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Abstract

This paper describes a language called LN whose structure mirrors tilat of

natural language. LN is characterized by absence of variables and individual

constants. Singular predicates assume the role of both individual constants

and free variables. The role of bound variables is played by predicate functors

called "selection operators." Like natural languages, LN is implicitly many­

sorted. LN does not have an identity relation. Its expressive power lies between

the predicate calculus without identity and the predicate calculus with iden­

tity. The loss in expressiveness relative to the predicate calculus with identity

however is not significant. Deduction in LN is intended to parallel reasoning

in natural language, and therefore is termed "surface reasoning." In contrast

to deduction in a disparate underlying logic such as clausal form, each step of

a proof in [,N has a direct counterpart in the surface language. A sound and

complete axiomatization is given. Derived rules, corresponding to monotonicity

and conservativity of quantifiers and to unification and resolution in conven­

tionallogic, are presented. Several problems are worked to illustrate reasoning

in LN.
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1 Introduction It is a popular view that spoken or written language is a

"surface" phenomenon, that its logical structure and meaning reside in an underlying

base language, and that complex transformations relate these two levels. Reasoning

takes place at the base level with the surface language providing only an input/output

function. Put into practice, this view would require difficult transformations from

surface to base language and back again. Even more difficult would be providing

an intelligible account in the surface language of reasoning performed in the base

language.

This paper is motivated by an alternative view [13], viz., that the surface language

directly conveys logical structure and meaning, and that the base level and transfor­

mations are unnecessary. Reasoning conducted in the surface language will be termed

"surface reasoning" to distinguish it from deduction performed in some base language

such as clausal form of first-order logic.

The paper describes LN, a logic designed for surface reasoning. LN is characterized

by absence of variables and individual constants. Singular predicates assume the

role of both individual constants and free variables. The role of bound variables is

played by predicate functors called "selection operators." Like natural languages, LN

is implicitly many-sorted. £N does not have an identity relation.

The elimination of bound variables borrows from Quine's Predicate Functor Logic [5,

9]. The elimination of the identity relation and the central role of singular predicates

are inspired by Sommers' Term Calculus [6, 7, 10, 11]. But the principal influence is
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the recent work on generalized quantifiers in natural language [1, 2]. This work gave

rise to the conviction underlying £N, viz., that monotonicity properties constitute a

unifying principle in surface reasoning.

Two claims are made for £N: (i) the language is structurally similar to natural

language in the sense that there exist well-translatable grammars [3] relating £N

and natural languages; (ii) the logic is similar to natural language reasoning in that

the monotonicity principle captures an essential and important element of natural

language reasoning.

The paper is organized as follows. First the syntax and semantics of £N are defined.

Next a complete axiomatization is given. Then several theorems establishing the

monotonicity principle are presented. The monotonicity principle is shown to subsume

unification and resolution. To support the claim that £N is structurally similar to

natural language, a fragment of English and its translation to £N are defineda To

support the claim that £N mirrors reasoning in natural language, several example

problems are solved and discusseda
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2 Definition of the Language The alphabet of LN consists of the following.

1. Predicate symbols P = S U (UjEw'Rj) where 'Rj = {R1 : i E w}, S = {Si : i E

w}, and S and the 'Rj are mutually disjoint.

2. Selection operators {(k1 , ... , kn ) : n E (w - {O}), ki E (w - {O}), 1 :::; i :::; n}.

3. Boolean operators nand -.

4. Parentheses ( and ).

£'N is partitioned into sets of n-ary expressions for nEw. These sets are defined to

be the smallest satisfying the following conditions.

1. Each Si E S is a unary expression.

2. For all nEw, each Ri E R n is a n-ary expression.

3. For each predicate symbol PEP of arity m, (k1 , ••• ,km}P is a n-ary expression

where n = max(ki )l$i:5m .

4. If X is a n-ary expression then (X) is a n-ary expression.

5. If X is a m-ary expression and Y is a l-ary expression then (X n Y) is a n-ary

expression where n = max(l, m).

6. If X is a unary expression and Y is a (n + l)-ary expression then (XY) is a

n-ary expreSSIon.
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In the sequel, superscripts and parentheses are dropped whenever no confusion can

result. Metavariables are used as follows: Si, S range over S; Rn ranges over R n; P

ranges over P; X, Y, Z, Xi, }Ii, Zi, Wi range over .eN; and ..:y"n, yn, zn, W n , 1,n range

over n-ary expressions of LN.

An interpretation of £:v is a pair I = (V,:F) where V is (\, nonempty set and F is a

mapping defined on P satisfying:

1. for each Si E S, F(Si) = {(d)} for some (not necessarily uniqtle) d E V, and

Note tllat va = {()}, so :F(RO) must be either {()} or 0.

