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THE HOPF-LAPLACE EQUATION

JAN CRISTINA, TADEUSZ IWANIEC,
LEONID V. KOVALEV, AND JANI ONNINEN

Abstract. The central theme in this paper is the Hopf-Laplace equation, which
represents stationary solutions with respect to the inner variation of the Dirichlet
integral. Among such solutions are harmonic maps. Nevertheless, minimization of
the Dirichlet energy among homeomorphisms often leads to nonharmonic solutions.
We investigate the Hopf-Laplace equation for a certain class of topologically well
behaved mappings which are almost homeomorphisms, called Hopf deformations.
We establish Lipschitz continuity of Hopf deformations, the best possible regularity
one can get. Thus in particular we show that the minimal-energy deformations are
Lipschitz continuous, a result of considerable interest in the theory of minimal
surfaces, calculus of variations, and PDEs, with potential applications to elastic
plates.
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2 CRISTINA, IWANIEC, KOVALEV, AND ONNINEN

1. Introduction

The Hopf-Laplace equation arises in the study of the Dirichlet energy integral

(1.1) EX[h] =

∫∫
X
|Dh|2 = 2

∫∫
X

(
|hz|2 + |hz̄|2

)
dz

for homeomorphisms h : X → Y between two designated domains X and Y in the
complex plane C = {z = x1 + ix2 : x1, x2 ∈ R}. Here and throughout this text we
take advantage of the complex partial derivatives

hz =
∂h

∂z
=

1

2

(
∂h

∂x1
− i ∂h

∂x2

)
and hz̄ =

∂h

∂z̄
=

1

2

(
∂h

∂x1
+ i

∂h

∂x2

)
.

In fact complex notation will be indispensable for advancing this work, especially
when quadratic differentials will enter the stage. Let us commence with the varia-
tional formulation of the classical Dirichlet problem. One asks for the energy-minimal
mapping h : X → C of the Sobolev class h◦ + W 1,2

◦ (X�C) whose boundary values
are prescribed by means of a given mapping h◦ ∈ W 1,2(X�C). The first variation,
h h + ε η, in which η ∈ C∞◦ (X�C) can be any test function and ε→ 0, leads to
the Laplace equation

(1.2) ∆h = 4hzz̄ = 4
∂2h

∂z∂z̄
= 0.

However, this approach is invalid when one seeks to minimize EX[h] among home-
omorphisms; the injectivity of h + ε η is usually lost. The difficulty is circumvented
by performing the inner variation

(1.3) h h ◦ χε , χε : X onto−→ X

where χε are C∞-smooth automorphisms of X onto itself, defined for parameters
ε ≈ 0, and χ◦ = id: X onto−→ X. This is simply a change of the independent variable
in the domain of definition of h. Here each χε may be the identity on ∂X, but it
need not be. The latter situation is called slipping along the boundary. The first
derivative test d

dεEX[h ◦ χε] = 0, at ε = 0, yields [25, Lemma 1.2.4] what we call the
Hopf-Laplace equation

(1.4)
∂

∂z̄

(
hzhz̄

)
= 0, in the sense of distributions.

We shall investigate the Hopf-Laplace equation independently of its roots. Nev-
ertheless, because of its affiliation to the Dirichlet integral the natural domain of
definition, that we shall always assume here, sometimes implicitly, is the Sobolev
space W 1,2(X). Thus the differential expression hzhz̄ will represent an integrable
function. By Weyl’s Lemma the equation reduces equivalently to the first order
nonlinear PDE,

(1.5) hzhz̄ = ϕ , where ϕ is a holomorphic function in X.

We view ϕ also as unknown quantity. In this formulation one can speak of generalized
solutions in the Sobolev space W 1,1

loc (X). But we shall study, predominantly, the ori-
entation preserving mappings, meaning that the Jacobian determinant is nonnegative
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almost everywhere

Jh(z) = J(z, h) = |hz|2 − |hz̄|2 > 0.

Within the class of orientation preserving mappings we do not capture generalized
solutions. Indeed, in this case |hz̄|2 6 |hz hz̄| = |ϕ| ∈ L∞

loc(X), thus h is (locally) a
qc-deformation in the sense of Ahlfors [1]. Since the complex derivatives hz and hz̄
are intertwined by the Beurling-Ahlfors transform, it follows that hz ∈ BMOloc(X).

In particular, for all 1 6 p < ∞ we have h ∈ W 1,p
loc (X), hence h ∈ C α

loc(X) for all
0 6 α < 1. The Lipschitz regularity is much harder to handle; this is the intricate
part of our paper. Note that the qc-deformations of Ahlfors are not necessarily
Lipschitz.

Returning to the variational approach to the Hopf-Laplace equation, if one admits
slipping along the boundary, then the inner variations of the Dirichlet energy should
include diffeomorphisms χε : X onto−→ X that are free on ∂X. Consequently, supple-
mentary equations on ∂X emerge, which are best stated in terms of the holomorphic
quadratic differential.

(1.6) ϕ(z) dz2 = hzhz̄ dz2.

It is called the Hopf differential of h in recognition of the related work of H. Hopf [18].
Stated informally, the additional boundary equations [25, Lemma 1.2.5] say that
ϕ(z) dz2 is real along ∂X, see Definition 2.5. This additional boundary equation will
be satisfied by minimal deformations, see (1.16). Clearly, conformal automorphisms

χε : X onto−→ X do not change the energy. More generally, any conformal transformation
of the domain X does not affect the Hopf-Laplace equation (1.4). In fact, because of
that, it is the shape of the target Y and its closure, called deformed configuration,
that will really matter in questions to follow.

Naturally, complex harmonic functions solve the Hopf-Laplace equation. Worth
noting, is that real-valued solutions in C 1

loc(X) must be harmonic. If h is C 2-smooth
then the Hopf-Laplace equation yields

(1.7) J(z, h) ∆h = 0 , where ∆ = 4
∂2

∂z∂z̄
is the complex Laplacian.

Thus C 2-solutions are harmonic in the region where the Jacobian determinant J(z, h) 6=
0. There are other situations where the Hopf-Laplace equation implies harmonicity,
see Theorem 1.12. Nevertheless, nonharmonic solutions arise naturally in global
analysis of minimal surfaces [9, Ch. 2], [6] and in the calculus of variations [2, Ch.
21], [24]. In mechanics, in particular in elasticity theory, the Hopf-Laplace equation
appears under the name of the energy-momentum equations.

Let us look at some elementary though critical examples. One might expect
from (1.7) that all W 1,2-solutions whose Jacobian determinant does not vanish (al-
most everywhere) are harmonic maps. This, however, is easily seen to be false, for
in the complex plane the piece-wise linear mapping

h(z) =

{
2z + z̄ , if Im z > 0

z + 2z̄ , if Im z 6 0;
ϕ = hz hz̄ ≡ 2 , J(z, h) ≡ ±3
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is not harmonic. Observe that the Jacobian determinant changes sign. More elabo-
rate examples are provided in Section 3, which reveal that:

Example 1.1. For each 1 < p < ∞ there exists a generalized solution h : D → C
(in the unit disk D ) to the Hopf-Laplace equation hz hz̄ ≡ 1 whose first derivatives
belong to the Marcinkiewicz weak space L p

weak(D) , but not to L p(D).

The message from this example is that without supplementary conditions of a
topological nature the Hopf-Laplace equation will not guarantee any substantial im-
provement of the regularity of the solutions. This is in marked contrast to the case of
elliptic PDEs, like the Laplacian. Consequently, we focus on solutions in a suitable
closure of homeomorphisms. Mathematical models of nonlinear elasticity motivate
our calling such solutions Hopf deformations.

The obvious question to ask is what topological preconditions do we really need?
Partial answers are given in a few already known regularity results. Hélein [15]
proved that quasiconformal solutions are harmonic. This is actually true [20] for any
homeomorphic solution in the Sobolev space W 1,2(X�Y) . Even more, injectivity is
not necessary as long as the solution represents an open discrete map, such are the
mappings of integrable distortion [23]. In particular, W 1,2-solutions (not necessarily
injective) with Jacobian J(z, h) > const > 0 are also harmonic. However, in Exam-
ple 3.1, we give a Lipschitz solution with J(z, h) > 0 , almost everywhere in the unit
disk D , which is not C 1-smooth. Even more, this solution is a homeomorphism in
D , except for a tiny crack along the radius which is squeezed into a point. Such a
failure of injectivity along the cracks (reminiscent of elastic deformations) typically
occurs when we pass to a weak limit of a minimizing sequence of homeomorphisms.
With the loss of injectivity the extremal mappings will not be harmonic. The exam-
ples, like the one mentioned above, demonstrate that the solutions can be Lipschitz
at best. Our main results can be described as follows

• Lipschitz regularity (Theorem 1.14): Any Hopf deformation is locally Lips-
chitz.
• Partial harmonicity (Theorem 1.12): Any Hopf deformation h restricts to a

harmonic diffeomorphism of h−1(Y) onto Y.
• Improved regularity (Theorem 1.15): If Y is a polygon-type domain, then any

C 1-smooth minimal deformation is a harmonic diffeomorphism.

In a summary, we confirm the following principle.

Topologically well behaved solutions to the Hopf-Laplace equation enjoy Lipschitz
regularity.

Our Lipschitz regularity results apply to the minimal deformations; that is, to min-
imizers of the Dirichlet energy in the class of suitably generalized homeomorphisms.
An explicit example of a nonharmonic minimal deformations is the following [3]:
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Example 1.2. Consider two annuli X = {z : r < |z| < R} and Y = {w : 1 < |w| <
R∗} where 0 < r < 1 < R <∞ and R∗ = 1

2(R+R−1). The map

(1.8) h(z) =

 z
|z| , if r < |z| 6 1 , squeezing to the unit cirle

1
2(z + 1

z̄ ) , if 1 6 |z| < R , the Nitsche harmonic map

takes X into Y . It satisfies the Hopf-Laplace equation

(1.9) hz hz̄ = ϕ(z) =
−1

4z2
.

The quadratic differential ϕ(z) dz2 is real and positive along the boundary circles.

The regularity theory of energy minimizing mappings has a long history. The
monographs [16, 30] provide an overview of the subjects. Note that in [16] the
solutions of the Hopf-Laplace equation are called weakly Noether harmonic maps.
Numerous recent studies concern the Lipschitz continuity of energy minimizers in the
setting of metric spaces, where higher degrees of smoothness are not available [5, 8,
14, 26, 27, 28, 29, 39]. However, in these studies minimization is performed among all
mappings that are either prescribed on the boundary or belong to a given homotopy
class. This minimization problem allows one to use the first variation. Our approach
is different in that we obtain the Lipschitz continuity using only the inner variation.
Thus we have in our disposal only the Hopf-Laplace equation instead of the Laplacian.

Before rigorous statements we need to review some notation and basic definitions.

1.0.1. Domains. We shall be concerned with mappings h : X→ Y between bounded
planar domains of finite connectivity 1 6 ` <∞ . Thus each boundary X = ∂X and
Υ = ∂Y consists of ` disjoint continua. We reserve the notation,

X1,X2, ...,X` , for the components of X = ∂X
Υ1,Υ2, ...,Υ` , for the components of Υ = ∂Y.(1.10)

1.0.2. Boundary Correspondence. Every homeomorphism h : X onto−→ Y gives rise to a
one-to-one correspondence between boundary components of X and boundary com-
ponents of Y. It will involve no loss of generality in assuming (by re-arranging the
indices, if necessary) that the correspondence is:

(1.11) h : Xν  Υν , for ν = 1, 2, ..., `.

This simply means that h(x)→ Υν as x→ Xν . The above definition of the boundary

correspondence is also pertinent to more general maps h : X onto−→ Y, specifically to
those which are proper and monotone in the sense defined below.
Definition 1.3. [32, 35, 40] A continuous mapping f : X→ Y between metric spaces
X and Y is monotone if for each y ∈ f(X) the set f−1(y) is compact and connected.
It is proper if for each compact set F ⊂ f(X) the set f−1(F) is also compact.
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1.0.3. cd−uniform convergence and the class Hcd(X,Y). The idea of the cd-limit is
a useful compromise between the concepts of c-uniform and uniform convergence.

