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Abstract 

Ranking systems serve critical roles in sport settings, most notably in determining 

playoff participants and seeding. Numerous ranking methodologies exist that 

incorporate many input measures and produce models that are highly predictive of 

game outcomes. However, there are circumstances—especially for amateur sport 

leagues—in which more complex inputs are either unavailable or not desirable, as they 

may lead to adverse performance incentives. Therefore, the goal of this paper is to 

highlight a ranking methodology that only considers binary game outcomes, i.e., wins 

and losses. Specifically, we consider the efficacy of the Bradley-Terry Model to rank 

sport teams for playoff consideration. We apply this method as a case study to the 

New England Prep School Ice Hockey Association (NEPSIHA), and compare the 

accuracy of their current ranking system to the Bradley-Terry model using simulation 

methods. We show that Bradley-Terry significantly outperforms NEPSIHA’s current 

method, especially when teams face unbalanced strengths of schedule. This result 

holds under various league competitive balance distributions. 

 

Keywords: Bradley-Terry; Rankings; Simulations; Amateur Athletics 
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The Bradley-Terry Model in Binary Outcome Driven Rankings: An Application in 

Amateur Hockey 

INTRODUCTION 

Rankings and ranking systems serve critical roles in numerous practical 

contexts. Applied to sports, there are a multitude of prominent ranking systems, such 

as the Massey method (Massey, 1997), the Markov method (Govan, 2008; Vaziri et al., 

2018), the Colley method (Colley, 2002), and the Elo method (Elo, 1978; Ingram, 

2021; Kovalchik, 2020), in addition to the simple method of ranking teams by win 

percentage or point accumulation. 

Most sport leagues, from youth to professional, implement ranking systems to 

determine champions or playoff participants (Stefani, 2011). In most leagues and 

divisions, wins and losses are tallied, and the teams are ranked based on win 

percentage. Some leagues rank teams by awarding points for winning, tying, or 

reaching overtime in a game. In many situations, scheduling limitations can cause 

simple systems like these to be inequitable, prompting a more complex, sometimes 

even subjective, system to rank teams (Vaziri et al., 2018). Examples include iterations 

of the FIFA World Ranking system and selection committees for college basketball 

and football (Stefani, 2011). In these examples, the number of teams participating in 

the competition far exceed the number of games played per team, resulting in 

unbalanced schedules. Teams facing more difficult schedules may have lower win 
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percentages than some lower quality teams, despite being superior in skill—hence the 

need to rely on alternative ranking methodologies. 

Ranking methods have various applications outside of sport as well. Google 

uses advanced algorithms to rank the importance and popularity of websites to decide 

which links to show their users (Evans, 2007). US News ranks the quality of 

universities and colleges across the country, utilizing metrics that include graduation 

rates, selectivity, and reviews (Standifird, 2005). Applications and websites use 

rankings and algorithms to provide consumers with recommendations, such as which 

restaurant to go to (Zhang et al., 2020). 

In this paper, we focus on a particular ranking system: the Bradley-Terry model 

(Bradley and Terry, 1952; Bradley, 1954, 1955). The Bradley-Terry (BT) model is a 

probability model designed to predict pairwise comparisons of a sample set. It is 

estimated by maximizing likelihood functions, using a series of observed pairwise 

comparisons as inputs. Applications of the model are particularly relevant when 

pairwise comparisons of every possible combination within the sample set are 

impossible to complete. An example is the ranking and comparison of the thousands 

of wines that exist in the world (Agresti, 2007, p. 265). While it would be impossible 

for one person to try every single wine and be able to rank them effectively, the BT 

model can consider various one-on-one pairwise comparisons of wines from various 

reviewers to produce an aggregate ranking. 
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The BT model has obvious applications in sport settings. When a sporting 

contest is played, we consider this a pairwise comparison. While two teams may not 

play directly, we can use the BT model to rank them. In the simplest of terms, if Team 

A defeats Team B, and Team B defeats Team C, then BT would allow us to conclude 

that Team A is better than Team C, despite the fact they did not play one another. As 

the web of teams increases and the schedule dynamics become more intricate, the BT 

model is flexible enough to adapt and produce rankings of teams and hypothetical win 

probabilities if two of the teams were to face off. Applications of the Bradley-Terry 

model in sport include college ice hockey (Whelan and Wodon, 2020), European field 

hockey (Looijen, 2019), and international cricket (Islam et al., 2017; Dewart and 

Gillard, 2019). In the media, the BT model is used to make Ken’s Ratings for 

American College Hockey (KRACH), which College Hockey News endorses “as the 

best system to objectively rank teams.” 

Traditionally, academic papers have focused less on the practical ranking of 

teams and more on the predictive modeling that these sorts of models allow for 

(Barrow et al., 2013; Dabadghao and Vaziri, 2021; Lasek et al., 2013; Leitner et al., 

2010; Leung and Joseph, 2014; Stewart et al., 2022; Williams et al., 2020, for example). 

Occasionally, papers will consider biases or look for improvements in current ranking 

systems (Servien, 2022; Szczecinski and Roatis, 2022) for playoff seeding purposes 

(Burer, 2012; Bigsby and Ohlmann, 2017), especially as it relates to the NCAA March 

Madness College Basketball Tournament (Coleman et al., 2010; Dutta and Jacobson, 
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2018; Paul and Wilson, 2012; Sanders, 2007; Stocks-Smith, 2021; Stone and Arkes, 

2018, among others). The BT model, especially, has received minimal consideration in 

the literature, as there are typically more advanced predictive models available that 

utilize a wide variety of variables to consider the strengths of teams. The inputs of 

these predictive models tend to involve more variables, ranging in complexity from 

margin of victory (Szczecinski, 2022) to expected goal metrics (Eggels, 2016; 

Kovalchik, 2020). But what happens in sport settings where these variables may be 

unavailable, such as in many amateur sport settings, or where they create adverse 

performance incentives that are counter to league objectives? A more simplistic 

methodology (maximizing likelihood functions is much simpler than alternative 

approaches) that relies on fewer inputs may be desirable in certain settings, including a 

methodology that just focuses on binary game outcomes (wins and losses). 

We provide a case study illustrating the applicability of the BT model in sport 

settings desiring binary outcome-driven rankings. Specifically, we assess the BT 

model’s ability to rank teams in the New England Prep School Ice Hockey 

Association (NEPSIHA). NEPSIHA currently implements its own unique ranking 

system that objectively selects and seeds teams for playoff tournaments. We 

benchmark the efficiency of the BT model to their current ranking system by 

observing each model’s ability to identify and rank the “best” teams in the league. 

Utilizing a simulation approach with hypothetical team skill competitive balance 
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distributions, we identify biases and inefficiencies in the current NEPSIHA ranking 

system and show how implementation of the BT model can address these biases. 