Let a = (d l , d2 , ••• ) E VW (a sequence of individuals). Tllen X E .eN is satisfied by Q

in I (written I FaX) iff one of the following holds:

1. X E P with arity nand (d l , . .• ,dn ) E F(X)

2. X = (kl , ... ,km}P where PEP with arity m and (dk1 ,· • • ,dkTn ) F P

3. X = Y and I ~a Y

4. X = Y n Z and I Fa Y and I Fa Z

5. X = yl zn+l and for some d E V, (d) F yl and (d) F zn+l

where I ~a X is an abbreviation for not(I FaX) and (dil , ... , din) F X is an

abbreviation for I F{di) .... ,din ,d1 ,d2, ...) X.
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A sentence of £N is a O-ary expression. Let X be a sentence of £N. X is true in I

(written I F X) iff I FaX (i.e., () F X) for every a E 1)W. X is valid (written

F X) iff X is true in every interpretation of £N. A set r of sentences is satisfied in

I iff each X E r is true in I.

It can be shown that the pure predicate calculus without identity (PP) is equivalent

to a proper subset of LN, which in turn is equivalent to a proper subset of the pure

predicate calculus with identity (PPI). The first inclusion is shown by defining

a recursive translation function r which, given a well-formed subexpression of PP

and a binding environment (a string over the set of variables of PP), computes the

corresponding subexpression of LN. The translation of a closed wff 4> E 'P'P is then

defined to be r(cf>, E). That the inclusion is proper is proved by a routine application

of Padoa's Principle to show that PP cannot express the property of being a sillgular

predicate. The second inclusion is shown similarl)T.

In subsequent sections the following abbreviations are used to improve readability.

1. An := (n, ... , l)Rn

2. X U Y := (X nY)

3. X ~ y:=xnY

4. X _ Y:= (X ~ Y) n (Y ~ X)

5. T:= (So ~ So)

6. XnXn- 1 ·•• X1Y := (Xn(Xn- 1 ... (X1Y) ... )
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It is easy to see that:

1. I FaX U Y iff (I Fa X or I Fa: Y)

2. I Fa: X ~ Y iff (I FaX implies I Fa Y)

3. I FaX =Y iff (I Fa: X iff I Fa Y)

4. I Fa T for every I and Q'

5. I Fa Xl Yn2
0 • • • 0 ~2 iff for some d E V, (d) F Xl and (d) F }~ 0 • • • 0 }~2

where 0 denotes composition of relations in I

6. I Fa "Xl Y iff for all d E D, (d) F Xl implies (d) F Y
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3 Axiomatization of £N The axiom schemas of £N are the following.

BT. Every schema that can be obtained from a tautologous Boolean wff by uniform

substitution of nullary metavariables of LN for sentential variables, n for /\, and

- for -,

Sl. S8

82 S· ... S' (SXn+1 ) = s· ... S· SXn+1• ~n t1 - tn 'I.}

D S· ... s· (Xm n yl) = (S· ... S· X m n S· ... s· yl) where n = max(l m)• tn t} - tm '&1 tl tl ,

The inference rules of LN are the following.

MP. From X O and X O ~ yo infer yO

EI. From (ZO n SXI n Sin··· Si1Syn+I ), where S does not occur in Xl, yn+l, or

zo, and is distinct from Sit, ... , Sin' infer (ZO n Sin · · · Si1 Xlyn+l )

The set T of theorems of £N is the smallest set containing the axioms and closed

under MP and EI.
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Observe that by the definition of satisfaction, (:F(Si t ), ••• ,:F(Sin )) F X n iff (:F(Si2 ),

... , F(Sin)) F Sit X n iff · · · iff I F Sin · · · Sit X n
• It follows easily from this obser­

vation and the definition of validity that the axioms are valid and that validity is

preserved by the inference rules. Hence the axiomatization is sound.

Next completeness of the axiomatization is shown. Since the proof is a straightforward

Henkin proof [8], a sketch will suffice. Let r ~ LN be a set of sentences. r is

consistent iff it does not contain Xl, ... ,Xn such that Xl n··· n X n is in T. r is

complete iff for every sentence X E LN' either X or X is in r. r is saturated iff

it is complete, consistent and contains SXI and Sin··· Sit syn+l for some S E S

whenever it contains Sin · · · Sit Xlyn+l. r* is the set of sentences obtained from r

by uniform substitution of S2i for Si in each X E r. Thus only singular predicate

symbols with even index occur in r*, leaving a denumerably infinite number of "fresh"

singular predicate symbols. Notice that the axioms do not reference any particular

singular predicates. Therefore any uniform substitution of distinct singular predicates

for distinct singular predicates preserves consistency and inconsistency.

Now given a set of sentences r ~ L,N it is shown that if f* is consistent it can be

extended to a saturated set of sentences r+ ~ L,N. An interpretation I = (V, F) of

£N satisfying r+ can be constructed with V = S/rv, where Si rv Sj iff SiSj E r+. I

is also a model of r*. Thus r* is consistent iff it has a model. Obviously the same

holds for f. It then follows that F X only if X E T.
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4 Some useful theorems The main results of this section are two monotonic-

ity theorems. These theorems establish the monotonicity properties of quantifiers

(which include the resolution principle). Monotonicity is the foundation of surface

reasoning. In addition, several other properties of quantifiers, including conservativ-

ity, are proved.

In the proofs of this section it often will be necessary to introduce singular predicates

Sit, ... ,Sin (n ~ 1) that are distinct and have no previous occurrences in the proof.

