
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1998

JWORB - Java Web Object Request Broker for Commodity JWORB - Java Web Object Request Broker for Commodity

Software based Visual Data ow Metacomputing Programming Software based Visual Data ow Metacomputing Programming

Environment Environment

Geoffrey C. Fox
Syracuse University, Northeast Parallel Architectures Center

Wojtek Furmanski
Syracuse University, Northeast Parallel Architectures Center

Hasan T. Ozdemir
Syracuse University, Northeast Parallel Architectures Center, timucin@npac.syr.edu

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Fox, Geoffrey C.; Furmanski, Wojtek; and Ozdemir, Hasan T., "JWORB - Java Web Object Request Broker
for Commodity Software based Visual Data ow Metacomputing Programming Environment" (1998).
Northeast Parallel Architecture Center. 62.
https://surface.syr.edu/npac/62

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/62?utm_source=surface.syr.edu%2Fnpac%2F62&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

JWORB - Java Web Object Request Broker for Commodity Softwarebased Visual Dataow Metacomputing Programming EnvironmentGeo�rey C. Fox, Wojtek Furmanski and Hasan T. OzdemirNortheast Parallel Architectures Center, Syracuse University, Syracuse NYfgcf,furm,timucing@npac.syr.eduSubmitted for HPDC71 IntroductionProgramming environments and tools that are simultaneously sustainable, highly functional, robustand easy to use have been hard to come by in the HPDC area. This is partially due to the di�cultyin developing sophisticated customized systems for what is a relatively small part of the worldwidecomputing enterprise. As the commodity software becomes naturally distributed with the onset of Weband Intranets, we observe now a new trend in the HPDC community [1,8,12] to base high performancecomputing on the modern enterprise computing technologies.This approach was not possible still a few years ago when: a) the enterprise computing was stillmainly custom TP Monitors based client-server (2-tier) only; and b) Web computational extensionssuch as CGI were too naive to grant high performance and/or quality of service. However, the ongoingcovergence of Web and Enterprise Computing accelerates the development of scalable (multi-server)andopen 3-tier standards such as CORBA, DCOM or Enterprise JavaBeans and our vision becomes quicklya reality these days. We can now start prototyping both user friendly and powerful HPDC systems bymerging the commodity technologies in tier 1 (front-end) and tier 2 (application logic) with the highperformance technologies in tier 3 (legacy software).Initial Web/Commodity based HPDC prototypes appeared in the pure Java domain. We summa-rize here our experience with one such early system, WebFlow [2-5] for visual dataow metacomputingdeveloped at NPAC in '96/'97. Basically, we found Java to be a very useful framework for middlewaredevelopment whereas both front-end and back-end development require both multi-platform and multi-language support - which led us in a natural way to the CORBA model. We are now building andreporting here on the current status of our new CORBA based WebFlow with the middleware/bus layergiven by a mesh of Java Web Object Request Brokers (JWORB).JWORB [9] is a multi-protocol Java server under development at NPAC, currently capable ofhandling HTTP and IIOP prototocols. Hence, JWORB can be viewed as a Java based Web Serverwhich can also act as a CORBA broker. We present here JWORB rationale, architecture, implementationstatus, results of early performance measurements and we illustrate its role in the new WebFlow systemunder development. 1