The rest of the paper is structured as follows. First, we discuss the intricacies of 

NEPSIHA and why we have chosen this league in particular as our case study. Next, 

we introduce the BT model, followed by an overview of the empirical strategy to 

compare the BT model to NEPSIHA’s current ranking system. Then, we illustrate 

simulation results, highlighting critical inefficiencies in the current NEPSIHA ranking 

system and how the BT model corrects for them. Finally, we provide concluding and 

summarizing remarks. 

NEPSIHA: A CASE STUDY 

The New England Prep School Ice Hockey Association (NEPSIHA) is a group 

of 54 high school hockey programs across the six states of New England and New 

York. Known for elite academics, these schools are commonly referred to as 

NEPSAC schools for their membership in the New England Preparatory School 

Athletic Council. Hundreds of New England Prep alumni go on to play college 

sports, and many move on to play professionally, especially in hockey. The NEPSIHA 

has alumni currently playing in the NHL, such as All-Stars Max Pacioretty, Chris 

Kreider, and Conn Smythe Trophy winner Jonathan Quick, among others. 

Abbreviations for all school names referenced throughout the paper are available in 

Appendix A. 
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At the end of each season, 24 NEPSIHA teams take part in three different 

postseason tournaments: the Stuart/Corkery, Martin/Earl, and Piatelli/Simmons 

tournaments. The Stuart/Corkery tournament is commonly referred to as the “Open” 

tournament and consists of the eight best teams, with the winner of this tournament 

considered the NEPSIHA champion. The Martin/Earl tournament consists of the 

eight best “Large” schools not selected for the Open tournament. Similarly, the 

Piatelli/Simmons tournament consists of the eight best “Small” schools not selected 

for the Open tournament. The Large class vs. Small class distinction is made based on 

the enrollment totals of each school. Given its de facto status as the NEPSIHA 

playoffs, selection for the Open tournament will be our main focus. 

To determine the top eight teams that make the Open tournament, NEPSIHA 

uses a customized approach called the Jeremy S. Philipson Rating (JSPR) system. 

JSPR starts by calculating the Rating Percentage Index (RPI) of every NEPSIHA 

team. RPI is a commonly used rating system that was most notably used in NCAA 

Basketball before it was replaced in 2018 by the NCAA Evaluation Tool (NET). For 

many applications, its simplicity and transparency can be very appealing. The standard 

RPI formula is 

𝑅𝑃𝐼 = (𝑊𝑃 × 0.25) + (𝑂𝑊𝑃 × 0.5) + (𝑂𝑂𝑊𝑃 × 0.25), 

where WP is Win Percentage, OWP is Opponents’ Win Percentage, and OOWP is 

Opponents’ Opponents’ Win Percentage. However, NEPSIHA tweaks the 

coefficients so that the OWP section has far less weight. The resulting formula is 
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𝑅𝑃𝐼𝑁𝐸𝑃𝑆𝐼𝐻𝐴 = (𝑊𝑃 × 0.25) + (𝑂𝑊𝑃 × 0.21) + (𝑂𝑂𝑊𝑃 × 0.54). 

It is believed that this tweak was made to avoid teams loading their schedule with 

difficult teams to artificially inflate their RPI. 

From the RPI ranking, the top 16 teams are classified as the Teams Under 

Consideration (TUC). These teams are put through a pairwise comparison. This 

comparison, made between every pair of top 16 schools, is where the JSPR ranking 

system is very unique. There are four inputs to each pairwise comparison: head-to-

head record, RPI, record against common opponents, and record against TUC. 

[Insert Table 1 Here] 

If a team is better than the other team in more categories, they are awarded a 

JSPR point. Table 1 shows a pairwise example in which Team A is better in three 

(head-to-head record, RPI, record against TUC) out of the four categories, earning it 

the JSPR point. In the event each team takes the same number of categories, head-to-

head record is used as the first tiebreaker, followed by the second tiebreaker of RPI. If 

teams are tied in a particular category, that category is not counted. For example, had 

Team A been 5-0-0 against common opponents, Team A would have won the JSPR 

point three categories to zero instead of their actual three categories to one. The 

maximum number of JSPR points a team can earn is 15, as that is a team that earns a 

JSPR point in each comparison against all other TUC. The team with the most JSPR 

points gets the top seed in the Open tournament, second-most gets the second seed, 

and so on until all eight playoff seeds are determined. When teams are tied in JSPR 
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points, their comparison against each other is the tiebreaker. As an example, Table 2 

shows the full comparison matrix for all 16 TUC from the 2017–18 season, ordered 

by their final seeding. Note how WES earned the eighth and final playoff spot over 

NMH since they won their JSPR pairwise comparison due to the head-to-head 

tiebreaker. 

[Insert Table 2 Here] 

The JSPR ranking system has a number of nuances that, a priori, led us to 

believe there may have been inefficiencies and biases, hence the motivation for 

considering BT as an alternative ranking system. First, games carry varying levels of 

importance under JSPR. A game against an RPI top 16 opponent will impact the 

Head-to-Head, RPI category, and record against TUC components, while non top 16 

games would only impact the RPI category (either game type could potentially impact 

the record against common opponents category). As a result, there is a clear 

discontinuity in terms of game importance, as losing to the 16th best team in RPI 

carries significantly more consequence compared to losing to the 17th best team in 

RPI. Also, JSPR systematically punishes a loss to the 16th best team in RPI more than 

a loss to the worst team in the league, despite the fact that such a loss would likely be 

a better indicator of true team ability. Lastly, RPI as a whole is a very outdated and 

inaccurate measurement of team quality. This is made evident by the NCAA phasing 

out the use of the metric in many of their sports, replacing it with more accurate 

measures, such as NET in basketball. 
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When considering an alternative ranking system, there is an important 

consideration to take into account, specifically for NEPSIHA. Many ranking systems 

use margin of victory as an input because it has been proven to be more predictive of 

actual team ability than just wins and losses. For an amateur hockey association, 

however, it is preferable that only wins and losses are used as inputs in its ranking 

system. From a competitive standpoint, leagues would prefer teams to be win 

maximizers rather than goal differential maximizers. For example, if margin of victory 

affects the ranking, teams could be reluctant to pull the goalie late in the game and 

keep the margin of the loss at one instead of attempting to tie the game. From a 

sportsmanship standpoint, amateur leagues may not want teams to “run up the 

score,” or hamper participation by limiting the opportunities for benchwarmers to 

play. The focus on just wins and losses is a major requirement being imposed for any 

alternative ranking system, similar to what is done in JSPR, and hence why more 

intricate ranking systems are not under consideration. 

