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ABSTRACT 

 

 

The clean diesel combustion technology using supercritical fluids is aimed to both 

improve fuel economy and reduce harmful emissions. This novel process involves 

preparation, injection and combustion of supercritical fuel/diluents mixtures. Design and 

development of this new process require a deep understanding of fuel properties. The 

current study has attempted to address three fuel property related issues: fuel surrogates, 

diffusivity and thermal stability.  

Fuel surrogates are often used in engine research to mimic real fuel properties. In 

this work, ten diesel fuel surrogates were investigated, and the ability of these surrogates 

to predict diesel fuel properties was evaluated. It was found that none of them were able 

to predict all properties of interest including volatility, critical points, density, viscosity, 

heat capacity, and thermal conductivity. Different surrogates are suggested for 

predictions of different properties.  

Diffusion coefficients of diesel fuel and surrogate compounds in SCCO2 were 

determined using the Taylor dispersion method at temperatures and pressures up to 

373.15 K and 30 MPa, respectively. Results were correlated by Wilke-Chang, Scheibel, 

He-Yu, 12 /D T   and TD12  correlations. It was found that the He-Yu 

correlation had the best prediction capability, while the 12 /D T   correlation gave 

overall best fit for experimental data with AAD% < 8%. Experimental uncertainties 

caused by sample injection, detector linearity, mobile phase mean velocity, and column 

orientation were extensively discussed. A dimensionless parameter φ was proposed to 

characterize the effect of the injection volume, and a new D12-U pattern diagram was 



generalized based on current results to describe the impact of mobile phase mean velocity 

on diffusivity measurements.  

The effects of temperature, residence time and CO2 on thermal stability of diesel 

fuel at high temperatures were investigated by both batch and continuous thermal 

stressing experiments. Results showed that thermal stability of diesel fuel decreased as 

temperature and residence time increased. 400-420 
o
C was found to be the optimal 

temperature range where supercritical fuel delivery and combustion could work. The 

presence of 10 wt% CO2 reduced accumulation of solid deposits due to enhanced solvent 

capacity. However, CO2 was not likely to have the ability to chemically prevent fuel 

coking. Solid deposits of different sizes, morphologies and structures were observed at 

300 - 440 
o
C, which implies different deposit formation mechanisms.  
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CHAPTER I 

INTRODUCTION 

 

1.1  BACKGROUND 

As world population growth continues and standard of living increases, global 

demand for energy rapidly expands, which has put energy issues in the global spotlight. 

Limited supplies of traditional fossil fuels will not be able to meet the requirements for 

world development in a sustainable way. On the other hand, utilization of traditional 

fossil fuel has become one of the major causes of many negative environmental and 

health impacts. Therefore, transforming the way of generating, supplying, storing, and 

using energy will be one of the critical challenges in the 21
st
 century (Office of Science, US 

DOE, 2008). This demands not only the discovery of new energy sources but also 

technological innovations in clean fuel utilization.  

Transportation is the second largest consumer of energy in the United Sates, 

consuming 28% of total energy as of 2005. 97% of transportation energy derives from 

petroleum in the form of gasoline (65%), diesel (20%) and aviation fuel (12%) (Office of 

Science, US DOE, 2007). The dominant role of transportation in energy consumption 

indicates that efficiency improvement and emission reduction in this sector would 

significantly influence energy use and hence reduce environmental burdens.  

Compared to gasoline engines, diesel engines offer big advantages in terms of 

energy saving. The high efficiency of diesel engines implies lower CO2 emission per unit 

mass of fuels. Therefore, diesel engines have been given significant importance in the 
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automotive industry and in academia as well, especially in Europe. To improve engine 

efficiency and simultaneously reduce harmful emissions, mainly nitrogen oxides (NOx) 

and particulate matter (PM), a variety of new diesel engine concepts and strategies have 

been proposed and are under investigation. Among them are homogeneous charge 

compression ignition (HCCI) combustion (Majt and Foster, 1983; Thring, 1989), premixed 

charge compression ignition combustion (Lee, 2006), low temperature combustion 

(Alriksson and Denbratt, 2006), and supercritical fuel combustion (O'Brien et al., 2001; 

Tavlarides and Anitescu, 2009). HCCI is considered to be the most promising technology 

and is of great interest to the engine community. However, HCCI is controlled by fuel 

oxidation kinetics, which limits HCCI engines to low power densities.  

Recently, Tavlarides and Anitescu (Tavlarides and Anitescu, 2009) at Syracuse 

University, Syracuse, New York, proposed a new concept of clean diesel combustion. 

The core of this concept is preparation, injection, and combustion of mixtures of diesel 

fuel (DF) and recycled exhaust gas (EGR) in the supercritical state. Injection and 

combustion of supercritical fuel mixtures are expected to increase engine efficiency and 

to reduce harmful emissions, simultaneously, due to significant enhancements in fuel air 

mixing in the supercritical state in engine chambers. Therefore, successful 

implementation of this new concept and development of technology would significantly 

improve diesel engine performance. This dissertation was aimed to address some issues 

encountered in the development of this technology, mainly thermophysical properties and 

thermal stability of diesel fuel.  

 

1.2  SUPERCRITICAL FLUIDS 
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In a typical P-T phase diagram of a pure compound as shown in Fig. 1-1, solid 

lines indicate phase boundaries, dividing the P-T plane into solid, liquid and gas regions. 

The liquid-gas boundary terminates at a certain point, (Tc, Pc), which is called the critical 

point. A supercritical fluid (SCF) is any fluid at temperatures and pressures above the 

critical point. When the temperature is below the critical temperature Tc, the fluid 

undergoes phase transition from gas to liquid or vice versa by tuning the pressure. As the 

fluid reaches the critical point, however, the gas-liquid interface disappears and the fluid 

exhibits unique thermodynamic and transport properties. These properties include liquid-

like densities which can significantly increase solubility, and gas-like diffusivities and 

viscosities and zero surface tensions which benefit mass transfer and fluid mixing. SCFs 

bring new opportunities to diesel engine combustion research due to these unique 

properties.  

 

1.3  CONCEPTUAL DESIGN OF THE SUPERCRITICAL FUEL DELIVERY SYSTEM 

In a conventional diesel engine, DF is injected in the liquid state into the engine 

chamber. Upon injection, DF undergoes atomization, vaporization and mixing with air 

before ignition occurs. Since combustion reactions occurs much faster than fuel mixing 

with air, diffusion flame forms. Fig. 1-2 shows a simulated structure of diffusion flame in 

conventional diesel engines (Dec, 1997). The flame structure is characterized by fuel-rich 

and fuel-lean reactions inside and outside of the flame, respectively. This results in 

significant soot formation in the fuel-rich zone and NOx formation in the fuel-lean zone. 

Therefore, incomplete fuel air mixing due to slow droplet vaporization is the major 

obstacle to complete, clean combustion of DF in conventional diesel engines. This has 
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Fig. 1-1  A typical P-T phase diagram of a pure substance. 



5 

 

 

 

 

 

Fig. 1-2  Simulated structure of the diffusion flame (Dec, 1997). 
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been a long-standing problem that the engine community is still facing.  

To improve fuel-air mixing, a variety of strategies have been proposed, including 

increasing injection pressure, increasing initial fuel temperature, dissolving gases into 

fuel, and so on. Among them, increasing fuel temperature has been less studied because it 

is commonly recognized that DF becomes unstable at relatively high temperature. In 

early 1980s, Hoppie et al. (Hoppie, 1982; Scharnweber, 1984; Scharnweber and Hoppie, 1985) 

proposed a new concept, called hypergolic combustion, to improve diesel engine 

combustion. In the hypergolic combustion, DF was heated to high temperatures and pre-

vaporized and then injected into the engine chamber. Significant reduction of ignition 

delay was observed. Their experiments also showed very promising results in terms of 

emission reduction. However, the engine failed in about half hour due to severe fuel 

coking in the fuel delivery system. 

The new concept proposed by Tavlarides and Anitescu (Tavlarides and Anitescu, 

2009) is trying to solve the problem by introducing EGR into DF as diluents to prevent 

fuel coking. This technology is aimed to both significantly reduce emissions and increase 

fuel efficiency by innovatively changing the combustion process. A conceptual design of 

the supercritical fuel delivery system is illustrated schematically in Fig. 1-3 (bottom). For 

comparison, a schematic diagram of the conventional DF delivery system is shown in Fig. 