Definition 1.4. A sequence of mappings hk : X→ Y , k = 1, 2, ... , is said to converge
cd-uniformly to a mapping h : X→ R2 if

• hk → h c-uniformly (uniformly on compact subsets of X)
• dist(hk(x), ∂Y) → dist(h(x), ∂Y) uniformly in X .

We shall write it as hk
cd−→ h and denote the class of cd-limits of homeomorphisms

hk : X onto−→ Y satisfying (1.11) by Hcd(X,Y).

We emphasize that the boundary points of Y may be in the range of h ∈Hcd(X,Y).
This fact is crucial for several results that follow. Precisely, we have

(1.12) Y ⊂ h(X) ⊂ Y , for every h ∈Hcd(X,Y).

If the range of a mapping h ∈Hcd(X,Y) equals Y then h is both monotone and
proper. Actually, we have an even more precise statement.

Proposition 1.5 (The Youngs approximation). A continuous mapping h : X → Y
between bounded `-connected domains belongs to Hcd(X,Y) if and only if it is mono-
tone proper and surjective.

Let us introduce the class MPS(X � Y) of continuous mappings h : X → Y
between bounded domains, which are monotone proper and surjective. Note that
such mappings, as opposed to Hcd(X,Y), do not take values in ∂Y . Our notation
is meant to emphasize this distinction. The following is the extension of our earlier
result [20] on approximation of homeomorphisms to the setting of monotone proper
mappings.

Theorem 1.6 (Approximation of MPS maps). Let h : X onto−→ Y be a continuous

monotone proper mapping of Sobolev class W 1,2
loc (X) between bounded `-connected do-

mains X and Y. Then there exist diffeomorphisms hk : X onto−→ Y such that

• hk − h ∈ A◦(X)
• lim
k→∞

‖hk − h‖A (X) = 0.

Hereafter A (X) = C (X) ∩ W 1,2(X�C) is the Royden algebra equipped with the
norm

(1.13) ‖f‖A (X) = ‖f‖C (X) + ‖Df‖L 2(X).

and A◦(X) = C◦(X)∩W 1,2
◦ (X�C) is a subalgebra obtained by completing the space

C∞◦ (X) with respect to this norm.
The following corollary is immediate from Theorem 1.6.

Corollary 1.7. If h ∈ MPS(X � Y) ∩ W 1,2
loc (X), then the Jacobian of h does not

change sign; that is, either Jh > 0 a.e. or Jh 6 0 a.e.
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1.0.4. Deformation and the class D(X ,Y) . The concept of deformation seems to
differ only a little from the routinely used W 1,2 –weak limit of homeomorphisms.
However, when the topological features of the minimal-energy solutions are of major
concern the deformations become better suited than the weak limits of homeomor-
phisms. For example, in [19] the concept of deformations was critical in establishing
existence of harmonic homeomorphisms between planar doubly connected domains.
Before making the precise definition let us look at some examples of both geometric
and analytical nature.

A sequence of homeomorphisms converging weakly in W 1,2 actually converges c-
uniformly, so the limit is a continuous map. But that is all, in general, what the
weak limit of a minimizing sequence can receive from homeomorphisms. Consider
the classical example:

Example 1.8. Conformal automorphisms hk : D onto−→ D of the unit disk, hk(z) =
z−ak
1−zak , |ak| → 1 , are the minimal energy maps. They converge weakly in W 1,2(D)

and c-uniformly to a constant map. Such a trivial loss of topological distinctions is
due to the failure of cd-convergence.

On the other hand, when Sobolev mappings come into play, we find that a c-
uniform limit of homeomorphisms hk : X onto−→ Y that are uniformly bounded in
W 1,2(X�Y) satisfies the measure theoretical condition of non-overlapping

(1.14)

∫∫
X
|J(z, h)| dz 6 |Y|,

due to the L 1-weak subconvergence of Jacobians [21, Theorem 8.4.2]. In nonlinear
elasticity theory this may be interpreted as saying that interpenetration of matter
does not occur. However, we will be forced to take into consideration more general

minimizing sequences hk
cd−→ h in which the mappings are neither homeomorphisms

nor they have uniformly bounded energy. We still impose the nonoverlapping con-
dition (1.14). In view of Corollary 1.7 the Jacobian of h does not change sign, and
thus it entails no loss of generality to assume that Jh > 0 a.e. These observations
drive us to the following

Definition 1.9 (Deformation). Let X and Y be bounded `-connected domains. A
deformation is a mapping h ∈Hcd(X,Y) such that

• h ∈ W 1,2(X�R2)
• The Jacobian determinant of h is nonnegative a.e. and satisfies the non-

overlapping condition

(1.15)

∫∫
X
J(z, h) dz 6 |Y|.

The class of all deformations will be denoted by D(X,Y). Throughout what follows,
if no confusion can arise, we shall freely assume without explicit mention that the class
D(X,Y) is nonempty. We again strongly emphasize that a deformation h ∈ D(X,Y)
may take points of X into ∂Y, a key point that will affect the forthcoming arguments.
The structure of the preimage h−1(y◦) of a point in y◦ ∈ ∂Y is a delicate issue that
we address in sections 5 and 8.



8 CRISTINA, IWANIEC, KOVALEV, AND ONNINEN

In [19] we have already established the essential properties of deformations. In
particular, the class D(X ,Y) is sequentially weakly closed in W 1,2(X�R2), provided
that X has 2 6 ` < ∞ boundary components none of which are points [19, Lemma
3.13]. Under these hypotheses we have the following.

Corollary 1.10. The infimum energy of the Dirichlet energy within the class D(X ,Y)
is attained.

A mapping h◦ ∈ D(X ,Y) such that

(1.16)

∫
X
|Dh◦|2 dx = min

h∈D(X ,Y)

∫
X
|Dh(x) |2 dx

will be called a minimal deformation.

1.1. Hopf deformations.

Definition 1.11. Let X and Y be bounded `-connected domains. A deformation
h ∈ D(X ,Y) which satisfies the Hopf-Laplace equation

(1.17)
∂

∂z

(
hz hz

)
= 0

is called a Hopf deformation.

Thus Hopf deformations are among stationary solutions (with respect to the inner
variation) of the Dirichlet energy integral. We shall prove that,

Theorem 1.12. Any Hopf deformation h ∈ D(X,Y) is a harmonic diffeomorphism
of h−1(Y) ⊂ X onto Y.

Observe that in Example 1.2 the mapping h fails to be harmonic exactly in the
part of X that is squeezed into a boundary component of the target annulus Y. More
precisely, this particular component of ∂Y is the inner boundary circle at which Y is
not convex. In particular, when the range of h is Y, we can combine Theorem 1.12
with Proposition 1.5 to obtain

Corollary 1.13. Let X and Y be bounded `-connected domains and h : X onto−→ Y a
monotone proper mapping of Sobolev class W 1,2(X�Y) that satisfies the Hopf-Laplace
equation (1.17). Then h is a harmonic diffeomorphism.

This corollary represents another advance on the Eells-Lemaire problem [10, 11]:
under what conditions does the holomorphicity of the Hopf differential imply that
the mapping is harmonic?

1.2. Lipschitz regularity. The foremost interesting and much harder task is to
determine the regularity of a Hopf deformation when its image h(X) goes over the
designated target Y; that is, into its closure. There are minimal deformations, in
particular Hopf deformations, which are not C 1-smooth in X, see Corollary 1.17. Our
main result in this paper is the following best possible regularity of Hopf deformations.

Theorem 1.14. Every Hopf deformation h ∈ D(X ,Y) is locally Lipschitz continu-
ous. In particular, a minimal deformation of planar `-connected domains is locally
Lipschitz continuous.
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Theorem 1.15. Suppose that h ∈ D(X,Y) is a minimal deformation and the non-
convex part of ∂Y is at most countable. Then h is C 1-smooth if and only if it is a
harmonic homeomorphism.

The term nonconvex part of ∂Y refers to a set of points in ∂Y where Y is not
convex in any neighborhood. Precisely,

Definition 1.16. We say that Y is convex at y◦ ∈ ∂Y if for some ε > 0 the set
{y ∈ Y : |y − y◦| < ε } is convex.

A natural example of a domain with finite nonconvex part of the boundary is an
`-connected polygonal domain.

According to [19, Theorem 2.4] there exists a nondecreasing function

Θ: (0,∞)→ (0,∞), lim
τ→∞

Θ(τ)

τ
= 1

such that the following holds. Whenever two bounded doubly connected domains X
and Y admit an energy minimizing diffeomorphism h : X onto−→ Y, we have

(1.18) ModY > Θ(ModX)

where Mod stands for the conformal modulus. Now combining Theorem 1.15 with
the nonexistence of energy minimizing diffeomorphisms, we arrive at the following
corollary.

Corollary 1.17. Let X and Y be bounded doubly-connected domains such that the
nonconvex part of ∂Y is at most countable and (1.18) fails. Then any minimal
deformation in D(X,Y) is not C 1-smooth.

Figure 1. A minimal deformation fails to be C 1-smooth.

We conclude this introduction with a brief outline of the proofs of the main re-
sults. To prove the partial harmonicity of a Hopf deformation h we show that h has
a stronger energy minimization property in h−1(Y) than in all of X, namely (6.1)
holds. The three main ingredients of this proof are: diffeomorphic approximation
of monotone Sobolev mappings (§4), a Reich-Strebel-type inequality (Lemma 6.4),
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and the structure of preimages of points under h (§5). The partial harmonicity of
h is essential in the proof of its Lipschitz continuity, however a different approach is
required for the set X \ h−1(Y). To this end we use a Bonnesen-type inequality, i.e.,
a stability result for the isoperimetric inequality (§7). The proof of Theorem 1.15 in-
vokes Besicovitch’s removability theorem for holomorphic functions, further analysis
of preimages of points under h, and the boundary point lemma of E. Hopf.

One method of proving Lipschitz continuity of h proceeds through the subhar-
monicity of the energy density |Dh|2, as in [14] and [5]. This method relies on the
first variation of h, which is not available to us. Although the Hopf-Laplace equation
appears to imply the subharmonicity of |Dh|2 on the formal level, our Example 1.1
shows that this is not the case.

2. Preliminaries

The uniform limit of self-homeomorphisms of the sphere S2 is a monotone sur-
jective mapping [40, IX.3.11]. In the converse direction, a monotone mapping of S2

onto itself can be refined in some Jordan subdomains of S2 in which it becomes a
homeomorphism.

2.1. The Youngs refinement. Let X and Y be `-connected domains and f ∈
MPS(X � Y). Recall that D b Y is a Jordan domain if it is the interior of a
homeomorphic image of the closed unit disk.

Proposition 2.1. For every Jordan domain D b Y and f ∈ MPS(X � Y) the
preimage U = f−1(D) b X is a simply connected domain in X. Furthermore, there is
fD ∈MPS(X�Y), the Youngs refinement, such that

• fD = f in X \ U.
• fD restricted to U is a homeomorphism of U onto D.

Proof. This is a consequence of the Youngs modification theorem [41, Theorem 10.1]

or [35, II.1.47] about continuous monotone mappings F : S2 onto−→ S2. It says that to
every Jordan domain ∆ ⊂ S2 there corresponds a continuous monotone mapping
F∆ : S2 onto−→ S2 such that

• F∆ = F in S2 \ F−1(∆)
• F∆ maps F−1(∆) homeomorphically onto ∆.