THE BRADLEY-TERRY MODEL 

The BT model uses pairwise comparisons to estimate the strength of each subject 

(team) relative to each other. The following, known as Zermelo’s iteration, is used to 

obtain maximum likelihood estimates (see Hunter, 2004 for more information) that are 

then compared to form a ranking 
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𝑝𝑖 =
𝑊𝑖

∑
𝑤𝑖,𝑗+𝑤𝑗,𝑖

𝑝𝑖+𝑝𝑗
𝑗≠𝑖

 , (1) 

where 𝑝𝑖 is the parameter for Team i in the sample, 𝑊𝑖 is team i’s total wins, and 𝑤𝑖,𝑗  

is the number of Team i wins over Team j. For the initial iteration, all 𝑝 parameters 

are set to one. Then, the algorithm is calculated producing new parameter values, 

which are normalized and replaced in the initial equations and recalculated. For 

example, after the first iteration, it can be shown that 

𝑝𝑖 =
𝑊𝑃𝑖

∑𝑊𝑃
 , (2) 

where WP is a school’s overall win percentage. These iterations are repeated until the 

parameters converge. After convergence, it can be said that the probability that any 

Team i beats any Team j is given by 

𝑝𝑖𝑗 =
𝑝𝑖

𝑝𝑖+𝑝𝑗
 . (3) 

The following is a simple example of the usage of the BT model in a league of 

three teams. Suppose Team 1 beat Team 2 twice and lost to Team 2 once; Team 3 

beat Team 2 three times and lost to Team 2 four times; Team 1 and Team 3 never 

played each other. Below shows the first iteration plugging initial values into Equation 

1: 

𝑝1 =
2+0

2+1

1+1
+
0+0

1+1

= 1.333, 

𝑝2 =
1+4

1+2

1+1
+
4+3

1+1

= 1, 
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and 

𝑝3 =
0+3

0+0

1+1
+
3+4

1+1

= 0.857. 

These parameters are then normalized by dividing them by the sum of the parameters, 

which is 3.19 in this case. The resulting parameters are [0.418, 0.313, 0.269], which are 

equivalent to what can be derived by plugging in initial win percentages into Equation 

2. These parameters are then used in the second iteration: 

𝑝1 =
2+0

2+1

0.418+0.313
+

0+0

0.418+0.269

= 0.487, 

𝑝2 =
1+4

1+2

0.313+0.418
+

4+3

0.313+0.269

= 0.310, 

and 

𝑝3 =
0+3

0+0

0.269+0.418
+

3+4

0.269+0.313

= 0.249. 

After the second iteration, the normalized parameters are [0.466, 0.296, 0.238]. This 

sequence is repeated until all three parameters converge. In this example, after 12 

iterations, the values converge to [0.533, 0.267, 0.200]. As we can see, the BT model 

concludes that Team 1 is better than Team 3, and predicts that Team 1 would have a 

72.7% win probability if facing Team 3, despite them never playing one another. 

  While we focus our analysis on simple binary game outcomes (win/loss), BT 

can be extended in numerous ways, as summarized by Butler & Whelan (2004). For 

instance, general and team-specific order effects, such as the home field advantage, 

can be incorporated into the BT model (Davidson and Beaver, 1977). Suppose team i 
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is always the home team. Modifying Equation 3, the probability that Team i beats 

Team j is given by 

𝑝𝑖𝑗 =
𝛾𝑝𝑖

𝛾𝑝𝑖+𝑝𝑗
 , (4) 

where 𝛾 is a non-negative parameter, which can be solved for when maximizing 

likelihood functions. While Equation 4 only accounts for a generic home field 

advantage, the model can also be expanded to allow for individual team home 

advantages. In addition, ties can be incorporated if that is a desirable outcome (see 

Davidson, 1970), although in practice, treating a tie as half a win and half a loss 

typically works if the end goal is to produce a ranking of teams (as opposed to 

predicting game outcomes).  

COMPARING AND EVALUATING RANKING SYSTEMS 

The goal of most ranking systems, JSPR among them, is to identify a “true” 

hierarchical ordering of team ability. This is typically done using observed game data, 

which could include game result, score differential, production measures, expected 

scoring measures, and more (see Govan et al., 2009, among others). Of course, relying 

on observed outcomes, which are inherently random and come with high degrees of 

variance, will never perfectly identify “true” team skill level. The best team does not 

always win the game, and as long as that holds true, there is going to be variation in 

results that might cloud how good a team really is. Finite schedules involving between 
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20 and 30 games per school exacerbate the problem. So, in the end, a ranking system is 

only an estimate of a team’s quality, relative to the competition. 

[Insert Table 3 Here] 

Diverse systems can yield distinct team rankings, despite analyzing the same 

game outcomes. Consider the following hypothetical example comparing rankings 

produced by two systems: RPI and BT. Table 3 considers a simplistic scenario involving 

four teams in which teams play unbalanced schedules consisting of between 15 and 17 

games. According to win percentage and BT, Team A emerges as the top-ranked team, 

while RPI designated Team B as the highest ranked. This discrepancy arises due to 

variations in schedule quality. Team A is penalized in the RPI rankings due to having a 

substantial proportion of their games being played against the bottom-ranked Team D. 

Although JSPR's adjusted RPI somewhat mitigates this scheduling penalty by assigning 

less weight to opponent win percentage, it nonetheless underscores the influence of 

methodological choices on the final rankings.  

The BT model possesses an additional advantage over RPI, JSPR, and other 

points-based systems, as it facilitates hypothesis testing. In our example, there is not 

enough evidence to reject the null hypothesis that Team A and Team B are of equal 

strength, while there is sufficient evidence to suggest that both Teams A and B are of 

greater strengths than Teams C and D. 

In terms of evaluating ranking systems, it is difficult to do ex-post analysis given 

the sample size (there are few seasons of data) and lack of reliable validation tools. One 
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could consider analyzing the relationship between final rating and subsequent playoff 

performance, yet this only considers a subset of teams and relies on a small number of 

overall matchups. Conversely, the ranking system could be evaluated based on its 

predictive ability of regular season matchups. However, this relies on roster quality 

homogeneity, an assumption that likely falls apart when considering injuries (and other 

game-missing scenarios) and general team improvement during a season. Instead, we 

utilize a simulation approach to identify and compare the accuracy of ranking systems 

using actual schedules and hypothetical team skill distributions. Specifically, we 

compare NEPSIHA’s current JSPR system with the Bradley-Terry model. 

Our main methodological tool is simulation. We utilize actual schedules over 

six seasons, from the 2013–14 season to the 2018–19 season. This approach has two 

key benefits. First, working with six different seasons allows us to analyze ranking 

system quality under six different team skill level distributions. Second, employing real 

schedules offers a more comprehensive depiction of the intricacies within the New 

England prep hockey calendar. We simulate regular season outcomes and utilize both 

JSPR and BT to rank teams for playoff consideration in the Open tournament. The 

better model is the one that ‘gets it right’ more often—greater skilled teams should be 

selected for the playoff field more frequently than lesser-skilled teams. 