1-3 (top). In either system, liquid DF is delivered by a transfer pump from the fuel tank 

through a fuel filter to a fuel pump. The fuel pump increases fuel pressure to a desired 

value and transports DF to a common rail which is connected to injectors. The common 

rail is applied to achieve higher injection pressure and a better control. The entire system 

is controlled by an engine control unit. Different to the conventional design, the new
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Fig. 1-3  Schematic diagrams of conventional (top) and supercritical (bottom) DF 

delivery systems in diesel engines. ECU: engine control unit. 
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concept is characterized by two additional steps, a mixing step where EGR is mixed with 

DF and a heating step where exhaust gas (EG) is used to heat DF/EGR mixtures to the 

supercritical state. A heat exchanger is added to the new system to achieve heat transfer 

from hot EG to the DF/EGR mixture and bring the mixture to the supercritical state. Part 

of the cool EG out of the heat exchanger is recycled and mixed with liquid DF to dilute 

the fuel, which is believed to be a practical way of preventing DF coking at high 

temperature. Compared with conventional liquid DF injection, injection of supercritical 

fuel mixtures will significantly improve fuel-air mixing due to unique properties of SCFs 

and hence improve diesel engine efficiency and reduce harmful emissions, 

simultaneously. 

 

1.4  RESEARCH NEEDS, PROPOSED WORK AND SIGNIFICANCE 

Implementation of this new concept and successful development of the 

technology are associated with critical challenges which could not be tackled without 

new innovations. These challenges are (1) effective and fast DF/EGR mixture preparation, 

(2) high-efficiency heat exchanger design, (3) creative injector design to withstand high 

temperature and high pressure, and (4) measurements and modeling of fuel properties 

over a wide range of P-T conditions. This dissertation will focus on addressing some 

issues related to the last challenge.  

Fuel properties are needed to enable simulation of DF combustion in diesel 

engines. These properties include both chemical and physical ones. However, DF is a 

mixture of hundreds of hydrocarbons and current models are not able to represent all 

these components. Consequently, simple surrogate fuels of a few components become a 
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practical choice and have been widely used in engine research and development. A good 

DF surrogate (DFS) should be able to represent both chemical and physical 

characteristics. A variety of studies have been conducted to develop detailed kinetic 

models (Pitz and Mueller, 2010), while relatively less effort has been put on understanding 

physical properties. These physical properties include density, viscosity, diffusivity, heat 

capacity, thermal conductivity, surface tension and some others. On the other hand, 

design and simulation of the supercritical DF combustion system create a special demand 

for physical properties in the supercritical region, which are usually of less interest in 

conventional diesel engine designs. Physical properties of DF, DF surrogates and 

surrogate compounds up to the severe supercritical region are either very limited or have 

not been reported. Therefore, it is meaningful and necessary to extend the understanding 

of physical properties.  

DF coking is one of the major issues of concern in the development of the 

supercritical DF combustion technology. It is generally understood that DF becomes 

unstable when fuel temperature is above ca. 523 K. Higher temperatures will lead to fuel 

degradation and coking. Fuel degradation has a significant impact on combustion, while 

fuel coking will plug the delivery system. Since coking is not a major issue in 

conventional DF delivery systems, the understanding of thermal stability of DF is very 

limited. Therefore, further studies are required to demonstrate thermal stability and 

coking behavior of DF in the temperature range of current interest.  

Based on the research needs discussed above, the following work is proposed in 

this dissertation research, as part of the Clean Diesel Combustion Project:  

(1) Development and evaluation of diesel fuel surrogates. DFSs used in diesel 
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engine research and development will be analyzed and a new DFS will be 

proposed. The performance of these DFSs in representing DF will be evaluated by 

comparing their physical properties. These physical properties include critical 

properties, volatility, density, viscosity, heat capacity and thermal conductivity. A 

variety of modeling techniques will be applied to estimate these properties.  

(2) Diffusivity measurements. Diffusivities of DF and surrogate compounds in 

supercritical CO2 (SCCO2) will be measured by using the Taylor dispersion 

method. Experimental data will be correlated using predictive correlations. 

Experimental uncertainties will be explored.  

(3) Thermal stability studies. Thermal stability of DF will be investigated in both 

batch and continuous thermal stressing experiments to demonstrate the effects of 

temperature, residence time and CO2 concentration on fuel stability. The 

temperature and residence time conditions where supercritical fuel delivery can 

work will be determined. The role of CO2 in preventing DF coking will be 

examined and discussed.  

Successful execution of the proposed work will greatly expand the knowledge and 

understanding of DF properties. These results will not only support the development of 

the novel supercritical DF combustion technology but benefit the entire engine 

community by providing more comprehensive information for research and development 

of conventional diesel engines. Also, a better understanding of experimental uncertainties 

in diffusivity measurements will make a contribution to the improvement of experimental 

designs.   
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CHAPTER II 

LITERATURE REVIEW 

 

2.1  INTRODUCTION 

In this chapter, three topics which are closely related to the proposed work are 

reviewed. They are strategies for clean diesel combustion, development of diesel fuel 

surrogates, and thermal stability of fuels. First, previous studies on clean diesel 

combustion are reviewed with special focuses on the effects of fuel temperature and 

dissolved gases, hypergolic combustion, and supercritical combustion. Then, latest 

development on diesel fuel surrogates is outlined and research needs are identified. 

Finally, thermal stability of fuels is explored. Since studies on DF are limited, some 

research on jet fuels is also covered in the review. This literature review sets the stage for 

the proposed work to follow. 

 

2.2  STRATEGIES FOR CLEAN DIESEL COMBUSTION 

Since the debut of a prototype diesel engine built by Dr. Rudolph Diesel in 1897, 

a substantial number of strategies have been proposed over the years to improve engine 

performance. These strategies may be categorized into several groups: (1) increase in 

injection pressure, (2) increase in fuel temperature, (3) implementation of aftertreatment 

units, (4) optimization of engine control systems, (5) exhaust gas recirculation (EGR), (6) 

dissolved gas enhanced fuel combustion, and some others. Among them, (2) and (6) are 

closely related to the new concept of supercritical DF combustion. Therefore, previous 
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studies on the effect of fuel temperature, the effect of dissolved gases, and supercritical 

fuel combustion are reviewed in this section. 

 

2.2.1  Early studies on the effect of fuel temperature 

Investigations on the effect of initial fuel temperature on diesel fuel combustion 

can be traced back to the 1930s when Gerrish and Ayer (Gerrish and Ayer, 1936) 

investigated the influence of fuel oil temperature on combustion. Experiments were 

carried out on a single-cylinder, 4-stroke-cycle, water-cooled, compression-ignition 

engine operating at 1,500 rpm and at a compression ratio of 13.5. The injection 

characteristics and spray formation were studied by injecting the fuel oil into the 

atmosphere. An electric heater was used to heat the fuel oil. Effects of the fuel oil 

temperature on injection characteristics, the effective ignition delay, combustion, and 

engine performance were discussed. It was found that with the increasing fuel oil 

temperature, (a) the injection period and the mean effective pressure were increased, (b) 

the average rate of injection, the ignition delay time, the rate of pressure rise, and the 

maximum cylinder pressure were decreased, (c) the power and the thermal efficiency 

were slightly improved, and (d) the EG was cleaner and the PM was reduced. It was also 

found that heating the fuel oil improved the engine operation by reducing knock, which 

was considered to be caused by the change in injection period and rate. The authors also 

discussed the effect of fuel oil temperature on the fuel compressibility which influenced 

the start of injection and the fuel spray angle. The effect of fuel oil temperature on fuel 

composition was not experimentally studied. However, no change in the fuel composition 

prior to the injection was considered to occur due to small residence time, approximately 
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12 seconds. 

Holmes et al. (Holmes et al., 1953) investigated the effect of vaporization on DF 

combustion in a turbojet combustion chamber. At air-fuel ratio of 150:1 and fuel pressure 

of 1.21 and 1.38 MPa (175 and 200 psi), it was found that the combustion efficiency of 

DF was almost independent of fuel pressure, but improved by preheating the fuel, 

reaching the maximum value of 90% at around 628 K (670 ºF). Experimental data also 

indicated that the effects of air-fuel ratio and fuel pressure on combustion efficiency were 

reduced with the increasing DF initial temperature. The increase in combustion efficiency 

with the increase in fuel temperature was thought to be attributed to the increased and 

more rapid vaporization of the fuel and increased sensitization of the fuel to oxidation 

and cracking processes. It was also found that the amount of smoke decreased by 

preheating the fuel. The investigation confirmed the hypothesis that heating the fuel 

increases fuel vaporization and fuel-air mixing, reduces soot formation, and improves 

combustion efficiency. 

Reimuller (Reimuller, 1976) patented a fuel pre-vaporization and injection system 

for internal combustion engines and claimed that the system was able to achieve 

combustion between the Otto cycle and the Diesel cycle. The liquid hydrocarbon fuel was 

completely vaporized and superheated in an external fuel boiler partially heated by EG. 

