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QUASISYMMETRIC GRAPHS AND

ZYGMUND FUNCTIONS

LEONID V. KOVALEV AND JANI ONNINEN

Abstract. A quasisymmetric graph is a curve whose projection onto a
line is a quasisymmetric map. We show that this class of curves is related
to solutions of the reduced Beltrami equation and to a generalization of
the Zygmund class Λ∗. This relation makes it possible to use the tools
of harmonic analysis to construct nontrivial examples of quasisymmetric
graphs and of quasiconformal maps.

1. Introduction

Let X and Y be subsets of a Euclidean space Rn. An embedding f : X →
Y is quasisymmetric if there is a homeomorphism η : [0,∞) → [0,∞) such

that for any triple of distinct points a, b, x ∈ X

(1.1) |f(x)− f(a)| 6 η(t)|f(x) − f(b)| where t =
|x− a|
|x− b| .

We call a set Γ ⊂ C a quasisymmetric graph if the orthogonal projection

of Γ onto R is a quasisymmetric homeomorphism between Γ (with the metric

induced from C) and R. This should be compared to Lipschitz graphs, which

can be defined by requiring the projection to be bi-Lipschitz, a stronger

property than quasisymmetry. For instance, we shall see that the graph of

any function in the Zygmund class Λ∗ is quasisymmetric.

This paper has three main goals.

(I) Parametrize quasisymmetric graphs by homeomorphic solutions of the

reduced Beltrami equation;

(II) Use a generalization of the Zygmund class Λ∗ to construct quasisym-

metric graphs;
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(III) Use (I) and (II) to solve a problem from [25] concerning the variation

of reduced quasiconformal maps.

Our success in (I) is partial in that we can parametrize only quasisym-

metric graphs with small distortion. This is made precise with the concept

of an s-quasisymmetric map introduced by Tukia and Väisälä [34]. Namely,

the map f in (1.1) is called s-quasisymmetric (where s > 0 is a constant)

if η can be chosen so that η(t) 6 t + s for 0 6 t 6 1/s. Observe that

any quasisymmetric map is s-quasisymmetric for large enough s. The term

s-quasisymmetric graph should be self-explanatory.

Definition 1.1. A W 1,2
loc -homeomorphism f : C → C is quasiconformal if

there exists a constant k ∈ [0, 1) such that

(1.2) |fz̄| 6 k|fz| a.e. in C.

We sometimes refer to the constant k in (1.2) by writing that f is k-

quasiconformal. The images of circles and lines under a quasiconformal

map are called quasicircles and quasilines, respectively. These curves are

ubiquitous in geometric function theory and still pose challenging prob-

lems [16, 27, 28, 30].

Inequality (1.2) is a form of the Beltrami equation fz̄ = ν(z)fz where

‖ν‖L∞ < 1. A closely related equation with fz replaced by Re fz (or Im fz)

arises from consideration of elliptic PDE in the plane and generated con-

siderable interest recently [4, 7, 8, 17, 22, 23, 25]. We state this reduced

Beltrami equation as an inequality, without an explicit coefficient ν.

Definition 1.2. A nonconstant continuous W 1,2
loc -mapping f : C → C is

reduced quasiconformal if there exists a constant k ∈ [0, 1) such that

(1.3) |fz̄| 6 kRe fz, a.e. in C.

Definition 1.2 does not explicitly require f to be a homeomorphism, but

the injectivity of f is a consequence of inequality (1.3) [21, Corollary 1.5]. In

addition, f maps every horizontal line onto a graph over R [22, Proposition

1.5] except for the degenerate case

(1.4) f(z) = iλz + b, λ ∈ R, b ∈ C,

when both sides of (1.3) vanish identically.
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We are now ready to state the result that achieves Goal (I) for graphs of

small distortion.

Theorem 1.3. There exists a constant s0 > 0 such that any s-quasisymmetric

graph Γ ⊂ C with s < s0 is the image of R under a reduced quasiconformal

mapping f : C → C. Moreover, the constant k in (1.3) depends only on s

and k → 0 as s → 0.

It should be mentioned that even though Γ has a natural quasisymmet-

ric parametrization by R (the inverse of projection), this parametrization

cannot in general be extended to a reduced quasiconformal mapping of C.

Instead we use the parametrization that comes from the conformal map of

upper half-plane onto the domain above Γ.

Our Goal (II) is achieved by means of Theorem 1.4. It employs the

generalized Zygmund class Λµ which is introduced in Definition 2.6.

Theorem 1.4. Let µ be a doubling measure on R. Let u and v be real

functions on R such that u′ = µ and v ∈ Λµ. Then the image of R under

the map Γ(t) = u(t) + iv(t) is a quasisymmetric graph.