We start by assigning each NEPSIHA team in each season a hypothetical skill 

level, thus providing a “true” team ability benchmark. The best ranking systems 

should, on expectation, place teams in the order of their true ability levels. For 
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illustrative purposes, we select hypothetical skill levels that are meant to somewhat 

mimic the real-life distribution of team skill levels. That said, we tweaked certain team 

rankings to introduce various competitive balance features that would enrich final 

analysis. For example, we may consider a competitive balance structure where there is 

a clear number one team, six teams bunched up at the playoff cut line, etc. In some 

settings, we also manipulate certain skill levels to be equivalent across any number of 

teams. This is especially powerful because an accurate ranking system should treat 

them the same on average across the simulations, while a biased system might 

systematically favor one of the teams more than the other. Ratings for the 16 best 

teams each season are available in Appendix B. 

Next, we utilize those team skill levels and simulate each team’s schedule. We 

trained a probit model to provide individual team win probabilities given team ratings. 

For simplicity, we ignore home advantage, rest, and other factors that may impact 

individual team win probability. Following each season simulation, we use the 

aforementioned JSPR methodology and BT methods to rank teams. After 5,000 

simulations per season, we analyze features of the distributions of individual team 

rankings when comparing the two methodologies. For apples-to-apples comparison, 

we utilize both JSPR and the BT model for the same set of simulations, rather than 

run a different set of simulations to be analyzed by each model. Ranking systems that 

provide playoff team ordering closest to the hypothetical team skill distribution are 

considered “better.” 
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When analyzing final results, it is critical to understand that these are 

simulations with assigned hypothetical skill levels. While they are designed to roughly 

reflect the real world team levels of that season, they intentionally do not mimic them 

perfectly. So, the statement “JSPR was biased against Team A in favor of Team B” 

does not always imply those exact teams received those biases in the real world in that 

given season. Ultimately, we could have assigned any skill levels and the practical use 

of the results would still be valid. Having a pre-established “true” ranking allows us to 

benchmark the accuracy and effectiveness of the two ranking systems, while 

mimicking actual schedules and team abilities allows for practical and real-life 

exploration of any biases. 

RESULTS 

The majority of our analysis revolves around the percentage of simulations in 

which a school was rated in the top eight and selected for participation in the Open 

tournament. When considering rating system effectiveness, we expect the better 

system to put the better rated school in the tournament more frequently. While 

random variation in game outcomes may result in a school being rated lower or higher 

in a single simulation, over a large sample of simulations, the better schools should 

ultimately be rated more frequently than lower rated schools. Sizeable deviation from 

that is indicative of a potential bias in the ranking system. 

[Insert Figure 1 Here] 
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Overall Model Performance 

Figure 1 illustrates the percentage of simulations in which each of the top 16 

rated teams made the Open tournament under the JSPR and BT models in each 

season. An efficient and equitable ranking system would have higher rated teams with 

higher playoff frequencies, and it is apparent that the BT model outperforms JSPR 

significantly in this department. Full schedule, rating, and playoff percentage 

breakdowns are available in Appendix B. 

After analyzing Figure 1, it is apparent that BT’s playoff proportions much 

more strongly trend with school rating levels compared to JSPR. Consider 

competitive balance distributions illustrated in 2014, 2016, and 2018. In each of those 

cases, similarly rated teams, separated by dashed vertical lines in Figure 1, have more 

comparable playoff probabilities under BT compared to JSPR. Visually, this is 

represented by the smooth solid lines for BT that follows the true skill level 

distributions, while the JSPR model zig-zags and varies greatly. For example, in 2014, 

BT provides similar playoff probabilities for similarly rated teams ranked seven 

through sixteen (13% to 23%), while JSPR sees significantly more variation (8% to 

31%). In 2016, there were six equal teams ranked sixth to eleventh, three on either 

side of the playoff cut line. Using BT, these teams made the playoffs between 34–37% 

of simulations, while JSPR had a significantly wider range of 25–57%. In 2018, teams 

similarly ranked from three to eight made the playoff field 64–68% of simulations 

under BT, while between 59–72% under JSPR, and teams similarly ranked between 
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ninth and sixteenth made the playoff field 10–15% of simulations under BT while 

between 6–16% under JSPR. These three years provide clear evidence that BT 

outperforms JSPR.  

[Insert Figure 2 Here] 

Scheduling Biases in JSPR 

Another takeaway from analyzing simulation results is the clear JSPR 

scheduling bias, especially its treatment of matchups against top 16 opponents. A 

JSPR point is awarded based on teams’ records against top 16 opponents (TUC), yet 

not all games against top 16 opponents are truly of the same difficulty. Figure 2 

highlights one obvious example of this bias from 2019. Andover (AND) and St. 

Sebastian’s (SEB) were comparably rated teams ranked sixth and seventh, respectively. 

JSPR, however, was much more favorable to SEB in terms of making the playoffs 

(57.78%) compared to AND (33.18%), relative to BT’s placement of the two schools 

(36.66% for AND and 41.72% for SEB). AND had 13 games against top 16 teams 

with four against top three opponents. Meanwhile, SEB had six games against top 16 

opponents, none of which were ranked in the top 8, making it very easy for them to 

have a stronger record against TUC than an AND team that went through the 

gauntlet of difficult opponents. In other words, under JSPR, teams with fewer top 

eight opponents are rewarded, while teams playing difficult schedules are penalized. 

Another example of scheduling bias is presented in Figure 3, which compares 

the playoff seed simulation outcomes for the top two equally rated schools from 2018, 
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Dexter (DEX) and Salisbury (SAL). As illustrated in Figure 3, JSPR was putting SAL 

as the top seed twice as often as DEX (44.8% versus 22.2%), despite the two teams 

being of identical skill, while BT was much more equitable (37.7% and 36.6%, 

respectively). All of DEX’s seven games against TUC were top nine opponents, five 

of which were top eight. SAL had three out of eight TUC games against top eight 

opponents, a lower rate than what DEX played. The BT model also had DEX or SAL 

as the top team around 74% of the time, compared to JSPR’s rate of 67%. This is to 

say the BT model correctly identified one of these two top teams as the best team 

more often than JSPR did. 

[Insert Figure 3 Here] 

A third example of scheduling imbalances impacting JSPR can be seen in the 

three equally rated 14th ranked teams from 2016. Simulations under BT had the three 

teams in the playoffs between two and four percent of the time, while JSPR saw wild 

swings with Rivers (RIV) in the playoffs in 16.16% of simulations, Noble and 

Greenough (NOB) in the playoffs in 5.68% of simulations, and Deerfield (DEE) in 

the playoffs in just 0.38% of simulations. RIV played only four games against TUC, 

with only one being in the top five. Facing easier TUC opponents inflates that JSPR 

component. Also, playing only four of these types of games increases the variation of 

their record against TUC; it is not difficult for them to snag two (25.5% likelihood), 

three (6.3%), or even four (0.55%), of those games and have that part of JSPR be very 

inflated and helping them secure a spot in the playoffs. Meanwhile, DEE played an 
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abnormally high fourteen games against top 16 opponents (over half their schedule!), 

including seven games against the top four. Their record against TUC, along with 

their playoff chances under JSPR, did not stand a chance. 

