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1 Introduction

Kernel deconvolution methods are used to estimate the density of a random variate (u) when

contaminated (convoluted) with an independent and additive measurement error (v). Most

methods have been developed for the scenario where a random sample of observations from

the contaminated variate is available (ε = u + v). An early treatment is Stefanski and Carroll

(1990), who consider kernel estimation of a continuous and bounded target density convolved

with errors from a fully-known Normal density. They show that convergence rates of ln(n) for

the target density estimates are typical. Other kernel deconvolution treatments consider errors

drawn from a fully-known Laplace density; these cases generally exhibit better convergence

rates. With Normal errors, Meister (2006) relaxes the assumption that the variance of the

Normal error is known, and consistently estimates both the target density and the unknown

variance of the Normal error. His identifying assumption is that the target density is from the

ordinary smooth family of distributions (Fan, 1991a), which places a lower bound on the rate

of decay of its characteristic function’s tails. Examples of ordinary smooth distributions are

the Laplace and Gamma; a precise definition and discussion of ordinary smooth densities are

provided in the sequel.

An alternative, yet rarely studied, scenario is where the contaminated variate (ε) is not

directly observed, but is an additive error in a regression model (e.g., y = α + xβ + v + u). In

econometrics the contaminated variate is a “composed error” and the regression a “composed

error model”. Horowitz and Markatou (1996) consider the case where panel data (repeated

observations) are available and neither error component density is known.1 Essentially, the in-

formation contained in the time-dimension of the panel replaces the Normal error assumption

to achieve uniformly consistent estimates of both densities in the composed error. They first

estimate slope parameters from two regression transformations (“within group” and “first-

difference”). Second, they treat the regression residuals from the first step as if they were

observations of the unobserved errors in the transformed regression models. Using standard

kernel deconvolution techniques, they recover the densities of the error components from these

residuals. Since their regression residuals converge in distribution to that of the composed

errors at a much faster rate than ln(n), deconvolution using residuals is asymptotically equiv-

alent to deconvolution of the regression errors. They use the results to estimate an earnings

mobility model where u is time-invariant worker ability. Using data from the Current Popu-

lation Survey, they show that ability appears to be Normally distributed and the density of v

is non-Normal.

This paper considers kernel deconvolution in the cross-sectional regression model with a

composed error. If a panel is not available, what can be identified? It seems intuitive that if

the density of v were Normal and fully-known, and if the target density of u were continuous

and bounded, then it could be consistently estimated at the ln(n) rate. In a cross-section, this

1Partial knowledge of the densities is typically necessary for estimation of the regression parameters. A leading
case is the random-effects model for panel data.
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would amount to using the Horowitz and Markatou deconvolution estimator but with Stefanski

and Carroll’s assumption of the fully-known Normal density replacing the information lost

along the time dimension of the panel. Again, the regression residuals converge in distribution

to the composed regression errors, which can be decomposed into the density of the known

error and the target density. Unfortunately, in a regression model the density of the error is

never fully-known. That is, the usual Gauss-Markov assumption is the density of the error

is from a zero-mean, Normal family with unknown variance. In this paper we show that if

the density of v is known to be Normal up to its variance, σ2, then the target density can

be semi-uniformly consistently estimated, if it is assumed that the density of u is ordinary

smooth. Hence, our deconvolution estimator is a regression generalization of the estimator of

Meister (2006) and the cross-section complement of Horowitz and Markatou (1996). Our proof

of semi-uniform consistency of the density estimator involves bounding an additional variance

component arising from the regression residuals.

There are myriad situations in economics where these cross-sectional deconvolution tech-

niques are useful. For example, Robin and van den Berg (2002, 2003) use deconvolution to

separate the distribution of productivity levels of workers in an equilibrium search model.

Cost specific factors in auction models have also benefited from deconvolution techniques, see

Li, Perrigne, and Vuong (2000) and Krusnatskaya (2008). We also note that research geared

towards recovering the distribution of unobservable heterogeneity (e.g., hedonic models) may

benefit from deconvolution methods, see Bajari and Benkard (2005).