We prove Proposition 2.1 by applying the Youngs theorem to the `-point compactifi-
cations of X and Y. Indeed, both X and Y are homeomorphic to the sphere S2 with
` punctures, say via the maps Φ: X→ S2 \ {x1, . . . , x`} and Ψ: Y→ S2 \ {y1, . . . , y`}
where the punctures are enumerated in the same way as the boundary compo-
nents (1.10). For any mapping f ∈ MPS(X � Y) the composition Ψ ◦ f ◦ Φ−1

extends to a continuous mapping

(2.1) F : S2 onto−→ S2, with F
(
Φ(xν)

)
= Ψ(yν), ν = 1, . . . , `.

Any simply connected domain D ⊂ Y is mapped via Ψ onto a simply connected do-
main ∆ = Ψ(D) ⊂ S2 which stays away from the punctures. By the Youngs theorem
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F−1(∆) is a simply connected domain in S2. It follows that f−1(D) is a simply con-

nected domain compactly contained in X. The homeomorphism F∆ : F−1(∆) onto−→ ∆

(the Youngs refinement) yields a homeomorphism fD : f−1(D) onto−→ D. �

2.2. The Youngs approximation, proof of Proposition 1.5.

Proof. First, suppose that f : X into−→ Y is a cd-limit of homeomorphisms fk : X onto−→ Y.
Therefore, f(X) = Y, by (1.12). The preimage of a compact set in Y, under f , is
closed and stays away from ∂X because f satisfies (1.11). Thus f is proper. To show

monotonicity we appeal to the induced mappings Fk : S2 onto−→ S2, Fk = Ψ ◦ fk ◦ Φ−1

as in (2.1). These are homeomorphisms of S2 onto itself converging uniformly to

F = Ψ ◦ f ◦ Φ−1. Thus F is monotone [41, Theorem 11.1]. Since f : X onto−→ Y we see
that f is monotone as well.

In the converse direction we must show that every mapping f ∈ MPS(X � Y)
belongs to Hcd(X,Y). In the proof of Proposition 1.5 we shall appeal to the classical
Youngs approximation theorem [41, Theorem 11.1] (or [35, II.1.57]). It asserts that

A continuous mapping f : S2 onto−→ S2 is monotone if and only if it is a uniform limit
of homeomorphisms of S2 onto S2.

Let us compactify X and Y as in the proof of Proposition 2.1, via the home-
omorphisms Φ: X onto−→ S2 \ {x1, . . . , x`} and Ψ: Y onto−→ S2 \ {y1, . . . , y`}. For any

f ∈ MPS(X � Y) the induced mapping F : S2 onto−→ S2, being monotone, can be

uniformly approximated by homeomorphisms Fk : S2 onto−→ S2. By altering Fk near
punctures we can ensure that Fk(xν) = yν for ν = 1, . . . , `. We then return to the
domains X and Y via Φ and Ψ to define homeomorphisms

(2.2) fk = Ψ−1 ◦ Fk ◦ Φ: X onto−→ Y

and observe that fk
cd−→ f by construction. �

The Youngs refinement provides a homeomorphic replacement of a monotone map-
ping. The following proposition shows that such a replacement can be chosen to be
harmonic. It combines classical results of potential theory [12, 36] with a recent
extension of the Radó-Kneser-Choquet theorem.

Proposition 2.2. Let X ⊂ C be a domain. To every bounded simply connected
domain U b X there corresponds a unique linear operator

PU : C (X)→ C (X)

such that for every f ∈ C (X)

(i) PUf = f in X \ U.
(ii) PUf is harmonic in U.

Such an operator has the additional properties [19]

(iii) PUf ∈ f + W 1,2
◦ (U), whenever f ∈ C (X) ∩W 1,2

loc (X�C). Moreover,

EU[PUf ] 6 EU[f ], provided EU[f ] <∞.
(iv) Suppose that the restriction f|U of f ∈ C (X) is a homeomorphism of U onto

a convex domain D ⊂ C, then PUf : U onto−→ D is a harmonic diffeomorphism.
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We call PUf the harmonic replacement of f .

2.3. Prerequisites from holomorphic quadratic differentials. In this section
we recall some basic facts about holomorphic quadratic differentials. The general
reference for these topics is [38].

Let X will be a bounded `-connected domain and ϕ : X → C a holomorphic func-
tion with isolated zeros, called critical points. Denote X◦ = X \ {zeros of ϕ}. In a
neighborhood of every point a ∈ X◦ one can introduce a local conformal mapping
w = Φ(z) =

∫ √
ϕ(z) dz, called a natural parameter near a. Through every regular

point there pass two C∞-smooth orthogonal arcs, called horizontal and vertical arcs.
A vertical arc is a C∞-smooth curve γ : t→ γ(t), a < t < b, along which

[γ̇(t)]2ϕ
(
γ(t)

)
< 0, a < t < b.

A horizontal arc is a C∞-smooth curve β : t→ β(t), c < t < d, along which

[β̇(t)]2ϕ
(
β(t)

)
> 0, c < t < b.

We emphasize that this yields, in particular, that such arcs only contain regular points
of ϕ. A vertical trajectory of ϕ in X is a maximal vertical arc; that is, not properly
contained in any other vertical arc. Hereafter, with the customary abuse of notation,
the same symbol γ will be used for both the parametrization γ = γ(t) and its range.
Similarly, a horizontal trajectory is a maximal horizontal arc in X. Through every
regular point of ϕ there passes a unique vertical (horizontal) trajectory. A trajectory
whose closure contains a critical point of ϕ is called a critical trajectory. There are at
most a countable number of critical trajectories, so they cover a set in X of measure
zero. We will be largely concerned with noncritical trajectories.

Definition 2.3. (ϕ-rectangle) A ϕ-rectangle of a quadratic differential ϕ(z) dz2 is
any simply connected domain R ⊂ X◦ on which the natural parameter w = Φ(z) =∫ √

ϕ(z) dz has a univalent branch which takes R onto a Euclidean rectangle

Φ(R) = {w = t+ iτ : 0 < t < T and a < τ < b}.

Note that R contains no zeros of ϕ. We will be concerned with ϕ-rectangles which
are compactly contained in X◦, so Φ defines a diffeomorphism of a neighborhood
of R onto a neighborhood of Φ(R). Then we define the horizontal edges of R,
α = Φ−1 ([0, T ]× {a}) and β = Φ−1 ([0, T ]× {b}) and similar for the vertical edges.

Every noncritical vertical trajectory γ ⊂ Ω in a simply connected domain Ω is a
cross cut, see Theorem 15.1 in [38]. Thus in the maximal interval a < t < b of the
existence of γ = γ(t) both limit sets at the end-points of γ, denoted by γ{a} and γ{b},
lie in ∂Ω. Let γ◦ ⊂ γ be any closed vertical subarc of γ, defined by γ◦(t) = γ(t) for
a◦ 6 t 6 b◦, where a < a◦ < b◦ < b. Then the ϕ-length of γ◦ is equal or smaller than
ϕ-length of any rectifiable curve β ⊂ Ω which connects A◦ = γ(a◦) with B◦ = γ(b◦).
This means that

(2.3)

∫
γ◦

|ϕ|1/2 |dz| 6
∫
β
|ϕ|1/2 |dz|
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see [38, Theorem 16.1]. Note that γ \ γ◦ consists of two components (two disjoint
vertical arcs). Inequality (2.3) can be slightly generalized; it is not necessary to
assume that the end-points of β coincide with the endpoints of γ◦.

Lemma 2.4. Let β ⊂ Ω be a locally rectifiable arc in a simply connected region whose
closure intersects both components of γ \ γ◦, then

(2.4)

∫
γ◦

|ϕ|1/2 |dz| 6
∫
β
|ϕ|1/2 |dz|.

Proof. Let A,B ∈ γ be points in different components of γ \γ◦ that are approachable
through the arc β; that is,

A = lim
n→∞

An and B = lim
n→∞

Bn, where An, Bn ∈ β.

Let [A,B]γ denote subarc of γ that connects A andB. We certainly have γ◦ ⊂ [A,B]γ ,
so ∫

γ◦

|ϕ|1/2 |dz| 6
∫

[A,B]γ

|ϕ|1/2 |dz|.

Similarly, we denote by [Bn, An]β ⊂ β the closed (rectifiable) subarc of β which
connects Bn and An. Since An → A ∈ γ ⊂ Ω and Bn → B ∈ γ ⊂ Ω for sufficiently
large n the straight segments [A,An] and [Bn, B] lie in Ω. We now have a rectifiable
curve [A,An] ∪ [An, Bn]β ∪ [Bn, B] in Ω which connects the end-points of [A,B]γ .
Therefore, we have∫

γ◦

|ϕ|1/2 6
∫

[A,B]γ

|ϕ|1/2 6
∫

[An,Bn]γ

|ϕ|1/2 +

∫
[A,An]

|ϕ|1/2 +

∫
[Bn,B]

|ϕ|1/2

6
∫
β
|ϕ|1/2 + (|An −A|+ |Bn −B|) ‖ϕ‖

1/2
C (Ω) −→

∫
β
|ϕ|1/2,

as desired. �

The next lemma deals with a holomorphic quadratic differential ϕdz2 which is real
on the boundary of a C 1-smooth domain X, no single points as components of ∂X.

Definition 2.5. A quadratic differential ϕdz2 is said to be real on the boundary of
a C 1-smooth `-connected domain X if ϕ is smooth up to ∂X and each component of
∂X is either a horizontal or a vertical trajectory of ϕdz2.

Lemma 2.6. Let X be a finitely connected domain with C 1-smooth boundary. Let
ϕdz2 be a holomorphic quadratic differential in X which is real on ∂X. Suppose
that Γ is a vertical trajectory of ϕdz2 with both ends approaching the same boundary
component of X. Then the components of X \ Γ are not simply connected.

Proof. Suppose that the set X \ Γ has a simply connected component G. There are
no closed trajectories in G, for such a trajectory must enclose a pole of ϕ. The global
structure of trajectories of a holomorphic quadratic differential with finite norm [38]
is inconsistent with ∂G being a union of a vertical trajectory and another (vertical
or horizontal) trajectory. �
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Lemma 2.7 (Fubini-like integration formula). Let ϕ(z) dz2 be a holomorphic qua-
dratic differential in a simply connected domain Ω ⊂ C, ϕ 6≡ 0. Suppose that F and
G are measurable functions in Ω such that

(2.5)

∫∫
Ω
|ϕ(z)||F (z)| dxdy <∞ and

∫∫
Ω
|ϕ(z)||G(z)|dxdy <∞.

Then for almost every vertical trajectory γ of ϕ(z) dz2 we have

(2.6)

∫
γ
|ϕ(z)|1/2|F (z)| |dz| <∞ and

∫
γ
|ϕ(z)|1/2|G(z)||dz| <∞.

If, in addition,

(2.7)

∫
γ
|ϕ(z)|1/2F (z) |dz| =

∫
γ
|ϕ(z)|1/2G(z) |dz|,

then

(2.8)

∫∫
Ω
|ϕ(z)|F (z) dxdy =

∫∫
Ω
|ϕ(z)|G(z) dxdy.

Proof. According to [38, §19.2] Ω can be covered, up to a set of measure zero, by a
countable number of disjoint ϕ-strips. These are open connected subsets of Ω with
no critical points, such that a locally defined analytic function Φ(z) =

∫ √
ϕ(z) dz is

actually a univalent conformal mapping of the ϕ-strip onto a Euclidean vertical strip
S in the w-plane, w = Φ(z).

S = {w = t+ iτ : 0 < t < T, α(t) < τ < β(t)}

where−∞ 6 α(t) < β(t) 6 +∞ are measurable functions. Making a substitution z =
Φ−1(w) the problem reduces equivalently to the usual Fubini’s theorem in Euclidean

vertical strip, for functions F̃ (w) = |ϕ(z)|F (z) and G̃(w) = |ϕ(z)|G(z). �

Corollary 2.8. Assume, instead of condition (2.7) in Lemma 2.7 that∫
γ
|ϕ|1/2|F | 6

∫
γ
|ϕ|1/2|G|

for almost every noncritical vertical trajectory of ϕdz2. Then∫∫
Ω
|ϕ| |F | 6

∫∫
Ω
|ϕ| |G|.