Where Bradley-Terry Produces Suboptimal Results 

Despite the clear advantages of BT over the incumbent JSPR system, BT is not 

necessarily without flaw. In two seasons, 2015 and 2017, BT and JSPR perform 

similarly, both providing non-optimal playoff placement outcomes. In 2015, we 

incorporated a team skill distribution, such that teams between three and ten were all 

equally rated. With such parity, both ranking systems struggled. The group of teams 

from three to ten showed zig-zag like patterns in Figure 1, with a playoff proportion 

range of 23–68% under BT and 17–59% under JSPR. In 2017, tied-for-ninth rated 

Loomis (LOO) had higher playoff percentages than seven (under BT) and four (under 

JSPR) comparable-or-better rated schools, respectively. Fifteenth ranked Belmont 

(BEL) had probabilities significantly lower than similarly ranked Taft (TAF) at 14th 

and much-lower ranked SEB at 16th. More analysis is needed to better understand the 

scheduling and competitive balance circumstances in which the BT model deviates 

from its more ideal performances in the other season simulations. 

DISCUSSION AND CONCLUSION 

While ranking systems are of critical importance in numerous sport settings, the 

Bradley-Terry model has received minimal attention in the literature, mostly due to its 

sole reliance on binary game outcomes. However, this feature makes the BT model an 
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ideal ranking system in settings where competitive incentives may make the more 

commonly used score differential input a less-than ideal tool. When teams play 

balanced schedules, win-loss records provide an unbiased estimate of team rankings. 

For leagues like the New England Prep School Ice Hockey Association, balanced 

schedules are not possible due to numerous logistical considerations (travel costs, 

schedule length, number of schools in competition). The BT model provides a more 

equitable ranking even in the presence of unbalanced schedules. 

In highlighting NEPSIHA, we illustrate a flaw in their current ranking system 

and highlight BT’s effectiveness in minimizing the bias’s effect. Specifically, while 

JSPR systematically punishes schools that face exceptionally tough competition, it 

rewards schools that play more games against lower-quality TUC and fewer games 

against TUC in general. Via simulated examples of real-world competitive balance 

setups, it was shown that BT does a much better job of minimizing this bias and 

ranking teams according to their true skill level. While BT was not necessarily perfect 

in each of the season simulations—especially in situations where there was significant 

parity among the top teams—it generally outperformed the JSPR system in terms of 

selecting the better teams to participate in the playoffs. 

While our focus was on high school hockey, there was no sport-specific 

element incorporated in the methodology, making it extendable to other sport 

settings. This includes other high school, college, and amateur sport leagues in which 

teams play unbalanced schedules and binary game outcomes are the desired sole input 
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when ranking teams. The BT model is also flexible enough to incorporate additional 

inputs if desired. For instance, we do not consider home ice advantage, a common 

input in many ranking systems (NET in NCAA Basketball, for example) that can be 

incorporated in the BT framework. 

Further work needs to be done to understand how sample size of games (teams 

in NEPSIHA play between 20 and 30 games each season, typically) and other 

scheduling quirks impact the general accuracy of BT. As illustrated in two of the six 

simulated seasons, while BT is an improvement over JSPR, there may still be 

prevalent biases that impact the system’s ability to identify the “best” teams. For 

instance, this methodology ignores matchup-specific tendencies. If a team plays 

additional games against an opponent in which it has a matchup and schematic-

specific advantage relative to other teams, BT will underestimate the team’s true win 

probability in that matchup, and will systematically overvalue the team’s true ability 

against a generic opponent, leading to an inflated ranking.  

A major consideration of the BT model is its need for a reasonable amount of 

data before rankings become meaningful. Maximum likelihood produces estimates of 

team strengths, which may be far from their true values for noisy or small data sets. 

Leagues that implement the BT model will likely not have reliable rankings early in a 

season, which may be a desirable feature in a ranking system. League administrators 

should be aware of this tradeoff (better final rankings but noisy early-season rankings) 

when choosing BT. Also, it is important to emphasize that the BT model is not 



THE BT MODEL IN BINARY OUTCOME DRIVEN RANKINGS 25 

perfect, as we illustrated in our simulations. But the “perfect” ranking system does not 

exist, and the lack of perfection should not come at the expense of exploring obvious 

improvements in current techniques and methodologies. 

While implementation of the BT model for playoff ranking purposes would 

surely be an improvement over JSPR for NEPSIHA, other amateur league 

administrators should understand that every potential ranking system comes with 

empirical nuances that should be fully considered. BT is relatively simple to 

implement and allows the data—the web of completed matchups—to holistically 

speak together to create a final ranking. Although such a system may not be the most 

predictive, it balances the need to reward game outcomes (winning and losing), while 

controlling for scheduling imbalances that can inflate those outcomes. League 

administrators must identify what they prioritize in a ranking system, a decision that is 

specific to league objectives and missions.  
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TABLES 

Table 1 

Hypothetical JSPR Pairwise Teams Under Consideration Example 

 Team A Team B 

Head-to-Head Record 1-0-0 0-1-0 
RPI 0.632 0.611 

Record Against Common Opponents 2-1-0 5-0-0 
Record Against TUC 4-1-0 3-3-1 

 

  



 