To avoid unnecessary repetition, this circumstance will be conveyed by the phrase:

Let Sit, ... ,Sin be fresh. To further reduce unnecessary repetition, axiom BT and

rule MP will be used implicitly whenever that use is clear from the context. Most of

the theorems of this section can be succinctly stated as schemas, i.e., using schematic

letters or metavariabIes. The proof of such a schema is concerned with an arbitrary

instance, or in the case of a refutation, with some particular instance, of the schema.

To reduce proliferation of symbols, the same letters are used in the proof, but with

the understanding that in the proof these letters represent fixed instances.

First five lemmas are stated. Their proofs are obvious and left to the reader. The

first two facilitate application of axiom EG. The next two correspond to universal

instantiation and generalization. The last combines axioms 82 and D.

LEMMA 1 (schema) ST. 0

LEMMA 2 (schema) S· ... S· Xl yn+l C SXI n S· ... S· Syn+l 0
tn '1 - tn.1 •
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LEMMA 3 (schema) (I\T)nXn ~ Sin ... Sitxn. 0

LEMMA 4 If Sit' ... , Sin E S are distinct and do not occur in X n
, then Sin · · · Si1 x n E

T implies (AT)nxn E T. 0

LEMMA 5 Let 4> be obtained from a Boolean wJJ in sentential variables PI, .. · , Pk by

uniform substitution of n for 1\ and - for I. Let Xfl, . .. ,X;k E LN. Let n =

max(nl, ... ,nk) andSi1 ,.··,Sin E S. Then¢>[Sin1 ···Sit X fl, ... ,Sink ···SitX~k/PI, ... ,Pk]­

Sin · · · Sit cjJ[Xfl, ... ,X;:k /Pl, ... ,Pk]. 0

The first theorem generalizes axiom BT.

THEOREM 6 Let xn be obtained from a Boolean tautology by uniform substitution of

expressions of £N for sentential variables, n for 1\ and - for I. Then (AT)n X n E T.

proof: Let Si1 , • •• ,Sin be fresh members of S. Then Lemma 5 can be followed by

Lemma 4 to yield the desired result. 0

It follows from definitions given previously that the statements of Lemma 5 and

Theorem 6 can be extended to read ... by uniform substitution of n for 1\, - for -',

U for V, ~ for --+, and =for~.

The next theorem is the first of two which establish the monotonicity properties of the

image operation. These properties playa dominant role in reasoning in £N. In the
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examples of section 6, invocation of this theorem will be indicated by the abbreviation

MON. First some definitions are needed.

An occurrence of a subexpression Y in an expression W has positive (negative) polarity

if that occurrence of Y lies in the scope of an even (odd) number of - operations in

W. An occurrence of a subexpression ym, where m ~ 1, is governed by X in W if W

is X (kl , ... , km ) ym, xym, xym, or X (ym n Zl), or the complement of one of these

expressions. An occurrence of ym is governed by X n ··· Xl in W, where 1 ::::; n ::::; m,

if V is governed by X n in Wand that occurrence of ym is governed by X n - l ... Xl

in V.

THEOREM 7 (First Monotonicity Theorem) Let ym occur in W with positive (re­

spectively, negative) polarity. Let (I\T)m(ym ~ Zl) (respectively, (/\T)m(ZI ~ }Tm)),

where I ~ m. Let W' be obtained from W by (i) substituting Zl for that occurrence

of ym, (ii) substituting (k1 , .•• , k1) for selection operator (kt , ... ,km ) on ym, if any,

and (iii) eliminating all occurrences of governing subexpressions that no longer govern

after the substitutions in (i) and (ii). Finally, let T X for every governing subexpres­

sion X with an occurrence of negative polarity that was eliminated in (iii). Then

(/\T)h(W ~ W'), where h is the arity of w.

proof: Proof is by induction on the depth of ym in W. If the depth is zero, then

W := ym, W' = Zl, and (AT)m(w ~ W'). For the induction step, let V occur in W

at some arbitrary depth and ym occur in V at depth one.

Case 1. V = (k1 , . •• ,km)ym, where r = max(ki)l~i~m.
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(a) Suppose V occurs in W with positive polarity, and therefore ym has positive

polarity in W. Let Sit' ... ' Sir be fresh and suppose Sir··· Sit (k1 , ... , km ) ym n

Si
km

• • • Si
kt

ym. By axiom C2, Siq ••• Sit (k1 , ••• , k1) Zl ~ Si
kl

••• Si
kt

Zl. Then by

Lemma 5, Sik
m

••• Sikt (ym n Zl). However, (AT)m(ym ~ Zl) and Lemma 3 yield

Si
km

• • • Si
kt

(ym n Zl), leading by axiom S2 to a contradiction. Therefore by axioms D

(k1 , ... ,kl}ZI). The theorem follows by the induction hypothesis.

(b) Suppose V occurs in W with negative polarity, and therefore ym has negative

polarity in W. Suppose Sir · · · Sit (k1 , ... , km ) ym nSiq • • • Sit (k1 , ... , k1) Zl. Then rea-

Lemma 3 yield Si
km

• • • Si
k1

(Z' n ym), again leading to a contradiction. The theorem

follows as above.