At the cold start stage, the engine was operated as a conventional gasoline engine by 

using a carburetor associated with spark ignition. 

Spadaccini (Spadaccini, 1976) measured the autoignition characteristics of JP-4, 

No.2 fuel oil, and No.6 fuel oil at 673-866 K and 0.69-1.65 MPa (6.8-16.3 atm). The 

results showed that ignition delay decreased with increases in air temperature, air 
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pressure and fuel temperature. The author also reported that ignition delay was affected 

by the initial spray characteristics and increased with the nozzle pressure drop, which was 

explained by the fact that the increased fuel injection pressure forced the fuel spray to 

collapse and fuel drops to grow and, therefore, ignition delay increased.  

 

2.2.2  Hypergolic combustion 

In early 1980s, a new concept called hypergolic combustion was proposed and 

patented by Hoppie (Hoppie, 1982; Hoppie, 1984). Hypergolic combustion is such an 

ignition and combustion process that both the ignition delay and the combustion duration 

are negligible (Scharnweber and Hoppie, 1985). A variety of studies were carried out in the 

1980s and early 1990s to understand and develop the new combustion process and a few 

methods to achieve hypergolic combustion were patented (Hoppie et al., 1987a; Hoppie et 

al., 1987b; Hoppie et al., 1987c; Hoppie, 1987; Scharnweber et al., 1989).  

A mathematical model for predicting ignition delay as a function of initial fuel 

and air temperatures was developed (Hoppie, 1982). The model was based on the 

assumption that only fuel molecules in the excited states could react with oxygen and the 

reaction rate was dependent on concentrations of both oxygen and chemically excited 

fuel molecules. The concentrations of chemically excited fuel molecules could be 

increased by means of preheating the fuel. It was shown that the ignition delay could be 

dramatically reduced if the fuel was sufficiently preheated up to 723 - 873 K.  

Scharnweber and Hoppie (Scharnweber, 1984; Scharnweber and Hoppie, 1985) 

experimentally studied the hypergolic combustion in a reciprocating internal combustion 

engine by preheating a JP-7 fuel up to about 823 K. The performance of the hypergolic 
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combustion engine was compared with that of a conventional fuel system with the initial 

fuel temperature of 302.15 K. It was demonstrated that as the initial fuel temperature 

approached to the hypergolic combustion temperature, the ignition delay was 

dramatically reduced, the injection duration and the combustion duration were increased, 

and the peak cylinder pressure and the rate of pressure rise were decreased. The exhaust 

smoke emission was also reduced significantly with the increasing initial fuel 

temperature. The NOx emission was thought to be reduced under hypergolic combustion 

since the peak cylinder pressure (and hence peak cylinder temperature) was reduced. 

However, the engine efficiency was reduced because of long injection duration and 

resultant later heat release. Another major problem identified by the authors was fuel 

deposits in the fuel heater, which put a severe restriction to the application of the 

hypergolic combustion concept.  

Min (Min, 1986) developed a mathematical model to optimize the efficiency of the 

hypergolic combustion engine. The model neglected the mixing delay time and the 

chemical kinetic delay time. The friction loss was characterized, while the heat loss 

through the cylinder wall was neglected. The working fluid was assumed to be air and the 

idea gas law was applied. The results showed that the optimal efficiency of hypergolic 

combustion occurred when fuel injection started at approximately 5º crank angle after the 

top dead center regardless of the amount of fuel injection per cycle. It was also found that 

the ending of injection varied from approximately 8º to 20º crank angle with the 

increasing fuel injection amount per cycle. The prediction showed that compared with the 

OTTO cycle, the hypergolic combustion process would have increase in engine 

efficiency by up to 10%. 
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Blank and Shih (Blank and Shih, 1990) extended the hypergolic combustion 

research work by developing a computational model to characterize fuel injection and 

combustion in the hypergolic region. Since the reaction rate in hypergolic combustion 

was thought to be controlled by turbulent mixing rather than chemical kinetics, both 

turbulent mixing and chemical kinetics were taken into account in the model construction. 

The k-ε model along with continuity, momentum, and energy equations was applied to 

characterize the engine flow field. Due to the high initial fuel temperature, the fuel-

oxygen reactions were assumed to be irreversible and stoichiometric, and only the overall 

exothermic reactions were considered in the model and characterized by an eddy 

dissipation combustion model (Magnussen and Hjertager, 1976). The simulations of the 

compression and combustion strokes were reported. The results showed that the fuel 

stream significantly affected the flow field and created two recirculation zones above and 

below the path of the fuel spray. Also, two high temperature regions were observed, 

which coincided exactly with those two recirculation zones. 

In short, both experimental and modeling studies showed that ignition delay 

decreased significantly with the increasing fuel temperature up to the hypergolic region, 

which would improve diesel engine performance. Soot formation was found restrained as 

fuel temperature increased, which is well explained by more homogeneous fuel-lean 

combustion due to enhanced fuel-air mixing. Since engine maximum pressure was found 

to decrease with increasing fuel temperature, it is reasonable to conclude that NOx would 

reduce with increasing fuel temperature. Engine efficiency, however, was slightly 

reduced due to the increasing injection and combustion durations. The main challenge 

that hinders the implementation of the hypergolic combustion is DF coking. Further 
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investigations, both experimental and modeling, are needed to address this issue. 

 

2.2.3  Dissolved gas enhanced spray atomization and fuel combustion 

2.2.3.1  Studies by Huang and coworkers 

Huang and coworkers from Shanghai Jiaotong University, China and Gunma 

University, Japan have done extensive work to understand the effects of dissolved gases 

on fuel spray atomization and combustion. Some of their work are summarized below. 

Huang et al. (Huang et al., 1994a) investigated the effect of dissolved CO2 on 

atomization of DF sprays at a constant injection pressure of 5 MPa. Two CO2 

concentrations, 2.23 and 13.3 wt%, were investigated and the pressure characteristics 

inside injector nozzles were analyzed. It was concluded that the combined effects of 

pressure characteristics and dissolved CO2 enhanced DF spray atomization.  

Huang et al. (Huang et al., 1994b) further studied the effects of gas concentration, 

injection pressure, and nozzle geometry (L/D ratio, where L and D are the length and the 

diameter of the orifice, respectively.) on fuel spray atomization. An optimal gas 

concentration was observed for certain nozzle geometry. When the gas concentration was 

below the optimal value, the spray angle increased gradually, while the Sauter mean 

diameter (SMD) decreased dramatically. When the gas concentration was above that 

value, the large spray angle remained almost constant and the SMD tended to be constant 

as well. At low L/D ratio (L/D = 4), the dissolved gas demonstrated a negative effect on 

spray atomization characterized by a small spray angle and a slightly increased SMD. 

The beneficial effect of the dissolved gas was realized at high L/D ratio (L/D ≥ 10). Thus, 

it was concluded that the dissolved gas could improve spray atomization only when the 
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dissolved gas concentration was above the transition point and the L/D ratio was 

relatively high (Huang et al., 1994). Xiao et al. (Xiao et al., 2004) confirmed the finding by 

demonstrating a transitional CO2 concentration between 2.72% and 10.59%. 

Shiga et al. (Shiga et al., 1994) investigated the effects of gas type, L/D ratio, and 

nozzle configuration on fuel atomization behavior. It was found that N2 had a more 

significant effect than CO2 on the SMD. The sensitivity of dissolved-gas effect was 

strongly dependent on the L/D ratio, which was related to the residence time. Nozzle 

configurations were also shown to have influence on spray atomization. Significant 

effects of L/D ratio on SMD were also reported elsewhere (Shiga et al., 1997). 

Huang et al. (Huang et al., 1996) investigated the effect of dissolved gases (air or 

CO2) on diesel engine combustion and emissions. Engine experiments showed that with 

the addition of dissolved gases, the ignition delay was longer, the peak pressure was 

reduced, and the peak heat release rate was lowered. These phenomena were suggested to 

be the consequence of reduction in local gas temperature and local oxygen concentration 

due to CO2 release upon injection. It was also shown that injection of DF containing 

dissolved CO2 significantly reduced NOx emission and slightly reduced CO and PM 

levels, while injection of fuel containing air halved PM and CO emissions. It was 

therefore concluded that injection of DF with dissolved gases would have a potential to 

reduce NOx and PM simultaneously. 