Table 2 

JSPR Pairwise Points 2017–18 Season 

 SAL RIV KUA DEX MIL EXE CSH WES NMH THA SEB BRU GUN WIL LAW WIN Total 

SAL  2-0 2-0 3-0 4-0 3-0 4-0 4-0 3-0 3-0 3-0 4-0 4-0 4-0 3-0 3-0 15 

RIV 0-2  4-0 3-1 3-0 4-0 3-0 3-0 3-0 4-0 4-0 4-0 3-0 4-0 3-0 3-0 14 

KUA 0-2 0-4  3-0 2-1 4-0 4-0 3-1 4-0 3-0 3-0 4-0 3-0 3-0 3-0 3-0 13 

DEX 0-3 1-3 0-3  2-1 3-0 3-0 3-0 3-0 4-0 3-0 3-0 3-0 3-0 3-0 3-1 12 

MIL 0-4 0-3 1-2 1-2  3-0 3-0 2-1 3-0 3-0 4-0 3-0 3-0 3-0 4-0 4-0 11 

EXE 0-3 0-4 0-4 0-3 0-3  3-1 1-1** 4-0 4-0 3-1 3-0 4-0 2-1 3-0 3-0 10 

CSH 0-4 0-3 0-4 0-3 0-3 1-3  2-1 2-1 3-1 2-1 3-0 3-0 4-0 3-0 3-0 9 

WES 0-4 0-3 1-3 0-3 1-2 1-1 1-2  2-2* 3-0 2-1 3-1 1-3 4-0 3-0 2-1 7 

NMH 0-3 0-3 0-4 0-3 0-3 0-4 1-2 2-2  3-1 2-1 3-0 2-1 3-0 3-0 3-1 7 

THA 0-3 0-4 0-3 0-4 0-3 0-4 1-3 0-3 1-3  2-1 2-0 2-1 2-0 3-1 1-2 5 

SEB 0-3 0-4 0-3 0-3 0-4 1-3 1-2 1-2 1-2 1-2  2-1 2-1 2-2 3-0 3-1 4 

BRU 0-4 0-4 0-4 0-3 0-3 0-3 0-3 1-3 0-3 0-2 1-2  2-2* 2-1 1-1 2-1 3 

GUN 0-4 0-3 0-3 0-3 0-3 0-4 0-3 3-1 1-2 1-2 1-2 2-2  3-1 2-0 2-2 3 

WIL 0-4 0-4 0-3 0-3 0-3 1-2 0-4 0-4 0-3 0-2 2-2* 1-2 1-3  2-1 2-2* 3 

LAW 0-3 0-3 0-3 0-3 0-4 0-3 0-3 0-3 0-3 1-3 0-3 1-1** 0-2 1-2  2-1 2 

WIN 0-3 0-3 0-3 1-3 0-4 0-3 0-3 1-2 1-3 2-1 1-3 1-2 2-2* 2-2 1-2  2 

*First tiebreaker of head-to-head used **Second tiebreaker of RPI used



 

Table 3 

RPI Versus BT Hypothetical Example 

 Team A Team B Team C Team D 

Record Against     
Team A X 3-4 1-1 1-6 
Team B 4-3 X 2-4 0-2 
Team C 1-1 4-2 X 3-5 
Team D 6-1 2-0 5-3 X 

Ranking Measures     
Win Percentage 0.688 (1) 0.600 (2) 0.500 (3) 0.235 (4) 

RPI 0.565 (2) 0.581 (1) 0.436 (3) 0.407 (4) 
Adjusted RPI 0.567 (1) 0.526 (2) 0.490 (3) 0.404 (4) 

BT Rating 0.401 (1) 0.354 (2) 0.168 (3) 0.077 (4) 



 

FIGURES 

Figure 1 

Simulation Top-16 Finishes by Year 

 

Note. The proportion of simulations in which either the BT (solid) or JSPR (dashed) 

models rank each of the top 16 teams (by hypothetical rating) in a top-eight playoff 

position. The solid vertical line indicates the playoff cut point and the dotted vertical 

lines separate teams of comparable ratings. 
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Figure 2 

Ranking Simulation Comparisons, AND vs SEB 2018–19  

 

Note. Ranking distribution for 2018–19 sixth rated AND (solid) and seventh rated SEB 

(dashed) under the BT and JSPR systems. The vertical dotted lines represent the playoff 

cut point.  
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Figure 3 

Ranking Simulation Comparisons, DEX vs SAL 2017–18  

 

Note. Ranking distribution for 2017–18 first rated DEX (solid) and second rated SAL 

(dashed) under the BT and JSPR systems. The vertical dotted lines represent the playoff 

cut point.  
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APPENDIX A: SCHOOL ABBREVIATIONS 

Below are the abbreviations for all school names invoked in this paper. This is 

not a complete list of the schools incorporated in the simulation. These are also not 

necessarily the official school abbreviations. 

• ALB (The Albany Academy) 

• AND (Phillips Academy - Andover) 

• AVO (Avon Old Farms School) 

• BEL (Belmont Hill School) 

• BER (Berwick Academy) 

• BRO (Brooks School) 

• BRU (Brunswick School) 

• CHO (Choate Rosemary Hall) 

• CSH (Cushing Academy) 

• DEE (Deerfield Academy) 

• DEX (Dexter Southfield School) 

• EXE (Phillips Exeter Academy) 

• GUN (formerly The Gunnery, now The Frederick Gunn School) 

• HOT (The Hotchkiss School) 

• KEN (Kent School) 

• KUA (Kimball Union Academy) 
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• LAW (Lawrence Academy) 

• LOO (Loomis Chaffee School) 

• MIL (Millbrook School) 

• NMH (Northfield Mount Hermon) 

• NOB (Noble and Greenough School) 

• PAU (St. Paul’s School) 

• PRO (Proctor Academy) 

• RIV (The Rivers School) 

• SAL (Salisbury School) 

• SEB (St. Sebastian’s School) 

• TAB (Tabor Academy) 

• TAF (The Taft School) 

• THA (Thayer Academy) 

• TIL (Tilton School) 

• TPS (Trinity-Pawling School) 

• WES (Westminster School) 

• WIL (The Williston Northampton School) 

• WIN (The Winchendon School) 
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APPENDIX B: SCHEDULE MATRIX 

Table B1 

Team Schedules and Playoff Percentages 2018–19 

     SAL DEX KUA TIL GUN AND SEB NMH CSH LAW EXE DEE KEN NOB WES PRO 

Rank 1 2 3 4 5 6 7 8 8 10 10 12 13 14 15 16 

Rating  0.898 0.88 0.85 0.773 0.767 0.752 0.751 0.731 0.731 0.728 0.728 0.717 0.715 0.713 0.71 0.687 

BT Playoff % 99.06% 97.02% 92.22% 52.72% 50.18% 36.66% 41.72% 31.86% 27.68% 28.52% 24.76% 19.54% 22.36% 21.36% 22.68% 14.98% 

JSPR Playoff % 97.82% 97.44% 94.92% 56.40% 47.68% 33.18% 57.78% 28.88% 23.48% 33.50% 21.20% 13.86% 14.20% 21.08% 19.66% 19.14% 