Case 2. V = y"m X, where m = 1= 1 and 9 is tIle arity of X.

(a) Suppose V occurs in W with positive polarity, and therefore ym has positive po-

larity in W. Let Sit' ... ' Big be fresh and suppose Sig · · · Bi2 yl X n Big · · · Si2 Zl X.

By Lemma 2, Big··· Si2BitX n Sit Zl. From (AT)(yl ~ Zl) and Lemma 3 fol-

lows Sit (YI n zt), whence by Lemma 5, Sit yl n Sit Zl. Combining these results,

which contradicts the assumption. Therefore, Sig · · · Si2 (yt X n ZlX), and by Lemma

4, (AT)9-1(yt X ~ ztX). The theorem follows by the induction hypothesis.
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(b) Suppose V occurs in W with negative polarity, and therefore ym has negative

polarity in W. Let Sit, . .. ,Sig be fresh and suppose Big · · · Si2 ylX n Big · · · Si2Zl X.

Reasoning as above, this assumption yields Big · · · Si2 Zl X, a contradiction. This leads

to the conclusion (AT)g-l{Zl X ~ ylX). The theorem again follows by the induction

hypothesis.

Case 3. V = xym, where m ~ 1 and I 2:: o.

(a) Suppose V occurs in W with positive polarity, and therefore ym has positive

polarity in W. Let Sit, . .. , Sim be fresh. Two subcases must be considered.

(1·) Let 1> 1 and suppose S· ... s· XymnS· ... S· X Zl By Lemma 2 S· ... S· S· Zl n S· X_ tm 12 II 12· 'II 12 It 1t·

results, Sim ••• Si2Sit (Z' U ym n Zl) n SitX, which by Lemma 5 and axiom BT yields

(AT)m-l(xym ~ XZ' ). The theorem follows by the induction hypothesis.

(ii) Let 1= 0 and suppose Sim • • • Si2xym nZo. By Boolean tautology ,p ---+ ,(p/\ q),

zo n Si
t X . Reasoning as in subcase (i) again leads to (AT)m-l(xym ~ zO) and the

theorem follows by the induction hypothesis.

(b) Suppose V occurs in W with negative polarity, and therefore ym has negative

polarity in W. Let Sit, ... ,Bim be fresh and again consider two subcases.

(i) Let 1~ 1 and suppose Sim • • • Si2 Xym n Bil • • • Si2 X Zl. Reasoning as above, this

assumption yields Sim • • • Si2 Sit (ym U Zl n ym) n Sit X, which by Lemma 5 and ax-
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iam BT yields Bil • • • Si2 Si1 Zl n Si1 X. Then by rule EI, Biz · · · Si2X Zl, contradicting

the assumption. As above, the theorem follows by Lemmas 5 and 4 and the induction

hypothesis.

(ii) Let 1= 0 and suppose Sim ••• Si2Xym n Zo. Then as in subcase (i), Zo n Si1X.

Now by Lemma 1 and rule EI, Zo n T X. Since T X is a condition of the theorem,

this again contradicts the assumption and the theorem follows as above.

Case 4 (V = ym) and Case 5 (V = ym n X) are straightforward. 0

From previous definitions, it follows that if the expression AYX occurs with positive

(negative) polarity, then the occurrence of Y has negative (positive) polarity while the

occurrence of X has positive (negative) polarity; if the expression Y ~ X occurs with

positive (negative) polarity, then the occurrence of Y has negative (positive) polarity

while the occurrence of X has positive (negative) polarity; if the expression Y U X

occurs with positive (negative) polarity, then the occurrence of Y and the occurrence

of X both have positive (negative) polarity; and if the expression Y =X occurs with

either positive or negative polarity, then the occurrence of Y and the occurrence of X

both have positive and negative polarity. With these provisions, Theorem 7 applies to

expressions containing occurrences of defined operators. In this connection, singular

predicates require special mention. Since ASX := SX = SX =SX, any occurrence

of a singular predicate can be taken to have either positive or negative polarity.

COROLLARY 8 (schema) ((AT)m(ym ~ Zl) n (AT)I(ZI ~ W k )) ~ (AT)rn(ym ~ W k )

where k ::; 1 ::; m. 0
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The following theorem provides a useful distributive property.

Zl)) where n = max(l, m), and either (i) h = m ~ k /\ j = k ~ I or (ii) j = 1 ::;

k 1\ h = k ::; m or (iii) h = j = k ~ n.

S2 S· ... S· X h · • · Xlym Lemma 2 yields S· ... S· ym n S· Xl n ·· · n S· X h,1m "h+t· 1m 11 il lh •

By a similar argument, Si, ... SitZI n SilX1 n··· n SijXj • Using axiom BT and rule

Lemma5 S· ... S· (ym U Zl) n S· Xl n ... n S· X k By rule EI S· ... S· X k ••• Xl'in 11 It 'k· 'in lk+l

(ym U zl) or equivalently S· ... S' "Xk · · · AXI (ym n Zl) Since this is a contra-
, 'In tk+l •

diction, the theorem follows by Lemma 4. 0

Now the second monotonicity theorem can be presented. First a definition is needed.