2 WebFlow Current StateWebFlow is a 3-tier distributed visual dataow model. Layers 1 and 2 are written in Java and providedas part of the release together with a set of trial/demo modules. Layer 3 is left open for furtherspeci�cations and re�nements which allows us now to wrap any backend code as webow module andlink it to its tier 2 Java proxy via a customized socket connection. WebFlow middleware is given by amesh of Web servers written in Java and hence o�ering a natural computational extensibility model viathe dynamic properties of the underlying JavaVM. In '96, we analyzed two natural standard candidatesin this area: Jeeves server by JavaSoft (later renamed as Java Web Server (JWS)) and Jigsaw serverby the World-Wide Web Consortium. We found light-weight Servlets in Jeeves to o�er more attractivedynamic extensibility model than more heavy-weight Resources in Jigsaw and we selected Jeeves/JWSas a base of WebFlow middleware.Each JWS node of WebFlow manages its portion of a distributed computation in terms of threemanagement servlets: Session Manager, Module Manager and Connection Manager. Each Session Man-ager exports the externally visible URL as a WebFlow entry point and it controls the concurrent usersessions on this server. Connection Manager handles the module connection requests. Module Manageris responsible for loading the WebFlow modules to the Java VM and controling module life cycle (init,run, destroy).WebFlow Module is a Java Object which implements webow.backend.Module interface. Thisinterface contains three methods: a) init() - called after the module is created by the Module Manager;b) run() - called by the Module Manager when the module is fully instantiated, connected and readyto start the regular operation as a distributed dataow node; c) destroy() - called when the ModuleManager needs to stop the execution and to release the module object.WebFlow front-end is given by a Java applet, served by any of the JWS Session Managers ando�ering the visual interactive tool for dataow authoring. In the current prototype, we based our front-end on the GEF (Graph Editing Framework) package from UCI [6] and we suitably extended it bybuilding the URL and socket based communication between the applet and the JWS Session Managerservlet.So far, we developed a set of simple proof-of-the-concept backend modules testing various aspectsof the system including: a) selected HPCC/HPF simulations; b) AVS-style library of image processing�lters; c) simple collaboratory sessions; d) interfaces to SciVis packages [21]; e) dynamic generation ofbreakpoint modules during a visual debugging session of an HPF application using the NPAC DARP(Data Analysis and Rapid Prototyping) [10] package support for the HPF environment and demonstratedat Supercomputing'97 [11].3 Emerging Object Web TechnologiesSince the fall '96 when the WebFlow prototype design was �nalized, we were witnessing several newdevelopments in the Web/Commodity software standards which o�er now more promising and robustframework for the WebFlow production version. Most notably, the distributed object and/or componenttechnologies are rapidly growing now and we decided to perform a major upgrade of the WebFlow designthat converts it from the previous custom componentware model to the new emergent standards basedmodel.Selecting a speci�c direction in the exploding �eld of distributed object and component technolo-2

Figure 1: Sample WebFlow Application: HPCC simulation (Potts spin system) is wrapped as a WebFlowmodule and its real-time output stream is passed to the Display and Image Filter Modules which enablereal time control and �ne-tuning of the visualization display.

Figure 2: A simple (pure Java) Image Filter module (Wave Filter). Image input, output and �lterare represented as visual icons in the WebFlow editor applet. Modules/icons can be selected from atree-structured palette/navigator. 3

Figure 3: WebFlow demonstration at Supercomputing '97. HPCC simulation (Binary Black Holes) withthe DARP based scripting/debugging support is wrapped as WebFlow module with variable number out-puts, speci�ed interactively and represeting visual debugging probes. Real-time data streams extractedthis way from the simulation as passed (via optional �lters) to suitable visualization modules that wrapand control NPAC SciVis display windows.
4