Furthermore, if the doubling constant of µ and the Λµ-seminorm of v are

sufficiently small, then Γ(R) is an s-quasisymmetric graph where s is small.

Theorems 1.3 and 1.4 from the basis for the proof of our third main result.

To state it, let Φq : [0,∞) → [0,∞) be any convex increasing function such

that

(1.5) Φq(t) =
t

(log 1/t)q
for small t.

We refer to Definition 2.7 for the notion of Φ-variation.

Theorem 1.5. There exists a reduced quasiconformal mapping f : C → C

whose restriction to the line segment [0, 1] has infinite Φq-variation for every

0 < q < 1.

This result was previously known only for q < 1/2 [25, Remark 4.1]. On

the other hand, for q > 1 every reduced quasiconformal map has finite Φq-

variation on line segments [25, Theorem 1.7]. The borderline case q = 1

remains open. Using the additivity of reduced quasiconformal maps, one

can strengthen the conclusion of Theorem 1.5 by replacing one line segment
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with an arbitrary countable set of lines. See [25] for details. The size of such

exceptional sets for Sobolev and quasiconformal maps was recently studied

in [9].

We do not know if the restriction s < s0 is necessary in Theorem 1.3. The

converse statement holds without such restrictions.

Proposition 1.6. If f : C → C is a reduced quasiconformal map which is

not of the form (1.4), then f(R) is an s-quasisymmetric graph with s =

s(k) → 0 as k → 0. Here k is the constant in (1.3). In addition,

(1.6) Im f
∣

∣

R
∈ Λµ where µ =

d

dx
Re f(x).

This leads to a conjecture.

Conjecture 1.7. The images of R under reduced quasiconformal maps C →
C are precisely quasisymmetric graphs and vertical lines.

Parametrization of Lipschitz graphs is much easier to achieve. They cor-

responds to delta-monotone maps, which are defined as follows. A map

f : C → C is delta-monotone if there exists a constant δ > 0 such that

Re
f(z)− f(ζ)

z − ζ
> δ

|f(z)− f(ζ)|
|z − ζ| for all distinct z, ζ ∈ C.

This is a proper subclass of reduced quasiconformal maps [22].

Proposition 1.8. The images of R under nonconstant delta-monotone maps

C → C are precisely Lipschitz graphs.

Remark 1.9. The concept of a quasisymmetric graph also makes sense for k-

hypersurfaces in Rn, although it reduces to Lipschitz graphs when 2k > n.

It would be interesting to investigate, e.g., 2-dimensional quasisymmetric

graphs in R4, but we do not pursue this direction here.

Acknowledgments. We thank Vladimir Dubinin, Pekka Tukia and Jussi

Väisälä for their helpful comments.

2. Preliminaries

By an embedding we understand a map that is a homeomorphism onto

its image. An embedding Γ: R → C satisfies the Ahlfors condition if there
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exists a constant K such that

(2.1) diamΓ([a, b]) 6 K|Γ(a)− Γ(b)| whenever a < b.

By a classical theorem of Ahlfors [1], the condition (2.1) characterizes quasi-

lines, i.e., images of lines under quasiconformal maps. Tukia [32] proved

that every quasisymmetric embedding R → C extends to a quasiconformal

map C → C. It immediately follows that every quasisymmetric graph is a

quasiline. However, a quasiline may be a graph without being a quasisym-

metric graph. Such examples are easy to find, e.g., the graphs y =
√
x+ and

y = ex.

The foundational results on s-quasisymmetric maps were obtained by

Tukia and Väisälä in 1980s. We will use three of them. For simplicity, the

theorems are stated here in the planar case.

Theorem 2.1. [34, Theorem 5.4] There is a number s0 > 0 such that

for 0 6 s 6 s0 any s-quasisymmetric embedding of R into C extends to a

s1-quasisymmetric mapping C → C. Here s1 = s1(s) → 0 as s → 0.

Theorem 2.2. [34, Theorem 2.6] Any s-quasisymmetric homeomorphism

f : C → C is k-quasiconformal with k = k(s) → 0 as s → 0. Conversely,

any k-quasiconformal homeomorphism f : C → C is s-quasisymmetric with

s = s(k) → 0 as k → 0.

Theorem 2.3. [35, Theorem 3.9] Let 0 < κ 6 1
25 , and let f : R → C be a

map such that for any a < b there is an affine map h : [a, b] → C with

(2.2) sup
[a,b]

|h− f | 6 κ|h(a)− h(b)|.

Then f is s-quasisymmetric, where s = s(κ) → 0 as κ → 0.