Proof. Replace F and G in Lemma 2.7, with |F (z)| and µ(z)|G(z)|, where

0 6 µ(z) =

∫
γ |ϕ|

1/2|F |∫
γ |ϕ|

1/2|G|
6 1 for all z ∈ γ. �

Given a quadratic holomorphic differential ϕdz2 we define two partial differential
operators, called the horizontal and vertical derivatives

∂
H

=
∂

∂z
+

ϕ

|ϕ|
∂

∂z̄
and ∂

V
=

∂

∂z
− ϕ

|ϕ|
∂

∂z̄
.
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If h satisfies the Hopf-Laplace equation hzhz̄ = ϕ, then the horizontal and vertical
trajectories of ϕdz2 are the lines of maximal and minimal stretch for h. Precisely,
the following identities hold.

|∂
H
h| = |hz|+ |hz̄|, |∂

V
h| =

∣∣|hz| − |hz̄|∣∣(2.9)

|∂
H
h| · |∂

V
h| = |Jh|, |∂

H
h|2 − |∂

V
h|2 = 4|ϕ|(2.10)

As a consequence

(2.11) |∂
V
h|2 6 |Jh| 6 |∂H

h|2.

3. Examples

Mappings in Example 1.1. Actually such solutions can be defined in the entire plane.
First we define h in the upper half plane, Im z > 0, where one can settle the analytic
branches of power functions and the logarithm.

(3.1) h(z) =


z1−α

1− α
+

z1+α

1 + α
, where α =

2

p
6= 1

log z +
z̄2

2
, if p = 2.

We have

hz = z
− 2
p , which belongs to L p

weak(D) but not to L p(D)

hz̄ = z
2
p , which belongs to L∞(D) ⊂ L p(D).

Thus the Hopf-Laplace equation hzhz̄ ≡ 1 holds in the upper half plane. Then we
extend h to the lower half of the plane by setting h(z) = h(z) for Im z < 0. It is a
general fact, and easy to see, that such an extension gives a Sobolev function in the
entire plane. The Hopf-Laplace equation remains true in the lower half of the plane
as well.

Figure 2. A non-Lipschitz W 1,2-solution to the Hopf-Laplace equation

Figure 2 illustrates the case p = 4. Thus h(z) = 2z1/2+2/3z̄3/2 belongs to W 1,s(D) ⊂
W 1,2(D) for every 2 < s < 4, but is not locally Lipschitz continuous. �
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Example 3.1. We use the polar coordinates for z in the closed unit disk D, z = ρeiθ,
0 6 ρ 6 1 and 0 6 θ < 2π. Define h : D→ C

h(ρeiθ) = 2ρ [
√
ρ sin(3/2 θ) + i sin θ] = z − z̄ − i

[
z

3/2 − z̄3/2
]
.

This mapping is Lipschitz continuous, since it has bounded derivatives

(3.2) hz = 1− 3/2 i
√
z, hz̄ = −1 + 3/2 i

√
z̄.

Moreover, its Hopf differential is holomorphic, hzhz̄ = −1/4 (4 + 9z). Thus h solves
the Hopf-Laplace equation ∂

∂z̄

(
hzhz̄

)
= 0.

Formulas (3.2) show that h fails to be C 1-smooth in any neighborhood of the ray
I = {z : Im z = 0 and 0 6 Re z 6 1}. Concerning topological behavior, h turns out
to be a harmonic diffeomorphism of D \ I onto the butterfly domain Y ⊂ C. Figure 3
shows the grid of horizontal and vertical trajectories in X as well as their images in
Y.

Figure 3. A non-C 1 Hopf deformation

The radius I is squeezed into the origin, which is a boundary point of Y. Figure 3
illustrates that I is an arc of a critical vertical trajectory of the quadratic differential
ϕdz2. Let us notice that the functions |hz| and |hz̄| are actually continuous. Indeed,
we have

|hz|2 = 1 + 9/4 ρ+ 3
√
ρ sin

θ

2
, |hz̄|2 = 1 + 9/4 ρ− 3

√
ρ sin

θ

2
.

In particular, the Jacobian determinant and the energy density function are also
continuous

Jh = |hz|2 − |hz̄|2 = 6
√
ρ sin

θ

2
, which is positive expect for z ∈ I.

|Dh|2 = 2
(
|hz|2 + |hz̄|2

)
= 4 + 9ρ.

It is easy to see that h is a cd-limit of homeomorphisms of D onto Y. Thus h is a
Hopf deformation. In section 8 we demonstrate through nonexplicit examples, that
even minimal deformations need not be C 1-smooth.
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4. Approximation of monotone mappings

Let us begin by recalling the following approximation of homeomorphisms, estab-
lished in [20].

Proposition 4.1. Let H : X onto−→ Y be a homeomorphism of Sobolev class W 1,2
loc (X�

Y). Then there exist diffeomorphisms Hk : X onto−→ Y, k = 1, 2, . . . , such that

• Hk −H ∈ A◦(X).
• ‖Hk −H‖A (X) → 0 as k →∞.

In view of this result we need only construct, for every ε > 0, a homeomorphism
H : X onto−→ Y such that

(i) H − h ∈ A◦(X).
(ii) ‖H − h‖A (X) 6 6ε.

The construction of H proceeds in three steps. We constructMPS(X�Y) mappings
H◦ = h, H1 ∈ H0 +A◦(X), H2 ∈ H1 +A◦(X) and H3 ∈ H2 +A◦(X), in which H3 will
turn out to be a desired homeomorphism of X onto Y. In each step we make suitable
harmonic replacements to gain more points of injectivity. Moreover, estimate (ii) will
follow from:

‖H1 −H0‖A (X) 6 2ε, ‖H2 −H1‖A (X) 6 2ε and ‖H3 −H2‖A (X) 6 2ε.

We shall go into the construction of H1 in detail in Step 1. For H2 we follow the
construction from Step 1, but with H1 in place of h. In much the same way H3

will be obtained as a refinement of the mapping H2. Before passing to the actual
construction of H1 we need some geometric considerations.

4.1. Proof of Theorem 1.6. An open dyadic square in R2 is the set

Qmij = {(a, b) : 2mi < a < 2m(i+ 1) and 2mj < b < 2m(j + 1)}.
Hereafter, the number 2m is the size of the square. Note that:

(1) Two different squares of the same size are disjoint.
(2) Each square of size 2m is contained in exactly one square of size 2m+1, namely

Qmij ⊂ Qm+1
ı̈ ̈ , where i− 1 6 2 ı̈ 6 i and j − 1 6 2 ̈ 6 j.

We refer to Qm+1
ı̈ ̈ as the dyadic square next to Qmij .

(3) Every two dyadic squares are either disjoint or one contains the other.

A dyadic mesh in R2 is a family M of open dyadic squares. Let Y be a bounded
domain. We will be interested only in those dyadic squares which are compactly
contained in Y. Call such a dyadic square Q b Y maximal if the next dyadic square
to Q is not compactly contained in Y. Denote by

M(Y) -the family of maximal dyadic squares in Y.

Clearly M(Y) is a disjoint family and

Y =
⋃

Q∈M(Y)

Q.
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Claim 1. Every compact subset F ⊂ Y intersects at most a finite number of closed
squares Q, where Q ∈M(Y).

Proof. For, if not, we would find an arbitrarily small square Q ∈M(Y) whose closure
intersects F, because one can accommodate only a finite number of large squares in Y.
But then the next dyadic square, being small enough, would be compactly contained
in Y. This contradicts maximality of Q ∈M(Y). �

In what follows we shall subdivide each Q ∈ M(Y) into 4n congruent dyadic
subsquares, later referred to as fine squares. The numbers n = nQ will be chosen
and fixed according to the needs for the construction of H1. In the meantime, let us
reserve a notation and point out basic features of fine squares.

Qα ⊂ Q, α = 1, 2, . . . , 4n, n = nQ.

These are disjoint open dyadic squares of size 2m−n, where 2m is the size of Q. For
each Q ∈M(Y) we have

Q =
4n⋃
α=1

Qα , n = nQ.

Once a subdivision of each Q ∈ M(Y) is made the family of fine squares will be
denoted by

F(Y) = {Qα : Q ∈M(Y), Qα ⊂ Q, α = 1, . . . , 4n, n = nQ}.

This is a disjoint family of squares whose closures cover the entire domain Y. As in
Claim 1, we have

Claim 2. Every compact set F ⊂ Y intersects at most a finite number of closed
fine squares.

We now proceed to the construction of the mapping H1.
Step 1. Let Q b Y be a generic square inM(Y), and Qα ⊂ Q, α = 1, . . . , 4n, the

corresponding fine squares, with n = nQ to be determined later. Since h ∈MPS(X�
Y), by Proposition 2.1, each preimage

Uα = h−1(Qα) b X, α = 1, 2, . . . , 4n

is a simply connected domain compactly contained in X. We refer to Uα as cells in X.
Caveat lector—the closed cell Uα can be substantially smaller than h−1(Qα); it may
even lie in the interior of h−1(Qα). The Youngs refinement, Proposition 2.1, tells

us that h : Uα onto−→ Qα admits a homeomorphism hQα : Uα onto−→ Qα with continuous

extension to X. The extended mapping, still denoted by hQα : X onto−→ Y, coincides with
h on X \Uα and belongs toMPS(X�Y). However, the Youngs refinement does not

guarantee that hQα belongs to W 1,2
loc (X�Y). At this point, since h ∈ W 1,2

loc (X�Y),
the Poisson operator in Proposition 2.2 comes to the rescue. We simply replace each
hQα : Uα onto−→ Qα with a harmonic diffeomorphism

hα := PUα (hQα) : Uα onto−→ Qα, hα ∈ h+ A◦(Uα)
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and extend to X by setting hα = h on X \ Uα. This yields a mapping

hnQ : U onto−→ Q, defined by hnQ = h+
4n∑
α=1

[hα − h]◦

where [hα − h]◦ stands for the function in X that equals hα − h in Uα and vanishes
outside Uα. The energy of each hα does not exceed that of h, namely EUα [hα] 6
EUα [h]. Outside of the cells Uα the mapping hnQ coincides with h, thus has the same
energy as h. Therefore,

(1) hnQ − h ∈ A◦(U).

(2) EU[hnQ] 6 EU[h].

We also have

‖hnQ − h‖C (U) 6 max
16α64n

‖hα − h‖C (U) 6 max
16α64n

diamQα = 2−n diamQ.

When n increases to∞ the mappings hnQ converge uniformly to h on U. Furthermore,

they are bounded in W 1,2(U). Thus hnQ converge weakly to h in W 1,2(U). By weak
lower semicontinuity, we have

EU[h] 6 lim inf
n→∞

EU[hnQ] 6 EU[h]

so EU[hnQ] → EU[h]. We now recall the well known fact that if functions in L 2(U)
converge weakly and their norms converge to the norm of the weak limit then such
functions actually converge strongly.

It is at this stage that we choose and fix number n = nQ, which will also depend
on ε, to be large enough to satisfy

‖hnQ − h‖C (U) 6 2−nQ diamQ 6 ε

EU[hnQ − h] 6
|Q| ε2

|Y|
.

Finally, we conjoin all mappings hnQ : U → Q, with Q ∈ M(Y) and n = nQ(ε). We

obtain the desired mapping H1 : X onto−→ Y,

H1 = h+
∑

Q∈M(Y)

[hnQ − h]◦ ∈ A◦(X).

Clearly, we have

‖H1 − h‖C (X) = sup
Q∈M(Y)

‖hnQ − h‖C (U) 6 ε

EX[H1 − h] =
∑

Q∈M(Y)

EU[hnQ − h] 6 ε2
∑

Q∈M(Y)

|Q|
|Y|

= ε2.

