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STRONG APPROXIMATION OF HOMEOMORPHISMS

OF FINITE DIRICHLET ENERGY

TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

Abstract. Let X ⊂ C and Y ⊂ C be Jordan domains of the same finite con-

nectivity, Y being inner chordarc regular (such are Lipschitz domains). Every
homeomorphism h : X→ Y in the Sobolev space W 1,2 extends to a continuous

map h : X→ Y. We prove that there exist homeomorphisms hk : X→ Y which

converge to h uniformly and in W 1,2(X ,Y). The problem of approximation
of Sobolev homeomorphisms, raised by J. M. Ball and L. C. Evans, is deeply

rooted in a study of energy-minimal deformations in nonlinear elasticity. The

new feature of our main result is that approximation takes place also on the
boundary, where the original map need not be a homeomorphism.

1. Introduction

Throughout this text X and Y are finitely connected Jordan domains in the
complex plane C ' R2. We shall consider orientation preserving homeomorphisms
h : X onto−−→ Y of finite Dirichlet energy

EX [h] =

∫∫
X
|Dh(z)|2 dxdy < ∞, z = x+ iy

where |Dh| stands for the Hilbert-Schmidt norm of the derivative matrix Dh. Such
a mapping has a continuous extension h : X onto−−→ Y which is not necessarily a home-
omorphism [15]. In this paper we show that h can be strongly approximated by
homeomorphisms between closed domains, provided Y is inner chordarc regular,
see Definition 2.3. In particular, Y can be a Lipschitz domain.

Theorem 1.1. Let X and Y be finitely connected Jordan domains, Y being inner
chordarc. Let h : X onto−−→ Y be a homeomorphism in the Sobolev space W 1,2(X, Y) .
Then:

(a) there exist homeomorphisms hk : X onto−−→ Y , k = 1, 2, . . . , that converge to
h : X onto−−→ Y uniformly and strongly in W 1,2(X) .

(b) Moreover, for every compact subset G ⊂ X , we have hk ≡ h on G , provided
k = k(G) is sufficiently large.

(c) If, in addition, h : X → ∂ Y is injective on a compact subset X ⊂ ∂ X , then
hk can be chosen so that hk ≡ h on X.
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2 T. IWANIEC, L. V. KOVALEV, AND J. ONNINEN

The motivation for part (c) comes from variational problems for mappings be-
tween quadrilaterals, i.e., Jordan domains with four distinguished points which
constitute the injectivity set X. We will pursue such applications of Theorem 1.1
elsewhere.

Let us compare Theorem 1.1 to the known results in this field. The prob-
lem of approximation of Sobolev homeomorphisms was raised by J. M. Ball and
L. C. Evans in 1990s [1, 2]. There have been several recent advances in this di-
rection [4, 8, 13, 14, 18]. In particular, in [13, 14] we proved that any W 1,p-
homeomorphism h : U onto−−→ V between open subsets of R2 can be approximated in
the W 1,p norm by diffeomorphisms of these open subsets. The new feature of The-
orem 1.1 is that approximation takes place also on the boundary, where the original
map need not be a homeomorphism. This is why Theorem 1.1 imposes regularity
assumptions on the boundaries of X and Y.

Combining Theorem 1.1 with [13, Theorem 1.2] yields the following result.

Corollary 1.2. If h : X onto−−→ Y is a C∞–diffeomorphism in W 1,2(X) then, in
addition to all properties listed in Theorem 1.1, the mappings hk : X onto−−→ Y can
also be found as C∞ -diffeomorphisms. If h is only a homeomorphism, such an
approximation by diffeomorphisms is still available, except for the property (b).

One of the fundamental problems in topology is to approximate continuous map-
pings by homeomorphisms. The approximation procedures, still only partially
understood, have led topologists to the concept of monotone mappings [19] and
somewhat subtle concept of cellular mappings [5]. We refer the interested reader
to [17, 23]. In the mathematical theory of hyperelasticity, on the other hand, we are
concerned with the energy-minimal deformations h : X onto−−→ Y, so having additional
Sobolev type regularity [3, 6, 20]. However, very often the injectivity of the energy
minimal mappings is lost, though they enjoy some features of homeomorphisms, like
monotonicity. In particular, the question of approximation of a monotone mapping
in the Sobolev space W 1,2(X) by homeomorphisms hk : X onto−−→ Y gains interest in
the mathematical models of elasticity. A novelty in these directions is the following
corollary of Theorem 1.1 and [7, Theorem 1.6].