Xiao et al. (Xiao et al., 2008) investigated flame characteristics of DF jets 

containing dissolved CO2. Experiments were carried out under atmospheric conditions 

with injection pressures of 4 and 6 MPa and CO2 mass fractions from 0 ~ 17.82 wt%. It 

was shown that as the CO2 mass fraction increased, the flame penetration decreased, the 
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low temperature flame length increased, and the mean flame temperature increased 

initially and then decreased. The authors argued that the effect of dissolved CO2 on flame 

characteristics and emission reduction could be a combination of atomization 

improvement, the dilution effect, the thermal effect, and the chemical effect.  

 

2.2.3.2  Studies by Senda and coworkers 

Senda and co-workers from Doshisha University also made great contribution in 

advancing the understanding of the mechanisms of dissolved gas enhanced fuel spray 

atomization and combustion (Senda et al., 1999; Senda et al., 2008). Their studies were 

based on the understanding of flash boiling phenomena (Senda et al., 1994). By adding 

CO2, they argued, reduction of emissions could be achieved through the internal EGR 

effect of CO2 and through flash boiling of CO2 upon injection. Some of their work are 

summarized below. 

Fujimoto et al. (Fujimoto et al., 1995) injected n-tridecane with dissolved CO2 into 

quiescent atmosphere of different pressures and found that the spray break-up length 

decreased with increasing CO2 mole fraction. They also found that ambient pressure had 

a significant effect on spray core angles when fuel temperature and CO2 mole fraction 

were high. The experimental findings were confirmed by the thermodynamic analysis. 

The authors finally proposed two models of evaporation of fuel spray containing 

dissolved gases, the separation and diffusion model and the flash boiling model.  

Senda et al. (Senda et al., 1997) conducted combustion experiments in a rapid 

compression and expansion machine to investigate the effect of dissolved CO2 in fuel oil 

(n-tridecane) on NO and soot emissions. It was found that when CO2 was dissolved in the 
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fuel, the ignition delay, the combustion period, and the flame temperature decreased. NO 

and soot emissions could be reduced by 30% at CO2 mole fraction of 0.6. Similar results 

were reported elsewhere (Senda et al., 2000). Those results implied that gas separation or 

flash boiling of CO2 could simultaneously reduce NO (low flame temperature by 

improving spray atomization and vaporization) and soot (form relative lean and 

homogeneous mixture) emissions and increase engine efficiency (reduce combustion 

period).  

Senda et al. (Senda et al., 1997) further studied spray characteristics by dissolving 

N2 into n-tridecane. It was found that dissolved N2 in fuel brought a negative effect on 

spray atomization, which was believed to be the result of the increase in viscosity due to 

the formation of bubbling flow inside the spray.  

Senda et al. (Senda et al., 2000) extended the fuel design concept by mixing a DF 

component (n-tridecane) with a gasoline component (n-hexane and n-pentane). It was 

found that by mixing with n-pentane, total hydrocarbon (THC) and CO emissions 

increased, while NOx emission reduced, and that by mixing with n-hexane, n-hexane 

evaporated first at low temperature and n-tridecane evaporated later. Flash atomization of 

binary hydrocarbon fuels was also reported by other investigators (Gemci et al., 2004; 

Zhang et al., 2005). 

Senda et al. (Senda et al., 2000) modified the flashing spray model (Senda et al., 

1994) to estimate the vaporization process of fuel containing dissolved CO2. The model 

estimation showed that flash boiling could be realized for CO2 mole fraction of 0.6-0.8 at 

fuel temperature of 383 K and ambient temperature from 1.1-2.0 MPa. The flash boiling 

model was further modified and implemented into KIVA-3V for numerical simulation 
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(Kawano et al., 2004; Kawano et al., 2006). More information on atomization models for 

flash boiling sprays can be found elsewhere (Zeng and Lee, 2001).  

 

2.2.3.3  Studies by others 

Solomon et al. (Solomon et al., 1982) investigated injection and combustion 

properties of Jet A fuels containing dissolved air. Rashkovan et al. (Rashkovan et al., 2004a; 

Rashkovan et al., 2004b) and Rashkovan and Sher (Rashkovan and Sher, 2006) 

experimentally investigated atomization behavior of gasoline containing dissolved CO2. 

It was observed that the dissolved CO2 not only affected the spray core angle and the 

SMD but also improved the droplet volume fraction distribution and reduced the amount 

of large diameter droplets.  

Merkisz et al. (Merkisz et al., 2007) recently proposed a new concept of improving 

fuel spray in diesel engines by dissolving EGR or air in fuel oil. The mechanism is based 

on the different solubility of gases in fuel oil under different pressures. Due to a strong 

pressure gradient upon the injection, the dissolved gas releases spontaneously from the 

fuel, causing fuel droplets bursting from the outside. Fuel injection and combustion were 

visualized using a digital video system by injecting fuel oil with dissolved gas into an 

open chamber at atmospheric pressure. The fuel solution was prepared in a high pressure 

cylinder pump and then pumped to a high pressure accumulator. The volumetric fraction 

of CO2 in EG was 4%, 8%, and 10% and the injection pressure was from 30-70 MPa. It 

was found that fuel atomization was significantly affected by dissolved gases.  

In addition to experimental and modeling studies, several methods using 

dissolved gases to improve fuel atomization and combustion were patented (Gurin et al., 
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2006; Nielsen, 1992; Schefer and Keller, 2007). 

In summary, studies on injection and combustion of fuel containing dissolved 

gases (CO2, N2, and air) were reviewed and the following conclusions can be made: 

[1] Under optimal conditions, the presence of dissolved gases significantly influenced 

spray behavior by increasing spray core angles and reducing spray penetrations and 

the SMD; 

[2] Nozzle configuration, mainly L/D ratio, affected spray behavior due to the relatively 

slow bubble growth rate.  

[3] There existed a critical concentration of dissolved gases, below which the negative 

effect dominates. 

[4] Injection and combustion of fuel containing dissolved gases had the potential to 

reduce NOx and PM, simultaneously. However, CO and THC emissions have been 

seldom examined and reported. 

[5] Although there were discussions on the mechanism of emission reduction by the 

addition of dissolved gas, more experimental work needs to be done to verify it. 

[6] Few engine experiments were carried out to verify the concept of injecting and 

combusting fuel containing dissolved gases and the conditions of those experiments 

were usually away from real diesel engine conditions. 

 

2.2.4  Supercritical fuel combustion 

More recently, new concepts were proposed and examined to achieve cleaner, 

more efficient fuel combustion by injecting and combusting fuels in the supercritical state. 

Haldeman et al. (Haldeman et al., 1999) invented a supercritical fuel system potentially 
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used for internal combustion engines, turbine engines or other burners. The supercritical 

fuel was a mixture of 5-50 % water and a hydrocarbon fuel. The inventors further 

described the suitable condition where the mixture reached near the critical point and 

achieved a homogeneous single phase. A suitable temperature was 673 K and a suitable 

pressure was 27.58 MPa (4000 psi). Haldeman (Haldeman, 2002) filed another patent 

application which detailed the process to form water-fuel mixtures. The temperature and 

pressure ranges for water-fuel mixtures were 477 – 699 K and 1.38 – 34.47 MPa (200-

5000 psig), respectively. The hydrocarbon fuels could be No. 2 diesel, No. 1 kerosene, 

No. 6 fuel oil, and gasoline. The inventor also claimed that the energy for heating water, 

fuel, and the water-fuel mixtures was recovered from hot exhaust gases. Except for the 

verbal description of the system, however, the benefits of injecting and combusting fuels 

in the supercritical state were not detailed. 

Ahern et al. (Ahern et al., 2001) experimentally confirmed a single phase, 

homogeneous water-DF mixture near the critical point of water. Combustion of the 

mixture under atmosphere spray conditions resulted in very low NOx, smoke, CO and 

unburned hydrocarbon emissions. Tests were further conducted in a single cylinder direct 

injection diesel engine equipped with an electronically controlled common rail injection 

system and a modified injector to operate at temperature above 623 K. Preliminary results 

demonstrated an 85% decrease in NOx emission and a virtual elimination of smoke.  

Tavlarides and Anitescu (Tavlarides and Anitescu, 2009) invented a supercritical 

fuel system using EGR or CO2 as diluents. Suitable temperatures and pressures were 

greater than about 573 K and 10 MPa, respectively, and the molar fraction of diluents in 

DF is from 0-0.9. The inventors claimed that delivery of the DF-diluents mixture in the 
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homogeneous single-phase supercritical state provided a significant increase in engine 

efficiency and a reduction of harmful emissions including PM, aldehydes, polyaromatic 

hydrocarbons (PAHs), CO, NOx, and SOx. 

Cheiky and Grottenthaler (Cheiky and Grottenthaler, 2010) invented a fuel injector 

which could provide more efficient fuel combustion within internal combustion engines. 