Definition 2.4. A positive Radon measure µ on R is doubling if there exists

δ > 0 such that

(2.3) µ(I) 6 (1 + δ)µ(J)

for any adjacent intervals I, J of equal length.

Definition 2.5. A continuous function g : R → R belongs to the Zygmund

class Λ∗ if there exists a constant M > 0 such that

(2.4) |g(x+ h)− 2g(x) + g(x− h)| 6 2Mh for all x ∈ R, h > 0
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The smallest such M is the Zygmund seminorm of g.

It is often said that (2.4) is an additive form of (2.3). One can inter-

pret (2.4) by saying that the nonlinearity of g on any interval is controlled

by the length of the interval. The relevance of the class Λ∗ to geometric func-

tion theory is evident by now [14, 29, 11]. But our subject required a wider

class of functions, in which the length is replaced by a general nonatomic

Radon measure on R. A measure is nonatomic if it gives zero mass to every

singleton. All our measures are positive.

Definition 2.6. Let µ be a nonatomic Radon measure on R. A continuous

function g : R → R belongs to the generalized Zygmund class Λµ if there

exists a constant M > 0 such that

(2.5) |g(x + h)− 2g(x) + g(x− h)| 6 Mµ([x− h, x+ h])

for all x ∈ R, h > 0. The smallest such M is the seminorm of g in Λµ.

We should make precise the remark about the controlled nonlinearity of

g. Given distinct points a, b ∈ R, let

(2.6) gab(x) =
b− x

b− a
g(a) +

x− a

b− a
g(b)

denote the affine function that agrees with g at a and b. If g satisfies (2.5),

then

(2.7) sup
[a,b]

|g − gab| 6 Mµ([a, b]) whenever a < b.

Indeed, we lose no generality in assuming that g(a) = g(b) = 0 and |g|
attains its maximum on [a, b] at a point ξ 6 a+b

2 . Applying (2.5) with x = ξ

and h = ξ − a, we find

|g(2ξ − a)− 2g(ξ)| 6 Mµ([a, b]), hence |g(ξ)| 6 Mµ([a, b]).

Conversely, (2.7) yields (2.5) with 2M in place of M .

Definition 2.7. Let Φ: [0,∞) → [0,∞) be a convex increasing function. A

function v : [a, b] → R has finite Φ-variation if

(2.8) sup

N
∑

j=1

Φ(|v(xj)− v(xj−1)|) < ∞,
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where the supremum is taken over all partitions a = x0 < · · · < xN = b

and over all N > 1. If v is defined on R, we say that it has locally finite

Φ-variation if (2.8) holds for every bounded interval.

In the sequel, the constants C and c in estimates may be different from

one line to another.

3. Proof of Propositions 1.6 and 1.8

Two of the results stated in the introduction admit simple proofs.

Proof of Proposition 1.6. To a reduced quasiconformal map f we associate

the one-parameter family fλ(z) = f(z) + iλz, λ ∈ R. Unless f is of the

form (1.4), each fλ is also reduced quasiconformal, as it is nonconstant and

satisfies (1.3) with the same constant as f . Therefore, fλ is η-quasisymmetric

with η independent of λ. In particular, for any triple of distinct points

a, b, x ∈ R we have

(3.1) |fλ(x)− fλ(a)| 6 η(|τ |)|fλ(x)− fλ(b)|, τ =
x− a

x− b
.

Setting λ = − Im f(x)−f(b)
x−b results in

(3.2) |f(x)− f(a)− iτ Im(f(x)− f(b))| 6 η(|τ |) |Re(f(x)− f(b))|.

There are two ways to use (3.2). First, we can take the real part and obtain

(3.3) |Re(f(x)− f(a))| 6 η(|τ |) |Re(f(x)− f(b))|

which simply says that Re f is a quasisymmetric map from R onto R. Com-

bining (3.3) with the quasisymmetry of f , we conclude that the projection

w 7→ Rew is a quasisymmetric map from Γ to R.

Let µ denote the distributional derivative of Re f(x) with respect to

x. Since Re f is quasisymmetric, µ is a doubling measure on R [20, Re-

mark 13.20b]. Taking the imaginary part in (3.2) yields

(3.4) |Im(f(x)− f(a))− τ Im(f(x)− f(b))| 6 η(|τ |) |Re(f(x)− f(b))| .

Choosing x = a+b
2 , we conclude that Im f ∈ Λµ. �

Remark 3.1. Every quasisymmetric graph y = g(x) admits a natural qua-

sisymmetric parametrization by R, namely f(x) = x + ig(x). In general,

this function f does not satisfy (1.6) and therefore cannot be extended to a
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reduced quasiconformal map of the plane. For a concrete example, take the

graph y = x1/3.