The paper is organized as follows. In section 2 we provide a brief tour of deconvolution

methods in statistics. Section 3 discusses issues with deconvolution inherent to our problem,

as well as the assumptions needed to show semi-uniform consistency of the estimator. Section

4 contains a Monte Carlo study of the finite sample performance of the estimator. Directions

for future research and conclusions are in section 5.

2 Deconvolution – The State of the Art

While estimation strategies relating to measurement error have existed for quite some time,

deconvolution techniques were introduced by Mendelsohn and Rice (1982). They use B-splines

to deconvolve the number of live cells from the number of dead cells in DNA content. Kernel

estimation techniques, or deconvolving kernels, were proposed by Stefanski and Carroll (1990).

Even before their paper was published, Carroll and Hall (1988) showed that for the class

of deconvolving estimators, the best possible rate of convergence in the presence of Normal

measurement error is logarithmic.

Other contributions to the asymptotic theory of deconvolution estimators from a kernel

perspective are due to Devroye (1989), Liu and Taylor (1989) and Fan (1991a-c, 1992, 1993).

Bandwidth selection issues are considered in Barry and Diggle (1995), Hesse (1999) and De-

laigle and Gijbels (2002, 2004a). Other practical issues relating to kernel deconvolution are in
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Zhang and Karunramuni (2000) for boundary corrections, Neumann (1997) dealing with the

estimation of the unknown measurement error as opposed to assuming its family, Hesse (1995)

for the case when only some of the data are measured with error, and Hesse (1996) for the

case when the data of interest are dependent.

A recent explosion of papers on theoretical and computational aspects of deconvolution

estimators has rekindled interest in the area. Meister (2004a,b) develops procedures for test-

ing whether the assumed measurement error density is correct while Meister (2006) proposes

the first estimator for the variance of the known noise distribution. Delaigle and Meister

(2007a,b, 2008) extend the homoscedastic variance setting to allow for heteroscedasticity (in

both errors-in-variable regression and density settings), Carroll and Hall (2004) develop a low

order approximation for deconvolution, and Hall and Qui (2005) consider a trigonometric ex-

pansion for deconvolution that is simpler than kernel methods. Delaigle and Gijbels (2007)

discuss key issues with calculating the integrals arising in deconvolution settings. Delaigle

and Hall (2007) and Delaigle (2007) discuss issues associated with optimal kernel choice and

the appropriateness of assuming a diminishing error variance as the sample size grows. Also,

Delaigle, Hall and Meister (2008) develop an estimation strategy when replication copies of

the noise are present. Taken as a whole these series of papers represent the state of the art in

the statistics literature.

In economics, the usefulness of deconvolution estimators has not been fully realized. The

only mainstream papers that have employed these techniques are Horowitz and Markatou

(1996) and Schennach (2004). Here, our goal is to develop a similar estimator for the cross

sectional setting where the noise distribution is assumed Normal with unknown variance.

3 The convolution problem

Consider the specification:

εj = vj + uj , (1)

yj = m(xj ; β) + εj , j = 1, ..., n, (2)

Here j indexes observations. Equation 1 is the classic deconvolution problem where ε is

observed. Equation 2 is complicated by the fact that the errors are unobserved and have to

be estimated. This specification appears in a variety of econometric settings. For example,

if m(·) is a production function and uj < 0 then this would be a standard stochastic frontier

model. If one were in a panel setting and assumed that xj was uncorrelated with uj then this

would be a classic random effects scenario. The key difference between 1 and 2 is that we have

direct observations on εj in 1, while we must estimate εj in 2.

We make the following assumptions on the random components of the model and the

covariates when present.

Assumption 3.1 The xj, vj and uj are pairwise independent for all j = 1, ..., n.

3



Let the probability densities of the error components be fv(z), fu(z) and fε(z) with corre-

sponding characteristic functions hv(τ), hu(τ), and hε(τ). Based on the independence between

vj and uj in Assumption 3.1,

hε(τ) = hv(τ)hu(τ). (3)

We restrict our attention to densities that satisfy the following two assumptions.

Assumption 3.2 The distribution of v is a member of the Normal family with zero mean and

unknown variance, i.e. F = {N(0, σ2);σ2 > 0}.
Assumption 3.3 The distribution of u is a member of the family of ordinary smooth densities,

i.e. Fu = {u density;C1|τ |−δ ≤ |hu(τ)| ≤ C2|τ |−δ, ∀|τ | ≥ T > 0}. Here we have C2 > C1 > 0

and δ > 1.