The fuel injector achieved efficient fuel combustion by (i) fast and responsive actuation, 

(ii) heating the fuel to a supercritical temperature, (iii) maintaining the fuel at a 

supercritical pressure, and (iv) using a catalyst in the oxidization of the fuel. A heating 

element was used to heat the fuel to a supercritical temperature. This technology is 

currently under commercialization for gasoline engines.  

These new concepts involve preheating fuels to the homogeneous supercritical 

state and injecting and combusting the supercritical fuel in a supercritical environment. 

Besides, Haldeman et al. (Haldeman et al., 1999) and Tavlarides and Anitescu (Tavlarides 

and Anitescu, 2009) proposed to use diluents to either prevent coking or reduce harmful 

emissions, while Cheiky and Grottenthaler (Cheiky and Grottenthaler, 2010) proposed to 

use a catalyst to pre-oxidize the fuel. Realization of these new concepts relies on not only 

innovations in engine R&D but also a better understanding of fundamental physical and 

chemical processes occurring under supercritical conditions.  

Krishnan (Krishnan, 1992) studied the heat transfer characteristics in supercritical 

jet fuel flows using modeling techniques. Numerical simulations captured considerable 

augmentation of heat transfer near the critical point. Results also showed that large 

density variation across the critical point had a significant impact on the velocity and 

temperature profiles near the wall. Others also reported deterioration of heat transfer at 
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supercritical pressures (Giarratano and Jones, 1975; Kao et al., 2010; Kelbaliev, 2001; 

Koshizuka et al., 1995; Mokry et al., 2010; Pioro et al., 2004; Shiralkar and Griffith, 1969). 

Chen (Chen, 1994) investigated the transport phenomena during the injection of 

supercritical jet fuels into a subcritical environment and found that the supercritical 

sprays exhibited flashing-like atomization. Ervin et al. (Ervin et al., 2000) studied jet fuel 

flow characteristics within a nozzle under supercritical conditions. The authors observed 

a gas-like fluid rather than a multitude of droplets exiting the nozzle under supercritical 

conditions and concluded that the injection and mixing mechanisms occurring under 

supercritical conditions were very different from those occurring under subcritical 

conditions. Doungthip et al. (Doungthip et al., 2002) examined spray behavior of 

supercritical jet fuels injected into a supercritical environment using both the Schlieren 

imaging technique and CFD simulations. It was concluded that the fuel exit temperature 

and mass flow rate influenced jet penetration and spreading angle. It was also found that 

under the same fuel mass flow rate and pressure conditions, the penetration depth of a 

supercritical jet was less than that of a subcritical jet. Jensen et al (Jensen et al., 2004) 

studied injection of subcritical and supercritical jet fuels into subsonic cross flow and 

concluded that at the same mass flow rates, the penetration depth was greater for the 

supercritical fuel injection compared to the subcritical one, which contradicts Doungthip 

et al.’s findings (Doungthip et al., 2002). Further investigations are necessary to resolve the 

contradictory. Studies on injection of cryogenic liquids at subcritical and supercritical 

pressures also showed that jets injected at supercritical pressures behave like turbulent 

gas jets rather than subcritical liquid jets (Oschwald et al., 2006). 

Fan and Yu (Fan and Yu, 2006) studied supersonic combustion of supercritical 
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kerosene and demonstrated that under the similar stagnation conditions and kerosene 

equivalence ratios, the combustion efficiency using supercritical kerosene injection 

conditions increased ca. 10-20% compared to that using liquid kerosene injection. 

Others have studies injection of liquid fuels into supercritical environments and 

discussed unusual spray atomization and droplet vaporization behavior (Bellan, 2004; 

Edwards, 2008; Kulkarni and Neches, 1994; Yang et al., 1996; Yang, 2000).    

In a summary, previous studies on fuel injection under supercritical conditions 

were mostly focusing on injection of liquid fuels into supercritical conditions, injection of 

supercritical fuels into subcritical conditions, and understanding of droplet atomization 

and vaporization under supercritical conditions. Fundamental studies on injection of 

supercritical fuels into supercritical conditions are very rare and benefits of supercritical 

fuel combustion have not been well documented. Thus, more investigations on these 

topics are needed.  

 

2.3  DEVELOPMENT OF DIESEL FUEL SURROGATES 

Development of modern diesel engines relies largely on numerical simulations to 

minimize the number of very expensive, hardworking experimental tests. Simulating DF 

combustion in diesel engines requires a thorough understanding of both chemical kinetic 

models and physical properties of DF. DF is a complex mixture of hydrocarbons with 

carbon numbers spanning mainly from 10 to 20. DF composition is usually determined 

by performance needs (e.g., cetane number) and varies considerably by refining processes 

and feedstock. A typical composition of DF given by volume is roughly 41% paraffins, 

30% cycloparaffins, and 29% aromatics, or by weight 39% paraffins, 44% cycloparaffins, 
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and 17% aromatics (Seshadri, 2003). Current modeling and simulation technologies are not 

able to identify all chemical species and to describe the detailed reaction mechanisms. 

Thus, it is necessary and important to find a practical way to model DF. This ends up 

with DFSs or reference fuels. Nowadays, DFSs are always needed at some stages in the 

engine design and testing processes. Although current DFSs are unable to address all 

needs for diesel engine combustion simulations, investigations based on DFSs facilitate 

deeper insights into diesel combustion processes and are crucial to modern engine 

research and development. A comprehensive review on recent progress in the 

development of DFSs can be found elsewhere (Pitz and Mueller, 2010). 

A DFS is defined as a surrogate composed of a small number of pure compounds 

whose behavior matches certain characteristics of DF (Pitz and Mueller, 2010). A properly 

composed DFS should share nearly the same chemical kinetics and thermophysical 

properties as the real DF (NIST, 2003). Extensive work has been accomplished on the 

development of chemical kinetic models of DFSs, while investigations on fuel properties 

for engine applications have attached relatively less importance. A number of reviews on 

the development of chemical kinetic models of DFSs are available in the literature 

(Cathonnet, 1994; Miller et al., 1990; Simmie, 2003; Westbrook and Dryer, 1984; Westbrook, 

2000).  

In response to the increasing needs for combustion process optimization and other 

key issues, the National Institute of Standards and Technology (NIST) organized in 2003 

a workshop entitled “Workshop on Combustion Simulation Databases for Real 

Transportation Fuels” (NIST, 2003). From that workshop, six chemical classes with 

specific model compounds as shown in Table 2-1 were identified to be necessary to 
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Table 2-1  Six classes of hydrocarbons and their model compounds necessary to simulate 

real transportation fuels (NIST, 2003). 

 

Chemical Classes Specific Model Compounds 

Iso-paraffins Iso-octane 

Normal paraffins Heptane, Hexadecane, Decane 

Single-ring aromatics Toluene, Xylenes 

Cyclo-paraffins Methylcyclohexane 

Olefinic species 1-pentene 

Multi-ring aromatics 1-methylnapthalene 
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describe the complex hydrocarbon chemistry of real transportation fuels and suggested to 

be implemented in combustion simulations of real fuels. These chemicals include normal-, 

iso- and cyclo-paraffins, single- and multi-ring aromatics, and olefinic species. For 

petroleum-based DF, the primary chemical classes are n-alkanes, iso-alkanes, cyclo-

alkanes and aromatics (Pitz and Mueller, 2010), as shown in Fig. 2-1. 

Due to a similar cetane number as DF which is approximately 56, n-heptane is the 

compound that has been mostly used as a DFS in the testing and modeling of DF 

combustion in conventional diesel engines. A detailed chemical kinetic model of n-

heptane oxidation was reported by Curran et al. (Curran et al., 1998). The model includes 

550 chemical species and 2450 reactions. Because of computational and simulation 

difficulties, reduced kinetic mechanisms of n-heptane are more practical and have mostly 

been used (Belardini et al., 1996; Curran et al., 2001; Huang and Su, 2005; Kim et al., 2002; Noel 

et al., 2004; Xi and Zhong, 2006).  

Another surrogate of great interest is n-hexadecane which is a key component of 

diesel fuel and has similar molecular weight to DF. Ristor et al. (Ristori et al., 2001) 

reported a detailed chemical kinetic model of n-hexadecane, consisting of 242 species 

and 1801 reactions. Simulation results using this model agreed well with experimental 

data obtained from a jet-stirred reactor at 1000-1250 K and 0.1 MPa. Fournet et al. 

(Fournet et al., 2001) generated a detailed mechanism for n-hexadecane by using a 

computer package called EXGAS. Although n-hexadecane is thought to be a good 

surrogate of diesel fuel, however, very few studies of diesel fuel combustion have done  

by using n-hexadecane as a surrogate due to the lack of experimental data for n-

hexadecane oxidation.  
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Fig. 2-1  Relative amounts of various chemical classes in diesel fuel and possible 

compounds to represent these chemical classes in a diesel surrogate fuel (Pitz and Mueller, 

2010). Reproduced with Elsevier’s permission (attached in Appendix E). 
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DF contains two-ring cycloalkanes and aromatics and some three-ring aromatics. 