Corollary 1.3. Suppose h : X onto−−→ Y lies in the Sobolev space W 1,2(X) and
extends to a continuous monotone map h : X onto−−→ Y. Then there exist homeomor-
phisms hk : X onto−−→ Y , k = 1, 2, . . . , that converge to h : X onto−−→ Y uniformly and
strongly in W 1,2(X) .

We conclude this introduction with two open questions.

Question 1.4. Does Theorem 1.1 remain valid when target Y is an arbitrary
finitely connected Jordan domain?

Question 1.5. Can Theorem 1.1 be extended to Sobolev spaces W 1,p, p ∈ (1,∞)?
Or to dimensions n > 2?

2. Preliminaries

Royden Algebra. The Royden algebra R(X) consists of continuous functions g : X→
C which have finite energy. The norm is given by∥∥g∥∥

R(X) = sup
z∈X
|g(z)| +

(∫∫
X
|Dg(z)|2 dxdy

) 1
2
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Let R0(X) denote the completion of C∞0 (X) in this norm. Any conformal mapping
ϕ : X′ onto−−→ X between Jordan domains induces an isometry ϕ ] : R(X) onto−−→ R(X′)
by the rule ϕ ](h) = h ◦ ϕ . Thus the domain of definition of h is permitted to be
changed by any conformal transformation. The following observation will allow us
to transform the target.

Lemma 2.1. Let h, hk : X onto−−→ Y be homeomorphisms in R(X) and Φ: Y onto−−→ Y′

be a C 1 -diffeomorphism that extends to a homeomorphism Φ: Y onto−−→ Y′ . Assume
that both the gradient matrix DΦ and its inverse (DΦ)−1 are bounded in Y . Then
Φ ◦ hk → Φ ◦ h in R(X) if and only if hk → h in R(X) .

Our primary appliance for strong approximation in Theorem 1.1 will be local
harmonic replacements near the boundaries of X . We will relay on a well-known
fact, see [13].

Lemma 2.2. In a finitely connected Jordan domain X ⊂ C , we consider a function
g ∈ R(X) . Let h : X → C denote the continuous harmonic extension of the
boundary map g : ∂ X→ C into X . Then h ∈ g + R◦(X) . Moreover,

(2.1) 0 6 EX [g − h] = EX [g] − EX [h] 6 EX [g] .

Inner Chordarc Domains.

Definition 2.3. A finitely connected Jordan domain Y is inner chordarc if there
exists a constant C with the following property. Suppose that a, b belong to the
same boundary component of Y and γ ⊂ Y is an open Jordan arc with endpoints
at a and b . Then the shortest connection from a to b along ∂Y has length at most
C · length(γ).

Inner chordarc domains were studied in Geometric Function Theory since 1980s [11,
12, 16, 21, 24, 25, 26]. They are more general than Lipschitz domains. For instance
they allow inward cusps and logarithmic spiraling, see Figure 1.

Theorem 2.4. [25] A simply connected Jordan domain Ω is inner chordarc if
and only if there exists a C 1 -diffeomorphism F from Ω onto the unit disk D that
extends to a homeomorphism F : Ω onto−−→ D such that both gradient matrices DF
and (DF )−1 are bounded in Ω.

We remark that [25, Theorem 3.8] is stated in terms of BLD homeomorphisms,
which are not necessarily smooth. However, the mapping constructed in its proof
is a diffeomorphism.

Φ Ψ

Figure 1. Inner chordarc domains
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Figure 1 illustrates two such mappings from the unit disk onto a non-Lipschitz
domain: Φ(z) = |z − 1|4i(z − 1) (the image is a spiral domain) and Ψ(z) = (z +
1)2/|z + 1| (the image contains an inward cusp).