gies is not an easy task. CORBA o�ers one promising avenue, especially for the large scale 'extreme'metacomputing but there are several alternatives. For example, Java is continuously promoting the100% pure Java metodhology - this can hardly be viewed as realistic by today's HPDC community butthe same Java is now o�ering some CORBA support via the JavaIDL framework, to become soon themainstream as part of JDK1.2. Microsoft claims they already solved all HPDC problems within theirDCOM framework. Some aspects of DCOM are indeed interesting from the high performance com-puting perspective but it remains to be seen if and how fast will DCOM penetrate the UNIX domain.Finally, the World-Wide Web Consortium is developing a set of new standards such as XML, DOM,RDF and HTTP-NG which, when combined, can be viewed as yet another, new emergent distributedobject model (sometimes referred as WOM [7]) which is likely easier to be adopted by simple to mediumcomplex distributed object/component applications.Recent OMG/DARPA workshop on compositional software architectures [7] illustrated very wellboth the growing momentum and the multitude of options and the uncertainty of the overal direction inthe �eld. A closer inspection of the distributed object/component standard candidates indicates that,while each of the approaches claims to o�er the complete solution, each of them in fact excells only inspeci�c selected aspects of the required master framework. Indeed, it seems that WOM is the easiest,DCOM the fastest, pure Java the most elegant and CORBA the most complete solution.4 Towards Object Web Based WebFlowIn the new WebFlow design, we adopt the integrative methodology i.e. we setup a multiple-standardsbased framework in which the best assets of various approaches cummulate and cooparate rather thancompeting. We start the design from the middleware which o�ers a core or a 'bus' of modern 3-tiersystems and we adopt Java as the most e�cient implementation language for the complex control requiredby the metacomputing middleware. We adopt CORBA as the base distributed object model at theIntranet level, and the (evolving) Web as the world-wide distributed (object) model. System scalabilityrequires fuzzy, transparent boundaries between Intranet and Internet domains which therefore translatesinto the request of integrating the CORBA and Web technologies. We implement it by building a Javaserver which handles multiple network prototocols and includes support both for HTTP and IIOP. Thiscan be easily done as IIOP requests are distingished by the 'GIOP' magic word whereas HTTP requestsstart from the corresponding 'GET', 'POST' etc. string indenti�ers.We called such server JWORB (Java Web Object Request Broker) since it can act both as JavaWeb Server and as ORB for the Java objects. It can also act as a CORBA client or server for Java objects.Unlike in the WebFlow prototype where we used the JWS from JavaSoft, we decided to implement bothHTTP and IIOP support of WORB from scratch. The reason is that neither Jigsaw (which is hugeand still evolving) nor Jeeves/JWS (which evolved from core Java / JDK candidate to a commercialproduct) turned out to be useful for our purposes. Further, we believe that Web servers nowadaysshould be implemented using solid CORBA services. In the CORBA sector, we have some free JavaORB support such as OrbixWeb, VisiBroker for Java or JavaIDL but none comes with the source release.There is also an evolving GNU Java ORB called JacORB which however started before JavaIDL mappingwas standardized, it already grew to a large volume and is now being slowly converted to the currentOMG standards. Therefore, we decided to develop our own Java ORB sector as well and to make itfully compliant with the source level components of the coming JavaIDL (such as the org.omg.CORBApackage).With the JWORB based middleware, we can now address both the back-end and front-end layers5

of WebFlow in a uniform and elegant way using the IIOP protocol. Back-end components will betypically packaged as C/C++ CORBA servers (possibly wrapping some Fortran codes) and representedby the corresponding Java proxies managed by JWORB. The emergent CORBA components standardunder development by OMG o�ers a natural model for the WebFlow middleware encapsulation of suchproxies, mapped directly into JavaBeans at the JWORB level. Front-end remains fully factorized as inthe current WebFlow prototype and can be given by any visual authoring package with a suitable 'beanbox' functionality.5 Front End: Commodity Tools for Visual AuthoringAs part of a study of new visual programming standards, we have analyzed recently a suite of newtools appearing on the rapidly growing visual authoring market, including VisualStudio from JavaSoft,VisualAge from IBM, VisualCafe from Symantec, Rational Rose from Rational and VisualModeler fromMicrosoft. It appears that the visual componentware authoring products are still based on early custommodels but there is already a promising stable standard initiative in the area of visual object-orienteddesign, represented by Uniform Modeling Language (UML).UML is developed by an industry consortium led by Rational and supported by Microsoft, andwas recently adopted as CORBA standard by OMG (together with the associated Meta Object Facility).UML o�ers a broad spectrum of visual authoring graph topologies, some initial constructs for parallelprocessing and an extensibility model. We are currently analyzing this new standard from the perspectiveof adopting it as a visual model for new WebFlow front-end.6 Middleware: Java Web Object Request Broker (JWORB)JWORB is a multi-protocol extensible server written in Java. The base server has HTTP and IIOPprotocol support. It can serve documents as an HTTP Web Server and it handles the IIOP connectionsas an Object Request Broker. As an HTTP server, JWORB supports Servlet and CGI mechanism. Anyservlet developed with Java Servlet API can run with JWORB.Since JWORB design is Object Oriented, it is very easy to add other protocols. As JWORB startsup, it looks at con�guration �les to �gure out which protocols it is capable of handling and it loads thenecessary protocol classes for each protocol. If we want to add a new protocol, we need to implement afew abstract classes de�ned for the protocol object and to register this protocol implementation in thecon�guration �le.After JWORB accepts a connection, it asks each protocol handler object whether it can recognizethis protocol or not. If JWORB �nds a handler which claims that it can serve this connection, then thisprotocol handler deals with this connection.After the core JWORB server accepts a connection, it asks for a worker thread from the workerpool, it gives this connection to the worker thread and it returns its accepting state if there are availableworkers in the thread pool. The thread pool manager prevents JWORB from consuming all resourceson the machine and creating a new thread object on each client request.In the current design of core JWORB, the server process returns to accepting state if there is anavailable worker thread(s) for next request. Otherwise, it waits for a noti�cation from the thread poolmanager. In the next releases, we are planning to de�ne an Event Queue and use CORBA Event Service6