Although the percentages of these multi-ring compounds are pretty low, they have an 

important impact on soot formation. Thus, aromatic surrogates have been included in 

modeling diesel fuel combustion kinetics. Toluene, a product of benzene alkylation, has 

been mostly added to the reaction mechanisms of n-heptane to simulate diesel fuel 

behavior (Gustavsson and Golovitchev, 2003; Hernandez et al., 2008). Other aromatics used 

by some investigators include α-methylnaphthalene (Barths et al., 2000) and n-

propylbenzene (Dagaut, 2002). A summary of DFS chemical kinetic models is given in 

Table 2-2. 

Physical properties of these DFSs were less discussed in the literature. These 

properties include density, viscosity, heat capacity, surface tension, diffusivity, ignition 

delay, cetane number, and others. Although investigations show that surrogates could 

reasonably reproduce combustion behavior of diesel fuel in diesel engines, effects of 

these properties on fuel combustion are less understood.  

 

2.4  THERMAL STABILITY OF FUELS  

Thermal stability of a fuel is defined as the capability of the fuel to withstand high 

temperature stress in a reasonable time period without noticeable deterioration (Batts and 

Fathoni, 1991). Such deterioration may include color change, formation of coke and solid 

deposits, change in physical properties, change in chemical properties, change in 

combustion properties, etc. Previous studies on thermal stability of fuels including diesel  

fuel and jet fuels and other oils have been mostly focused on formation of solid deposits 

and on understanding of the mechanisms. Several reviews on this topic can be found 
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Table 2-2  Chemical kinetic models of DFSs. 

 

DFSs # of Species Reactions  References 

Dodecane  32 N/A (Sahetchian et al., 1995) 

N-heptane  550 2450 (Curran et al., 1998) 

N-hexadecane 242 1801 (Ristori et al., 2001) 

N-hexadecane  

Iso-octane 

N-propylcyclohexane 

N-propylbenzene 

298 2352 (Dagaut, 2002) 

Iso-octane  860 360 (Curran et al., 2002) 

Tetradecane N/A N/A (Hamosfakidis and Reitz, 2003) 

N-heptane, toluene 68 278 (Gustavsson and Golovitchev, 2003) 
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elsewhere (Batts and Fathoni, 1991; Edwards, 2006; Edwards and Zabarnick, 1993; Maurice et 

al., 2001; Strauss, 1992). 

Solid deposit accumulation inside the DF delivery systems due to fuel cokin is 

one major barrier to the development of high temperature fuel delivery systems. Delivery 

of DF under supercritical conditions requires the fuel to be heated up to more than 673 K 

which is much higher than the fuel temperature encountered in conventional diesel 

engines. Previous studies have demonstrated the serious issue caused by fuel coking that 

led to the failure of the hypergolic combustion system (Scharnweber, 1984). Therefore, a 

better understanding of fuel thermal stability is required to facilitate the development of 

the supercritical fuel combustion technology.  

A literature survey shows that thermal stability of DF, especially at relatively high 

temperature, has not been well explored, because fuel stability is not a big issue in design 

and development of conventional diesel engines. Studies on solid deposit formation in 

engine chambers are not reviewed because they involve high temperature reactions in air 

environment. Except a few papers discussing thermal stability of DF below 423 K which 

is not of interest to this study (Bacha and Lesnini, 1997; Banavali and Chheda, 2000; Kalitchin 

et al., 1997; Schwab et al., 2000; Stavinoha et al., 1986), only three papers were found 

discussing thermal stability of DF at relative high temperatures (Anitescu et al., 2009; Beal 

and Hardy, 1994; Nickolaus and Lefebvre, 1987). Nickolaus and Lefebvre (Nickolaus and 

Lefebvre, 1987) studied thermal stability of DF and the effect on spray characteristics. 

Experiments were conducted in a flow system equipped with an injector at 590 K and 

2.07 MPa. It was found that the nozzle pressure drop decreased initially and then 

increased. Black deposits were observed. Beal and Hardy (Beal and Hardy, 1994) applied 
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the quantitative gravimetric Jet Fuel Thermal Oxidation Tester to the thermal stability 

study of DF. They found that thermal stressing of DF at 533 K and 3.4 MPa for 6 seconds 

for duration of 2.5 hours resulted in significant solid deposit formation. Anitescu et al. 

(Anitescu et al., 2009) studied phase transition and thermal behavior of DF-diluents 

mixtures at temperatures and pressures up to 750 K and 60 MPa, respectively. It was 

found that for both n-hexadecane and No.2 DF, thermal decompositions lowered when 

diluents were added. 

Studies on thermal stability of other petroleum fuels such as jet/aviation fuels are 

beneficial to the understanding of thermal stability of DF. Some researchers (Beaver et al., 

2005) proposed that the mechanisms of deposit formation due to thermal oxidative 

reactions for both DF and Jet fuels are mechanistically similar and that the chemistry 

involved in deposit formation from both storage and thermal oxidative reactions in 

middle distillates is generally similar.  

Thermal stability of jet fuels has been extensively investigated since the 1960’s 

with the interest in developing high thermally stable jet fuels to be used in high-speed 

aircraft. Experimental methods applied in those studies can be grouped into three general 

categories: static tests, dynamic tests, and full-scale fuel system simulators (Batts and 

Fathoni, 1991); the former two methods have been mostly used. Experiments have been 

conducted over a broad temperature range covering the supercritical region to identify 

and understand variables that affect and control fuel degradation and solid deposit 

formation. Such variables can be classified into two groups: (1) fuel-related variables (or 

chemical variables) including fuel type (Edwards and Atria, 1995; Taylor, 1974), fuel 

processing/treatment (Gül et al., 2005), fuel composition (Balster et al., 1996; Eser et al., 2006; 
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Gül et al., 2006), oxygen/sulfur/nitrogen contents (Edwards and Liberio, 1994; Edwards and 

Atria, 1995; Ervin et al., 1998; Stewart, 1999; Taylor, 1974; Venkataraman and Eser, 2008; Yu 

and Eser, 1997a; Yu and Eser, 1997b), and fuel additives (Edwards and Atria, 1995) and (2) 

operating variables (or physical variables) including temperature (Pande et al., 2001; Taylor, 

1974; Yu and Eser, 1997a; Yu and Eser, 1997b), pressure (Gül et al., 2005; Taylor, 1974; Yu and 

Eser, 1997a; Yu and Eser, 1997b), heat flux (Linne et al., 1997), flow regime (Hazlett, 1992), 

test duration (Hazlett, 1991), and heated wall characteristics (Edwards and Atria, 1995; Eser 

et al., 2006; Stiegemeier et al., 2002). The mechanisms of solid deposit formation in jet fuel 

systems have been explored and extensively discussed in the literature (Altin and Eser, 

2004; Beaver et al., 2005; Chin and Lefebvre, 1992; Edwards and Zabarnick, 1993; Hazlett, 1991; 

Hazlett, 1992; Song et al., 1993; Venkataraman and Eser, 2008). Major findings from previous 

studies on thermal stability of Jet fuels are summarized below. 

Thermal decomposition leading to solid deposition is governed by free-radical 

chemistry including autoxidation by dissolved oxygen and pyrolysis if oxygen is absent 

or is depleted by reaction at lower temperature (Hazlett, 1991). Thermal decomposition of 

jet fuels as well as other hydrocarbon fuels falls into three different regimes (Chin and 

Lefebvre, 1992): 

a. Thermal oxidation or autoxidation reaction regime: At T < 573 K, decomposition 

occurs by autoxidation reactions and increases with increasing fuel temperature. 

The temperature range of this regime largely depends on fuel properties. It was 

also reported that deposition began at 533 K and became worse up to 598-673 K 

(Hazlett, 1992). 

b. Transition regime: At T = 573-773 K, both autoxidation and pyrolysis reactions 
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contribute to decomposition and the rate of decomposition decreases with increase 

in fuel temperature. The decrease in the rate of decomposition might be due to the 

transition between the liquid phase and the supercritical phase which enhanced 

solvent capability (Taylor, 1974) or due to depletion of hydroperoxides (Hazlett, 

1992). 

c. Pyrolysis reaction regime: At T > 773 K, direct pyrolysis dominates, and 

decomposition is enhanced as fuel temperature increases. There are two different 

routes that lead to the formation of solid deposits: decomposition of hydrocarbons 

to elemental carbon and hydrogen; polymerization/condensation of aromatics to 

form PAHs, also called carbonaceous deposits (Altin and Eser, 2004). 