Monotone mappings. Recall that a continuous map h : X onto−−→ Y is monotone if
the preimage of every continuum (connected compact set) in Y is a continuum in
X . A point y◦ ∈ Y is said to be a simple value of h if its preimage h−1{y◦} is a
single point in X .

We need an elementary lemma.

Lemma 2.5. Let h : X onto−−→ Y be a homeomorphism between ` -connected Jordan
domains and suppose that it extends continuously up to the boundary. Then the
extended map h : X onto−−→ Y is monotone. Furthermore, the inverse map h−1 :
Y onto−−→ X extends continuously up to simple values of h which are virtually all
points in ∂Y , except for a countable number of them.

Every homeomorphism with finite Dirichlet energy has a continuous extension
to the boundary [15]. Precisely,

Theorem 2.6. Every finite energy homeomorphism h : X onto−−→ Y between ` -
connected Jordan domains extends to a continuous map between the closures, again
denoted by h : X onto−−→ Y . This map is monotone, though the inverse h−1 : Y onto−−→
X may not admit continuous extension to the closure of Y , unless it also has finite
energy.

Harmonic Homeomorphisms. We shall make use of the following strong version of
the Radó-Kneser-Choquet theorem, see [10, §3.2].

Theorem 2.7 (Radó-Kneser-Choquet). Let U ⊂ C be a simply connected Jordan
domain and Ω ⊂ C a bounded convex domain. Suppose we are given a continuous
monotone map h : ∂ U onto−−→ ∂ Ω , not necessarily a homeomorphism. Then its con-
tinuous harmonic extension, denoted by H : U→ C , defines a C∞ -diffeomorphism
H : U onto−−→ Ω .

3. Proof of Theorem 1.1

Figure 2. A finitely connected inner chordarc domain, not Lipschitz
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Each boundary ∂X and ∂Y consists of ` disjoint Jordan curves. We reserve
the notation,

X1,X2, . . . ,X` , for the components of ∂X

Υ1,Υ2, . . . ,Υ` , for the components of ∂Y

The components are numbered so that h sends Xν onto Υν for ν = 1, . . . , `. Figure 2
illustrates a domain Y that satisfies the assumptions of the theorem.

We recall that the boundary map h : ∂ X onto−−→ ∂ Y is injective on a compact
subset X ⊂ ∂ X = X1 ∪ X2 ∪ · · · ∪ X` , possibly empty. Let us fix an ε > 0 and a
compact G ⊂ X . We need to construct a homeomorphism hε : X onto−−→ Y of Sobolev
class W 1,2(X,Y) which coincides with h on X ∪G and

(3.1) ‖hε − h‖R(X) 4 ε

Hereafter the symbol 4 indicates that the inequality holds with an implied
multiplicative constant. The implied constants will vary from line to line but remain
independent of ε as long as ε is sufficiently small.

To prove (3.1) we shall set up a chain of homeomorphisms h0, h1, . . . , h` : X onto−−→
Y in the Sobolev space W 1,2(X,Y) whose continuous extensions, still denoted by
h0, h1, . . . , h` : X onto−−→ Y , satisfy

• h0 ≡ h

• h1 : X1 ∪ X → ∂ Y is injective,
h1 ≡ h on X ∪G ,
‖h1 − h0‖R(X) 4 ε

• For 2 6 ν 6 `,
hν : X1 ∪ · · · ∪ Xν ∪ X → ∂ Y is injective,
hν ≡ hν−1 on X1 ∪ · · · ∪ Xν−1 ∪ X ∪G ,
‖hν − hν−1‖R(X) 4 ε

Thus the final term h` works for the desired homeomorphism hε : X onto−−→ Y , by the
triangle inequality. We proceed by induction on ν. The induction begins with h0,
which is obvious. Suppose we are given the map hν : X onto−−→ Y for some 0 6 ν < ` .
The construction of hν+1 : X onto−−→ Y will be made in 5 steps.