Hence the estimate,

‖H1 − h‖A (X) 6 2ε.
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What we gained, as compared to h, is that the mapping H1 : X onto−→ Y is a harmonic
diffeomorphism on every cell

Uα = h−1
α (Qα) ⊂ X, Q ∈M(Y), α = 1, 2, . . . , nQ.

Thus

(4.1) H−1
1 (y) is a singleton if y ∈

⋃
Qα∈F(Y)

Qα.

For other preimages, we have

(4.2) H−1
1 (y) = h−1(y) if y ∈

⋃
Qα∈F(Y)

∂Qα.

In either case the preimage of a point in Y is connected. Thus H1 is a monotone
mapping. Similarly we argue that H1 is a proper mapping. Indeed, let F be compact
in Y. There are only finite number of closed fine squares in F(Y) which intersect F.
Therefore the preimage of F under H1 is contained in the union of a finite number
of closed cells in X and in h−1(F). Thus H−1

1 (F) stays away from ∂X and, being
relatively closed in X, is indeed compact. Step 1 is completed.

Steps 2 and 3. In Step 1 the construction of H1 : X onto−→ Y started with a mesh
M of dyadic squares in R2; let us now redenote this mesh as M1. Such a mesh
actually depends on the choice of the orthogonal coordinates for R2. Translating the
origin of the coordinate system leads to new meshes. These meshes would work for
the constructions of H1 just as M1. It would, however, lead us to different dyadic
squares in Y, different family F(Y), and different cells in X. We shall take advantage
of this observation by considering three incommensurate meshes in R2. One way to
construct incommensurate meshes is by shifting the squares in M through a vector
with irrational coordinates, say v = (

√
2,
√

2) ∈ R2. Specifically, let

M1 =M, M2 = {Q+ v : Q ∈M}, M3 = {Q− v : Q ∈M}.

The key observation is that no three squares from different meshes have a common
boundary point; that is,

(4.3) ∂Q1 ∩ ∂Q2 ∩ ∂Q3 = ∅

whenever Q1 ∈M1, Q2 ∈M2 and Q3 ∈M3.
Recall the corresponding families of open fine squares F1(Y) ⊂M1, F2(Y) ⊂M2

and F3(Y) ⊂M3. In each family the closures of fine squares cover the entire domain
Y. But the essential feature of these families is that the open fine squares all together
cover Y, in symbols

Y =
⋃
F1(Y) ∪

⋃
F2(Y) ∪

⋃
F3(Y).

We are now ready for the construction of H2 and H3. Following the construction of
H1 in Step 1, but with H1 in place of h and with meshM2 in place ofM , we obtain
a mapping H2 : X onto−→ Y which is continuous monotone and proper. Moreover,

H2 −H1 ∈ A◦(X) and ‖H2 −H1‖A (X) 6 2ε.



THE HOPF-LAPLACE EQUATION 21

Then, in the same fashion, we refine H2 by using the mesh M3. We arrive at the
desired mapping H3 : X onto−→ Y such that ‖H3 − H2‖A (X) 6 2ε. To see that H3 is

a homeomorphism we need only verify injectivity. Let y ∈ Y =
⋃
Q∈F3(Y)Q and

suppose, to the contrary, that H−1
3 (y) ⊂ X is not a singleton. This means that

y /∈
⋃
Q∈F3(Y)Q so y lies in the boundary of some square Q3 ∈ F3(Y) ⊂M3. Recall

that for such a boundary point we have H−1
3 (y) = H−1

2 (y). This in turn means that
y /∈

⋃
Q∈F2(Y)Q, so y lies in the boundary of a square Q2 ∈ F2(Y) ⊂ M2. For such

a point we have H−1
2 (y) = H−1

1 (y). As before, this means that y /∈
⋃
Q∈F1(Y)Q, so

y lies in the boundary of a square Q1 ∈ F1(Y) ⊂ M1. In conclusion, y belongs to
∂Q1 ∩ ∂Q2 ∩ ∂Q3. This contradicts (4.3). The proof of Theorem 1.6 is complete. �

Next we apply this theorem to harmonic MPS mappings.

Proposition 4.2. Any harmonic mapping of class h ∈MPS(X�Y) is a diffeomor-
phism.

Proof. Indeed, suppose Jh = |hz|2 − |hz̄|2 > 0, where we note that hz and hz̄ are
holomorphic functions. Since h is surjective, Jh 6≡ 0, which means that hz admits
only isolated zeros. Then we obtain a meromorphic function ν := hz̄/hz which is
bounded by 1. The zeros of hz are removable singularities. The maximum principle
yields |ν(z)| < 1 in X; because it cannot be that |ν(z)| ≡ 1. Thus Jh > 0 everywhere
in X and, therefore, h is a local diffeomorphism. The monotonicity implies that h is
actually injective. �

4.2. Deformations of X into Y. Such deformations can now be completely char-
acterized as follows.

Theorem 4.3. Let f : X into−→ Y be a continuous mapping between `-connected bounded
domains in the Sobolev class W 1,2(X�Y) with nonnegative Jacobian. Then the fol-
lowing seven statements are equivalent:

¬ f is monotone proper and surjective.
 f is a uniform and strong W 1,2−limit of homeomorphisms fk : X onto−→ Y, in

which fk ∈ f + W 1,2
◦ (X�Y) , for all k = 1, 2, ... .

® f is a uniform and strong W 1,2−limit of C∞−diffeomorphisms fk : X onto−→ Y,
in which fk ∈ f + W 1,2

◦ (X�Y) , for all k = 1, 2, ... .

¯ f is a uniform and weak W 1,2−limit of C∞−diffeomorphisms fk : X onto−→ Y,
in which fk ∈ f + W 1,2

◦ (X�Y) , for all k = 1, 2, ... .

° f is a uniform and weak W 1,2−limit of homeomorphisms fk : X onto−→ Y, in
which fk ∈ f + W 1,2

◦ (X�Y) , for all k = 1, 2, ... .

± f is a weak W 1,2−limit of homeomorphisms fk : X onto−→ Y, in which fk ∈
f + W 1,2

◦ (X�Y) , for all k = 1, 2, ... .
² f is a deformation.

The assumption Jf > 0 a.e. does not impose an essential restriction on the map-
ping f , by virtue of Corollary 1.7.

Proof. The implications ¬ ⇒  ⇒ ® are just a restatement of Theorem 1.6. The
implications ® ⇒ ¯ ⇒ ° ⇒ ± are obvious.
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For the proof of ± ⇒ ² we argue as follows. Since fk : X onto−→ Y are orientation
preserving homeomorphisms of Sobolev class f + W 1,2

◦ (X�Y) converging weakly in
W 1,2(X�Y) to f , it follows that∫∫

X
Jf dx =

∫∫
X
Jfk dx = |Y|.

Hence there is a compact subset F ⊂ X such that∫∫
F
Jf dx >

1

2
|Y|.

By weak L 1-convergence of nonnegative Jacobians [21, Theorem 8.4.2] we have∫∫
F Jf dx = lim

∫∫
F Jfk dx. Therefore,

|fk(F)| =
∫∫

F
Jfk dx >

1

2
|Y|, for sufficiently large k.

It then follows that there is ε > 0, such that

sup
x∈F

(fk(x), ∂Y) > ε, k = 1, 2, . . . .

Let xk ∈ F be a point for which yk = fk(xk) has distance at least ε from ∂Y. We
may assume, by passing to a subsequence if necessary, that

xk → x◦ ∈ F and yk → y◦ ∈ Y.
Let Φk : X onto−→ X and Ψk : Y onto−→ Y be local perturbations (arbitrarily small) of the
identity mapping near x◦ and y◦, respectively, to satisfy,

Φk(x◦) = xk and Ψk(yk) = y◦.

Now the homeomorphisms Fk = Ψk ◦ fk ◦ Φk : X onto−→ Y take x◦ into y◦. We consider
Fk as a mapping of the punctured domain X◦ = X \ {x◦} onto Y◦ = Y \ {y◦}, each of
which has `+ 1 > 2 boundary components. These mappings coincide with fk outside
a compact subset of X. At this point we appeal to the following uniform estimate of
the distance to ∂Y◦ [22, Theorem 1.1].

(4.4) dist (Fk(x), ∂Y◦) 6 η(x) ‖DFk‖L 2(X◦), k = 1, 2, · · ·

where η(x) = ηX◦ Y◦ (x) is a continuous function in X◦ vanishing on ∂X◦. We emphasize
that this function depends only on the domains X◦ and Y◦. Since Fk = fk near ∂X
the estimate (4.4) yields, for each fk,

dist (fk(x), ∂Y) 6 η(x)M

where M is controlled from above by the energy of fk, so is independent of k. Fi-
nally, since fk → f c-uniformly we conclude that dist(fk(x), ∂Y) → dist(f(x), ∂Y)
uniformly in X. This shows that f is a deformation.

The implication ² ⇒ ¬ is a part of Proposition 1.5. �

Remark 4.4. The observant reader may notice that the conditions –± tell us some-
thing about the boundary behavior of a deformation with range Y. In a way every
deformation f : X onto−→ Y must agree on ∂X with a homeomorphism fk : X onto−→ Y. This
is understood in the sense of Sobolev boundary data f ∈ fk + W 1,2

◦ (X�Y).
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5. Preimage of a point under generalized solutions

Let h : X → R2 be a continuous mapping. The multiplicity function of h defined
by Nh(y) = #{h−1(y)}, y ∈ R2, is measurable, so one can speak of the essential
supremum of Nh(y). We are concerned with mappings such that

(5.1) ess sup
y∈R2

Nh(y) <∞.

Note that Hopf deformations enjoy the property [19, Lemma 3.8]

(5.2) ess sup
y∈R2

Nh(y) = 1.

The following proposition deals with more general solutions to the Hopf equation.

Proposition 5.1. Let h : X → C be a continuous W 1,1
loc (X)-solution to the Hopf-

Laplace equation

hzhz̄ = ϕ 6≡ 0 almost everywhere in X,
where ϕ is a holomorphic function in a domain X ⊂ C. Assume that the multiplicity
function Nh(y) = #{h−1(y)} is essentially bounded (5.1). Then for each y◦ ∈ R2

the union of all vertical trajectories of the quadratic differential ϕ(z) dz2 in X that
intersect h−1(y◦) has zero measure.

Proof. To simplify writing we assume that y◦ = 0 ∈ R2. Let V denote the family of
all vertical trajectories of ϕ(z) dz2 in X. These are disjoint open C∞-smooth curves
without self-intersections whose union covers X◦ = X \ {zeros of ϕ}. Every point
in X◦ has a neighborhood in which a single valued branch of the analytic function
Φ(z) =

∫ √
ϕ(z) dz can be chosen. This is a local conformal mapping which takes

the arcs of vertical trajectories into open vertical intervals in the w-plane, w = Φ(z).
In general it may not be possible to perform analytic continuation of Φ along the
entire trajectory; the local branches of

∫ √
ϕ may not coincide if their domains of

definition are overlapping. This difficulty is usually overcome by performing analytic
continuation of the inverse Φ−1 along the straight vertical lines in the w-plane, see [38,
§1.3.2] for a thorough discussion. Such a procedure leads to the concept of a vertical
strip. A vertical strip in the w-plane associated with ϕdz2 is a simply connected
domain of the form

S = {w = t+ iτ : 0 < t < T, α(t) < τ < β(t)}
where −∞ 6 α(t) < β(t) 6 ∞ are measurable functions in t ∈ (0, T ). Moreover,

there is a single valued analytic function Ψ: S into−→ X which takes every vertical
interval γt = {t + iτ : α(t) < τ < β(t)} onto a complete vertical trajectory in X.
This mapping Ψ is locally conformal and its inverse, locally defined, is a branch of
Φ =

∫ √
ϕ(z) dz. Thus the image Ψ(S) ⊂ X is an open subset of X. Each vertical

trajectory in X either lies entirely in Ψ(S) or otherwise is disjoint from Ψ(S). The
point is that the whole domain X◦ can be covered by a countable number of domains
such as Ψ(S).