to keep the request events in the queue for subsequent processing. This approach is very much likehandling events in the distributed simulations and in fact our design here is driven by our DoD work onJWORB based HLA/RTI support for DoD Modeling and Simulation.JWORB provides IIOP support which is fully compliant with Java/IDL mapping by the OMG.We implemented the server side support and we are currently using idltojava from JavaSoft's JavaIDLas our IDL compiler. idltojava will be the standard utility of the next JDK releases.We tested the performance of server objects by echoing an array of integers and structures thatcontains only one integer value. We performed 100 trials for each array size and we got an average of thesemeasurements. In these tests, client and server objects were running on two di�erent machines. Sincewe only �nished the server side support, we used JacORB on the client side to conduct the necessarytests for the current JWORB.
0 500 1000 1500

0

20

40

60

80

100

120
Average Transfer Timing for Array of Integers

Array Size

A
v
e

ra
g

e
 T

ri
p

 T
im

e
 (

m
s
e

c
s
)

xxx JacORBv0.8d

ooo JWORB

+++ OrbixWeb3.0

*** RMI

xxx OmniORB2

Figure 4: IIOP communication performance for variable size integer array transfer by four Java ORBs:JavaSoft RMI, JWORB, OrbixWeb and RMI. As seen, initial JWORB performance is reasonable andfurther optimizations are under way. RMI appears to be faster here than all IIOP based models.The timing results presented above indicate that that JWORB performance is reasonable whencompared with other ORBs even if we didn't invest yet much time into optimizing the IIOP communi-cation channel. The ping value for various ORBs is the range of 3-5 msecs which is consistent with thetiming values reported in the Orfali and Harkey book [13]. However, more study is needed to understanddetailed di�erences between the slopes for various ORBs. One reason for the di�erences is related to theuse of Java object serialization by RMI. In consequence, each structure transfer is associated with creat-ing a separate object and RMI performs poorly for arrays of structure. JacORB uses object serializationalso for arrays of primitive types and hence its performance is poor on both �gures.In the �nal version of the paper we will include more detailed performance analysis of variousORBs, including C/C++ ORBs such as omniORB2 or TAO [19] which is performance optimized forreal time applications, as well as the comparison of the communication channels of various ORBs withthe true high performance channels of PVM, MPI and Nexus. It should be noted that the WebFlow7

0 500 1000 1500
0

100

200

300

400

500

600

700
Average Transfer Timing for Array of Structure

Array Size

A
v
e

ra
g

e
 T

ri
p

 T
im

e
 (

m
s
e

c
s
)

*** RMI

xxx JacORBv0.8d

ooo JWORB

+++ OrbixWeb3.0

*** OmniORB2

Figure 5: IIOP communication performance for transferring a variable size array of structures by fourJava ORBs: JavaSoft RMI, JWORB, OrbixWeb and RMI. Poor RMI performance is due to the objectserialization overhead, absent in the IIOP/CDR protocol.
0 500 1000 1500