Step I. Transition to the case when Υν+1 = T is the outer boundary. To make
this transition rigorous, let us perform the following transformations of Y . First,
we reduce ourselves to the case in which Υν+1 is the outer boundary of Y by
applying an inversion if necessary. Note that such an inversion is a diffeomorphism
in a neighborhood of Y. Once Υν+1 is the outer boundary of Y we apply Theorem
2.4 to transform the bounded component of C\ Υν+1 , denoted by Ω , onto the unit
disk. Let this transformation be denoted by F : Ω onto−−→ D. This map extends to a
homeomorphism F : Ω onto−−→ D, and has both matrix functions DF and (DF )−1

continuous and bounded in Ω. Let Y′ = F (Y). By virtue of Lemma 2.1 the
composition with the mapping F : Y onto−−→ Y′ transforms converging sequences of
mappings hk : X onto−−→ Y into converging sequences of mappings F ◦ hk : X onto−−→ Y′.
The inverse F−1 has the same property; therefore we can work with the target
Y′ instead of Y. In what follows we simply assume that Υν+1 = T is the outer
boundary of Y .
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Step II. Harmonic Replacements Near Xν+1 . The idea is to alter hν in a thin
neighborhood of Xν+1 to gain piecewise harmonicity therein. In this step we
change neither the boundary map hν : ∂ X onto−−→ ∂ Y nor the values of hν on the
given compact G ⊂ X.

Recall from Lemma 2.5 that all but a countable number of points in T are simple
values of the map hν : Xν+1

onto−−→ T . They are dense, so one can partition T into
arbitrarily small closed circular arcs whose ends are simple values of hν ,

T =

N⋃
κ=1

Cκ , diam Cκ 6 ε < 2 , for all κ = 1, . . . , N

Let Sκ denote the open region between the arc Cκ and the closed line interval Iκ
connecting the endpoints of Cκ. We call Iκ the base of the segment Sκ. We require
the partition of T to be fine enough so that the compact set hν(G) intersects
none of the segments Sκ , κ = 1, . . . , N . One further restriction on the partition
comes from the following observation: the finer the partition the closer to T are
the segments Sκ . Since hν : X onto−−→ Y is a homeomorphism, it follows that the
preimages of Sκ under hν , denoted by Xκ , can be as close to Xν+1 as we wish.
In particular, we may ensure that

(3.2)

N∑
κ=1

∫∫
Xκ
|Dhν |2 6 ε 2

That is all what we require to determine the partition of T. This partition will
remain fixed for the rest of the proof. Now we observe that each Xκ is a simply
connected Jordan domain. Its boundary consists of two closed Jordan arcs with
common endpoints. The one in Xν+1 is denoted by Γκ = Xκ ∩Xν+1 and the open

arc in X is denoted by γκ
def
== ∂Xκ ∩ X . It is at this point that we take advantage

of the condition that the endpoints of Cκ are simple values of hν . This condition
implies that the inverse map (hν)−1 : Iκ

onto−−→ γκ is a homeomorphism. On the
other hand the preimage Γκ = (hν)−1(Cκ) is a closed arc, because of monotonicity
of hν : ∂ X onto−−→ ∂ Y . Therefore, the open Jordan arc γκ ⊂ X and the closed
arc Γκ ⊂ Xν+1 form a closed Jordan curve; precisely, the boundary of Xκ . In
summary,

• ∂ Xκ = γκ ∪ Γκ , hν : Xκ onto−−→ Sκ ,
• hν : ∂ Xκ onto−−→ ∂ Sκ is continuous and monotone
• This latter boundary map is injective on the compact subset

Xκν+1
def
== (X ∩ Xν+1) ∪ γκ ⊂ ∂ Xκ

Now we appeal to Theorem 2.7 of Radó-Kneser-Choquet which allows us to replace
hν : Xκ onto−−→ Sκ by the harmonic extension of its boundary map hν : ∂ Xκ onto−−→ ∂ Sκ .
We need to introduce, for a little while, more notation.