A subexpression ym will be said to occur disjunctively in expression W iff (i) W =

and ym occurs disjunctively in Zl.

THEOREM 10 (Second Monotonicity Theorem) Let ym occur disjunctively in W, gov-

erned by X k • · • Xl.. Let W' be obtained from W by replacing that occurrence of ym

with Zl (1 ~ m) and deleting all occurrences ofAXi that no longer govern a subexpres-

17



Zl)) ~ W') J where h is the arity of W.

proof: Proof is by induction on the depth of ym in W.

Basis (depth = 1). W = AXk··· x1ym U v.

(AT)h{(W n AXk··· Ax1(ym ~ Zl)) ~ (AXk ••• Ax1ym n AXk ••• Ax1(ym ~ Zl) U

V)) by Theorem 6 and Boolean tautology ((p V q) /\ r) ~ (p 1\ r V q). Then

(AT)h{(AXk ••• Ax1ym n AXk··· Ax1(ym ~ Zl) U V) ~ {AXk ··· Ax1(ym n (ym ~

ZI))UV)) by Theorems 9 and 7. By Theorem 6 and Boolean tautology (pl\(p ---+ q)) ---+

q, (AT)h+k((ym n (ym ~ Zl)) ~ Z'), whence by Theorem 7, {AT)h((AXk ··· Ax1(ym n

(ym ~ Zl)) U V) ~ (AXj ··· AX1Zl U V)). Finally, (AT)h((W n AXk ••• Ax1(ym ~

Zl)) ~ W'), by Corollary 8.

Induction (depth > 1). W = AXn · · • X q+1 (Zl U Z2) where ym occurs disjunctively in

Zl, governed by X j • • • Xl, 0 ::; j ::; q, k.

(AT)h((W n AXk ••• Axl(ym ~ Zl)) ~ AXn ··· AXq+1 (AXj ••• Ax1(ym ~ Zl) n (Zl U

Z2))) by Theorem 9. Then (AT)h+n-q((AXj ••• Ax1 (ym ~ Z')n(Zl UZ2 )) ~ (AXj ··· Ax1(ym ~

Zl) nZl UZ2)) by Theorem 6. By Theorem 7, (AT)h(AXn ··· AXq+1("Xj ••• "x1(ym ~

Zl) n (Zl U Z2)) ~ "Xn ··· "Xq+1("Xj ••• Ax1(ym ~ Zl) n Zl U Z2)). Now by the in-

duction hypothesis, ("T)9(("Xj ••• "x1(ym ~ Zl) n Zl) ~ Z~) where 9 is the arity

of Zl and Z' is obtained from Z as W' was obtained from W. Again by Theorem

7, (AT)h(AXn ·•• "Xq+1 ("Xj ··· "x1(ym ~ Zl) n Zl U Z2) ~ "Xn ,··· "Xq+l(Z~U Z2)),

where n' ::; n. Finally, (AT)h((W n "Xk •• •"x1 (ym ~ Zl)) ~ WI), by Corollary 8. 0

It is easy to see (from the equivalence (ym ~ Zl) = (ym U Zl)) that this theorem

corresponds to the resolution principle in conventional logic. A corollary provides a
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rule corresponding to unit resolution. It will be referred to as the Cancellation Rule.

In section 6, its invocation will be indicated by the abbreviation CANG.

COROLLARY 11 Let ym occur disjunctively in W, governed by X k ·• ·XI . Let W' be

obtained from W by deleting that occurrence of ym and all occurrences ofAXi that

no longer govern a subexpression. Let T Xi for every "Xi that was deleted. Then

The image operation is further characterized by the next theorem. The first corollary

establishes the property of conservativity. The second provides equivalent forms and

gives the rules for conversion in the case of unary predicates.

Then by Lemma 2 S· ... S· ym n S· Xl n ... n S· X By axiom D S· ... s· (ym n Xl),tm t1 11 1m m • '1m 11

nS· X 2 n ·· ·n S· X and therefore also S· ... s· (ym n Xl) n S· T n S· X 2 n ··· n S· X12 1m m tm 11 11 t2 1m m •

Rule EI yields X m · · · X 2T(ym n Xl), resulting in a contradiction. Conversely, sup-

Lemma2 S· ... s· (ym n Xl) n S· Tn S· X 2 n··· n S· X ByaxiomD S· ... S· ym'1m 11 11 12 tm m· ,1m t1

nS· Tn S· Xl n··· n S· X and therefore also S· ... S· ym n S· Xl n··· n S· X11 11 tm m 1m tl t1 tm m·

Rule EI yields X m • • • X 2X I ym, resulting in a contradiction. 0
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COROLLARY 14 For unary expressions X and Y, (i) XY =T(XnY) (ii) XY Y X

(iii) AXY - AT(X ~ Y) (iv) AXY == ,,(Y) X. 0

It is now easy to prove that the image operation defines an identity relation on

S. Indeed if I is the identity relation, then it can be axiomatized by the schema

SiSjl =SiSj.