Proof of Proposition 1.8. It is obvious that f(R) is a Lipschitz graph for

every delta-monotone map f : C → C. Conversely, for any L-Lipschitz real

function g the mapping

f(z) := Re z + iL2 Im z + ig(Re z)

satisfies

(3.5) Re fz =
L2 + 1

2
, |Im fz| 6

L

2
6 Re fz,

and

(3.6) |fz̄| 6
√

(L2 − 1)2

4
+

L2

4
6 kRe fz

with k = k(L) < 1. The combination of (3.5) and (3.6) implies that f is

delta-monotone, see [24, Lemma 12]. �

4. Proof of Theorem 1.3

Let H = {z : Im z > 0} denote the upper half-plane. By Theorems 2.1

and 2.2 the curve Γ is a k-quasiline where k is small if s is.

The curve Γ divides the plane into two domains; let Ω denote the upper

one. Let f : H → Ω be a conformal mapping such that f(∞) = ∞ in the

sense of boundary correspondence. Since Γ is a k-quasiline, f extends to Γ by

continuity. It then extends to the entire plane by quasiconformal reflection,

and the extended mapping is 2k
1+k2 -quasiconformal [1]. By Theorem 2.2 the

correspondence x 7→ Re f(x) is s1-quasisymmetric where s1 is small if k is.

We claim that there exists k̃ ∈ [0, 1) such that k̃ → 0 as k → 0 and

(4.1) 2 Im z |f ′′(z)| 6 k̃Re f ′(z) for all z ∈ H.

Assume (4.1) for now and complete the proof of the theorem.

The Koebe 1/4-theorem [26, (I.6.7)] yields

(4.2) Im z |f ′(z)| 6 2 dist(f(z),C \ f(H)) for all z ∈ H.

Hence

(4.3) lim
z→ζ

Im z |f ′(z)| = 0 for any ζ ∈ R.
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We extend f to C following the method that goes back to Ahlfors and

Weill [3] and was further developed in [2, 5, 19]. Namely, we define F : C → C

by

(4.4) F (z) =

{

f(z) Im z > 0;

f(z̄) + (z − z̄)f ′(z̄) Im z < 0.

By virtue of (4.3) the mapping F is continuous in C. For z ∈ C \H we have

(4.5) Fz = f ′(z̄) and Fz̄ = (z − z̄)f ′′(z̄).

The comparison of (4.1) and (4.5) shows that F is reduced quasiconformal.

The theorem is proved, modulo (4.1). �

Proof of (4.1). The first step is to observe that Re f ′ > 0 in H. To this end,

introduce the function

uh(z) := arg(f(z + h)− f(z)) for a fixed h > 0.

Here we choose the branch of arg so that |uh| < π/2 on ∂H: this is possible

because f extends to a homeomorphism f : H → Ω and ∂Ω is a graph. The

maximum principle implies |uh| < π/2 in H, and letting h → 0 we obtain

the desired conclusion Re f ′ > 0.

The harmonic function u = Re f ′, being positive in H, admits the Herglotz

representation [15, Theorem I.3.5]

(4.6) u(z) = β Im z +
1

π

∫

R
Im

1

t− z
dµ(t)

where β > 0 and µ is a positive measure on R such that

(4.7)

∫

R

1

1 + t2
dµ(t) < ∞.

Integration of (4.6) yields µ([a, b]) = Re(f(b) − f(a)) for any finite in-

terval [a, b] ⊂ R. Recall that the map x 7→ Re f(x) is s1-quasisymmetric

where s1 → 0 as k → 0. Therefore, the measure µ satisfies the doubling

condition (2.3) where δ → 0 as k → 0.

To proceed further, we must establish that β = 0 in (4.6). To this end,

we need the following growth estimate for univalent functions F : H → C:

(4.8) |F (x+ iy)| 6 |F (i)| + (y + 1)4

y2
|F ′(i)| for y > 1, |x| 6 y + 1.
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To prove (4.8), introduce

(4.9) G(ζ) =
−i

2F ′(i)

{

F

(

i
1 + ζ

1− ζ

)

− F (i)

}

, |ζ| < 1,

and observe that G(0) = G′(0)−1 = 0. The growth theorem for class S [13,

Theorem 2.6] asserts that

(4.10) |G(ζ)| 6 |ζ|
(1− |ζ|)2 =

|ζ|(1 + |ζ|)2
(1− |ζ|2)2 6

4

(1− |ζ|2)2 .

We set x + iy = i1+ζ
1−ζ and observe that |ζ|2 6

y2+1
(y+1)2

. Combinng this

with (4.10) and (4.9) the inequality (4.8) follows.