• hνκ : Xκ onto−−→ Sκ — harmonic extension of hν : ∂ Xκ onto−−→ ∂ Sκ
• hν : X onto−−→ Y — homeomorphism of class W 1,2(X,Y), defined by

hν =

{
hνκ on Xκ , κ = 1, 2, . . . , N

hν otherwise

The continuous extension hν : X onto−−→ Y agrees with hν on ∂ X and on the compact
G ⊂ X as well.
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Let us estimate the difference hν −hν in the norm of Royden algebra. First we
find that

‖hν − hν‖C∞(X) 6 sup
16κ6N

‖hν − hν‖C∞(Xκ) 6 sup
16κ6N

diamSκ 6 ε

Secondly, in view of (2.1), we see that

EX [hν − hν ] =

N∑
κ=1

EXκ
[hν − hνκ] 6

N∑
κ=1

EXκ
[hν ] 6 ε 2

by (3.2). Hence

‖hν − hν‖R(X) 4 ε

Summarizing, the construction of hν+1 in an ε proximity to hν will be done once
the similar construction is in hand for hν . In what follows, instead of using hν ,
we assume that the original map hν was already harmonic in every Xκ . This
simplifies writing and causes no loss of generality.

Step III. Reduction of the domain to the unit disk. The idea is to construct for each
κ = 1, 2, . . . , N a sequence of homeomorphisms hκ, νj : Xκ onto−−→ Sκ , j = 1, 2, . . . ,

that converge to hν : Xκ onto−−→ Sκ uniformly and in W 1,2(Xκ, Sκ) . In addition to

that, we require that each hκ, νj agrees with hν on the compact subset Xκν+1
def
==

(X ∩ Xν+1) ∪ γκ ⊂ ∂ Xκ . Recall that the boundary map hν : ∂ Xκ onto−−→ ∂ Sκ is
injective on Xκν+1 . Once this is done, the construction of hν+1 will be completed
in the following way: for each κ we choose and fix j = jκ sufficiently large so that

‖hν − hκ, νjκ
‖R(Xκ) 6 ε

Then we replace each hν : Xκ onto−−→ Sκ by hκ, νjκ
: Xκ onto−−→ Sκ to obtain the desired

map

hν+1 def
==

{
hκ, νjκ

on Xκ , κ = 1, 2, . . . , n

hν otherwise

Thus we are reduced to finding the sequence hκ, νj : Xκ onto−−→ Sκ , j = 1, 2, . . . .
Before proceeding to somewhat involved computation we need to simplify the do-
main and the target of hν : Xκ onto−−→ Sκ . Since the problem is clearly unaffected
by a rotation of the target (harmonicity of the map is not compromised), we may
confine ourselves to the segment of the form

Sκ = S def
== {ξ : |ξ| < 1: cosω < <e ξ < 1 }, for some 0 < ω <

π

2

Thus its arc C is {ξ = e i φ : − ω 6 φ 6 ω } , the base I is { ξ = cosω + iτ : −
sinω 6 τ 6 sinω } and the corners are ξ+ = e i ω , ξ− = e−i ω. Regarding the
domain Xκ , it is legitimate to conformally transform it onto the unit disk D ;
any conformal mapping between two Jordan domains induces an isometry of their
Royden algebras. Thus we consider a conformal map χ : D onto−−→ Xκ and the

pullback f
def
== hν ◦ χ : D onto−−→ S . Recall that χ is a homeomorphism up to the

boundaries. One extra condition turns out to be useful; namely, we may choose χ

to be normalized at three boundary points so that the map f
def
== hν ◦ χ satisfies,

(3.3) f(e i ω) = e i ω , f(e−i ω) = e−i ω , f(−1) = cosω
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The first two values of f are the endpoints of the base I ⊂ ∂ S and the last one
is its midpoint. Let us state clearly what we aim to show to complete the proof of
Theorem 1.1.

Proposition 3.1. Let f : D onto−−→ S be an orientation preserving harmonic homeo-
morphism of finite energy and let its continuous extension f : D onto−−→ S satisfy (3.3).
Thus f maps the closed arc C monotonically onto itself and T homeomorphically
onto the base I ⊂ ∂ S . Suppose, in addition, that f : C onto−−→ C is injective on a
compact subset K ⊂ C . Then there exist homeomorphisms fm : D onto−−→ D con-
verging to f : D onto−−→ S uniformly and in the Sobolev space W 1,2(D,D) . Moreover
fm ≡ f on T and K , for m = 4, 5, . . . .

