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1. Introduction

Over the last thirty years or so, the study of solitonic solutions to classical field theories

has yielded many interesting results of wide relevance to particle physics, cosmology and

condensed matter physics. The more recent fascination with brane-world models of particle

physics and cosmology has added new motivation for these kinds of investigations. In this

paper we will study a simple model of two complex scalar or Higgs fields φ1 and φ2 coupling

to two different U(1) gauge fields A1µ and A2µ, with the added feature of an exact discrete

Z2 symmetry under the interchange 1 ↔ 2. We will derive solutions to the coupled classical

field equations that exhibit a kink or domain wall form for the scalar fields. The nature of

the gauge field configurations self-consistently coupled to the Higgs kinks will be our primary

object of study. A similar model, without the discrete exchange symmetry was studied some-

time ago by Witten [1] in the context of a superconducting string solution. The model was

investigated in more detail by MacKenzie [2] to show that while a symmetry is preserved

in the vacuum, unexpected topological structures can arise in the interior of a domain wall.

More recently, Lemperiere and Shellard [3] have reported on the behavior and stability of the

superconducting currents in Witten’s model.

Our own motivation for this rather abstract investigation lies with the symmetry break-

ing mechanism proposed in Ref. [4] in the context of brane world models and dubbed as the

“clash of symmetries”. Briefly, Ref. [4] examines a toy model with Higgs fields in three triplet

representations of a global SU(3) symmetry, where a discrete permutation symmetry between

the triplets is enforced. Omitting inessential complications, the vacuum states of the theory

spontaneously break SU(3) down to SU(2), as well as spontaneously breaking the discrete
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symmetry. Kink solutions are derived that interpolate between vacua invariant under differ-

ently embedded SU(2) subgroups.1 For instance, one can have I-spin asymptotically preserved

on one side of a domain wall, with V -spin on the other. Although the unbroken subgroups on

both sides are isomorphic, the different embeddings within the parent group cause additional

symmetry breakdown at all non-asymptotic points. This additional symmetry breaking is the

“clash”. The idea is that some of the symmetry breaking we see in our universe might be due

to such a clash, if our world is indeed a brane in a higher dimensional space.

This idea is still at the developmental stage; no realistic brane-world model building

using the clash mechanism has yet been attempted, to our knowledge, though Ref. [6] reports

on some recent progress. In the course of thinking about the clash of symmetries idea,

however, an even simpler model field theory with U(1) factors and interchange symmetries

between the different sectors naturally presented itself as a useful theoretical laboratory.

The model studied in this paper arose in exactly this way, though, of course, it is also

entitled to an independent existence as a simple-but-not-too-simple vehicle for the study of

gauge fields coupled to domain wall Higgs configurations. From this perspective, our work is

relevant to general studies of superconducting topological solitons, as in Refs. [1–3, 7, 8] for

example. From the clash of symmetries perspective, the present exercise begins the study of

the breakdown of local continuous symmetries.

The rest of this paper is structured as follows: In Sec. 2, the model and the field equations

are presented. The numerical study of kink solutions to these equations is then presented

in Sec. 3, while Sec. 4 provides a physical explanation for the solutions. Section 5 contains

some concluding remarks.

2. The Model

Using the the notation of [4] we start with the action for two complex scalar fields φ1,2 coupled

to different U(1) gauge fields A1,2. To the overall U(1) × U(1) gauge symmetry we add a Z2

discrete symmetry which interchanges the scalars, φ1 ↔ φ2 and the gauge fields, A1 ↔ A2.