We may assume 0 ∈ ∂Ω. For r > 0 let Γ be the connected component of

the set {z ∈ C \ Ω: |z| = r} that contains the point −ir. By virtue of the

Ahlfors condition (2.1) the length of Γ is bounded from below by cr, with

c > 0 independent of r. Therefore the mapping z 7→ zp, where p = 2π
2π−c > 1,

is univalent in Ω. This allows us to apply (4.8) with F = fp and conclude

that |f(x+ iy)| = O(y2/p) as y → ∞, |x| 6 y. The Cauchy inequality for f ′

yields |f ′(iy)| = O(y
2

p
−1) as y → ∞. Since the exponent of y is strictly less

than 1, the coefficient β in (4.6) must vanish.

Returning to (4.6), we compute

(4.11) f ′′(z) = 2
∂u

∂z
(z) =

1

πi

∫

R

1

(t− z)2
dµ(t)

and

(4.12) Re f ′(z) = u(z) =
Im z

π

∫

R

1

|t− z|2 dµ(t)

Thus, the desired inequality (4.1) takes the form

(4.13)

∣

∣

∣

∣

∫

R

1

(t− z)2
dµ(t)

∣

∣

∣

∣

6
k̃

2

∫

R

1

|t− z|2 dµ(t)

The following lemma yields (4.13). It is not particularly new; one can

find a similar, but less precise, statement in [12, p. 157]. �

Lemma 4.1. For any ε > 0 there exists δ > 0 such that the following holds.

If µ satisfies the doubling condition (2.3) then

(4.14)

∣

∣

∣

∣

∫

R

1

(t− z)2
dµ(t)

∣

∣

∣

∣

6 ε

∫

R

1

|t− z|2 dµ(t) < ∞ for all z ∈ H.
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Proof. We write |I| for the length of an interval I. Repeated application of

the doubling property yields the growth/decay estimate

(4.15) (1− γ)min(τ, τ−1)γ 6
µ(I)

τµ(J)
6 (1 + γ)max(τ, τ−1)γ , τ =

|I|
|J |

for any two intervals I and J with a common point. Here γ ∈ (0, 1) depends

only on δ, and γ → 0 as δ → 0.

Using shift, scaling, and normalization, we reduce (4.14) to the case z = i

and µ([−1, 1]) = 1. By virtue of (4.15), for all t > 0 we have

(4.16) (1− γ)tmin(t, t−1)γ 6 µ([−t, t]) 6 (1 + γ)tmax(t, t−1)γ .

For small γ the estimates (4.15) yield the following uniform bounds in t,

(4.17) |µ([−t, t]) − t| =
{

O(γ) if 0 < t < 1

O(γt1+γ(1 + log t)) if t > 1

We proceed to estimate both sides of (4.14) via integration by parts fol-

lowed by (4.17).

∫

R

1

t2 + 1
dµ(t) =

∫ ∞

0

2t

(t2 + 1)2
µ([−t, t]) dt

= π +

∫ ∞

0

2t

(t2 + 1)2
(µ([−t, t])− t) dt

(4.18)

which in view of (4.17) implies

(4.19)

∫

R

1

t2 + 1
dµ(t) = π +O(γ) as γ → 0.

Next,

Re

∫

R

1

(t− i)2
dµ(t) =

∫

R

t2 − 1

(t2 + 1)2
dµ(t)

=

∫ ∞

0

2t(t2 − 3)

(t2 + 1)3
µ([−t, t]) dt

=

∫ ∞

0

2t(t2 − 3)

(t2 + 1)3
(µ([−t, t])− t) dt

= O(γ)

(4.20)
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Finally,

Im

∫

R

1

(t− i)2
dµ(t) =

∫

R

2t

(t2 + 1)2
dµ(t)

=

∫ ∞

0

2(3t2 − 1)

(t2 + 1)3
(µ([0, t]) − µ([−t, 0])) dt

6 δ

∫ ∞

0

2(3t2 − 1)

(t2 + 1)3
µ([0, t]) dt

= O(δ)

(4.21)

The combination of (4.19)–(4.21) proves (4.14). �

5. Proof of Theorem 1.4

By virtie of the doubling condition, the map u : R → R is s-quasisymmetric

where s is small if δ is small. Thus we may consider the map t 7→ Γ(t) instead

of the projection Γ(t) 7→ u(t).

Fix a, b ∈ R, a < b. The growth estimate for µ, (4.15), yields

(5.1) sup
[a,b]

|u− ua,b| 6 C(u(b)− u(a))

where C = C(δ) → 0 as δ → 0. On the other hand, the definition of Λµ

implies

(5.2) sup
[a,b]

|v − va,b| 6 ‖v‖Λµ(u(b)− u(a)).