Thus, in steps IV and V, we shall concern ourselves only with the proof of this
proposition.

ξ2=e
iθ2 eiω=ξ+

ξ1=e
i θ1

Cα
β

D

K

e−iω

C= f (ξ+)

f (ξ2)=B
sinω

1−cosω

A= f (ξ1)

S
I

ω

γ

T

1

0−1

e−iω

f

CC

Figure 3. Harmonic map f : D onto−−→ S.

Step IV. Good approximation of the boundary map f : ∂ D onto−−→ ∂ S. The aim is to
properly approximate the continuous monotone boundary map f : ∂ D onto−−→ ∂ S by
homeomorphisms fm : ∂ D onto−−→ ∂ S which agree with f on both sets T = T \ C
and K ⊂ C . Once such an approximation is in hand, we shall extend each fm
harmonically inside the disk. Certainly, uniform convergence fm ⇒ f on T would
suffice to deduce uniform convergence in the entire disk, by the maximum principle.
However, it is not obvious at all how to make the approximation of the boundary
map in order to control the energy of the extended mappings. The Douglas criterion
will come into play.

We need only work to construct homeomorphisms fm : C onto−−→ C , as their values
on T = T \ C are already known; fm ≡ f : T onto−−→ T . Let us write f : C onto−−→ C
as f(e i θ) = e i φ(θ) , where φ : [−ω , ω] onto−−→ [−ω , ω] is a nondecreasing continuous
function such that φ(−ω) = −ω and φ(ω) = ω . We also require that fm ≡ f on
K ⊂ C . The complement C \K consists of a countable number of disjoint open

circular arcs (components) whose endpoints belong to K . Let Cβα
def
== {ei θ ; α 6
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θ 6 β} be one of such arcs together with its endpoints, where −ω 6 α < β 6 ω ,
and similarly for the image −ω 6 φ(α) < φ(β) 6 ω . The latter strict inequality
is justified by the fact that e i α and e i β are points in K and the map f , being
injective on K , assumes distinct values e i φ(α) and e i φ(β) at these points.

We now define homeomorphisms between closed arcs fm : C βα
onto−−→ C φ(β)φ(α) (m >

4 ) by the rule; fm(e i θ) = e i φm(θ) , where

(3.4) φm(θ) =
[
1− β − α

m

]
·
[
φ(θ)− φ(α)

]
+

φ(β)− φ(α)

m
·
(
θ − α

)
+ φ(α)

for α 6 θ 6 β . We have φm(α) = φ(α) and φm(β) = φ(β) . The first term
defining φm is nondecreasing in θ while the second term is strictly increasing.

Therefore, fm : C βα
onto−−→ C φ(β)φ(α) is a homeomorphism. Formula (3.4), applied to

every arc component of C \K , gives homeomorphisms which agree with f at the
endpoints of the arcs. We glue them together with f at the endpoints to obtain
a homeomorphism fm : T onto−−→ T which coincides with f : T onto−−→ T on T ∪K .
Further analysis of fm is necessary to deduce proper convergence as m → ∞ .
First note that on each arc component of C \K we have

| fm(e i θ)− f(e i θ) | 6 |φm(θ)− φ(θ) | 6 8ω2

m
<

21

m

Hence

(3.5) | fm(ξ)− f(ξ) | 6 21

m
, for every ξ ∈ T and m = 4, 5, . . .

In particular, fm ⇒ f uniformly on T .