Assumption 3.2 is standard and restricts v to the class of Normally distributed random

variates with mean 0 and unknown variance σ2. Assumption 3.3 dictates tail behavior of

the characteristic function of u. The class of ordinary smooth densities was first defined by

Fan (1991a) and implies that the density of u is absolutely continuous. The upper bound is

used when examining uniform consistency while the lower bound ensures the rate of decay of

the tails of the characteristic function does not approach zero too rapidly and is needed for

identification. The constants C1 and C2 are irrelevant for large t while δ ensures polynomial tail

behavior and includes a wide array of densities. Polynomial tails of a characteristic function

decay slower than exponential tails, thus precluding a Normal target density in this class. This

ensures unique identification of the variance of the Normal noise distribution.

Examples of distributions that fall within the ordinary smooth family of densities are

the Laplace and Gamma. Assuming that the v random variates are from the Normal family

guarantees that they possess a nonzero characteristic function everywhere. Under Assumptions

3.2 and 3.3, the Fourier inversion formula identifies the first derivative of the distribution of

u, which equals the density of u,

fu(z) =
1
2π

∫
e−iτz+ 1

2
σ2τ2

hε(τ)dτ, (4)

where i =
√−1, See Lukacs (1968, p14). Meister (2006) has shown that to estimate σ2 one

loses the ability to estimate fu(z) uniformly consistently. He shows that one can estimate

fu(z) semi-uniformly consistently in the sense that for a given density in Fv a deconvolution

estimator is uniformly consistent, but not uniformly consistent over all densities within Fv.

This is the price one pays by not knowing the variance, as in previous work on deconvolution.

See Meister (2003) for more on concepts related to semi-uniform consistency.

If hε were known we could, using equation (4), recover the density of u, but it is not, so

we rely on its empirical characteristic function,

ĥε(τ) =
1
n

n∑

j=1

eiτεj . (5)
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However, since we are estimating the errors from equation (2) this estimate is not useful

empirically. We will use the empirical characteristic function of the residuals which is defined

as

ĥε̂(τ) =
1
n

n∑

j=1

eiτ ε̂j . (6)

Unfortunately, replacing hε with ĥε or ĥε̂ in equation (4), does not ensure that the inte-

gration will exist, so we convolute the integrand with a smoothing kernel.2 Define a random

variable z with the usual Parzen (1962) kernel density K(z) and corresponding (invertible)

characteristic function hK(τ). The characteristic function, hK(τ), must have finite support to

ensure that the integration in equation (7) exists and that the resulting estimate represents a

density function.

Using K(z) = (πz)−1 sin(z), (hK(τ) = 1{|τ | ≤ 1}), our estimator of the density of u is,

f̂u(z) =
1
2π

1/λn∫

−1/λn

e−iτz+ 1
2
σ̂2

nτ2
ĥε̂(τ)dτ, (7)

where the limits of integration are a function of a sequence of positive constants λn = ln kn
kn

which represent the degree of smoothing, while kn =
√

ln n
ln(ln n) , also a sequence of constants.

The variance estimator is defined as

σ̂2
n =





0, if σ̃2
n < 0

σ̃2
n, if σ̃2

n ∈ [0, σ2
n]

σ2
n, if σ̃2

n > σ2
n,

(8)

where σ̃2
n = −2k−2

n ln
(

ĥε̂(kn)
C1kδ

n

)
and σ2

n = ln(ln(n))/4.3 Here δ > 1 and C1 > 0 are arbitrary.

They should correspond to the parameters of the true density in 3.3, however, Meister (2006)

shows that inappropriate choices of these constants have negligible effect on the performance

of the estimator.

To show that the unknown variance deconvolution estimator retains its asymptotic prop-

erties when the composed error is estimated we provide two additional conditions that will be

useful in the Lemmas and Theorem to follow.

Assumption 3.4 The distribution of x has bounded support.

Assumption 3.5 Our estimator of m(x;β) is
√

n−consistent. That is,
√

n(βn − β) = Op(1)

as n →∞, for an estimator βn.