Denote V◦ ⊂ V the family of vertical trajectories in X which intersect the set h−1(0)
and assume, to derive a contradiction, that the union

⋃
V◦ has positive measure.



24 CRISTINA, IWANIEC, KOVALEV, AND ONNINEN

We shall confine ourselves to one particular subdomain Ψ(S) ⊂ X and trajectories
selected from V◦ that lie in Ψ(S). With a suitable choice of Ψ(S) we ensure that
the union of the selected trajectories still has positive measure. Rather than discuss
this subdomain, let us assume that X = Ψ(S). Further simplification comes by
considering the mapping f = h ◦ Ψ: S → C. This simplifies not only the domain
of definition but also the Hopf-Laplace equation translates into the somewhat easier
form

(5.3) fwfw̄ ≡ 1, for all w = t+ iτ ∈ S.
Let Γ = {γt}0<t<T denote the family of all vertical intervals in S; these are vertical
trajectories of f dw2,

γt = {t+ iτ : α(t) < τ < β(t)}, 0 < t < T.

Among them there are intervals that pass through the set f−1(0) which we designate
by

Γ◦ = {γt ∈ Γ: 0 ∈ f(γt)}.
In this way we are reduced, equivalently, to showing that the union

⋃
Γ◦ has positive

measure. That this is indeed an equivalent problem follows from the observation
that Ψ, being a local diffeomorphism, takes a null family of vertical intervals in S
into a null family of vertical trajectories in Ψ(S). Furthermore, the strip S, possible
infinite, can be exhausted with an increasing sequence of vertical strips compactly
contained in S,

S1 b S2 b · · · Sn b · · · b S =
∞⋃
n=1

Sn.

Let the family Γn◦ consist of those vertical intervals in Sn which pass through the
set f−1(0). Clearly, we have

⋃∞
n=1 (

⋃
Γn◦ ) =

⋃
Γ◦; the latter is a subset of S with

positive measure. Thus for some large n we still have∣∣∣⋃Γn◦

∣∣∣ > 0.

Therefore, we may and do assume, instead of introducing new notation that S is
bounded and Ψ: S onto−→ Ψ(S) extends as a local conformal mapping to a neighborhood
of S. In particular, |S| < ∞ and the multiplicity function of Ψ: S → Ψ(S) is also
bounded.

Lemma 5.2. For almost every t ∈ (0, T ) such that γt ∈ Γ◦, we have

diam f(γt) > 0.

Proof. Let C ⊂ (0, T ) denote the set of parameters t such that diam f(γt) = 0 and
γt ∈ Γ◦. This means that f is a constant mapping on each interval γt, for t ∈ C.
Since 0 ∈ f(γt) we conclude that f ≡ 0 on

⋃
t∈C γt. On the other hand, in view of

the Hopf-Laplace equation (5.3), f cannot vanish on a set of positive measure, so∣∣⋃
t∈C γt

∣∣ = 0. Hence C has zero linear measure, as claimed. �

We now choose and denote by E ⊂ (0, T ) a set of positive linear measure such that

(5.4) diam f(γt) > 2ρ, for all t ∈ E
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where ρ is a sufficiently small positive number. Consider a sequence of concentric
annuli centered at 0,

Am = {y : 2−mρ 6 |y| 6 21−mρ}, m = 1, 2, . . .

It follows from (5.4) that f(γt), with t ∈ E, is a connected set which joins 0 with a
point outside the outer boundary of Am. Elementary geometric arguments give an
estimate of 1-dimensional Hausdorff measure of the set Am ∩ f(γt) ⊂ C, namely

H1 (f(γt) ∩ Am) > 2−mρ.

For almost every t ∈ E, the function f is absolutely continuous on γt, because
f ∈ W 1,1(S). Consider a subset K = γt ∩ f−1(Am) of the interval γt ⊂ Γ◦. We have∫

K

∣∣∣∣∂f∂τ
∣∣∣∣ > H1

(
f(K)

)
> H1 (f(γt) ∩ Am) > 2−mρ

where we used the inclusion f(K) ⊃ f(γt) ∩ Am. Integrating with respect to t ∈ E,
by Fubini’s theorem, we obtain∫∫

H−1(Am)

∣∣∣∣∂f∂τ
∣∣∣∣ > ∫

E

(∫
γt∩f−1(Am)

∣∣∣∣∂f∂τ
∣∣∣∣
)
> 2−mρ |E|.

Next we apply Hölder’s inequality

(5.5) 4−mρ2|E|2 6 |f−1(Am)|
∫∫

H−1(Am)

∣∣∣∣∂f∂τ
∣∣∣∣2 .

It is at this point that we shall appeal to the Hopf-Laplace equation (5.3) and for-
mula (2.11), which gives us a pointwise inequality in terms of the Jacobian determi-
nant of f , ∣∣∣∣∂f∂τ

∣∣∣∣2 6 |Jf | a.e. in S.

Now recall that the multiplicity function of h is essentially bounded and Ψ: S →
Ψ(S) has finite multiplicity. Therefore, the function Nf (y) = #{w ∈ S : f(w) = y}
is essentially bounded as well, say Nf (y) 6 N for almost every y ∈ R2. We have∫∫

f−1(Am)

∣∣∣∣∂f∂τ
∣∣∣∣2 6 ∫∫

f−1(Am)
|Jf | 6 N |Am| = 3πρ24−mN

where the second inequality follows from [21, Theorem 6.3.2]. Substituting into (5.5)
yields |E|2 6 3πN |f−1(Am)|. Finally we add these inequalities for m = 1, 2, . . . , ` to
obtain

` |E|2 6 3πN
∣∣∣f−1

( ⋃̀
m=1

Am
)∣∣∣ 6 3πN |S|

where ` can be any positive number we wish. Thus |E| = 0, completing the proof of
Proposition 5.1. �

Corollary 5.3. Under the assumptions of Proposition 5.1, suppose w ∈ Y and
h−1(w) does not contain any critical points of ϕ(z) dz2. Then h−1(w) is a closed
vertical arc.
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Proof. By Lemma 3.7 in [19] the set h−1(w) ⊂ X is connected and compact. Then the
union of vertical trajectories which intersect h−1(w) is connected and, by Proposi-
tion 5.1, has zero measure. This is possible only when h−1(w) is contained in exactly
one vertical trajectory. �

6. Partial harmonicity, proof of Theorem 1.12

The outline of the proof is as follows. We may assume that the Hopf differential of
h does not vanish identically, for otherwise h is holomorphic in X. Using the notation
of Theorem 1.12 let D be an open disk compactly contained in Y and U = h−1(D).
We will prove that h is harmonic in U by showing that the energy of h does not
exceed the energy of H,

(6.1) EU[h] 6 EU[H]

where H is the Poisson refinement of h in U. Indeed, (6.1) shows that h = H in U
and therefore h is harmonic diffeomorphism of U onto D. Since h is also monotone,
it is a global diffeomorphism. Thus (6.1) is all we need to prove Theorem 1.12.

The first step toward proving (6.1) is the following computation.

Lemma 6.1. Let U and D be bounded simply connected domains. Suppose that
h : U onto−→ D, of Sobolev class W 1,2(U,D), is monotone and proper and has a continu-

ous extension to U. Furthermore, let H : U onto−→ D be a C∞-diffeomorphism of Sobolev
class W 1,2(U) which extends continuously to U with H(z) = h(z) for z ∈ ∂U. Then

for χ = H−1 ◦ h : U onto−→ D and ϕ(z) = hzhz̄ we have

EU[H]− EU[h] >
4

‖ϕ‖L 1(U)

[∫∫
U

∣∣∣χz − ϕ

|ϕ|
χz̄

∣∣∣√|ϕ(z)|
√
|ϕ
(
χ(z)

)
| dz
]2

− 4

∫∫
U
|ϕ|.

(6.2)

Here we assume that ϕ is continuous, ϕ 6≡ 0, and the term ϕ
|ϕ| is understood as equal

to zero whenever ϕ vanishes.

Proof. First assume, in addition to the above hypotheses that h : U onto−→ D is a diffeo-
morphism.

The chain rule can be applied to the composition H = h ◦ χ−1 : U onto−→ U

∂H(w)

∂w
= hz(z)

∂χ−1

∂w
+ hz̄(z)

∂χ−1

∂w

∂H(w)

∂w̄
= hz(z)

∂χ−1

∂w̄
+ hz̄(z)

∂χ−1

∂w

where w = χ(z). The partial derivatives of χ−1 : U → U at w can be expressed in
terms χz and χz̄ at z = χ−1(w) by the rules

∂χ−1

∂w
=

χz(z)

J(z, χ)
and

∂χ−1

∂w̄
= − χz̄(z)

J(z, χ)
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where the Jacobian determinant J(z, χ) is strictly positive. This yields

∂H

∂w
=
hzχz − hz̄χz̄
J(z, χ)

and
∂H

∂w̄
=
hz̄χz − hzχz̄
J(z, χ)

.

Let U′ b U be a compactly contained subdomain of U. We compute the energy of H
over the set χ(U′) by substitution w = χ(z),

EU[H] > Eχ(U′)[H] = 2

∫∫
χ(U′)

(
|Hw|2 + |Hw̄|2

)
dw

= 2

∫∫
U′

|hzχz − hz̄χz̄|2 + |hz̄χz − hzχz̄|2

|χz|2 − |χz̄|2
dz.

On the other hand, the energy of h over the set U′ is

EU′ [h] = 2

∫∫
U′

(
|hz|2 + |hz̄|2

)
dz.

Subtract these two integral expressions to obtain

EU[H]− EU′ [h] > 4

∫∫
U′

(
|hz|2 + |hz̄|2

)
· |χz̄|2 − 2 Re

[
hzhz̄χzχz̄

]
|χz|2 − |χz̄|2

dz

> 4

∫∫
U′

2|hzhz̄| · |χz̄|2 − 2 Re
[
hzhz̄χzχz̄

]
|χz|2 − |χz̄|2

dz

= 4

∫∫
U′

[
|χz − σ(z)χz̄|2

|χz|2 − |χz̄|2
− 1

]
|hzhz̄| dz

(6.3)

where

σ = σ(z) =

{
hzhz̄ |hzhz̄|−1 if hzhz̄ 6= 0

0 otherwise.

Using Hölder’s inequality we continue the above chain of estimates as follows

(6.4) > 4

[∫∫
U′ |χz − σχz̄|

√
|hzhz̄|

√
|ψ
(
χ(z)

)
|dz
]2

∫∫
U′ J(z, χ)|ψ

(
χ(z)

)
|dz

− 4

∫∫
U′
|hzhz̄|.

where ψ : U→ C can be any continuous function, provided ψ 6≡ 0 on χ(U′).
The denominator in (6.4) is uniformly bounded from above∫∫

U′
J(z, χ)|ψ

(
χ(z)

)
|dz =

∫∫
χ(U′)
|ψ| 6

∫∫
U
|ψ|.

Hence

EU[H]− EU′ [h] > 4

[∫∫
U′ |χz − σχz̄|

√
|ϕ(z)|

√
|ψ
(
χ(z)

)
| dz
]2

∫∫
U|ψ(z)| dz

− 4

∫∫
U′
|ϕ|.

This inequality can now be generalized by an approximation argument. By The-
orem 1.6, we have a sequence of diffeomorphisms hj : U onto−→ D, converging to h
uniformly and strongly in W 1,2(U,D). Moreover, each hj ∈ h + A◦(U,D), so hj

extends continuously to U with hj(z) = h(z) on ∂U. We may and do assume, by
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passing to a subsequence if necessary, that hjz and hjz̄ converge almost everywhere to

hz and hz̄, respectively. Let ϕj = hjzh
j
z̄. Since the sequence χj = H−1 ◦ hj : U onto−→ U

of self-diffeomorphisms of U is converging to χ uniformly and strongly in W 1,2 on
subdomains U′ b U, it follows that

EU[H]− EU′ [hj ] > 4

[∫∫
U′

∣∣∣χjz − σjχjz̄∣∣∣ √|ϕj(z)|√|ψ(χ(z)
)
| dz
]2

∫∫
U|ψ(z)| dz

− 4

∫∫
U′
|ϕj |.