Lemma 3.2. For all ξ1, ξ2 ∈ T and m = 4, 5, . . . , we have

(3.6) |fm(ξ1)− fm(ξ2)| 6 5

sin(ω/4)
|f(ξ1)− f(ξ2)| + 4 |ξ1 − ξ2|

Proof. There are three cases to consider:
Case 1. We first do the case when both ξ1 and ξ2 belong to the closure of

the same component of C \K ; say, ξ1 = e i θ1 ∈ C βα and ξ2 = e i θ2 ∈ C βα , where
α 6 θ1 , θ2 6 β . It follows from formula (3.4) that

| fm(e i θ1)− fm(e i θ2) | 6 |φm(θ1)− φm(θ2) | 6 |φ(θ1)− φ(θ2) | + |θ1 − θ2|

6 2 | f(e i θ1)− f(e i θ2) | + 2 | e i θ1 − e i θ2 |

Case 2. Both ξ1 = e i θ1 and ξ2 = e i θ2 belong to C . We assume that the
closed set { τ : θ1 6 τ 6 θ2 , e i τ ∈ K } is not empty. Otherwise, ξ1 and ξ2
would belong to the same arc component of C \K . Let us set the notation,

τ1
def
== min { τ : θ1 6 τ 6 θ2 , e i τ ∈ K } , ξ̂1

def
== e i τ1 ∈ K

τ2
def
== max { τ : θ1 6 τ 6 θ2 , e i τ ∈ K } , ξ̂2

def
== e i τ2 ∈ K

and note that the points ξ1 , ξ̂1 belong to the closure of one arc component in C\K .

The same applies to the pair ξ2 , ξ̂2 . Therefore, using Case 1, one can write the
following chain of inequalities
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| fm(ξ1)− fm(ξ2) |

6 | fm(ξ1)− fm(ξ̂1) | + | fm(ξ̂1)− fm(ξ̂2) | + | fm(ξ̂2)− fm(ξ2) |

6 2 | f(ξ1)− f(ξ̂1) | + 2 | ξ1 − ξ̂1 | + | f(ξ̂1)− f(ξ̂2) |

+ 2 | f(ξ̂2)− f(ξ2) | + 2 | ξ̂2 − ξ2 |

Since ξ̂1 and ξ̂2 lay in the shorter circular arc between ξ1 and ξ2 , it follows that

| ξ1 − ξ̂1 | 6 | ξ1 − ξ2 | and | ξ̂2 − ξ2 | 6 | ξ1 − ξ2 |
The same argument applies to the images of these point under the monotone map
f : C onto−−→ C . Thus,

| f(ξ1)− f(ξ̂1) | 6 | f(ξ1)− f(ξ2) | and | f(ξ̂2)− f(ξ2) | 6 | f(ξ1)− f(ξ2) |

and also | f(ξ̂1) − f(ξ̂2) | 6 | f(ξ1) − f(ξ2) | . Substitute these inequalities into the
chain above to conclude with the desired inequality

(3.7) | fm(ξ1)− fm(ξ2) | 6 5 | f(ξ1)− f(ξ2) | + 4 | ξ1 − ξ2 |
The case ξ1 , ξ2 ∈ T is trivial, because fm(ξ1)− fm(ξ2) = f(ξ1)− f(ξ2) . Thus,

all that remains is to consider

Case 3. Let ξ1 ∈ C and ξ2 ∈ T . By symmetry we may take ξ1 = e i θ1 , where
0 6 θ1 < ω . We may also assume that | ξ1−ξ2 | 6 sinω. Otherwise, inequality (3.6)
holds; namely, | fm(ξ1)− fm(ξ2) | 6 diamS = 2 sinω < 2| ξ1 − ξ2 | . Geometrically,
the assumption | ξ1− ξ2 | 6 sinω tells us that ξ2 cannot lay in the lower half of the
arc T . Thus ξ2 = e i θ2 , where ω < θ2 6 π . Let the upper corner of the segment
S be denoted by ξ+ = e i ω . The location of f(ξ2) is restricted to the upper half of
the base of the segment S , because f : T onto−−→ T is monotone and f(e i π) = cosω
(the midpoint of the base) due to normalization at (3.3). Regarding the position
of f(ξ1) ∈ C , we may assume that this value also lies in the upper half of the arc
C . Otherwise, we would have | f(ξ1)− f(ξ2) | > 1− cosω = 2 sin2 ω

