = ((g1(x − a0), g2(x − a2)) and G2 = (g3(x −
a0), g4(x − a2)) be an arbitrarily selected basis for C(r,0)(Iδ). Since b1, b2 ∈
C(r,0)(Iδ), the equations

b1 = αG1 + βG2

b2 = γG1 + µG2

have a solution. These generate the system of equations

−a2xr = αg1 + βg3 (23)

−a0xr = αg2 + βg4 (24)

(x− a2) = γg1 + µg3 (25)

(x− a0) = γg2 + µg4 (26)
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As before, multiply γ to equation (23) and −α to equation (25) and get

−a2γxr = αγg1 + βγg3

−α(x− a2) = −αγg1 − αµg3

and add them together and solve for g3:

g3 =
(α− γxr)a2 − αx

βγ − αµ
.

Next, multiply γ to equation (24) and −α to equation (26) for

−a0γxr = αγg2 + βγg4

−α(x− a0) = −αγg2 − αµg4

and add them together and solve for g4:

g4 =
(α− γxr)a0 − αx

βγ − αµ
.

Then, multiply equation (23) by µ and equation (25) by −β to have

−a2µxr = αµg1 + βµg3

−β(x− a2) = −βγg1 − βµg3

and add them together and solve for g1:

g1 =
(β − µxr)a2 − βx

αµ− βγ
.

Finally, multiply µ to equation (24) and −β to equation (26) for

−a0µxr = αµg2 + βµg4

−β(x− a0) = −βγg2 − βµg4

and add together and solve for g2:

g2 =
(β − µxr)a0 − βx

αµ− βγ
.

So we have

G =


(x− a0)

(
(β−µxr)a2−βx

αµ−βγ

)
(x− a2)

(
(β−µxr)a0−βx

αµ−βγ

) ,

(x− a0)
(
(α−γxr)a2−αx

βγ−αµ

)
(x− a2)

(
(α−γxr)a0−αx

βγ−αµ

) .

Since we derived the basis G from the elements of the basis B = {b1, b2}, we
know that G can be used to characterize all bases for C(r,0)(Iδ).
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5 Summary

This project focuses on Module Bases for Splines with Boundary conditions.
However what splines, modules, and bases are is unknown to most outside the
world of mathematics. Thus, in order to explain what exactly I am doing with
my project, I will start at the most basic level possible.

A function in mathematics is a relation between a set of inputs and a set of
possible outputs with the characteristic that each input can have only one pos-
sible output. Most of the time, functions are viewed in the x-y-plane, which is
simply a grid that has a horizontal (x) and vertical (y) axis. In this scenario, a
function will typically take inputs from the x-axis, and return y-values. Which
is why a function is often expressed as f(x) = y.
The x-value is plugged into f , f does something to x, and then returns a y.
So when viewed in a graph, the points that a function outputs have coordinates
(x, f(x)). Meaning, the x-value represents how far to the left or right a given
point will shift, whereas f(x) represents how far up and down a point will shift.
Frequently, functions can be executed for all values of x on the x-axis, so when
viewed as a graph, a function is an infinite series of points that connect and
appear as a curve. For example, pictured below is the graph of the function
f(x) = x3 − 5x+ 6:

This function takes an x value from the x-axis, cubes it, subtracts 5 times the
x-value, adds 6, and then moves however much the resulting value is on the
y-axis, and places a point there. For example:

When plugging in −3: f(−3) = (−3)3 − 5(−3) + 6 = (−27) + 15 + 6 = −6

When plugging in 0: f(0) = (0)3 − 5(0) + 6 = 0 + 0 + 6 = 6

and when plugging in 2: f(2) = (2)3 − 5(2) + 6 = 8− 10 + 6 = 4
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When doing this for every x-value, the result is the squiggly line (or curve) pic-
tured above. Also, many different mathematical operations can be used to define
functions other than polynomials (x3 − 3x + 6 is a polynomial). For example
f(x) = cos(x) or f(x) = |x| are functions.
My project focuses on sets of what are called splines. Splines are simply piece-
wise polynomial functions. Polynomial function means that the function must
be defined as a polynomial (like x3 − 3x + 6, x5 − 1, 41x5 + 32x2 − 14x − 64,
etc.) and piecewise means defined over subdivisions of the x-axis. Thus, instead
of the function being defined as one thing over all of the x-values, it will change
based on where you are on the x-axis.