Assumption 3.4 follows Horowitz and Markatou (1996), is used for simplification of the

proofs and can be easily satisfied by dropping extreme values of X. Assumption 3.5 guaran-
2See Stefanski and Carroll (1990).
3Meister (2006) introduces this truncation device on the variance estimator, however, as the sample size grows

this truncation becomes irrelevant.
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tees that the random sampling error between the composed errors and the estimated ones is

asymptotically negligible.

The following lemmas will be used to establish semi-uniform consistency of f̂u.

Lemma 3.1 Under Assumptions 3.4 and 3.5 σ̃2
n = σ̃2

1,n + σ̃2
2,n, where

σ̃2
1,n = −2k−2

n ln

(
ĥε(kn)
C1kδ

n

)
(9)

and

σ̃2
2,n = −2k−2

n ln
(
1 + Op(knn−1/2)

)
, (10)

where σ̃2
2,n is an additional component of the variance due to using ε̂ instead of ε.

Lemma 3.1 shows that our variance estimator is equivalent to that of Meister (2006), plus an

additional term that arises from estimation of the errors as opposed to direct observation.

Lemma 3.2 For Assumptions 3.1, 3.3-3.5 and Fv = {N(0, σ2) : σ2 ∈ (
0, σ2

n

]}, the Mean

Integrated Squared Error (MISE) of 7 is

sup
fv∈Fv

sup
fu∈Fu

Efv,fu‖f̂u − fu‖2
L2
≤ B + V1 + V2 + E, (11)

where B ≤ const.λ2δ−1
n , V1 ≤ const. (nλn)−1 eσ2

n/λ2
n, V2 ≤ const.(nλ3

n)−1eσ2
n/λ2

n and

E ≤const. sup
fv∈Fv

sup
fu∈Fu

λ−1
n




1∫

−1

|hu(s/λn)|2s4ds

+exp(σ2
n/λ2

n)

1∫

−1

|hu(s/λn)|2 · Pfv,fu

(|σ̂2
n − σ2| > dn

)
ds


 ,

where dn = 2 ln(2C2/C1)λ2
n.

Notice the distinction between F in Assumption 3.2 and Fv above. The latter is the family

of Normal distributions that involves an upper bound on the variance and is a subset of the

former.4 It turns out that the bound on B and the first integral of the bound on E converge

slowly and determine the convergence rates of the estimator. Since these bounds are identical

to those of Meister (2006), the convergence rates are also identical. The other components of

the bound (V1, V2, and the second integral in the bound on E) all involve a inverse power of n

and converge relatively quickly. The V2 component of the bound does not appear in the bound

of Meister (2006) and arises from the estimation of the regression function. Clearly, its bound

4This bounding of the variance in the class of Normal distributions is what leads to semi-uniform consistency as
opposed to uniform consistency. That is, uniform consistency only holds for this bounded class.
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converges faster than that of V1. The second integral on the bound of E is identical to that

of Meister (2006), but the estimation of the regression function causes ours to converge more

slowly. Ultimately, this is unimportant as there is an inverse n that dominates this component

as we shall see in the next lemma.

B is a bias component of the estimator, and V1 and V2 are variance components, the bounds

of which exhibit the usual bias-variance trade-off in non-parametric density estimation. As

the bandwidth goes to zero, the bound on the bias (B) is decreasing, while those on V1 and

V2 are increasing. Of course, the inverse n in the bounds on V1 and V2 dominate and cause

these terms to go to zero. The E is a hybrid bias-variance term. The second integral of its

bound behaves like a variance, while the first integral behaves like a bias-variance hybrid. It

is ultimately decreasing in the bandwidth like a variance, but it does not rely specifically on

an inverse n for its convergence, rather it depends on the tails of the characteristic function as

well shall see.

Lemma 3.3 Let dn and Fv be as in Lemma 3.2. Then

sup
fv∈Fv

sup
fu∈Fu

Pfv,fu

(|σ̂2
n − σ2| > dn

) ≤ const.k2δ
n exp(σ2

nk2
n)(1 + k2

n)/n. (12)

Given that we have to replace ε with an estimate our lemma differs from Meister (2006)

through the addition of k2
n. However, the presence of the inverse n dominates the logarithmic

structure of kn. Therefore, the increase in this bound over Meister’s will not affect the optimal

rates of convergence in the following theorem.