0

2

4

6

8

10

12

14

16

18

20
Average Transfer Timing for Array of Integers

Array Size

A
v
e
ra

g
e
 T

ri
p
 T

im
e
 (

m
s
e
c
s
)

*** RMI

ooo OmniORB2

Figure 6: Initial performance comparison of a C++ ORB (omniORB) with the fastest (for integer arrays)Java ORB (RMI). As seen, C++ outperforms Java when passing data between distributed objects by afactor of 20. 8

based metacomputing will be based on Globus/Nexus [14] backend (see next Section) and the associatedhigh performance RIO communication channels wrapped in terms of C/C++ ORBs (such as omniORB2)whereas the middleware Java based ORB channels will be used mainly for control, steering, coordination,synchronization, load balancing and other distributed system services. This control layer does not requirehigh bandwidth and it will bene�t from the high functionality and quality of service o�ered by theCORBA model.Initial performance comparison of a C++ ORB (omniORB2) and a Java ORB (RMI) indicates thatC++ outperforms Java by a factor of 20 in the IIOP protocol handling software. The important pointhere is that both high functionality Java ORB such as JWORB and high performance C++ ORB suchas omniORB2 conform to the common IIOP standard and they can naturally cooperate when buildinglarge scale 3-tier metacomputing applications.So far, we got the base IIOP engine of the JWORB server operational and we are now working onimplementing the client side support, Interface Repository, Naming Service, Event Service and PortableObject Adapter.7 Back End: HPCC/Globus, HLA/RTI, Legacy SystemsIn parallel with designing and prototyping new CORBA based WebFlow, we are also training SyracuseUniversity students on building simple 3-tier metacomputing applications [20] and we start exploringthe interfaces of the current WebFlow prorotype to a suite of external backend components. As partof the NCSA Alliance, we are working with the NCSA scientists on adapting WebFlow for their HPDCapplications in the Quantum Monte Carlo/Nanotechnology domain. We are also working with theArgonne team to explore the WebFlow based visual authoring tools as a possible front-end for a broaderfamily of emergent metacomputing applications based on the Metacomputing Toolkit Globus. As partof the DoD HPC Modernization Program, we are building JWORB based support for RTI (Run-TimeInfrastructure) which acts as a distributed object bus for the HLA (High Level Architecture) - a newDoD-wide standard for Modeling and Simulation. We are also adapting WebFlow as a visual simulationtool for HLA federations and we are planning WebFlow integration with POOMA [17] as part of the ASCILevel 2 project [18]. Finally, we are also exploring WebFlow model a possible intergration framework forlegacy systems such as heterogenous distributed RDMS systems of relevance for telemedicine, distancetraining, virtual prototyping and other Web/commodity based community networks.8 Related WorkAt the tier-3 level, we already mentioned Globus [14] and we also intend to inspect WebFlow interfacesto the Legion [15] system. Some visual metacomputing issues were also addressed in the related VDCE[16] project at Syracuse. It is plausible that the CORBA based middleware o�ered by JWORB willallow us to formulate jointly as the HPDC community a CORBA Facility for Metacomputing that wouldprovide users with binding to Globus, Legion, VDCE or other favored metacomputing backends.At the tier-2 level, we are working with several Java ORBs used for testing purposes and compar-ative analysis such as OrbixWeb, VisiBroker, and JacORB. In the C++ sector, we view omniORB2 as auseful model and we intend to use it initially to wrap C, C++ and Fortran codes as CORBA components.We are learning from JacORB source when implementing IIOP sector of JWORB and from the Jigsawand HP-Nexus sources when implementing the HTTP part of JWORB.9

Figure 7: Overall view of the newWebFlow model. UML based front-end in tier 1 is linked to the JWORBbased middleware which is linked via suitable module proxies to the metacomputing backend. WebFlowservers in tier 2 are given by JWORB servers dressed by a suitable collection of CORBA services,customized for metacomputing application purposes and supporting security, resource management,load balancing, fault tolerance, session control/journaling etc.
10