So consider the partition of intervals I = (−∞, 1) ∪ (1,∞) (which is simply
splitting the x-axis into all numbers greater than 1 and all numbers less than 1)
and the piecewise function shown below:

When x is less than 1 (in other words, x is in the interval (−∞, 1)), the function
used is f(x) = x2, however, when x is greater than 1 (x is in the interval (1,∞)),
the function used is f(x) = 2− x.
Also, it does not matter how many intervals are included in the partition. So,
a spline defined over the partition I = (−∞, a1) ∪ (a1, a2) ∪ (a2, a3) ∪ · · · ∪
(an−1, an) ∪ (an,∞) would look like

f(x) =



f1 −∞ < x ≤ a1
f2 a1 < x ≤ a2
f3 a2 < x ≤ a3
...
fn−1 an−2 < x ≤ an−1
fn an−1 < x <∞
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where f1, f2, . . . , fn−1, and fn all represent polynomials. More examples of
splines follow:

f(x) =

{
−x x ≤ 0
x x > 0

f(x) =


x −∞ < x ≤ −1
x2 −1 < x ≤ 5
5x+ 3 5 < x ≤ 8
2x2 + 5x+ 7 8 < x ≤ ∞

f(x) =


−x2 −∞ < x ≤ −5
3x −5 < x ≤ 0
x5 + 1 0 < x ≤ 5
5 5 < x <∞

For basic splines such as these, the y-values of the functions do not have to
match up at the boundary points of the partition (i.e. fi(ai) = fi+1(ai) does not
have to be true for any ai where ai represents a boundary point of the partition
of intervals, and 0 ≤ i ≤ n− 1.

My project focuses on splines that are said to be Cr over a given partition
of intervals. The r is a whole number that is greater than or equal to 0 that rep-
resents a smoothness condition placed on the splines. For r = 0, the spline must
simply match up on the boundary points of the partition (so fi(ai) = fi+1(ai)
for all i such that 0 ≤ i ≤ n − 1). For example, define the partition I to be
(−∞, 0) ∪ (0,∞) and consider the spline:

f(x) =

{
−x x ≤ 0
x x > 0

Since the x-axis is only subdivided into 2 intervals, we need only consider what
happens at x = 0. Since −x and x are both 0 at x = 0, the spline is continuous,
and fits the condition imposed by C0. We can then say that f(x) ∈ C0(I) where
I is the interval defined above.

For r = 1, the spline must have 1 degree of smoothness, meaning it must match
up at the boundary points of the partition for the spline and its first derivative.
So we will have

fi(ai) = fi+1(ai)

f ′i(ai) = f ′i+1(ai)

for all i such that 0 ≤ i ≤ n − 1 where f ′(ai) denotes the derivative of the
function at the boundary point ai. The derivative of a polynomial function f(x)
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is simply another function which graphs the slope (or rate of change) of every
point of f(x), and it is often written f ′(x). For example, for f(x) = 3x+ 4, the
slope of the function is 3 everywhere, so f ′(x) = 3. For a function where the
slope is not constant, the derivative is also a function of x. For example, when
f(x) = 3x3 + 4x− 6, the derivative is f ′(x) = 9x2 + 4.
Anyway, as r increases, so does the level of smoothness, and the number of
derivatives the spline must remain connected on. So for r = 2 it must match up
on 2 derivatives, for r = 3, has to match up on 3, etc.
A slightly more complex example is the following spline:

f(x) =


−2x3 + 16x+ 10 −∞ < x ≤ −1
2x3 + 4x+ 2 −1 < x ≤ 0
x3 + 4x+ 2 0 < x ≤ 3
9x2 − 23x+ 29 3 < x <∞

Computing, we then have:

f1(−1) = −4 = f2(−1), f2(0) =2 = f3(0), f3(3) = 41 = f4(3)

f ′1(−1) = 10 = f ′2(−1), f ′2(0) =4 = f ′3(0), f ′3(3) = 31 = f ′4(3)

f ′′1 (−1) = 12 = f ′′2 (−1), f ′′2 (0) =0 = f ′′3 (0), f ′′3 (3) = 18 = f ′′4 (3)

f ′′′1 (−1) = −12 6= 12 = f ′′′2 (−1), f ′′′2 (0) =12 6= 6 = f ′′′3 (0), f ′′′3 (3) = 6 6= 0 = f ′′′4 (3)

This spline matches up on 2 derivatives, and is considered C2.