Lemmas 3.1 through 3.3 can be used to show

Theorem 3.1 Our deconvolved kernel density estimate (7), for any fv ∈ Fv has

sup
fu∈Fu

Efv ,fu‖f̂u − fu‖2
L2
≤





(ln(ln(n)))3δ−1.5(ln(n))0.5−δ, if δ < 2.5

(ln(ln(n)))6(ln(n))−2, if δ = 2.5

(ln(ln(n)))7(ln(n))−2, if δ > 2.5,

(13)

The rates here are identical to those found in Meister (2006) and show the difficulty of

deconvolution with Normal error.5 All of the rates, regardless of δ, are powers of logarithmic

and iterated logarithmic terms of the sample size. These rates are, however, optimal for

deconvolution with Normal measurement error (see Carroll and Hall; 1988).

It is worth mentioning again that the reason we achieve the Meister (2006) rates is that the

residuals converge in distribution faster than the density deconvolution estimator converges.

This happens because the terms affecting the speed of convergence of our estimator depend

on B and the first integral of the bound on E in Lemma 3.2. However, the residuals only

5Our rates are slightly different that those in Meister (2006), Theorem 2 to correct for a typo there.
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show up in the additional component of the bound on V and the second integral of the bound

on E. Both of these terms contain a 1/n which allows them to go to zero faster than the

remaining terms on the upper bound of the MISE. Thus, even though we have to estimate

the errors,
√

n−consistent estimation still guarantees a semi-uniformly consistent estimator.

This is essentially what occurs in the deconvolution estimator of Horowitz and Markatou (1996)

who also do deconvolution in a regression context.

If one were to assume an ordinary smooth distribution for v (such as Laplace or twice

convolved Laplace) then the rates would be polynomials of the sample size which are noticeably

faster. For this case the parameters of the distribution would still have to be assumed known

as no estimation strategy has been proposed for this deconvolution setting. As Meister (2004b)

has shown, it may prove fruitful to perform deconvolution under the assumption of Laplacian

error as the loss associated with assuming Normal measurement error, when in fact it should

be Laplacian, is finite.6 However, assuming Normal measurement error in the presence of

Laplace error results in infinite loss. That is, if the true measurement error is Laplace, but

one erroneously performs deconvolution assuming that the measurement error is Normal, then

the MISE goes to infinity as the sample size increases.

4 Finite sample properties of the estimator

We draw from several other deconvolution simulation studies to examine the small sample

properties of our estimator.7 We consider sample sizes of 200 and 1000. Our model is

yi = 4 + 3xi + vi + ui (14)

The xis are generated from a standard Normal. The uis are generated from the two times

self-convoluted, zero-mean Laplace density.8 To determine the impact of the noise variance we

generate vi from a zero-mean Normal density with variance equal to 1 or 4. This implies that

our signal to noise ratio is either 1 or 0.25.

Figures 1 through 4 show the results for four simulations under each setting. The dotted

line is the true twice convolved Laplacian density (labelled Actual in the legends), the solid

line is the Meister (2006) estimator using ε (labelled M in the legends), and the dashed line

is the estimator discussed in the paper using ε̂ (labelled ME in the legends). We can see that

both our estimator and the Meister estimator provide a similar depiction of the density.

Figure 1 shows four individual runs for n = 200 and variance equal to 1. The estimated

variances using the known variances are {0, 0, 0, 0} and {0, 0, 0, 0.229} using the estimated

6Here loss is taken to be MISE.
7Meister (2006) and Stefanski and Carroll (1990).
8The standard Laplace density has the form L(x) = (2b)−1e−|x|/b, where b is the scale parameter, while the twice

convolved Laplace density is L̃(x) = (4b2)−1e−|x|/b(|x| + b). We choose b so that this density has variance 1, which
corresponds to b = 1. In this setting C1 = 1/4 and δ = 2. We are not concerned with C2 as it has no bearing on any
calculations for the estimator.
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Figure 1: Single Runs for n = 200 and σ2 = 1.

residuals. In Figure 2 we have n = 200 but with measurement error variance equal to 4. Again,

we see the fit of both estimates is similar but poor relative to those in Figure 1 due to a decrease

in the signal to noise ratio. The estimated variances in this setting are {0, 0.390, 0.417, 0} and

{0, 0.417, 0.258, 0} for the known and estimated residuals, respectively.