When δ and ‖v‖Λµ are small, Theorem 2.3 implies that Γ is s-quasisymmetric

with small s.

Without the smallness condition, we can still conclude from (5.1)–(5.2)

that

(5.3) |Γ(x)− Γa,b(x)| 6 K(u(b)− u(a)), x ∈ [a, b],

withK independent of a, b. We shall demonstrate the existence of a constant

H such that

(5.4) |Γ(x)− Γ(a)| 6 H|Γ(x)− Γ(b)| whenever |x− a| 6 |x− b|.

The property (5.4) implies the quasisymmetry of Γ [20, Theorem 10.19]. We

split the proof of (5.4) in two cases. If a 6 x 6 b, then (5.3) yields

|Γ(x)− Γ(a)| 6 x− a

b− x
|Γ(x)− Γ(b)|+K(u(b)− u(a)).
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Since |x− a| 6 |x− b|, the doubling condition implies

u(b)− u(a) 6 (2 + δ)
(

u(b)− u(x)
)

,

hence

|Γ(x)− Γ(a)| 6 [1 +K(2 + δ)]|Γ(x) − Γ(b)|.

The other case to consider is x < a < b. Now

|Γ(a)− Γx,b(a)| 6 K(u(x)− u(b)) 6 K|Γ(x)− Γ(b)|

and

|Γ(x)− Γx,b(a)| 6 |Γ(x)− Γ(b)|.

Hence

|Γ(x)− Γ(a)| 6 (K + 1)|Γ(x) − Γ(b)|

from which (5.4) follows. �

6. Generalized variation of Zygmund functions

Any function in the Zygmund class Λ∗ has a modulus of continuity of the

form Cδ log(1/δ) on every finite interval [36, Theorem II.3.4]. The example

g(x) = x log x demonstrates that this modulus of continuity is best possible.

However, at most points the local modulus of continuity can be improved

to Cδ
√

log(1/δ) log log(1/δ), see [6, Theorem 1]. Such an improvement is

also possible on the average, i.e., in terms of generalized variation. This fact

may be known, but being unable to find a reference, we give a proof.

Proposition 6.1. Any function of class Λ∗ has locally finite Φq variation

for every q > 1/2. Here Φq is the gauge function from (1.5).

We need a lemma.

Lemma 6.2. [25, Lemma 3.4]. If a function g : [a, b] → R satisfies

N
∑

j=1

|g(xj)− g(xj−1)| 6 C logp(N + 1)

for any partition a = x0 < · · · < xN = b, then g has finite Φq variation for

every q > p.
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Proof of Proposition 6.1. Let g ∈ Λ∗. We claim that there exists a constant

C such that for any triple a < x < b

(6.1)
(g(x) − g(a))2

x− a
+

(g(x) − g(b))2

b− x
6

(g(b) − g(a))2

b− a
+ C(b− a).

Using the linear interpolant (2.6) we rewrite the left-hand side of (6.1) in

terms of the difference δ := g(x) − gab(x):

(g(x) − g(a))2

x− a
+

(g(x) − g(b))2

b− x

=
δ2

x− a
+

δ2

b− x
+

(gab(x)− g(a))2

x− a
+

(gab(x)− g(b))2

b− x

=
δ2

x− a
+

δ2

b− x
+

(g(b) − g(a))2

b− a

It remains to prove that

(6.2)
δ2

min(x− a, b− x)
6 C(b− a).

Recall that δ 6 C(b − a) by (2.7). This immediately implies (6.2) when

(x − a) is comparable to (b − x). If x is very close to, say, a, then we use

the log-Lipschitz estimate δ 6 C(x− a)| log(x− a)|, see [10, Proposition 1].

Thus (6.2) holds in either case.

Repeated application of (6.1) shows that for any partition x0, . . . , xN of

the interval [a, b] we have

N
∑

j=1

|g(xj)− g(xj−1)|2
xj − xj−1

6 C log(N + 1).

where C is independent of N . The Cauchy-Schwarz inequality yields

N
∑

j=1

|g(xj)− g(xj−1)| 6 C log1/2(N + 1),

and Lemma 6.2 completes the proof. �

Turning to the generalized Zygmund class Λµ, we immediately find that

the modulus of continuity is not log-Lipschitz in general. Indeed, Λµ always

contains an antiderivative of µ. On the other hand, a version of Proposi-

tion 6.1 holds in this generality, albeit with a worse exponent.

Proposition 6.3. Let µ be a nonatomic Radon measure on R. Any function

of class Λµ has locally finite Φq variation for every q > 1.
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Proof. Let g ∈ Λµ. We claim that there exists a constant C such that for

any triple a < x < b

(6.3) |g(x)− g(a)| + |g(x) − g(b)| 6 |g(a)− g(b)| + Cµ([a, b]).