The discrete symmetry makes the two gauge coupling constants equal in magnitude. The

Lagrangian is

L = −1

4
Fµν

1 F1µν − 1

4
Fµν

2 F2µν + (Dµ
1 φ1)

∗
(D1µφ1) + (Dµ

2 φ2)
∗
(D2µφ2) − V (φ1, φ2), (2.1)

where

V (φ1, φ2) = λ1

(

φ∗
1φ1 + φ∗

2φ2 − υ2
)2

+ λ2φ
∗
1φ1φ

∗
2φ2. (2.2)

The covariant derivatives in the Lagrangian are given by

D1µ = ∂µ − ieA1µ , D2µ = ∂µ − ieA2µ. (2.3)

1Qualitatively similar solutions, but to a different theory with a different motivation were discovered by

Pogosian and Vachaspati in Ref. [5].
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The Higgs potential admits two vacuum solutions:

Vacuum 1 : 〈φ∗
1φ1〉 = υ2 〈φ∗

2φ2〉 = 0, (2.4)

Vacuum 2 : 〈φ∗
1φ1〉 = 0 〈φ∗

2φ2〉 = υ2. (2.5)

These two vacua are degenerate and are the global minima of the potential for the parameter

regime

λ1 ≥ 0 and λ2 ≥ 0. (2.6)

We would like to construct domain wall solutions by requiring the scalar Higgs fields to

asymptote to different respective vacua on either side of the wall. We will be interested in the

behavior of the corresponding gauge fields for this kind of Higgs configuration. The boundary

conditions for the scalars are

|φ1(z)| =

{

0 z → −∞
υ z → ∞ and |φ2(z)| =

{

υ z → −∞
0 z → ∞ , (2.7)

where z is the direction perpendicular to the domain wall.

It is straightforward to compute the equations of motion for the Higgs fields

DaµDµ
aφa = − ∂V

∂φ∗
a

= −2λ1φa

(

φ∗
aφa + φ∗

bφb − υ2
)

− λ2φaφ
∗
bφb, (2.8)

where a, b are either 1, 2 or 2, 1 respectively. The equations of motion for the gauge fields are

similarly given by

∂µFµν
a = 2e Im [φ∗

a(∂
ν − ieAν

a)φa] . (2.9)

Since we are going to be looking for static domain wall solutions (i.e. static 1 + 1

solitons), we search for solutions that depend on z but are independent of all the other spatial

coordinates and time t. In order to simplify our equations we make use of the temporal gauge,

A0 = 0. With these choices the equations of motion reduce to

A1z =
α′

1

e
, (2.10)

A′′
1x,y = 2e2A1x,yR

2
1, (2.11)

R′′
1 = e2(A2

1x + A2
1y)R1 + 2λ1R1(R

2
1 + R2

2 − υ2) + λ2R1R
2
2, (2.12)

where prime denotes a derivative with respect to z and φa ≡ Ra(z)eiαa(z). The corresponding

equations for the fields with subscript 2 can be obtained simply by exchanging subscripts 1

and 2. We see in eqn. 2.10 that the z components of both gauge fields are pure gauge and

because neither Az(z) nor α(z) couple to the physical degrees of the system, they can be

neglected.

The coupled differential equations for this system nominally involves six degrees of free-

dom (one scalar and two gauge degrees of freedom for each field). However, since the x and y
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components of each gauge field enter quadratically into their respective Higgs field equations

of motion, it is possible to rotate to a new basis x̃ and ỹ where one only needs keep track of

one component of each gauge field. Note that the directions perpendicular to z in which each

of the gauge fields A1 and A2 point are independent. We therefore have only four degrees of

freedom to non-trivially solve for.

The equations we would like to solve are then

A′′
1 = 2e2R2

1A1, (2.13)

R′′
1 = e2A2

1R1 + 2λ1R1(R
2
1 + R2

2 − υ2) + λ2R1R
2
2, (2.14)

and 1 ↔ 2. We have suppressed the spatial subscripts on the gauge fields, A.

For a domain wall solution the scalar fields must obey the boundary conditions in eqn. 2.7.

Thus, by analyzing eqn. 2.13 we see that the gauge fields are required to have the following

asymptotic behavior:

A1(z → ∞) = e−
√

2eυ|z| → 0 and A2(z → −∞) = e−
√

2eυ|z| → 0. (2.15)

We observe that this asymptotic behavior is also consistent with eqn. 2.14. The values

of A1(−∞) and A2(∞) are seemingly unconstrained by any of our differential equations.