Oxygen is the driving force for low temperature thermal oxidative reactions and 

has a significant effect on deposit formation. Removal of oxygen can dramatically lower 

the rate of deposit formation (Taylor, 1974) or even eliminate the thermal oxidative surface 

deposition (Edwards and Liberio, 1994), leading to a more stable fuel that can be heated up 

to relatively high temperatures (around 773 K) before significant coking occurs (Ervin et 

al., 1998; Stewart, 1999). The impact of oxygen content on pyrolytic deposition has not 

been well understood. It was reported that the absence of dissolved oxygen could lead to 

increased surface deposition in the pyrolytic region probably due to the oxidative 

products (alcohols, aldehydes, etc) acting as radical scavengers or hydrogen donors 

(Edwards and Liberio, 1994). It was also reported, however, that deoxygenation had little 

effects on pyrolytic deposition (Edwards and Atria, 1995). Oxygen content also affects 

deposit morphology (Hazlett, 1991).  

Hydroperoxides are the key intermediaries and play a crucial role in deposition. 
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Decomposition products of hydroperoxides appear to be important in the path to highly 

polar oxidation products with limited solubility (Hazlett, 1991;Hazlett, 1992). Aromatic and 

heteroaromatic compounds are also significantly involved in deposit formation (Hazlett, 

1992).   

Pressure exhibited a complicated effect on deposit formation (Taylor, 1974). Much 

of available data found no change or less deposition as pressure increased (Hazlett, 1992). 

Below the critical pressure, conversion increased as pressure increased; above the critical 

pressure, conversion decreased with increasing pressure. The large changes in product 

distributions with pressure occurred in the near-critical region (Yu and Eser, 1997a; Yu and 

Eser, 1997b), which was possibly due to unusual, high solubilities (Hazlett, 1992). However, 

recent study showed that the supercritical environment promotes unique reaction 

mechanisms and is necessary for the formation of large PAH deposits (Somers et al., 2007). 

Much work on thermal oxidation stability has shown that trace amounts of sulfur 

and nitrogen compounds and other contaminants such as metals significantly enhance 

fuel degradation and are of major importance in deposition (Gül et al., 2006; Song et al., 

1993). These elements were found in large concentrations in deposits compared to fresh 

fuels (Hazlett, 1991). A recent study showed that nitrogen and sulfur compounds were 

presented only in the liquid-phase product, but not in the solid phase deposits, indicating 

that they did not aggregate during solid formation (Venkataraman and Eser, 2008). In the 

pyrolysis regime, the gross hydrocarbon composition other than sulfur and nitrogen 

compounds played a key role in determine fuel stability (Song et al., 1993). 

The nature and amount of carbonaceous deposition from the thermal 

decomposition of jet fuel were determined to be dependent on the substrate properties 
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and jet fuel composition (Eser et al., 2006). It was reported that stainless steel tubes formed 

more deposits than aluminum tubes (Hazlett, 1992). This result is probably due to the 

catalytic behavior of iron and iron-based alloys during carbon oxidation (Eser et al., 2006). 

Contradictorily, the deposit formed by reactions in the liquid phase and the surface 

played a negligible role in deposit formation (Venkataraman and Eser, 2008). 

 

2.5  SUMMARY 

Fuel temperature has a significant effect on fuel spray and combustion, and 

increase in fuel temperature leads to simultaneous reduction of PM and NOx emissions. 

However, fuel coking at high temperature caused the failure of the hypergolic 

combustion system and restricts the implementation of high temperature fuel injection in 

diesel engines. Dissolved gases have demonstrated positive impacts on emission 

reductions in diesel engines. The clean diesel combustion technology using supercritical 

fluids proposed and under development at Syracuse University is a promising technology 

that incorporates both the high temperature effect and the dissolved gas effect and refines 

current technologies into a unique design that is simultaneously clean and efficient. 

However, the role of dissolved gases in preventing fuel coking needs to be further 

addressed. 

As DF is complex hydrocarbon mixtures, simplified DFSs are often used in diesel 

engine research. A good DFS should represent DF both chemically and physically and be 

able to reproduce various characteristics of DF combustion. A variety of DFSs have been 

proposed, most of which are focusing on addressing chemical aspects of DF. Physical 

aspects of DFSs, e.g. thermophysical properties, were seldom addressed. Further studies 
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on this topic are necessary to advance the understanding of DFSs.  

Fuel stability is one major issue that must be addressed in the development of the 

supercritical fuel combustion technology. However, limited work on thermal stability of 

DF could be found in the literature. Extensive work on jet fuels has revealed that two 

different mechanisms are involved in fuel degradation depending on fuel temperature, 

which is helpful to advance the understanding of thermal stability of DF. 
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CHAPTER III 

DIESEL FUEL SURROGATES 

 

3.1  INTRODUCTION 

DF is a complex mixture of hundreds of hydrocarbons, while a DFS is composed 

of a small number of pure compounds to mimic certain characteristics of DF. These 

characteristics include both chemical characteristics (ignition behavior, molecular 

structure, flame temperature, etc.) and physical characteristics (volatility, density, 

viscosity, surface tension, diffusivity, heat capacity, thermal conductivity, etc.) (Pitz and 

Mueller, 2010). No single surrogate or surrogate mixture is able to account for all aspects 

of DF properties and to meet all requirements for modeling and simulation of the diesel 

fuel spray and combustion processes in diesel engines. Different surrogates are usually 

proposed for different applications. While these surrogates may have a good 

representation of DF chemically, the role of them in predicting physical properties has 

been less discussed. Therefore, it is necessary and valuable to evaluate DFSs in terms of 

the capability of predicting physical properties of DF. 

In this chapter, DFSs used in previous studies are summarized and one DFS is 

proposed. The performance of these DFSs in predicting DF properties were evaluated. 

These properties are volatility, critical properties (Tc, Pc), and other thermophysical 

properties including density, viscosity, heat capacity and thermal conductivity. Volatility 

characterizes the tendency of a fuel to vaporize, which plays a significant role in fuel 

spray, atomization, and vaporization processes. Critical properties are key constants used 
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in many equations of state (EOS) and correlations to determine phase behavior and other 

thermophysical properties. Density, viscosity, heat capacity, and thermal conductivity are 

also major thermophysical properties required in the design and simulation of DF 

delivery and combustion processes. 

Various techniques were applied to measure or estimate properties of DF and 

DFSs. Volatility was measured using the thermal gravimetric analysis (TGA) method (Li 

et al., 1996). Critical properties of DFSs were either obtained from literature or estimated 

using estimation techniques, depending on DFS compositions. Critical properties of DF 

were estimated using different correlation methods. Density, viscosity, heat capacity and 

thermal conductivity of DFSs were obtained from NIST databases (Ely and Huber, 2007; 

Lemmon et al., 2010), while those of DF were calculated using correlations based on 

experimental data (Kolev, 2007).  

 

3.2  DEVELOPMENT OF DIESEL FUEL SURROGATES 

A number of DFSs have been developed and used in previous studies. A summary 

of these surrogates is presented in Table 3-1. DFS-1 to DFS-5 are one-component 

surrogates selected from n-alkanes. N-alkanes were first selected as DFSs probably 

because alkanes are major components of DF and reaction mechanisms of n-alkanes were 

better understood than those of chemicals from other groups. With the advancement in 

studies on reaction mechanisms and kinetics, more compounds have been included in 

DFSs. DFS-6 to DFS-8 are two-component surrogates composed of 70% of n-alkanes 

and 30% of aromatic compounds by volume. Aromatics are added because they have 

great influence on soot formation. DFS-9 is a mixture of four compounds from n-alkane, 
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Table 3-1  Components and compositions of diesel fuel surrogates. 