Indeed, in terms of the linear interpolant (2.6) we have

|g(x)− g(a)| + |g(x) − g(b)|
6 |gab(x)− g(a)| + |gab(x)− g(b)| + 2|g(x) − gab(x)|
= |g(a) − g(b)| + 2|g(x) − gab(x)|

where the last term is controlled by µ([a, b]) by the definition of Λµ.

Consider a partition a = x0 < · · · < xN = b where N = 2m. Apply-

ing (6.3) to the triples like x0, x1, x2, we obtain

2m
∑

j=1

|g(xj)− g(xj−1)| 6 Cµ([a, b]) +

2m−1

∑

j=1

|g(xj)− g(xj−1)|

After m iterations of this process the estimate becomes

2m
∑

j=1

|g(xj)− g(xj−1)| 6 Cmµ([a, b]) + |g(a)− g(b)|.

Thus, for any N point partition of [a, b] we have the estimate

(6.4)

N
∑

j=1

|g(xj)− g(xj−1)| 6 C log(N + 1)

where C is independent of N . An application of Lemma 6.2 completes the

proof. �

In the next section we prove that Proposition 6.3 is essentially sharp, even

if the measure µ is assumed to be doubling with a small constant.

7. Infinite generalized variation

The principal result of this section concerns the class Λµ for singular

measures µ.

Theorem 7.1. Let δ > 0. There exists a Radon measure µ on R with the

doubling property (2.3) such that the class Λµ contains a function which has

infinite Φq-variation on [a, b] for any 0 < q < 1 and any a < b.

Together with previous results this quickly yields Theorem 1.5.
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Proof of Theorem 1.5. We use the function v ∈ Λµ provided by Theorem 7.1,

scaling it down to make the Λµ seminorm of v as small as needed for The-

orem 1.4. Then use Theorem 1.3 to produce the desired reduced quasicon-

formal map. �

Proof of Theorem 7.1. Consider 4-adic intervals

In,j = {x : 0 6 4nx− j < 1} =

[

j

4n
,
j + 1

4n

)

, n = 1, 2, . . . , j ∈ Z,

and define, for n > 1, the Rademacher-type functions

ρn(x) =











0, x ∈ In,j, j ≡ 0, 3 mod 4

1, x ∈ In,j, j ≡ 1 mod 4

−1, x ∈ In,j, j ≡ 2 mod 4

For future references we record several properties of the family {ρn}.

(i) ρn is constant on Im,j when m > n;

(ii) ρn has zero mean on Im,j when m < n.

(iii) the set of discontinuities of ρn is {j 4−n : n > 1, 4 ∤ j};
(iv) if ρn is discontinuous at x, then ρm(y) = 0 whenever m > n and

|x− y| < 4−m;

(v) the antiderivative Rn(x) :=
∫ x
0 ρn(t) dt is 41−n-periodic and |Rn| 6

4−n;

(vi) the product Rnρm is continuous on R provided that m < n;

(vii) if Ψ is a function of ρ1, . . . , ρn−1, ρn+1, . . . ρm, then
∫ 1

0
Ψ(x) dx = 4

∫

[0,1]∩{ρn=1}
Ψ(x) dx.

(viii) Under the assumptions of (vii),
∫ 1
0 ρn(x)Ψ(x) dx = 0.

Fix a number γ ∈ (0, 1) and define for n > 1

vn(x) =

n
∏

k=1

(1 + γρ2k−1(x))

The measures vn(x) dx have a weak∗ limit, denoted µ. It is routine to check

that µ satisfies the doubling condition (2.3) where δ → 0 as γ → 0. Indeed,

the weights vn are doubling with a uniformly controlled constant, and µ(I)

can be compared to
∫

I vn as long as the length of I is comparable to 4−2n.

See [33].
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Let us introduce

(7.1) g(x) =
∞
∑

n=1

R2n(x)vn(x)

where R2n is the antiderivative of ρ2n. Each summand is continuous by

virtue of (vi). The property (v) ensures that the series converges uniformly

and at an exponential rate.

Step 1: g ∈ Λµ. For this we will show that (2.7) holds for all a, b ∈ R such

that a < b. Since g is bounded, it suffices to consider the case b− a < 1/16.

Let m be the greatest integer such that

(7.2) b− a < 4−2m.

By virtue of (v) the difference between g and the partial sum

gm(x) =

m
∑

n=1

R2n(x)vn(x)

on the interval [a, b] does not exceed
(

sup
[a,b]

vm

)

∑

n>m

4−2n(1 + γ)n−m 6 C 4−2m sup
[a,b]

vm 6 Cµ([a, b]).