Several tier-1 packages were discussed in the text. We currently view UML [22] as the mostpromising model and we are at the planning stage of the prototype implementation.We don't know of any other public domain e�ort similar to our new WebFlow model. One relatedcommercial system is IBM Component Broker which involves IBM Mainframes in the backend, CORBAbased middleware (based on IBM SOM model) and variety of commodity front-end options.References[1] Geo�rey Fox, Wojtek Furmanski, Marina Chen, Claudio Rebbi and Jim Cowie, WebWork: Inte-grated Programming Environment Tools for National and Grand Challenges, March 1995.[2] WebFlow - a visual programming paradigm for Web/Java based coarse grain distributed computing- Supercomputing'96 Handout MaterialAlso available at http://www.npac.syr.edu/projects/webspace/doc/sc96/handout/handout.ps[3] Web based Computing - WebFlow at CEWES talk, March '97Also available at http://www.npac.syr.edu/projects/webspace/doc/cewes-mar97/talk[4] WebFlow - a visual programming paradigm for Web/Java based coarse grain distributed computing,February '97, special issue of Concurrency: Practice and Experience on Java for Scienti�c Comput-ing. Also available at http://www.npac.syr.edu/projects/webspace/doc/cpande/feb97/feb97.ps[5] WebFlow Project Home Page at http://osprey7.npac.syr.edu:1998/iwt98/projects/webow[6] Jason Robbins, GEF: Graph Editing FrameworkAvailable at http://www.ics.uci.edu/pub/arch/gef/[7] Craig Thompson, OMG/DARPA Workshop on Compositional Software Architectures, Monterey,CA January 6-8 1998. Available at http://www.objs.com/workshops/ws9801/[8] Dennis Gannon, Component Architectures for High Performance Distributed Meta-Computing,OMG/DARPA Workshop, January 1998.[9] JWORB Project Home Page at http://osprey7.npac.syr.edu:1998/iwt98/projects/worb[10] E. Akarsu, G. Fox, T. Haupt, DARP: Data Analysis and Rapid Prototyping Environment for Dis-tributed High Performance Computations, Home Page at http://www.npac.syr.edu/projects/hp�/[11] G. Fox, W. Furmanski and T. Haupt, SC97 handout: High Performance Commodity Comput-ing(HPcc), Also available at http://www.npac.syr.edu/users/haupt/SC97/HPccdemos.html[12] G. Fox and W. Furmanski, HPcc as High Performance Commodity Computing Also available athttp://www.npac.syr.edu/users/gcf/HPcc/HPcc.html[13] Robert Orfali and Dan Harkey, Client/Server Programming with Java and CORBA, Wiley 1997.[14] Globus Project Home Page at http://www.globus.org/[15] Legion Project Home Page at http://www.cs.virginia.edu/~legion/[16] VDCE Project Home Page at http://koshka.cat.syr.edu/projects/vm/11

[17] POOMA Project Home Page at http://www.acl.lanl.gov/PoomaFramework/[18] G. Fox, W. Furmanski and T. Haupt, ASCI WebFlow: High-Level Programming Environment andVisual Authoring Toolkit for High Performance Distributed Computing.Available at http://www.npac.syr.edu/projects/asci-webow/[19] TAO Project Home Page at http://www.cs.wustl.edu/~schmidt/TAO.html[20] Tom Studer's CPS714 Final Project athttp://osprey7.npac.syr.edu:3768/cps616spring97-docs/cb97tst/CPS714/[21] NPAC Scivis Project Home Page at http://kopernik.npac.syr.edu:8888/scivis/index.html[22] UML Home Page at http://www.rational.com/uml/index.shtml

12

	JWORB - Java Web Object Request Broker for Commodity Software based Visual Data ow Metacomputing Programming Environment
	Recommended Citation

	tmp.1285694644.pdf.YIkaK