THEOREM 15 (schema) (i) SiSi (ii) SiSj - SjSi (iii) (SiSj n SjSk) ~ SiSk (iv) If

Si occurs in W, W' is obtained from W by substituting Sj for that occurrence of Si,

and SiSj, then (I\T)h(W ~ W'), where h is the arity of W (v) From the schema

SiXl = SiXl , infer SiSj.

proof: (i) Axiom 81. (ii) Corollary 14. (iii) Corollary 14 and Theorem 7. (iv)

Corollary 14 and Theorem 7. (v) If the schema holds, then SiSj =SjSj. Tllerefore

SiSi. 0
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5 £N and natural language structure In this section an English fragment

is offered in support of the claim that LN is structurally similar to natural language.

The syntax of the fragment and its translation to £N are defined by an attribute

grammar. To make the grammar brief, some inessential simplifications are adopted.

Morphological rules necessary to achieve proper noun and verb forms are omitted.

Only the conjunction and is shown; or can be dealt with similarly. The grammar is

allowed to be syntactically ambiguous.

To further enhance the presentation, the following "syntactic sugar" is added to .eN.

thing := T

The attribute grammar follows. T is the translation mapping.

s -+ Sand S r(51 ) +- r(82 ) n r(83 )

ID CN VP r(5) r- r(D)r(CN)r(VP)

ID CN do not VP r(5) r- r(D)r(CN)r(VP)

IPNVP r(S) +- T(PN)r{VP)

IPN do not VP T(8) r- r(PN)r(VP)

Ithere be VP r(8) +- some thing r(VP)
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CN ---+ CN and CN r(CN1 ) +- r(CN2) n r(CN3 )

lACN r(CN1) +- r(A) n r(CN2)

leN that VP r(CN) ~ r(CN) n r(VP)

IBeN r(CN) ~ r(BCN)

PN ---+ PN and PN T(PN1 ) ~ T(PN2 ) n T(PN3 )

IBPN r(PN) ~ r(BPN)

VP ---+ VP and VP r(VP1 ) ~ T(VP2) n T(VP3)
'-"

lTV D CN r(VP) ~ r(D)r(CN) (r{TV))

'-"

ITVPN r(VP) +- r{PN) (r(TV))

Ibe-en TV by D eN r(VP) +- T(D)r(CN)r(TV)

Ibe-en TV by PN r(VP) +- T(PN)T(TV)

IIV r(VP) +- r(IV)

TV --t do not BTV r(TV) +- r(BTV)

!BTV r(TV) +- r(BTV)

IV ---+ do not BIV r(IV) +- r{BIV)

IBIV T(IV) +- r(BIV)

A small lexicon is provided.

D: some, all, no, a, every

A: black, spotted

BeN: dog, cat

BPN: Bert, Helen
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BIV: run, bark

BTV: like, chase

a translates to some and every translates to all; otherwise T is the identity function

on the lexicon.

In view of the incomplete understanding of human language, it cannot be proved that

£N has the same structure as natural language; but the above grammar demonstrates

that a well-translation [3] can be defined between £N and a simple English fragment.

This grammar is of further interest because of the interpretation of English it induces.

It deviates from Montagovian semantics [1, 13] in several respects. Most significant

is the absence of term phrases, which denote (in a purely extensional Montagovian

semantics) sets of sets of individuals. In the fragment defined above, determiners are

functors that combine directly ,vith two predicates; a determiner and one predicate

do not form a phrase. Determiners thus denote binary relations on subsets of the

universe of individuals. The fragment has no phrases that denote sets of sets. As a

dividend, proper nouns always denote individuals - or, more precisely, singleton sets

rather than sometimes individuals and other times sets of sets of individuals [1].

Relative clauses are always unary predicates. Thus for example the sentence every

dog that chases a cat barks can be given the de dicto reading every (dog n

some cat chase)bark. In contrast to this, the de re reading (which incidentally lies

outside the above grammar) would be Sicat n every (dog nSi chase)bark.
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In a sense, these deviations are in the direction of a simpler semantics. This will

influence the form that reasoning takes in £N. The next section discusses this further.
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6 .eN and natural language reasoning Theorem 15 implies that L,N has an

expressiveness essentially equivalent to that of PPI. For example, elementary group

theory can be axiomatized and developed in .eN in essentially the same way as in PPI.

This however is not the principal claim made for L,N. Rather LN is claimed to mirror

the structure of natural language and the process of natural language reasoning. The

previous section provided some support for the first claim; this section will address

the second.

The organizing principle of reasoning in £N is that of monotonicity as enunciated

by the first and second monotonicity theorems and their corollaries. The importance

of this principle is illustrated below by several examples. In addition, the examples

demonstrate the following. (i) Not only the problem statement but eae}l step in

the reasoning process is directly intertranslatable with English. (ii) The reasoning

process is one of incrementally building a model of the world entailed by the problem

statement.

In general only a partial model is needed. If a partial model entailed by the premises

contains the desired conclusion, then a direct proof has been constructed. If a model

entailed by the premises conjoined with the denial of the conclusion does not exist (i.e.,

the attempt to build such a model fails), then an indirect proof has been constructed.