2 while, on the
other hand,

| fm(ξ1)− fm(ξ2) | 6 diamS = 2 sinω <
5

sin(ω/4)
· 2 sin2 ω

2

6
5

sin(ω/4)
| f(ξ1) − f(ξ2) |

which implies (3.6).
We are ready to complete Case 3. First we use the triangle inequality and (3.7),

| fm(ξ1)− fm(ξ2) | 6 | fm(ξ1)− fm(ξ+) | + | fm(ξ+)− fm(ξ2) |
6 5 | f(ξ1)− f(ξ+) | + 4 | ξ1 − ξ+ | + | f(ξ+)− f(ξ2) |
6 5

{
| f(ξ1)− f(ξ+) | + | f(ξ+)− f(ξ2) |

}
+ 4 | ξ1 − ξ2 |

Then comes a geometric fact about the term within the curled braces. Certainly, we
have f(ξ+) 6= f(ξ2) , because f is injective on T . If, incidentally, f(ξ+) = f(ξ1)

then the latter estimate yields (3.6). Thus we may assume that three points A
def
==

f(ξ1) , B
def
== f(ξ2) and C

def
== f(ξ+) are vertices of a triangle. Let a = |B−C |, b =

|A − C | and c = |A − B | . Since A lies in the arc of S , B lies in the base of
S and C is the corner of S , all of them in the upper half of S , it follows (from
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geometry of the segment S ) that the angle opposite to the side AB , denoted by
γ , satisfies: ω

2 6 γ < ω . The law of cosines tells us that

c2 = a2 + b2 − 2ab cos γ > a2 + b2 − 2ab cos (ω/2) > (a + b )2 sin2 ω

4
.

Hence a+ b 6 c
sin(ω/4) ; that is,

| f(ξ1)− f(ξ+) | + | f(ξ+)− f(ξ2) | 6 1

sin(ω/4)
| f(ξ1)− f(ξ2) | ,

completing the proof of Lemma 3.2. �

Step V. Harmonic extension and strong convergence in W 1,2(D). The boundary
homeomorphisms fm : T onto−−→ ∂ S will now be extended harmonically inside the
unit disk. We use the same label for the extensions, fm : D onto−−→ S . These
mappings are homeomorphisms, due to Theorem 2.7. Since both f and fm are
harmonic in D , the sequence fm converges to f uniformly in D , by the maxi-
mum principle. The key point here is that they also belong to the Sobolev space
W 1,2(D) , and converge in the Sobolev norm as well. To see this we recall the

Douglas criterion [9] which asserts that any function g that is continuous on D
and harmonic in D satisfies

(3.8) ED [g]
def
==

∫∫
D
|Dg|2 =

1

2π

∫ ∫
T×T

∣∣∣g(ξ)− g(ζ)

ξ − ζ

∣∣∣2 |dξ|·|dζ| .
Recall that by (3.6) the mappings fm : T onto−−→ ∂ S satisfy∣∣∣fm(ξ)− fm(ζ)

ξ − ζ

∣∣∣2 4 ∣∣∣f(ξ)− f(ζ)

ξ − ζ

∣∣∣2 + 1

where the implied constant does not depend on m . By virtue of (3.8) this implies

ED [fm] 4 ED [f ] + 1 <∞ .

Therefore fm have uniformly bounded energy. It follows that fm converge to f not
only uniformly but also weakly in W 1,2(D) . In particular, E [f ] 6 lim inf E [fm] .
It is crucial to notice, using Dominated Convergence Theorem, that in fact we have
equality

ED [f ] =
1

2π

∫ ∫
T×T

∣∣∣f(ξ)− f(ζ)

ξ − ζ

∣∣∣2 |dξ|·|dζ|
= lim

1

2π

∫ ∫
T×T

∣∣∣fm(ξ)− fm(ζ)

ξ − ζ

∣∣∣2 |dξ|·|dζ| = lim ED [fm].

(3.9)

This shows that fm converge to f strongly in W 1,2(D) , completing the proof
of Proposition 3.1 and thus of Theorem 1.1 . �
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