Passing to the limit as j →∞ yields

EU[H]− EU′ [h] > 4

[∫∫
U′ |χz − σχz̄|

√
|ϕ(z)|

√
|ψ
(
χ(z)

)
|dz
]2

∫∫
U|ψ(z)|dz

− 4

∫∫
U′
|ϕ|.

(6.5)

To see this we simply note that∣∣∣χjz − σjχjz̄∣∣∣ √|hjzhjz̄| → |χz − σχz̄|
√
|ϕ(z)| in L 1(U′)

while
√
|ψ
(
χj(z)

)
| →

√
|ψ
(
χ(z)

)
| everywhere.

Here we recall that ϕ is assumed to be continuous, so we can take ψ = ϕ in (6.5).
Finally, since U′ was an arbitrary compact subset of U, we conclude from (6.5) with
the desired estimate, completing the proof of Lemma 6.1. �

For the proof of (6.1) it remains to show that the right hand side of (6.2) is
nonnegative. This requires a careful analysis of the boundary behavior of χ, as this
mapping is not necessarily continuous up to ∂U. We need a definition and a lemma.

Definition 6.2. Let X ⊂ C be a domain and U be a simply connected domain
compactly contained in X. Let ϕ : X → C be a holomorphic function such that
ϕ 6≡ 0. We say that a mapping χ : U→ U is compatible with ϕ if the following holds
for any vertical arc γ of ϕdz2 that intersects U and has endpoints in X \ U. Let γ◦
be a maximal subarc of γ contained in U, and denote its endpoints by a and b. The
connected components of γ \ γ◦ are naturally denoted as γa and γb. The condition
we impose on χ is

χ{a} ⊂ γa and χ{b} ⊂ γb
where χ{a} and χ{b} are cluster sets [7].

Lemma 6.3. The mapping χ in Lemma 6.1 is compatible with ϕ provided that
h−1(∂D) contains no zeros of ϕ.

Proof. We use the notation of Definition 6.2. According to Corollary 5.3, the sets
h−1(h(a)) and h−1(h(b)) are vertical arcs, hence subarcs of γ. The continuity of h
and H implies that χ{a} is a subset of h−1(h(a)), and similarly for χ{b}. The claim
follows. �
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The restriction concerning zeros of ϕ in Lemma 6.3 is easily fulfilled by choosing a
generic radius for the disk D. We are finally ready to handle the expression in (6.2),
thus completing the proof of Theorem 1.12. The following result is related to the
Reich-Strebel inequality [37], see also [31] for a recent extension. However, in our
Lemma 6.4 the assumptions on χ are different from those in [37, 31].

Lemma 6.4. Let X ⊂ C be a domain and U a simply connected domain compactly
contained in X. Let ϕ : X → C be a holomorphic function such that

∫∫
X|ϕ| < ∞.

Suppose that χ ∈ W 1,2
loc (U,U) is continuous proper and compatible with ϕ. Then

(6.6)

∫∫
U

∣∣∣χz − ϕ

|ϕ|
χz̄

∣∣∣|ϕ|1/2|ϕ ◦ χ|1/2 > ∫∫
U
|ϕ|.

Proof. For almost every vertical noncritical trajectory γ the mapping χ is locally
absolutely continuous on γ. Let γ◦ be a maximal subarc of γ in U. Denote by a and
b the endpoints of γ◦. By the compatibility condition the curve β = χ ◦ γ◦ connects
two different components of γ \ γ◦. By Lemma 2.4 we have

(6.7)

∫
γ◦

|ϕ|1/2 6
∫
β
|ϕ|1/2 =

∫
γ◦

∣∣∣χz − ϕ

|ϕ|
χz̄

∣∣∣|ϕ ◦ χ|1/2
because

∣∣∣χz − ϕ
|ϕ|χz̄

∣∣∣ is the magnitude of directional derivative of χ along γ. In view

of Corollary 2.8 inequality (6.6) follows. �

Combining (6.6) with (6.2) yields (6.1), completing the proof of Theorem 1.12.

7. Lipschitz continuity, proof of Theorem 1.14

In this section X and Y are bounded `-connected domains. Suppose h ∈ D(X,Y)
is a Hopf deformation, that is,

(7.1) ϕ := hzhz̄

is a holomorphic function in X. We shall actually prove the following explicit bound

(7.2) |Dh(a)| 6 72
‖Dh‖L 2(X)

dist(a, ∂X)
for almost every a ∈ X.

Let ‖ϕ‖ =
∫∫

X|ϕ| and note the pointwise inequality

(7.3) |ϕ(z)| 6 ‖ϕ‖
π dist2(z, ∂X)

which is a consequence of the subharmonicity of |ϕ| in X.
Since the Jacobian Jh = |hz|2 − |hz̄|2 is nonnegative, it follows from (7.3) that hz̄

is locally bounded, specifically

(7.4) |hz̄(z)| 6
√
|ϕ(z)| 6 ‖ϕ‖1/2√

π dist(z, ∂X)
.

The boundedness of hz̄ implies that |hz| is locally in BMO, and consequently h ∈
W 1,p

loc (X) for every 1 < p < ∞. A similar argument was carried out in [33] in a
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somewhat different context. However, it does not yield the Lipschitz continuity of h,
which we will prove by an entirely different method.

The proof of Theorem 1.14 is preceded by several lemmas. We denote the average
value of a function by an integral sign with a dash. The normal and tangential
derivatives of h are defined as

(7.5) hN =
1

|z|
(zhz + z̄hz̄) hT =

i

|z|
(zhz − z̄hz̄).

Lemma 7.1. Suppose that 0 ∈ X and h(0) = 0. Let R = dist(0, ∂X). Then the
circular mean

(7.6) S(ρ) :=
1

2πρ

∫
Tρ
h = −

∫
Tρ
h, 0 < ρ < R

is a locally Lipschitz function of ρ. Specifically we have

(7.7) |S′(ρ)| 6 2 ‖ϕ‖1/2√
π(R− ρ)

, 0 < ρ < R.

As a consequence,

(7.8) |S(ρ)| 6 2 ρ‖ϕ‖1/2√
π(R− ρ)

, 0 < ρ < R.

Proof. Note that S is an absolutely continuous function of ρ, even more S ∈ W 1,2
loc (0, R).

Therefore, we can differentiate with respect to ρ for a.e. ρ ∈ (0, R) to obtain

(7.9) S′(ρ) = −
∫
Tρ
hN = −

∫
Tρ

1

ρ
(zhz + z̄hz̄).

Combining (7.9) and the identity

−
∫
Tρ

1

ρ
(zhz − z̄hz̄) = −i−

∫
Tρ
hT = 0,

yields

(7.10) −
∫
Tρ
hN =

2

ρ
−
∫
Tρ
z̄ hz̄.

This together with (7.4) implies (7.7) and the integration yields (7.8). �

Lemma 7.2. Suppose 0 ∈ X. For almost every ρ, 0 < ρ < dist(0, ∂X), we have

(7.11)

∫
Tρ
|hN |2 =

∫
Tρ
|hT |2 =

1

2

∫
Tρ
|Dh|2.

Proof. Using the identities (7.5) we find that

(7.12) |hN |2 + |hT |2 = |Dh|2

and

(7.13) |hN |2 − |hT |2 =
4

|z|2
Re(z2hzhz̄).



THE HOPF-LAPLACE EQUATION 31

Integration of (7.13) over Tρ shows that∫
Tρ

(|hN |2 − |hT |2) |dz| = 4

|z|2
Re

∫
Tρ
z2ϕ(z) |dz|

=
4

|z|
Im

∫
Tρ
zϕ(z) dz = 0.

(7.14)

From (7.12) and (7.14) we obtain (7.11). �

Lemma 7.3. Suppose h ∈ D(X,Y) and w ∈ ∂Y. If the set h−1(w) intersects some
domain Ω b X, then it also intersects ∂Ω.

Proof. Let Ω b X be a domain such that h−1(w) ∩ Ω contains a point a. Consider a
cd-convergent sequence of homeomorphisms hj → h. For each j

min
∂Ω
|hj − w| 6 |hj(a)− w|, because w 6∈ hj(Ω).

Since the convergence is uniform on compact sets, letting j →∞, we conclude

min
∂Ω
|h− w| 6 |h(a)− w| = 0. �

Next we require a Fourier series lemma that can be viewed as a Bonnesen-type
inequality [34].

Lemma 7.4. Let f : T → C be a function in W 1,2(T). Expand it into the Fourier
series f(eiθ) =

∑
n∈Z

cne
inθ. If

(7.15) max
T
|f − c0| > 2 min

T
|f − c0|,

then

(7.16)
∑
n∈Z

n|cn|2 6
99

100

∑
n∈Z

n2|cn|2.

Indeed, inequality (7.16) is apart from the better factor 99/100, a form of isoperi-
metric inequality in the plane. We gain this better factor because of the assump-
tion (7.15) which can be interpreted as saying that the image of f is far from being
a circle centered at c0.

Proof. We may assume that f is nonconstant. Normalize f so that c0 = 0 and
max
T
|f − c0| = 1. Clearly,

(7.17) |c1| 6 1.

We need a lower bound for |cn| as well. To this end, consider

g(eiθ) = f(eiθ)− c1e
iθ

and observe that

(7.18) max
T
|g| > max

T

∣∣∣|f | − |c1|
∣∣∣ > 1

2

(
1−min

T
|f |
)
>

1

4
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by virtue of (7.15). On the other hand,

max
T
|g|2 6

(∑
n6=1

|cn|
)2

6

(∑
n 6=1

1

n2

)(∑
n6=1

n2|cn|2
)
6 3

∑
n6=1

n2|cn|2

which together with (7.18) yield

(7.19)
∑
n6=1

n2|cn|2 >
1

48
.

Using (7.17) and (7.19) we arrive at (7.16) as follows.∑
n∈Z

(
n− 99

100
n2

)
|cn|2 6

1

100
|c1|2 +

∑
n6=1

(
1

2
n2 − 99

100
n2

)
|cn|2

6
1

100
− 49

100
· 1

48
6 0. �

Let the “good” part of X be G = h−1(Y) and the “bad” part be B = X \ G. By
Theorem 1.12 the restriction of h to G is a harmonic diffeomorphism onto Y. Thus
the case G = X is trivial. From now on we assume that B is nonempty. This is only
possible if ϕ 6≡ 0.

Proposition 7.5. Suppose that 0 ∈ X and h(0) = 0 ∈ ∂Y. Then for a.e. 0 < ρ <
dist(0, ∂X), we have

(7.20)

∫∫
Bρ

Jh 6
99

100

ρ

2

∫
Tρ
|hT |2 + 4π|c0|2, where c0 = −

∫
Tρ
h.

Proof. Fix ρ such that the restriction of h to Tρ is in W 1,2(Tρ). Let M = max
Tρ
|h−c0|.

The change of variables formula (5.2) implies

(7.21)

∫∫
Bρ

Jh 6 πM
2.

Thus we may assume M > 2|c0|; otherwise (7.20) is immediate from (7.21). By
Lemma 7.3 the mapping h assumes the value 0 on Tρ, hence

min
Tρ
|h− c0| 6 |c0| <

M

2
.

Thus, Lemma 7.4 applies to the restriction of h onto Tρ. The estimate (7.16) reads
as ∫∫

Bρ

Jh 6
99

100

ρ

2

∫
Tρ
|hT |2

which implies (7.20). �

Proof of Theorem 1.14. We will show that for every point a ∈ X

(7.22) lim sup
ρ↘0

−−
∫∫

Bρ(a)
|Dh|2 6 16000

π dist2(a, ∂X)

∫∫
X
|Dh|2.