Each step in building a model adds another fact about the kinds of individuals in

the world entailed by the problem statement, that is, about the subsets of the model

unIverse.
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6.1 Exercises from introductory logic These examples are taken from Som-

mers [11]. They are intentionally simple so that the details of each step in the rea­

soning process can be given. Each step consists of a .eN expression, its justification,

and a direct English equivalent. To make the Boolean character of reasoning in LN

apparent, "universal closure" is implicit. For example, AT(D ~ M F) is abbreviated

D <; MF.

example 1 Some horses are faster than some dogs. All dogs are faster than some

men. Therefore, some horses are faster than some men. (Implicit assumption: faster

and its converse are transitive relations.)

proof (direct):

1 someHsomeDF p some horses are faster than some dogs

2 allDsomeMF P all dogs are faster than some men

3 D ~ someAIF 2,Cor14 all dogs are faster than son1e men

4 someHsome(someMF) F 1,3,MON some horses are faster than some things

faster than some men

5 someHsomeM(F 0 F) 4,Defn

p

some horses are faster than some things

faster than some men

for all pairs of things, the first being faster

than something faster than the second implies

the first being faster than the second

(converse of faster is transitive)
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7 someHsomeMF 5,6,MON some horses are faster than some men

This proof can also be presented graphically in the form of a Hasse diagram (see

Figure 1). Each node is labelled with a £N expression. Consider a pair of nodes

with labels X and Y, and let n be the greater of their arities. An arc ascending

from X to Y represents the assertion (aIIT)n(x ~ Y), which may be abbreviated

X ~ Y. A pair of arcs descending from X and Y to a common node represents the

assertion (someT)n(x n Y), which also may be written (X n Y) <Z T. The premises

are represented in the diagram by heavy arcs; the lighter arcs represent inferences. H'

denotes a nonempty set. There are two inferences, both based on the monotonicity

principle. The conclusion follows from the circumstance H n someAfF Cf:. T. The

Hasse diagram of the partial model is easy to grasp intuitively and has a compelling

similarity to human reasoning.

example 2: All supporters of Nixon will vote for Reagan. Avery "rill vote for none

but a friend of Harriman. No friend of Khrushchev has Reagan for a friend. Harriman

is a friend of Khrushchev. Therefore, Avery will not support Nixon.

proof (indirect):

1 all(NS)RV

2 all(AV)HF

3 no(KF)RF

4 HKF

p

p

p

p

all supporters of Nixon will vote for Reagan

all those for whom Avery will vote are friends

of Harriman

no friend of Khrushchev has Reagan for a friend

Harriman is a friend of Khrushchev
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5 ANS Denial Avery is a supporter of Nixon

6 NS~RV 1,Cor14 all supporters of Nixon will vote for Reagan

7 ARV 5,6,MON Avery will vote for Reagan

8 RAV 7,Cl Reagan is one for whom Avery will vote

9 AV <; HF 2,Cor14 all those for whom Avery will vote are friends

of Harriman

10 RHF 8,9,MON Reagan is a friend of Harriman

11 HRF lO,Cl Harriman has Reagan for a friend

12 Hc;.KF 4,S2,Cor14 Harriman is a friend of Khrushchev

13 noHRF 3,12,MON Harriman does not have Reagan for a friend

(contradicts 11)

Again the proof can be presented graphically. Using the same conventions as before,

the Hasse diagram is shown in Figure 2. In this example, inferences are based on

conversion (axiom C1) as well as the monotonicity principle. That the premises and

the denial of the conclusion have no model is seen from the contradictory circumstance

RFnRF ~ T.

This example illustrates that an indirect proof can be viewed as a process of model

elimination (in contrast to model building), with the result that all models are finally

eliminated.

6.2 Schubert's Steamroller In 1978 Lenhart Schubert formulated the follow-

ing problem as a challenge to automated reasoning systems.
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Wolves, foxes, birds, caterpillars, and snails are animals, and there are

some of each of them. Also there are some grains, and grains are plants.

Every animal either likes to eat all plants or all animals much smaller than

itself that like to eat some plants. Caterpillars and snails are much smaller

than birds, which are much smaller than foxes, which in turn are much

smaller than wolves. Wolves do not like to eat foxes or grains, while birds

like to eat caterpillars but not snails. Caterpillars and snails like to eat

some plants. Therefore there is an animal that likes to eat a grain-eating

animal.

To save space the proof is given without English translations. The translations are

easy. As an example, step 24 can be translated all wolves either like to eat all

grains or all foxes are either not much smaller than they or do not like

to eat all plants or are liked to be eaten by them. It might be remarked in

passing that aIIW(aIIPE U all(A n M n somePE)E), which may seem more direct

than 24, is not a well-formed expression of LN.

proof (direct): The premises 1-23 are stated first. The conclusion is given by 36-37.