However, note that when z ≪ −1 for A1(z) or when z ≫ 1 for A2(z) the solutions become

linear functions of z, the asymptotic solutions to eqn. 2.13. The linear solutions are due to

the requirement that R1(z) and R2(z) vanish as z → −∞,+∞ respectively (this is because

we require them to be kink solutions). Thus, the only allowed values of A1(−∞) and A2(∞)

are either a constant (corresponding to constant asymptotic behaviour) or ±∞. Consistent

with this, we will also impose the boundary conditions

A′
1(z = −∞) = const. 6= 0 and A′

2(z = +∞) = const. 6= 0. (2.16)

The requirement that these slopes be asymptotically nonzero removes the A1 = A2 = 0

solution from our considerations. Eqn. 2.16 allows the constant slopes for A1 and A2 to be

arbitrary. If they are chosen to be unequal, it implies that the corresponding magnetic fields

B1 and B2 are unequal, leading to a violation of the symmetry inherent in the problem and

this may also cause dynamical instability of the brane as will be discussed further in section

4. Hence, it is natural to choose the slopes to be equal. However, our numerical solutions

(see Fig. 3) show that even in the asymmetrical situation, slopes of A1 and A2 are very nearly

equal.

The coupled differential equations 2.13 and 2.14 together with the conditions of eqns. 2.15

and 2.16 constitute our boundary value problem (BVP).

Since we shall resort to numerics to find solutions it is convenient to transform from

coordinate z to u which is defined on a compact interval, u ∈ [−1, 1], via

u = tanh(υ
√

λ1z). (2.17)
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With this change of coordinates and the field rescalings

Ra → υRa, Aa → υAa, (2.18)

the equations become

(1 − u2)2
d2A1

du2
− 2u(1 − u2)

dA1

du
= 2αR2

1A1, (2.19)

(1 − u2)2
d2R1

du2
− 2u(1 − u2)

dR1

du
= αA2

1R1 + 2R1(R
2
1 + R2

2 − 1)

+λR1R
2
2, (2.20)

and 1 ↔ 2. We have defined α ≡ e2/λ1 and λ ≡ λ2/λ1. We see that solutions only depend

on two independent coupling constants and not three. In the case of the pure Higgs model

with α = 0 (see Ref. [4]), if one takes symmetric (R1 + R2) and anti-symmetric (R1 − R2)

linear combinations of the fields, then the differential equations decouple for the special case

of λ = 4 with analytic solutions,

R1 =
1

2
(1 + u), R2 =

1

2
(1 − u). (2.21)

However, this is not the case in our model for α 6= 0.

We shall also be interested in the energy of the solutions we find, thus we need the

stress-energy for this system

Tµν = 2
δL

δgµν
− gµνL, (2.22)

which for our action yields

Tµν = −F1µαFα
1ν − F2µαFα

2ν + 2(D1µφ1)
∗(D1νφ1) + 2(D2µφ2)

∗(D2νφ2)

+gµν

[

1

4
Fµν

1 F1µν +
1

4
Fµν

2 F2µν − (Dµ
1 φ1)

∗(D1µφ1) − (Dµ
2 φ2)

∗(D2µφ2)

+V (φ1, φ2)

]

. (2.23)

The energy density is then given by the T00 component of the stress-energy tensor. This

simplifies to

T00 =
1

4

[

(

A′
1(z)

)2
+

(

A′
2(z)

)2
]

+
(

R′
1(z)

)2
+

(

R′
2(z)

)2

+e2A1(z)2R1(z)2 + e2A2(z)2R2(z)2 + V (R1, R2), (2.24)

for our static solutions and because of our gauge choice, A0 = 0. Thus, in terms of the

coordinate u and the rescaled fields the energy density is given by

T00

λ1υ4
= (1 − u2)2

[

(∂uA1(u))2

4
+

(∂uA2(u))2

4
+ (∂uR1(u))2 + (∂uR2(u))2

]

+αA1(u)2R1(u)2 + αA2(u)2R2(u)2 +
(

R1(u)2 + R2(u)2 − 1
)2

+λR1(u)2R2(u)2, (2.25)

where λ1υ
4 sets the scale.
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3. Numerical Solutions

The numerical method we employ to solve these coupled differential equations is the ‘shooting

method’ using the routines from Numerical Recipes in C++ [9]. One can readily convert our

system of four coupled second order differential equations to a system of eight coupled first

order differential equations where the functions are: R1, R2, A1, A2, R′
1, R′

2, A′
1 and A′

2.