SAL    0 1 0 1 1 0 0 1 0 0 2 2 1 1 0 

DEX  0   0 0 0 2 0 1 2 1 2 0 0 1 0 1 

KUA  1 0   3 0 1 0 1 2 0 1 2 0 1 0 3 

TIL  0 0 3   0 1 0 1 0 0 1 0 0 0 0 2 

GUN  1 0 0 0   0 0 0 0 0 1 0 2 0 1 0 

AND  1 2 1 1 0   0 1 1 0 2 1 0 1 1 1 

SEB  0 0 0 0 0 0   0 0 2 1 0 0 2 0 1 

NMH  0 1 1 1 0 1 0   2 1 1 1 0 0 1 0 

CSH  1 2 2 0 0 1 0 2   2 1 1 0 0 0 0 

LAW  0 1 0 0 0 0 2 1 2   0 0 0 2 0 0 

EXE  0 2 1 1 1 2 1 1 1 0   1 1 0 0 1 

DEE  2 0 2 0 0 1 0 1 1 0 1   1 1 2 0 

KEN  2 0 0 0 2 0 0 0 0 0 1 1   0 1 0 

NOB  1 1 1 0 0 1 2 0 0 2 0 1 0   1 0 

WES  1 0 0 0 1 1 0 1 0 0 0 2 1 1   0 

PRO  0 1 3 2 0 1 1 0 0 0 1 0 0 0 0   

17–28  11 4 5 2 13 4 5 4 5 3 2 10 13 6 11 5 

29–40  1 5 9 8 3 9 12 3 7 11 8 1 2 9 3 10 

41–54  2 7 2 8 4 1 2 7 5 3 4 2 2 2 3 7 
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Table B2 

Team Schedules and Playoff Percentages 2017–18 

     DEX SAL KUA RIV MIL EXE WIN CSH THA WES SEB GUN TP NMH BRU WIL 

Rank 1 1 3 3 3 6 7 8 9 9 9 9 9 14 14 14 

Rating  0.897 0.897 0.822 0.822 0.822 0.82 0.819 0.816 0.717 0.717 0.717 0.717 0.717 0.713 0.713 0.713 

BT Playoff % 95.66% 96.24% 67.92% 66.86% 64.06% 64.70% 67.78% 65.44% 12.94% 11.92% 11.50% 11.46% 14.94% 11.28% 10.32% 12.54% 

JSPR Playoff % 90.84% 96.56% 69.44% 71.90% 63.64% 58.94% 70.28% 52.64% 6.46% 16.46% 11.22% 15.06% 15.16% 15.50% 15.16% 14.20% 

DEX    0 0 1 0 1 1 2 2 0 0 0 0 0 0 0 

SAL  0   1 0 1 0 0 1 0 1 0 1 2 0 1 1 

KUA  0 1   1 1 1 0 2 0 1 0 0 0 1 1 0 

RIV  1 0 1   0 1 0 0 1 0 2 0 0 0 3 1 

MIL  0 1 1 0   0 1 0 2 0 2 0 0 0 0 0 

EXE  1 0 1 1 0   1 1 1 0 1 1 0 1 0 0 

WIN  1 0 0 0 1 1   1 0 0 1 1 0 1 0 3 

CSH  2 1 2 0 0 1 1   1 0 0 0 0 2 0 1 

THA  2 0 0 1 2 1 0 1   0 2 0 0 1 0 0 

WES  0 1 1 0 0 0 0 0 0   0 1 1 1 1 1 

SEB  0 0 0 2 2 1 1 0 2 0   0 0 0 0 1 

GUN  0 1 0 0 0 1 1 0 0 1 0   1 0 2 1 

TP   0 2 0 0 0 0 0 0 0 1 0 1   0 2 0 

NMH  0 0 1 0 0 1 1 2 1 1 0 0 0   0 0 

BRU  0 1 1 3 0 0 0 0 0 1 0 2 2 0   1 

WIL  0 1 0 1 0 0 3 1 0 1 1 1 0 0 1   

17–28  6 7 7 5 9 5 4 8 8 10 9 8 8 8 6 8 

29–40  5 8 5 3 4 6 6 4 4 8 3 6 8 6 3 4 

41–54  6 0 8 10 3 9 4 6 4 0 5 2 1 5 1 1 
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Table B3 

Team Schedules and Playoff Percentages 2016–17 

  SAL  THA  LAW  KUA  DEX  GUN  EXE  KEN  AVO  LOO  RIV  WIN  AND  TAF  BEL  SEB  

Rank 1 2 3 3 5 6 7 7 9 9 11 11 13 14 15 16 

Rating  0.84 0.809 0.794 0.794 0.789 0.783 0.779 0.779 0.776 0.776 0.75 0.75 0.719 0.707 0.705 0.681 

BT Playoff % 93.02% 77.62% 43.20% 43.10% 36.76% 42.26% 39.94% 49.72% 30.74% 54.18% 45.98% 52.46% 7.52% 22.60% 2.90% 13.44% 

JSPR Playoff % 90.24% 72.78% 50.88% 50.98% 44.66% 41.52% 47.40% 34.70% 21.24% 46.18% 46.90% 57.50% 8.76% 11.86% 3.90% 15.30% 

SAL    0 0 1 0 1 0 2 1 1 0 0 0 2 0 0 

THA  0   2 0 1 0 0 0 0 0 1 1 1 0 2 1 

LAW  0 2   0 0 1 0 0 0 0 0 0 0 0 2 2 

KUA  1 0 0   0 0 1 0 0 0 1 0 1 0 0 0 

DEX  0 1 0 0   1 1 0 0 0 1 1 1 0 0 0 

GUN  1 0 1 0 1   1 2 1 1 0 0 0 0 0 0 

EXE  0 0 0 1 1 1   1 0 0 1 1 1 0 0 1 

KEN  2 0 0 0 0 2 1   1 2 0 0 0 2 0 0 

AVO  1 0 0 0 0 1 0 1   3 0 0 0 2 0 0 

LOO  1 0 0 0 0 1 0 2 3   0 0 1 1 0 0 

RIV  0 1 0 1 1 0 1 0 0 0   0 0 0 2 1 

WIN  0 1 0 0 1 0 1 0 0 0 0   1 0 0 1 

AND  0 1 0 1 1 0 1 0 0 1 0 1   0 1 1 

TAF  2 0 0 0 0 0 0 2 2 1 0 0 0   0 0 

BEL  0 2 2 0 0 0 0 0 0 0 2 0 1 0   2 

SEB  0 1 2 0 0 0 1 0 0 0 1 1 1 0 2   

17–28  6 9 7 10 8 7 6 4 8 6 2 7 6 3 7 9 

29–40  10 3 5 8 5 10 6 10 8 9 3 3 8 12 4 2 

41–58  0 4 6 5 7 1 6 0 0 0 13 7 3 0 6 4 
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Table B4 

Team Schedules and Playoff Percentages 2015–16 

     SAL AVO KUA EXE BRU MIL CSH GUN TAB ALB THA LOO WES NOB RIV DEE 

Rank 1 1 3 4 5 6 6 6 6 6 6 12 13 14 14 14 

Rating  0.934 0.934 0.9 0.878 0.834 0.799 0.799 0.799 0.799 0.799 0.799 0.778 0.729 0.694 0.694 0.694 

BT Playoff % 99.44% 99.40% 94.02% 86.42% 61.00% 37.04% 30.98% 56.84% 34.32% 34.50% 33.70% 25.32% 8.00% 2.02% 3.90% 2.46% 