Performing this analysis with a sample of 1000 further illustrates the superiority of the
√

n

rate of convergence of the residuals as opposed to the logarithmic rates for the deconvolution

density estimator. In Figure 3 we have measurement error variance of 1 and the estimated

variances are {0, 0.227, 0.141, 0} and {0, 0.330, 0.186, 0} for the known and estimated errors,

respectively. Both estimators are indistinguishable from one another. Moving to the lower

signal to noise ratio setting with measurement error variance equal to 4 we see that the fit of

both estimators has degraded and yet they remain almost identical throughout the range of the

simulated data. Here our estimated sets of variances are {0, 0.295, 0, 0.042} and {0, 0.418, 0, 0}
for the known and estimated errors, respectively.

Notice that there is a high occurrence of zero estimates for the unknown variance. This is

an unresolved issue with these types of estimators. Also, the density estimates can be negative

in certain regions and tend to fit the target density better in the tails than in the center of the

distribution where a majority of the mass is present. These are unavoidable characteristics of

deconvolution estimators. Also, these pictures depict a set of four runs and therefore are likely

to be impacted by random sampling.

One point worth mentioning is that the variance estimate is impacted by the sample size as

9



Figure 2: Single Runs for n = 200 and σ2 = 4.

Figure 3: Single Runs for n = 1000 and σ2 = 1.
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Figure 4: Single Runs for n = 1000 and σ2 = 4.

well as specification of C1 and δ. Given a zero estimate of the variance, a procedure to make

it minimally positive would be to change C1 and/or δ until it becomes nonzero. Since these

choices do not affect the asymptotic performance of the estimator, this seems a reasonable

strategy. However, it is also worth mentioning that interest centers on the unknown density

and not consistent estimation of the noise variance. Thus, the occurrence of a zero variance

estimate is not too troubling. We mention that developing a positive variance estimate is a

fruitful avenue for further research.

5 Conclusions

This paper proposes a semiparametric estimator for cross-sectional error components models.

Our estimator is semiparametric as it hinges on a distributional law for one of the compo-

nents. This assumption is tempered by allowing for an unknown variance using the recent

methods proposed by Meister (2006). Our finite sample results show that a
√

n estimator of

the convolved errors does not degrade the consistency or the rates of convergence of the density

estimate when compared to deconvolution based on direct observation. This is intuitive given

that the errors are estimated at the parametric
√

n rate while deconvolution estimators rely

on a logarithmic rate.

Overall the possibilities for this estimator are multifarious. A test against known parametric

densities and extensions to calculating conditional densities and expectations are worthwhile

11



extensions of the results here. As previously stated, developing a positive variance estimate is

also an interesting extension of this work. These additional pieces should enhance the appeal

of deconvolution methods in cross-sectional error component settings.
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Appendix: Proofs of Lemmas and Theorems

Proof of Lemma 3.1:

Rewrite the empirical characteristic function of the estimated residuals as

ĥε̂(τ) =
1
n

n∑

j=1

eiτεjeiτ(ε̂j−εj), (15)

and note that by the Mean Value Theorem of Calculus

ĥε̂(τ) =
1
n

n∑

j=1

eiτεj

(
1 + Op(τn−1/2)

)

=
(
1 + Op(τn−1/2)

) 1
n

n∑

j=1

eiτεj =
(
1 + Op(τn−1/2)

)
ĥε(τ). (16)

We can use this derivation to complete the Lemma. The variance estimator is defined as

σ̃2
n = −2k−2

n ln
(

ĥε̂(kn)

C1kβ
n

)
which by the above argument can be rewritten as

σ̃2
n = −2k−2

n ln

(
ĥε(kn)

(
1 + Op(knn−1/2)

)

C1kδ
n

)
= −2k−2

n ln

(
ĥε(kn)
C1kδ

n

)
− 2k−2

n ln
(
1 + Op(knn−1/2)

)
.

(17)

which completes the proof.