Therefore, it suffices to prove the desired property (2.7) for gm. Differenti-

ation of gm yields

(7.3) g′m(x) =

m
∑

n=1

ρ2n(x)vn(x)

because vn is locally constant on the support of R2n. If g′m is constant on

[a, b] then we are done. Suppose otherwise. By virtue of (iii) the set of

discontinuities of g′m is a subset of {j 4−2n : 1 6 n 6 m, 4 ∤ j}. Therefore g′m
has exactly one point of discontinuity on [a, b], say θ = ℓ · 4−2r, 4 ∤ ℓ. The

oscillation of g′m at this point is at most 2vr(θ). The property (iv) implies

that vm(x) ≡ vr(θ) for x ∈ [a, b]. Hence, the deviation of gm from an affine

function on the interval [a, b] does not exceed

2vr(θ)(b− a) = 2

∫ b

a
vm(x) 6 Cµ([a, b])

as desired.

Step 2: the variation of g. Fix 0 < q < 1. We must show that g

has infinite Φq-variation on every 4-adic interval. It suffices to consider the
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interval [0, 1]. Note that g coincides with the partial sum gm at all points of

the form j 4−2m, j ∈ Z. Hence

(7.4)

42m
∑

j=1

|g(j 4−2m)− g((j − 1) 4−2m)| >
∫ 1

0
|g′m(x)| dx.

Let v∗m = max(v1, . . . , vm). For λ > 0 and k = 1, . . . ,m define

Ek(λ) = {x ∈ [0, 1] : vk(x) = v∗m(x) = λ, vn(x) < λ for n < k}.

By definition, the sets Ek(λ) from a finite partition of the interval [0, 1]. We

claim that

(7.5)

∫

Ek(λ)
|g′m(x)| dx >

λ

4
|Ek(λ)|,

where |·| denotes the Lebesgue measure. To this end, restrict the set of

integration to E′ = Ek(λ) ∩ {ρ2k = 1}. The property (vii) implies |E′| =
1/4|Ek(λ)|. According to (viii),

∫

E′

ρ2nvn =

{

λ|E′| if n = k

0 otherwise.

From (7.3) we obtain
∫

E′

|g′m(x)| dx >

∫

E′

g′m(x) dx = λ|E′| = λ

4
|Ek(λ)|

which proves (7.5).

Summing (7.5) over all k = 1, . . . ,m and all λ > 0 yields

(7.6)

∫ 1

0
|g′m(x)| dx >

1

4

∫ 1

0
v∗m(x) dx.

We need a lemma, the proof of which is postponed to the end of this section.

Lemma 7.2. There exists a positive constant c > 0 such that

(7.7)

∫ 1

0
v∗m(x) dx > cm, m = 1, 2, . . .

From (7.4), (7.6) and (7.7) it follows that

42m
∑

j=1

∣

∣g(j 4−2m)− g((j − 1) 4−2m)
∣

∣ > cm, m = 1, 2, . . .

Jensen’s inequality yields

42m
∑

j=1

Φq

(∣

∣g(j 4−2m)− g((j − 1) 4−2m)
∣

∣

)

> 42mΦq

( cm

42m

)

∼ m1−q → ∞

as m → ∞. �
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Proof of Lemma 7.2. Introduce the random variables

Xk = log(1 + γρk)−
1

4
log(1− γ2)

with [0, 1] being the probability space. Since Xk are independent, identically

distributed, and have zero mean, the large deviation bound (Bernstein’s

inequality [18, Theorem 5.11.4]) yields

(7.8) P

{

m
∑

k=1

X2k−1 > log
1

4
− m

4
log(1− γ2)

}

6 e−cm

where c > 0 depends only on γ. An equivalent form of (7.8) is

(7.9) |{x ∈ [0, 1] : vm > 1/4}| 6 e−cm.

For λ > 1 let A(λ) = {x ∈ [0, 1] : vm(x) > λ}. The estimate (7.9) yields

(7.10)

∫

[0,1]\A(λ)
vm 6

1

4
+ λe−cm.

The right-hand side of (7.10) is less than 1/2 provided that λ 6 1
4 e

cm. Hence

(7.11)

∫

A(λ)
vm >

1

2
, 1 6 λ 6

1

4
ecm.

Recall a lower bound for maximal function [31, p. 32]

(7.12) |{x ∈ [0, 1] : v∗m(x) > c1λ}| >
c2
λ

∫

A(λ)
vm

with universal constants c1, c2 > 0. Integrating (7.12) with respect to λ and

using (7.11), we arrive at (7.7). �
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