JSPR Playoff % 98.66% 98.28% 94.32% 89.48% 59.16% 37.96% 33.40% 51.56% 33.94% 26.96% 56.90% 13.28% 3.02% 5.68% 16.16% 0.38% 

SAL    1 1 0 1 1 1 1 0 1 0 1 1 0 0 2 

AVO  1   0 0 0 0 1 1 1 1 0 2 2 0 0 2 

KUA  1 0   1 0 2 2 0 1 0 0 0 1 0 0 2 

EXE  0 0 1   1 0 2 1 1 1 0 0 0 0 0 1 

BRU  1 0 0 1   0 0 1 0 3 0 1 1 0 1 0 

MIL  1 0 2 0 0   0 0 1 0 2 0 0 2 0 1 

CSH  1 1 2 2 0 0   1 2 0 1 0 1 0 0 1 

GUN  1 1 0 1 1 0 1   1 0 1 1 1 0 0 0 

TAB  0 1 1 1 0 1 2 1   0 1 1 0 1 0 0 

ALB  1 1 0 1 3 0 0 0 0   1 0 0 0 1 0 

THA  0 0 0 0 0 2 1 1 1 1   0 0 2 1 0 

LOO  1 2 0 0 1 0 0 1 1 0 0   2 0 0 2 

WES  1 2 1 0 1 0 1 1 0 0 0 2   1 0 2 

NOB  0 0 0 0 0 2 0 0 1 0 2 0 1   1 1 

RIV  0 0 0 0 1 0 0 0 0 1 1 0 0 1   0 

DEE  2 2 2 1 0 1 1 0 0 0 0 2 2 1 0   

17–28  8 8 3 6 8 7 7 12 7 7 9 7 6 9 7 4 

29–40  6 4 9 8 4 5 6 3 5 2 7 6 5 6 9 5 

41–58  0 2 8 7 4 3 5 2 6 5 2 2 2 4 6 2 
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Table B5 

Team Schedules and Playoff Percentages 2014–15 

     CSH EXE SAL GUN NOB KUA BRU LOO AVO DEX BRO HOT CHO WES KEN BEL 

Rank 1 1 3 3 3 3 3 3 3 3 11 12 12 12 12 12 

Rating  0.898 0.898 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.82 0.807 0.717 0.717 0.717 0.717 0.717 

BT Playoff % 78.00% 84.08% 68.28% 42.80% 55.38% 42.24% 30.98% 56.84% 22.92% 37.22% 28.90% 8.26% 5.68% 30.84% 10.34% 2.72% 

JSPR Playoff % 74.36% 84.98% 56.84% 39.30% 59.48% 52.00% 33.40% 51.56% 16.66% 43.60% 41.02% 4.68% 4.20% 22.28% 5.58% 3.82% 

CSH    2 1 1 0 2 0 0 1 1 0 0 0 0 0 1 

EXE  2   0 1 0 1 1 0 0 1 1 1 0 0 1 0 

SAL  1 0   1 1 1 1 1 1 0 0 2 1 2 2 0 

GUN  1 1 1   0 0 0 1 1 1 0 1 0 1 2 0 

NOB  0 0 1 0   1 0 0 0 1 0 1 0 0 0 2 

KUA  2 1 1 0 1   0 0 0 0 0 0 0 0 0 0 

BRU  0 1 1 0 0 0   1 0 0 0 1 1 1 1 1 

LOO  0 0 1 1 0 0 1   2 0 0 1 2 2 2 0 

AVO  1 0 1 1 0 0 0 2   0 0 1 2 2 2 0 

DEX  1 1 0 1 1 0 0 0 0   1 0 0 0 0 0 

BRO  0 1 0 0 0 0 0 0 0 1   0 0 0 0 1 

HOT  0 1 2 1 1 0 1 1 1 0 0   1 2 2 0 

CHO  0 0 1 0 0 0 1 2 2 0 0 1   2 1 1 

WES  0 0 2 1 0 0 1 2 2 0 0 2 2   1 0 

KEN  0 1 2 2 0 0 1 2 2 0 0 2 1 1   0 

BEL  1 0 0 0 2 0 1 0 0 0 1 0 1 0 0   

17–28  7 6 7 9 9 7 7 7 9 6 3 7 6 6 7 8 

29–40  8 7 4 4 5 13 5 5 3 7 11 4 6 4 3 5 

41–58  5 7 1 1 5 4 5 2 2 7 10 1 2 2 1 7 
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Table B6 

Team Schedules and Playoff Percentages 2013–14 

     KEN SAL THA CSH GUN EXE CHO BER NOB PAU DEX WES NMH KUA LOO DEE 

Rank 1 2 3 3 5 5 7 7 7 7 7 7 7 7 7 7 

Rating  0.931 0.922 0.86 0.86 0.859 0.859 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 0.775 

BT Playoff % 99.59% 99.33% 74.59% 83.92% 80.53% 81.33% 25.33% 24.29% 24.13% 23.49% 28.87% 19.87% 19.97% 23.58% 21.11% 22.27% 

JSPR Playoff % 98.83% 98.03% 90.85% 86.97% 78.19% 84.95% 18.04% 13.32% 36.65% 32.03% 34.56% 12.72% 15.07% 40.37% 15.32% 15.42% 

KEN    2 0 0 0 1 1 2 0 1 0 1 0 0 1 1 

SAL  2   0 1 1 0 1 1 1 0 0 1 0 1 1 2 

THA  0 0   1 0 0 0 0 2 2 0 0 0 0 0 0 

CSH  0 1 1   0 2 0 0 0 0 3 0 2 2 0 1 

GUN  0 1 0 0   1 0 2 0 1 1 1 1 0 1 0 

EXE  1 0 0 2 1   0 0 0 1 1 0 2 1 0 1 

CHO  1 1 0 0 0 0   1 0 0 0 2 2 0 2 2 

BER  2 1 0 0 2 0 1   1 0 0 1 2 0 0 0 

NOB  0 1 2 0 0 0 0 1   2 1 1 0 0 0 0 

PAU  1 0 2 0 1 1 0 0 2   1 0 0 0 1 0 

DEX  0 0 0 3 1 1 0 0 1 1   0 0 0 0 0 

WES  1 1 0 0 1 0 2 1 1 0 0   1 1 2 2 

NMH  0 0 0 2 1 2 2 2 0 0 0 1   1 1 1 

KUA  0 1 0 2 0 1 0 0 0 0 0 1 1   0 2 

LOO  1 1 0 0 1 0 2 0 0 1 0 2 1 0   2 

DEE  1 2 0 1 0 1 2 0 0 0 0 2 1 2 2   

17–28  11 10 8 8 9 6 9 11 10 9 3 8 8 8 11 7 

29–40  2 2 8 7 3 7 2 2 6 6 6 2 2 7 1 3 

41–58  1 2 4 2 3 6 2 4 3 3 8 2 4 8 2 1 
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