Proof of Lemma 3.2:

Following Meister (2006, Proof of Lemma 1) we have:

sup
fv∈Fv

sup
fu∈Fu

Efv ,fu‖f̂u − fu‖2
L2(R)

≤ (2π)−1





sup
fv∈Fv

sup
fu∈Fu

2

∞∫

1/λn

|hu(τ)|2 dτ

+ sup
fv∈Fv

sup
fu∈Fu

2

1/λn∫

−1/λn

Efv ,fu

∣∣∣ exp
(
σ̂2

nτ2/2
) [

ĥε̂(τ)− hε(τ)
]∣∣∣

2
dτ

+ sup
fv∈Fv

sup
fu∈Fu

2

1/λn∫

−1/λn

Efv ,fu

∣∣hε(τ)/
(
exp

(−σ̂2
nτ2/2

))− hu(τ)
∣∣2 dτ





.

The first addend represents the bias, does not depend on the fact that the convoluted errors

are estimated and can be bound as in Lemma 1 of Meister (2006). The second term can be

split into two pieces, V1 and V2, where V1 is identical to V in Lemma 1 of Meister (2006)

while V2 is the additional component of variance due to estimating the composed errors. Our
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third term, which we call E can be bound almost as found in Lemma 1 of Meister (2006) but

the form of the bound is more complicated due to the fact that the empirical characteristic

function used to construct the variance of the Normal contamination is constructed with ε̂

instead of ε.

We split the second addend into two parts (V1 and V2) using the results in Lemma 3.1 and

let A(ĥε) =
1/λn∫
−1/λn

Efv ,fu

∣∣∣
[
ĥε(τ)− hε(τ)

]∣∣∣
2
dτ :

sup
fv∈Fv

sup
fu∈Fu

2

1/λn∫

−1/λn

Efv,fu

∣∣∣exp
(
σ̂2

nτ2/2
) [

ĥε̂(τ)− hε(τ)
]∣∣∣

2
dτ (18)

≤ 2eσ2
n/λ2

n sup
fv∈Fv

sup
fu∈Fu

1/λn∫

−1/λn

Efv ,fu

∣∣∣∣∣∣


n−1

n∑

j=1

exp (iτεj) exp (iτ(ε̂j − εj))− hε(τ)




∣∣∣∣∣∣

2

dτ (19)

= 2eσ2
n/λ2

n sup
fv∈Fv

sup
fu∈Fu

1/λn∫

−1/λn

Efv ,fu

∣∣∣∣∣∣
n−1

n∑

j=1

exp (iτεj)
(
1 + Op(τn−1/2)

)
− hε(τ)

∣∣∣∣∣∣

2

dτ (20)

= 2eσ2
n/λ2

n sup
fv∈Fv

sup
fu∈Fu

1/λn∫

−1/λn

Efv ,fu

∣∣∣ĥε(τ)− hε(τ) +
(
Op(τn−1/2)ĥε(τ)

)∣∣∣
2
dτ (21)

≤ 2eσ2
n/λ2

n sup
fv∈Fv

sup
fu∈Fu

1/λn∫

−1/λn

Efv ,fu

∣∣∣
[
ĥε(τ)− hε(τ)

]
+

(
Op(n−1/2λ−1

n )ĥε(λ−1
n )

)∣∣∣
2
dτ (22)

≤ 4eσ2
n/λ2

n sup
fv∈Fv

sup
fu∈Fu




1/λn∫

−1/λn

Efv ,fu

∣∣∣Op(n−1/2λ−1
n )ĥε(λ−1

n )
∣∣∣
2
dτ + A(ĥε)


 (23)

= 4eσ2
n/λ2

n sup
fv∈Fv

sup
fu∈Fu


Op(n−1λ−2

n )Efv,fu

∣∣∣ĥε(λ−1
n )

∣∣∣
2

1/λn∫

−1/λn

dτ + A(ĥε)


 (24)

= sup
fv∈Fv

sup
fu∈Fu

(
8eσ2

n/λ2
nOp(n−1λ−3

n )Efv ,fu

∣∣∣ĥε(λ−1
n )

∣∣∣
2
+ 4eσ2

n/λ2
nA(ĥε)

)
. (25)

The second addend is identical to Meister’s V and is bound above by:

V1 ≤ const.(nλn)−1 exp
(
σ2

n/λ2
n

)
. (26)

All that is left to consider is the first addend, which is the important difference between these

results and Meister’s. Call this V2 with bound:

V2 ≤ const.(nλ3
n)−1 exp(σ2

n/λ2
n). (27)
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Proof of Lemma 3.3:

We can bound the term Pfv ,fu

(|σ̂2
n − σ2| > dn

)
from above by two addends; we derive

upper bounds for both of these addends. Since we are selecting an fv ∈ Fv, we have that

σ2 ∈ (0, σ2
n]. Now

Pfv,fu

(
σ̂2

n − σ2 > dn

)
=Pfv ,fu

(
−2k−2

n ln(ĥε̂(kn)/C1k
−δ
n ) > dn + σ2

)
(28)

=Pfv ,fu

(
ĥε̂(kn)/C1k

−δ
n < exp(−k2

ndn/2− σ2kn/2))
)

(29)

=Pfv ,fu

(
ĥε̂(kn) < C1k

−δ
n exp(−k2

ndn/2) exp(−σ2kn/2))
)

(30)

=Pfv ,fu

(
ĥε̂(kn) <

2C1

C1
k−δ

n exp(−k2
ndn/2) exp(−σ2kn/2)

)
(31)

=Pfv ,fu

(
ĥε̂(kn) < αnC1k

−δ
n exp(−k2

ndn/2) exp(−σ2kn/2)
)

(32)

≤Pfv ,fu

(
ĥε̂(kn) < αn|hε(kn)|

)
, (33)

where αn = (2C1) exp(−dnk2
n/2). The last inequality follows from the bounds on a characteris-

tic function for a Normally distributed random variable and the ordinary smooth characteristic

function. Given the description of kn and dn above we know that αn → 0 as n →∞. At this

point we know a constant c ∈ (0, 1) exists such that

Pfv,fu

(
ĥε̂(kn) < αn|hε(kn)|

)
≤ Pfv ,fu

(
ĥε̂(kn) < c|hε(kn)|

)
(34)

which by Chebyshev’s inequality yields

≤ (1− c)−2 sup
fv∈Fn

sup
fu∈Fu

|hε(kn)|−2 Eε

∣∣∣∣∣∣
(1 + Op(knn−1/2))

n

n∑

j=1

exp(iknεj)− hε(kn)

∣∣∣∣∣∣

2

(35)

= (1− c)−2 sup
fv∈Fn

sup
fu∈Fu

|hε(kn)|−2 Eε

∣∣∣∣∣∣
ĥε(kn)− hε(kn) + Op(knn−3/2))

n∑

j=1

exp(iknεj)

∣∣∣∣∣∣

2

(36)

≤ 2(1− c)−2 sup
fv∈Fn

sup
fu∈Fu

|hε(kn)|−2


Eε

∣∣∣∣∣∣
Op(knn−3/2))

n∑

j=1

exp(iknεj)

∣∣∣∣∣∣

2

+ Eε

∣∣∣ĥε(kn)− hε(kn)
∣∣∣
2




(37)

= const.(E1 + E2). (38)

The second addend is bound by

E2 ≤ const.k2δ
n exp(σ2

nk2
n)n−1, (39)
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as in Lemma 2 of Meister (2006), and the first addend is bound as in our Lemma 3.2 by

E1 ≤ const.k2(1+δ)
n exp(σ2

nk2
n)n−1. (40)

The term Pfv ,fu

(
σ̂2

n − σ2 < −dn

)
can be bound in identical fashion.

Proof of Theorem 3.1:

Our proof follows Meister (2006) Theorem 2 except that in the corresponding max operators

we have (ln(n))2δ+1/2n−1/2 instead of (ln(n))δ+1/2n−1/2 in the second argument. However, the

presence of n−1/2 makes these terms asymptotically irrelevant to the other arguments. We

still have the three cases that Meister (2006) considers: a) 1 < δ < 5/2, b) δ = 5/2, and c)

δ > 5/2, so the theorem follows by the same arguments in Meister (2006). It turns out that

for the case 1 < δ < 5/2, the bias (B) dictates the uniform rate of convergence, while for the

case δ ≥ 5/2 the first integral of the bound on E dictates the rates.
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