This is a boundary value problem with the functions R1, R2, A1, A2 are specified on two

boundaries but with the functions R′
1, R′

2, A′
1, A′

2 not specified on either boundary. The way

the ‘shooting method’ works is that one guesses values for the derivative functions at the

left boundary (u = −1), then with all the functions specified on the left boundary one can

numerically integrate to the right boundary. One then defines a function which measures how

well the boundary conditions on the right are matched. Using this goodness of fit function

one can then use a Newton-Raphson procedure to improve the guess on the left boundary for

the derivatives. One can then iterate this procedure until the boundary conditions on both

sides are satisfied to the desired accuracy. One potential difficulty is that if the differential

equations are reasonably complicated (e.g. non-linear) then the initial guess might need to

be reasonably good in order for the procedure to converge.

The differential equations, 2.19 and 2.20, have poles at u = ±1 when one expresses the

equations as dX/du = (1 − u2)−2 × . . . Since we cannot evaluate these equations at u = ±1,

we set the boundaries at u1 = −1 + ǫ and u2 = 1 − ǫ. However, because now our boundaries

are not at u = ±1 (z = ±∞) we need to know the asymptotic behavior of our functions

in order to set up the boundary conditions correctly2. For the special case of α = 0 and

λ = 4 the analytic solution, eqn. 2.21, is known from Ref. [4]. While these are not the correct

solutions for general α and λ, they do exhibit the correct asymptotic behavior as u → ±1.

But as long as ǫ is sufficiently small the correct asymptotic behavior is obtained numerically.

When we solve our boundary value problem numerically we shall use eqn. 2.21 to set the

boundary conditions for R1 and R2. We also need to know the asymptotic behavior of the

gauge fields near the boundaries. Substituting A = (1−u2)β into the differential equation for

A (eqn. 2.19), we can solve for β, the scaling behavior in the vicinity of the boundary. Thus

A1 ∼ (1 − u)
√

α/2 ∼ ǫ
√

α/2 as u → u2 = 1 − ǫ (3.1)

A2 ∼ (1 + u)
√

α/2 ∼ ǫ
√

α/2 as u → u1 = −1 + ǫ. (3.2)

The values of A1(u1) and A2(u2) are not constrained by any of the differential equations and

are therefore left as free parameters.

As mentioned before when solving a boundary value problem using the ‘shooting method’,

convergence may depend on a reasonably accurate guess of the initial conditions on the left

boundary. This is the case for our set of differential equations since they have an explicit pole

at u = ±1. This sensitivity gets worse as ǫ approaches zero. The method we employed to

address this issue involved starting with a relatively large value of ǫ (ǫ = 0.5) and incrementally

2For numerical reasons we can not just set R1(u1) = 0, R1(u2) = 1 . . .
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reducing it to its desired value using as the initial guess for the values of the derivatives (R′
1,

R′
2, A′

1 and A′
2) on the left boundary for each step the solution of the previous step.

0

0.2

0.4

0.6

0.8

1

-3 -2 -1 0 1 2 3

R1R2

A1 A2

R1+R2

Figure 1: Plot of R1, A1, R2, A2 and R1 +R2 against tanh−1(u) for α = 1, λ = 4. The free boundary

conditions are A1(−1+ǫ) = A2(1−ǫ) = 1 for ǫ = 0.005 which corresponds to left and right boundaries

at tanh−1(u) = ±3. R1 + R2 is nearly constant for this pair of parameters.

0
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0.4

0.6

0.8

1

1.2

1.4

-3 -2 -1 0 1 2 3

R1R2

A1 A2

R1+R2

Figure 2: Plot of R1, A1, R2, A2 and R1 +R2 against tanh−1(u) for α = 1, λ = 1. Here A1(−1+ǫ) =

A2(1 − ǫ) = 1 for ǫ = 0.005.