When looking at the set of splines that are considered Cr over a partition
I with n intervals, it is written as Cr(I) and for f ∈ Cr(I) we write f =
(f1, f2, f3, . . . , fn) where each fi (1 ≤ i ≤ n − 1) is the polynomial function
defined over the ith interval of the partition I (see picture below):

and we know that

fi(ai) = fi+1(ai)

f ′i(ai) = f ′i+1(ai)

f ′′i (ai) = f ′′i+1(ai)

...

f
(r−1)
i (ai) = f

(r−1)
i+1 (ai)

f
(r)
i (ai) = f

(r)
i+1(ai)
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for all i such that 1 ≤ i ≤ n−1. In her paper ”Modules of Splines with Boundary
Conditions,” Lindsey Scoppetta provides a proof showing that Cr(I) is a finitely
generated module over the ring of polynomials with real number coefficients.

A ring R, in mathematics, is a set of numbers along with two binary opera-
tions (normally addition and multiplication) such that addition is associative
and commutative (i.e. for all a, b, and c ∈ R, (a + b) + c = a + (b + c) and
a + b = b + a), there is an identity element such that 0 + a = a + 0 = a
for all a ∈ R, for every a ∈ R there is an inverse element −a ∈ R such that
a + (−a) = (−a) + a = 0, multiplication is also associative, and multiplication
distributes over addition (a∗(b+c) = (a∗b)+(a∗c) and (a+b)∗c = (a∗c)+(b∗c)).

A module M , in mathematics, is a set of tuples (like a spline where f =
(f1, f2, f3, . . . , fn)) such that the elements that make up the tuples come from a
ring R, and scalar multiplication is defined in M where the scalars come from
the ring R (scalar multiplication being when an element from the ring R is mul-
tiplied by an element of the module M). The scalars from the ring R are also
distributive and associative with the elements of M , M is closed under addition
and scalar multiplication (meaning if you add any number of elements of M to-
gether or multiply an element of M by a scalar from R then the result will still
be an element of M), there is a multiplicative identity in M (so if the identity
is 1, then for all m ∈ M , 1 ∗m = m ∗ 1 = m), addition for elements of M is
associative and commutative, and there exists an additive identity and additive
inverse elements.

A finitely generated moduleM is a module that has a set of elements s1, s2, . . . , sn ∈
M such that the set can generate every element in the module by means of scalar
multiplication and addition and subtraction amongst the elements.

An interesting characteristic about modules is that some have bases (and for
future reference, all the modules worked with in my project have bases) and a
basis is a generating set where all of the elements of the set are linearly inde-
pendent.

A set of module elements s1, s2, . . . , sn ∈M is said to be linearly independent if
there is no combination of non zero ring elements α1, α2, . . . , αn ∈ R such that

α1s1 + α2s2 + · · ·+ αnsn = 0.

Over the summer, I did research with a group at Bard College and we focused
mainly on the module C(r,p)(Iδ) which is the same thing as Cr(I), except every
spline in C(r,p)(Iδ) is defined to be 0 on the first and last interval in the partition
((−∞, a0) and (an,∞)) and the spline has to be p times differentiable at the
boundary points a0 and an and r times differentiable at all boundary points ai
in between (and p ≤ r). During this time, my group was able to completely
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characterize a basis for the module C(r,0)(Iδ).

When I decided to extend our research on this topic for my Capstone project,
my advisor and I were able to completely characterize what the scalars would
look like for the basis for C(r,0)(Iδ) in the case where Iδ is partitioned into two
finite intervals, as well as completely characterize all bases for C(r,0)(Iδ) in the
two interval case.

In the single dimension case (splines defined over subdivisions of the x-axis)
characterizing their bases has many interesting abstract applications in many
different areas of mathematics.
However, the main purpose of studying the one-dimensional case is to take what
we find and try to apply it to splines defined over a region in R2.
In the same way a spline can be defined over a subdivided x-axis, they can be
defined in 2-dimensions over a 2-dimensional region. For example, a spline can
be defined over a region like this:

where f1, f2, f3, and f4 are polynomials of two variables (i.e. f(x, y)) and will
create a 3-dimensional graph over the given region. Thus, instead of the fn’s
being in the polynomial ring R[x], they are in R[x, y]. The two dimensional
region the functions are defined over can be any shape and have any number of
subregions.

Characterizing bases in the 2-dimensional case would be incredibly helpful in
the construction of three dimensional objects such as roofs of complex struc-
tures (houses, stadiums, obscurely shaped buildings, etc.) or even plane wings.
This is because these complex structures can be difficult to characterize math-
ematically. However, if the area they are being constructed over is divided up
into individual regions, it can greatly simplify characterization. Thus, character-
izing bases for the 2-dimensional case would make it possible to mathematically
generate equations for these structures.
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Splines are also helpful in approximating general functions, interpolating data,
and are being found to have applications in computer graphics, image processing
and computer aided design.
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