We may assume a = 0 = h(a). Let R = dist(0, ∂X).



THE HOPF-LAPLACE EQUATION 33

Case 1. 0 ∈ ∂Y. The first step is to rewrite (7.20) as a differential inequality for
the function

E(ρ) :=

∫∫
Bρ

|Dh|2, 0 < ρ <
R

2
.

Here we restrict ourselves to 0 < ρ < R/2 which yields dist(z, ∂X) > R/2 for z ∈ Bρ.
Since |Dh|2 = 2Jh + 4|hz̄|2, applying the inequality (7.4) we obtain

(7.23) E(ρ) 6 2

∫∫
Bρ

Jh +
4ρ2‖ϕ‖
(R/2)2

= 2

∫∫
Bρ

Jh +
16ρ2‖ϕ‖
R2

.

Next, the integral on the right is estimated using (7.20), (7.8) and Lemma 7.2:

(7.24) 2

∫∫
Bρ

Jh 6
99

100
ρ

∫
Tρ
|hT |2 + 8π|c0|2 6

99

200
ρ

∫
Tρ
|Dh|2 +

128ρ2‖ϕ‖
R2

.

Combining (7.23) and (7.24) we obtain

(7.25) E(ρ) 6
99

200
ρE′(ρ) +

144ρ2‖ϕ‖
R2

for a.e. 0 < ρ <
R

2
.

For notational simplicity we introduce the constant q = 200/99. Inequality (7.25)
yields

(7.26)
d

dρ

(
ρ−qE(ρ)

)
=
ρE′(ρ)− q E(ρ)

ρ q+1
> −144 q ‖ϕ‖

R2ρ q−1
.

Integrate (7.26) over the interval (ρ,R/2) to obtain

(7.27)
1

ρ q
E(ρ) 6

2q

Rq
E(R/2) +

144 q ‖ϕ‖
(q − 2)R2ρ q−2

=
2q

R q
E(R/2) +

14400 ‖ϕ‖
R2ρ q−2

.

Finally, multiply (7.27) by ρq−2 and rewrite it as

(7.28) −−
∫∫

Bρ

|Dh|2 6 2q

πR2

( ρ
R

)q−2
∫∫

BR/2

|Dh|2 +
14400 ‖ϕ‖
πR2

.

We further simplify (7.28) using the pointwise inequality 4|ϕ| 6 |Dh|2.

(7.29) −−
∫∫

Bρ

|Dh|2 6
(

2q
( ρ
R

)q−2
+ 3600

)
1

πR2

∫∫
X
|Dh|2.

This yields (7.22) even with a better constant.
Case 2. 0 ∈ Y; that is, 0 ∈ G = h−1(Y). Let r = dist(0, ∂G) 6 dist(0, ∂X) = R.

Since h is harmonic in G, the subharmonicity of |Dh|2 yields

(7.30) |Dh(0)|2 6 −−
∫∫

Br

|Dh|2 6 1

πr2

∫∫
X
|Dh|2.

If R < 60 r, then (7.30) already implies (7.22). Otherwise pick ζ ∈ X \ G such that
|ζ| = r. Clearly

(7.31) −−
∫∫

Br

|Dh|2 6 4−−
∫∫

B2r(ζ)
|Dh|2
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and the righthand side of (7.31) can be estimated by applying (7.29) to B2r(ζ). Since
dist(ζ, ∂X) > R− r > 59 r, we may apply inequality (7.29) with ρ = 2r and R− r in
place of R. This gives the estimate

−−
∫∫

B2r(ζ)
|Dh|2 6

(
2q (2/59)q−2 + 3600

) (60/59)2

πR2

∫∫
X
|Dh|2

6
4000

πR2

∫∫
X
|Dh|2.

(7.32)

Combining (7.30), (7.31), and (7.32) gives the inequality (7.22).
This estimate yields the pointwise inequality (7.2) at the Lebesgue points of |Dh|2,

completing the proof of Theorem 1.14. �

8. C 1-smoothness of minimal deformations, proof of Theorem 1.15

Throughout this section the following standing assumptions are made on the map-
pings under considerations: X and Y are `-connected bounded domains and h : X→ Y
is a C 1-smooth Hopf deformation, h ∈ D(X,Y); that is,

hzhz̄ = ϕ 6≡ 0 in X
where ϕ is a holomorphic function. Recall that the convex part of the boundary of a
domain Y is

(8.1) ∂cY = {w ∈ ∂Y : Br(w) ∩ Y is convex for some r > 0}.
We designate the domain of regular points of the quadratic differential ϕ(z) dz2 by

X◦ = X \ {zeros of ϕ}.
Additional assumptions on h will be explicitly stated when needed. The proof of
Theorem 1.15 proceeds by a number of claims and Lemma 8.1.

Claim 1. Let 0 ∈ h(X), then each horizontal arc α ⊂ α ⊂ X◦ contains at most a
finite number of zeros of h.

Proof. By virtue of (2.10) we have a lower bound for the horizontal derivative

(8.2) |∂
H
h| > 2

√
|ϕ| > 0 for all z ∈ α.

If h : α → C had an infinite number of zeros there would be an accumulation point
of zeros. Since h is C 1-smooth along α, its horizontal derivative would vanish at the
accumulation point of zeros, in contradiction with (8.2). �

Claim 2. Suppose 0 ∈ ∂Y. Then the preimage h−1(0) is covered by a countable
number of vertical trajectories and critical points.

Proof. The domain X◦ can be expressed as countable union of ϕ-rectangles compactly
contained in X◦, see §2.3 for the definition and consideration of ϕ-rectangles. Let R
be one such ϕ-rectangle. It suffices to show that the set h−1(0) ∩R can be covered
by a countable number of vertical trajectories. Let α and β denote the horizontal
edges of R. These are horizontal arcs of ϕdz2 compactly contained in X◦. In view
of Claim 1, we may and do assume that h does not vanish on the horizontal edges
of R, for otherwise we can replace R by a finite number of parallel subrectangles
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of R; simply cut R along vertical trajectories crossing the horizontal edges α and β
at the zeros of h. With this assumption the proof of Claim 2 will be completed by
showing that inside of R there are no zeros of h. Indeed, suppose otherwise. Then,
by Lemma 7.3, the set h−1(0) intersects at least one of two vertical edges of the
rectangle R. By the same reasoning h−1(0) intersects one of two vertical edges of
any subrectangle obtained by continuously compressing R with vertical trajectories.
This procedure results in a family of vertical arcs intersecting h−1(0) whose union
has positive measure, in contradiction with Lemma 5.1. �

It should be mentioned that a result similar to Claim 2 was proved in [29] for
energy-minimizing mappings between closed surfaces that are smooth except for iso-
lated singularities.

Recall that Theorem 1.15 deals with minimal deformations. These are special
mappings for which the Hopf differential hzhz̄ dz2 is real along ∂X, provided ∂X is
C 1-smooth. It involves no loss of generality in the proof of Theorem 1.15 to assume
that ∂X is indeed C 1-smooth. For, if necessary, we could transform X conformally
onto, say, a circular Schottky domain. Our next lemma tells us that no point in X
can be mapped into a convex part ∂cY of ∂Y, see (8.1) and Figure 1.

Lemma 8.1. Suppose ∂X is C 1-smooth and ϕ(z) dz2 is real on the boundary of X,
see Definition 2.5 in §2.3. Assume that h is C 1-smooth in X. Then

(8.3) h(X) ∩ ∂cY = ∅.

Proof. Assume, to the contrary, that the set

(8.4) Bc := h−1(∂cY) 6= ∅.

Consider the “good” subdomain G = h−1(Y) ⊂ X. It is indeed connected by Theo-
rem 1.12. Let E be the set of points z ∈ ∂G∩X for which there is a disk D = Dz ⊂ G
such that z ∈ ∂D. Note that E is dense in ∂G ∩ X. Our first step is to prove that

Step 1. We have

(8.5) h(E) ∩ ∂cY = ∅.

Hence, more generally,

(8.6) h(∂G ∩ X) ∩ ∂cY = ∅.

Proof. Suppose to the contrary that w = h(z) ∈ ∂cY for some z ∈ X. Since Y is
convex at w the function u := Re(eiθh), for some constant 0 6 θ 6 2π, attains a local
maximum at z, which yields

(8.7) ∇u(z) = 0.

On the other hand, there is a disk D ⊂ G such that z ∈ ∂D, h(D) ⊂ h(G) ⊂ Y and
u(z) > u(ζ) for all ζ ∈ D. The Hopf boundary point lemma ([13, Lemma 3.4], [17])
implies that the inner normal derivative of u at z ∈ ∂D is strictly negative. This
contradicts (8.7). Finally, since ∂cY is open in ∂Y and E is dense in ∂G ∩ X, the
claim (8.6) follows. �

Step 2. The set Bc = h−1(∂cY) ⊂ X is open.
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Proof. By virtue of (8.6) the set Bc is contained in the interior of X \ h−1(Y). Since
∂cY is open in ∂Y, it follows that Bc is open in X. �

Step 3. Every noncritical vertical trajectory Γ that intersects Bc is a connected
component of h−1(w) for some w ∈ ∂cY.

Proof. The intersection of Γ with Bc is open in Γ. On the other hand the vertical
derivative ∂

V
h vanishes a.e. on X \ h−1(Y). Indeed, by [19, Lemma 3.8] Jh vanishes

a.e. on X \ h−1(Y) and by (2.11) the vertical derivative satisfies |∂
V
h| 6

√
|Jh| = 0.

Therefore, h is constant along Γ, say equal to w ∈ ∂cY. On the other hand, by
Claim 2, the preimage h−1(w) is covered by a countable union of vertical trajectories
and critical points. We find that Γ is indeed one of the connected components of
h−1(w). �

Step 4. A noncritical vertical trajectory Γ that intersects Bc approaches two
different boundary components of X.

Proof. Recall from the introduction, §1.0.1, the components X1, . . . ,X` of X = ∂X.
Suppose otherwise, that both ends of Γ approach the same boundary component, say
X1. By Lemma 2.6 the vertical trajectory Γ separates two other boundary compo-
nents of X, say X2 and X3. Let C ⊂ Y be a continuum connecting the components
Υ2 and Υ3 of ∂Y, in accordance with the correspondence in (1.11). Then h−1(C) is
a continuum [19, Lemma 3.7] that connects X2 and X3 in X \ Γ, a contradiction. �

Now we have the required contradiction that proves Lemma 8.1. Indeed Γ, being
a connected component of h−1(w) ∈ ∂Y, cannot approach different components of
∂X; otherwise its image h(Γ) would approach different components of ∂Y by virtue
of (1.11). �

To complete the proof of Theorem 1.15 we need one more lemma.

Lemma 8.2. If X \ h−1(Y) has σ-finite 1-dimensional Hausdorff measure, then the
set X \ h−1(Y) is empty and h is a diffeomorphism of X onto Y.

Proof. The function hz is continuous in X and holomorphic in h−1(Y). By a theorem
of Besicovitch [4, Theorem 2] sets of σ-finite 1-dimensional Hausdorff measure are
removable for holomorphic continuous functions. Therefore, hz is holomorphic in
X. It follows that h is harmonic in X, which by Proposition 4.2 implies that h is a
diffeomorphism. �

Proof of Theorem 1.15. Combining Lemmas 8.1 and 8.2 we find that the set X \
h−1(Y) has σ-finite 1-dimensional measure and therefore h is a diffeomorphism by
Lemma 8.2. �

The reader may notice that the domain Y in Theorem 1.15 cannot be C 1-smooth.
Also, the butterfly domain Y of Example 3.1 has nonsmooth boundary. These obser-
vations lead to the following question.

Question 8.3. Are energy-minimal deformations C 1-smooth when the boundary of
Y is smooth?
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In Example 1.2 the energy-minimal deformation h belongs to C 1,1(X) but not to
C 2(X). Thus one may expect the C 1,1-regularity to hold in Question 8.3.
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