In figs. 1, 2 and 3 we see numerical solutions to these differential equations for a variety of

couplings, α, λ and boundary conditions A1(u1) and A2(u2). We observe that the gauge fields

A1 and A2 become linear functions of tanh−1(u) as u → u1 and u → u2 respectively. This

implies that asymptotically these gauge fields become linear functions of z, which corresponds

to a constant magnetic field in the direction perpendicular to both z and x̃ (the direction in
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-3 -2 -1 0 1 2 3

R1R2

A1

A2

R1+R2

Figure 3: Plot of R1, A1, R2, A2 and R1+R2 against tanh−1(u) for α = 1, λ = 4. Here A1(−1+ǫ) = 1

and A2(1 − ǫ) = 0.5 for ǫ = 0.005. The principal effect of the asymmetrical BC’s is to shift the center

of the brane to the right.

which the gauge field points),

Bỹ ∼ ∂zAx̃(z) = constant. (3.3)

Thus the asymptotic solution (actually tanh(u)−1 need only be of the order of ±2 to be in the

asymptotic regime for a typical configuration) on either side of the domain wall is a constant

magnetic field corresponding to the U(1) fields, which point in uncorrelated directions parallel

to the domain wall. These solutions have non-zero energy density away from the domain wall

and thus are infinite energy configurations. The solutions where the magnetic fields are both

zero corresponds to the choice of α = 0 (i.e. no U(1) gauge fields).

In figs. 1 and 2, we have set A1(u1 = −0.995) = A2(u2 = 0.995) = 1. With this set of

symmetric boundary conditions the domain wall is centered at u = 0. In fig. 3 we see that the

effect of asymmetric BC’s is to shift the location of the domain wall. While not apparent in

the figure the magnitudes of the uniform magnetic field far from either side of the domain wall

do not exactly match. The choice of ǫ = 0.005 (and ǫ = 0.001 for figs. 5 and 6) corresponds

to boundaries at tanh(u)−1 = ±3 (and ±3.8). While ǫ can be made smaller at the expense

of longer computing time, these values are sufficiently small for our purposes.

In fig. 4 we see the energy density of a solution plotted as a function of the transverse

direction. We see that the energy density is peaked at the center of the domain wall. If we

treat the asymptotic constant magnetic field on either side of the domain wall as a background,

then we can compute the energy per unit surface area of the domain wall by subtracting off

the infinite energy associated with the magnetic field. In fig. 5 the surface energy density is

plotted as a function of λ for a variety of values of α (boundary conditions are A1(−1 + ǫ) =

A2(1 − ǫ) = 1 at ǫ = 0.001). Observe that this ‘renormalized’ surface energy density is

only weakly dependent on the value of the gauge coupling constant α. In fig. 6 we show the
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Figure 4: Plot of the energy density against tanh−1(u) for α = 1, λ = 1. We have used the boundary

conditions A1(−1 + ǫ) = A2(1 − ǫ) = 1 where ǫ = 0.005.

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

0 1 2 3 4 5 6 7 8

Figure 5: Plot of the ‘renormalized’ surface energy density against λ for α = 0.25, 0.5, 1.0, 2.0 (from

top to bottom). We have used the boundary conditions A1(−1 + ǫ) = A2(1 − ǫ) = 1 where ǫ = 0.001.

subtracted energy density corresponding to the constant magnetic field as a function of λ and

α. In both figs. 5 and 6 we omit values of λ < 1 as they require a significantly smaller value

for ǫ.

Our solutions are all plotted in units of tanh(u)−1 and not z since u is the natural variable

in our system of equations, 2.19 and 2.20. The length scale tanh(u)−1 is dimensionless and can

be converted into a physical length by dividing by υ
√

λ1. The thickness of the domain wall is

typically ∼ 4/υ
√

λ1 (see fig. 4) which can be made arbitrarily small by choosing υ
√

λ1 ≫ 1.