1 aIIA(ailPE U aIIA(M U aIIPE U E))

2-7 aIIWA allFA allBA allCA allSA allGP

8-13 TW TF TB TC TS TG

14-17 allWallFM allFallBM allBallCM allBallSM

18-21 ailWailFE alIWallGE aIIBallCE allBallSE
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22-23 allCsomePE allSsomePE

24 aIIW(aIIGE U aIIF(M UallPE U E)) 1,2,3,7,MON

25 allWallF(M U ailPEU E) 19,24,CANC

26 aIIWaIIF(aIIPE UE) 14,25,CANC

27 allFallPE 18,26,CANC

28 alIF(aIIPE U aIIB(M UallPE UE)) 1,3,4,MON

29 allFallB(M U allPEU E) 27,28,CANC

30 aiIFaIIB(ailPE UE) 15,29,CANC

31 aIIB(aIIPE U aIIS(M U allPE U E)) 1,4,6,MON

32 ailB(ailPE U aIlS(ailPEU E)) 17,31,CANC

33 aIISallPE 23,Defn

34 alIB(ailPE U ailSE) 32,33,CANC

35 allBallPE 21,34,CANC

36 ailFailBE 30,35,CANC

37 ailBailGE 35,MON

Because of its larger size, the partial model for Schubert's Steamroller will not be

presented as a Hasse diagram. The first "lemma" (steps 24-27) can be so presented

however (see Figure 3). The heavy arcs represent the inferences from step 24 to step

27. For example, the inference from 25 to 26 is: if W ~ aIIF(M U ailPE U E) and
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w ~ ailFM, then W ~ alIF(ailPEU E).

Notice that ailFailPE is nullary, in contrast to the other expressions, which are

unary. To interpret this, observe that aIIT(W ~ aliFailPE) = (TW ~ ailFailPE).

Since TW, the result ailFailPE follows.

Schubert's Steamroller remained a challenge to automated reasoning systems for a

number of years because of its potentially enormous search space. See [12] for a good

review. It finally yielded to reasoning systems employing many-sorted logic. LN is

implicitly a many-sorted logic. Indeed, as with all natural languages, reasoning with

sorts is intrinsic to L,N. It is remarkable that the restriction imposed by sorts and

the Cancellation Rule strategy together reduce the total search space for Schubert's

Steamroller to 30 expressions. Remarkable also is the use of the First Monotonicity

Theorem to accomplish unification without complexities such as the "occur-check."

6.3 Discussion Although psychological theories of human reasolling abound,

it can be said with confidence that human reasoning is not well enough understood

to permit anything to be proved about it. Consequently, the claim that LN mirrors

natural language reasoning must be argued on intuitive grounds.

It is clear from the examples that reasoning in L,N is concerned with describing a world

or model in terms of classes of individuals and the ways in which they are related.

Specifically it is concerned with inclusion, exclusion and overlap as represented by

expressions of the forms X ~ Y, X ~ Y, and X n Y <Z T. These are precisely

the relations conveyed by the categorical statements (A, E and I, respectively) of
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syllogistic. Syllogistic is often proposed, by psychologists and philosophers alike, as

a model of human reasoning competence. Its survival for twenty three centuries is

testimony to the fundamental importance of these relations in human reasoning.

The monotonicity properties of the Boolean connectives can be viewed as basic to

reasoning in propositional logic. Adding the monotonicity properties of quantifiers,

syllogistic extends this mode of reasoning to monadic logic. By generalization of these

monotonicity properties as enunciated by the two monotonicity theorems and their

corollaries, £N extends this mode of reasoning to polyadic logic.

As a consequence, reasoning in L,N is essentially building models of the world entailed

by the set of premises. While similar to building semantic trees or model (Hintikka)

sets, reasoning in LN differs because of the Boolean character of the relations \vhich

constrain the classes of individuals that may exist in the world.
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Figure 1: A partial model for the first exercise
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Figure 2: Model construction fails for the second exercise
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ailPEu aIIF(M U ailPEU E)

allPE allF(M U ailPE U E)

allF(M U allPE) allF(M U E) allF(allPE U E)

allFM

w

allF 11PE allFE

Figure 3: A fragment of the model for Schubert'8 Streamroller
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7 Conclusion The claims that LN mirrors natural language structure and

natural language reasoning have been argued on intuitive grounds using examples.

The state of knowledge in cognitive science does not permit more. Additional evidence

will be presented in subsequent papers on LN. This will take the form of extending

the language to additional constructs of natural language, and further analysis of

reasoning in £N to establish further connections with natural language reasoning.

In the first direction, L,N will be extended to include generalized quantifiers of natural

language. The cardinal quantifiers at least k can be axiomatized much the same as

some, requiring the addition of two axiom schemas and a rule of inference. exactly

k and less than k can then be introduced by definition. The second-order quantifier

most can also be axiomatized, bllt here completeness requires restriction of model

size to not exceed some fixed limit N. Monotonicity properties and conversion rules

can then be derived. This can be accomplished by definition in first-order logic with

identity; the axiomatization in LN is equivalent.

In the second direction, reasoning in .eN will be investigated in relation to Hintikka's

notion of surface information [4]. Hintikka has suggested that natural language mean­

ing and understanding are best understood in terms of surface information, that is, the

results of deduction in which depth does not exceed that of the premises. Here depth

is defined as the maximum number of nested quantifiers or the maximum number

of individuals simultaneously considered. When depth is allowed to increase beyond

that of the premises, depth information is produced. This seems to closely match

the intuitive notion of reasoning involved in natural language understanding. The
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reasoning in the examples of the previous section illustrate this. The distinction is

not only a philosophical one. It also promises to shed light on the kinds of reasoning

that characterize natural language understanding.
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