– 9 –



0

0.005

0.01

0.015
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Figure 6: Plot of the energy density of the uniform magnetic field against λ for α = 0.25, 0.5, 1.0,

2.0 (from bottom to top). We have used the boundary conditions A1(−1 + ǫ) = A2(1 − ǫ) = 1 where

ǫ = 0.001.

4. Discussion

The numerical solutions displayed above have a natural interpretation in terms of supercon-

ductivity. Consider, for instance, the currents associated with the U(1) gauge groups,

Ji µ = ie[φ∗
i (∂µφi) − (∂µφ∗

i )φi] + 2e2Ai µφ∗
i φi, (4.1)

where i = 1, 2. In terms of the amplitude and phase of φi, the currents are given by

Ji µ = −2eR2
i ∂µαi + 2e2Ai µR2

i . (4.2)

For our configurations, which depend only on z, and for which eqn. 2.10 holds, it is clear that

only the x- and y-components are non-vanishing. They evaluate to

Ji x,y(z) = 2e2Ai x,y(z)R2
i (z). (4.3)

These steady, z-dependent current densities are uniform supercurrent densities localised to

the domain wall, with the charged boson fields as the current carriers.

Equation 4.3 shows that the currents are nonzero only when the gauge field configurations

are nonzero and vice-versa, so these currents are responsible for dynamically generating the

magnetic fields. On the side of the wall where Ri 6= 0, the corresponding magnetic field is seen

to decay exponentially, which is simply a Meissner effect. On the other side of the wall, where

Ri is tending exponentially quickly to zero, we find the magnetic field ~Bi tending towards

a finite, uniform configuration pointing in the plane of the wall. This is consistent with

the domain wall carrying a uniform sheet of current density pointing in the (0, Ai x, Ai y, 0)

direction, as per eqn. 4.3. Our configurations have infinite energy because the domain wall is

of infinite extent, with current densities uniformly distributed on it.
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The stability or otherwise of our solutions is an important concern. While a complete

stability analysis is beyond the scope of this paper, the above considerations suggest that the

geometrically symmetric solutions such as in figs. 1 and 2 could be stable, whereas asymmetric

configurations such as those of fig. 3 are not. Let current J1 point in the x-direction in the

plane of the wall. Then eqn. 4.3 implies that A1 also points in the same direction, so ~B1 is

directed along the y-axis. The Lorentz force on the type 1 charge carriers lies in the negative z

direction. For sector 2, similar reasoning shows that the corresponding Lorentz force on type

2 charge carriers points in the positive z direction. For symmetric boundary conditions, these

forces are equal in magnitude as well as opposite in direction. This is a necessary condition

for stability. For asymmetric boundary conditions, they are unequal, strongly suggesting that

such configurations are unstable.

5. Conclusions

In order to further explore the idea of the “clash of symmetries” from [4], we have considered

a model in which two scalar fields are coupled to their respective gauge fields in a Lagrangian

which has U(1) × U(1) symmetry. We find consistent static solutions for field configurations

with the vacuum conditions for the scalar fields specified by eqn. 2.7 and the implied boundary

conditions for the gauge fields, eqn. 2.15. We obtain the expected kink-like solutions for the

scalar fields while the two gauge fields diverge linearly on either side of the domain wall.

When we consider the idealized configuration of an infinitely thin domain wall, we have

solutions such that while the U(1) symmetries of the fields are preserved in their respective

vacua, they are both broken on the domain wall. The gauge fields show that the domain

wall is sandwiched between domains with constant magnetic fields parallel to the wall. In

the case of a domain wall of finite thickness, there will be magnetic fields parallel to the wall

on either side. These are associated with superconducting currents, as in the case of the

superconducting string solution [1].

This model demonstrates that in addition to the breakdown of symmetries on the brane,

the presence of gauge fields introduces new phenomena, such as the appearance of magnetic

fields. Background magnetic fields of this kind are reminiscent of the configurations in string

theory that give rise to non-commutativity of space-time coordinates. It would be very

interesting to see the logical extension of this model to domain wall solutions with non-

Abelian gauge fields and to study their dynamical effects in addition to symmetry breaking.
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