 

DFSs Components Wt% Vol% Mol. Frac. References 

DFS-1 n-heptane 100 100 1.0 
(Curran et al., 

1998) 

DFS-2 n-decane 100 100 1.0 (Barths et al., 1999) 

DFS-3 n-dodecane 100 100 1.0 
(Sahetchian et al., 

1995) 

DFS-4 n-tetradecane 100 100 1.0 
(Hamosfakidis and 

Reitz, 2003) 

DFS-5 n-hexadecane 100 100 1.0 (Ristori et al., 2001) 

DFS-6 
n-heptane 65.2 70.0 0.63 (Gustavsson and 

Golovitchev, 2003) 
toluene 34.8 30.0 0.37 

DFS-7 
n-decane 63.1 70.0 0.63 (Barths et al., 1999; 

Barths et al., 2000) 
1-methylnaphthalene 36.9 30.0 0.37 

DFS-8 
n-decane 66.5 70.0 0.60 

(Seshadri, 2003) 
o-xylene (m-xylene

a
) 33.5 30.0 0.40 

DFS-9 

n-hexadecane 36.9 37.0 0.24 

(Dagaut, 2002) 
iso-octane 22.9 25.0 0.29 

n-propylcyclohexane 20.3 20.0 0.23 

n-propylbenzene 20.0 18.0 0.24 

DFS-10 

n-hexadecane 30.0 30.2 0.16 

This work 

iso-octane 20.0 22.0 0.22 

1-methylcyclohexane 30.0 30.4 0.38 

toluene 15.0 13.5 0.20 

1-methylnaphthalene 5.0 3.9 0.04 
 

a
 M-xylene was used in this work. Italicized indicates values calculated using densities provided 

in Table 3-2. 
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iso-alkane, cyclo-alkane, and aromatic groups, respectively. NIST (NIST, 2003) suggested 

six classes of hydrocarbons and their model compounds which are necessary to simulate 

real transportation fuels, as given in Table 2-1. However, DFSs composed of 

hydrocarbons from all suggested classes have not been developed. Following NIST’s 

suggestion (NIST, 2003), DFS-10 is proposed in this study, which includes compounds 

from n-alkane (n-hexadecane), iso-alkane (iso-octane), cyclohexane (1-

methylcyclohexane), 1-ring aromatic (toluene), and 2-ring aromatic (1-methyl-

naphthalene) groups, with weight percentages of 30%, 20%, 30%, 15%, and 5%, 

respectively. Properties of these ten surrogates were studied and a comparison with DF 

was made. 

 

3.3  EVALUATION OF DIESEL FUEL SURROGATES  

3.3.1  Determination of volatilities 

Volatility is one important parameter for a fuel, which characterizes the tendency 

of the fuel to vaporize. Volatility is closely related to boiling temperature and vapor 

pressure. The higher volatility, the lower the boiling point. In conventional diesel engines, 

fuel volatility has a significant effect on spray characteristics, combustion efficiency and 

emission formation (Canaan et al., 1998; Sharma and Som, 2004). When an engine is 

operated under the supercritical conditions, however, fuel volatility becomes less 

important because fuel reaches the supercritical state upon injection and the vaporization 

step is eliminated in the injection and combustion processes. But fuel volatility still 

affects the overall fuel delivery and combustion process. Therefore, it is valuable to 

evaluate volatilities of DFSs.  
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Volatility of a pure fluid is normally characterized by a single boiling point and 

the associated vapor pressure, while that of a mixture is described by a mean boiling 

point and a distillation curve is usually measured. Several experimental techniques have 

been developed for determination of fuel volatility, one of which is the TGA method 

(Goodrum, 2002; Lang et al., 2001; Rudnick et al., 2006).  

In this work, volatilities of DF and DFSs were evaluated by the TGA method. A 

thermogravimetric analyzer (TA Q500, TA Instruments) was used in the experiment. 

Nitrogen was used as the balance gas and the sample gas, the flow rates of which were 

40.0 and 60.0 ml/min, respectively. 10 μl (7-9 mg) samples were loaded in a regular 

platinum pan. The temperature program was set as: ramp 2 
o
C/min to 25 

o
C (initial 

temperature ~ 23 
o
C), ramp 10 

o
C/min to 250 

o
C, and then equilibrate at 23 °C. To 

minimize experimental uncertainties, measurements for all DFSs were done in a single 

continuous run.  

N-heptane (certified, spectranalyzed), n-decane (99%, ASSAY), n-dodecane 

(99%, ASSAY), n-tetradecane (99+%), n-propylcyclohexane (MP Biomedicals), and 1-

methylcyclohexane (99+%) were purchased from Fisher Scientific. Toluene (chromasolv 

plus, for HPLC), iso-octane (anhydrous, 99.8%), m-xylene (anhydrous, ≥99%), n-

hexadecane (>99%), 1-methylnaphthalene (95%), and n-propylbenzene (puriss., ≥99.0%) 

were purchased from Sigma-Aldrich. No. 2 DF was purchased from a local gas station. 

These chemicals were used as received. Density data of these chemicals either provided 

by the manufacturers or obtained from online resources are given in Table 3-2.  
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Table 3-2  Densities of chemicals provided by the manufacturers. 

 

Chemicals Density
a
 , kg/m

3
 

n-heptane 695 

n-decane 735 

n-dodecane 751 

n-tetradecane 764 

n-hexadecane 773 

toluene 865 

1-methylnaphthalene 1001 

m-xylene 864 

iso-octane 709 

n-propylcyclohexane 786 

n-propylbenzene 862 

1-methylcyclohexane 770 

 

a
 Normal indicates values provided by the manufacturers; italicized indicates values adapted from 

ChemSpider  (http://www.chemspider.com, accessed on February 3, 2011). 

http://www.chemspider.com/
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3.3.2  Estimation of critical properties 

3.3.2.1  Critical properties of diesel fuel surrogates 

Vapor-liquid critical temperatures and critical pressures for many pure 

hydrocarbons have been experimentally determined and reported in literature, while those 

for mixtures are still very limited (Etter and Kay, 1961; Hicks and Young, 1975; Smith and 

Watson, 1937; Smith et al., 1987). Experimental values are usually preferred when available. 

However, for compounds containing twelve or more carbons, even experimental values 

may not be reliable because they are unstable at high temperatures (API, 2006). In this 

work, critical properties of DFS-1 to DFS-5 are obtained from literature, while those of 

DFS-6 to DFS-10 are estimated using modeling techniques. 

A great number of modeling techniques have been developed for estimating 

critical properties of pure fluids and mixtures. For pure fluids, the group contribution 

approach was mostly applied (Constantinou and Gani, 1994; Joback and Reid, 1987; Klincewicz 

and Reid, 1984; Lydersen, 1955; Marrero-Morejón and Pardillo-Fontdevila, 1999; Nannoolal et 

al., 2007). Evaluations of and reviews on these methods are available elsewhere (Poling et 

al., 2001; Spencer and Daubert, 1973). For mixtures, various approaches have been applied 

to develop correlations for critical properties. As categorized by Li and Kiran (Li and Kiran, 

1990), these approaches include graphical approach, EOS approach, excess property 

approach, conformal solution approach, and thermodynamic potential approach. The EOS 

based methods (Abu-Eishah, 1999; Heidemann and Khalil, 1980; Michelsen, 1980; Michelsen, 

1982; Stradi et al., 2001) are most reliable, while the group contribution methods (Li and 

Kiran, 1990) give rapid estimates (Poling et al., 2001). Reviews on calculation of mixture 

critical properties are also available elsewhere (Heidemann, 1994; Sadus, 1994). 
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In this work, the Li and Kiran equations (Li and Kiran, 1990) were used to estimate 

critical properties of binary DFSs, while the method for critical properties of defined 

mixtures suggested by the American Petroleum Institute (API) (API, 2006) was applied in 

multicomponent DFS systems. These two methods were chosen because they are simpler 

than other methods and they give rapid, reliable estimates. 

The Li and Kiran method (Li and Kiran, 1990) was developed based on the group 

contribution method for pure fluids proposed by Klincewicz and Reid (Klincewicz and Reid, 

1984), assuming that a given binary mixture of compound “A” and compound “B” is a 

pseudo-compound. The critical temperature (Tc,AB) and critical pressure (Pc,AB) of the 

pseudo-compound are then given as,  
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where Tb,AB is the pseudo boiling point, MWAB is the average molecular weight, and qT, AB, 

and qP, AB are the total group contributions. Tb,AB, MWAB, qT, AB, and qP, AB can be 

calculated as follows. 

  , , ,1b AB b A b BT sT s T    (3-3)  

 AB A A B BMW x MW x MW 
 (3-4)  
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(3-6)  

where xA and xB are molar fractions of A and B, respectively; s and v are the critical 

surface increment fraction and the critical volume increment fraction, respectively; qi,ss 

and qi,vv  represent the contributions from A-B and B-A types of interactions and subscript 

i indicates either T or P; ωAB is the mean acentric factor. s, v, qi,ss, qi,vv and ωAB are 

defined as follows 
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AB A A B Bx x   

 
(3-11)  

where the subscript v indicates the critical volume increment; qi,A and qi,B are the total 

group contributions from the functional groups in A and B, respectively; ωA and ωB are 

the acentric factors for compounds A and B, respectively, and are obtained from literature. 

The total group contribution q for any compound is defined by  

 

1

m

j j

j

q n


   (3-12)  

where nj and Δj are the number of and the critical property increment for the type j 

functional group, respectively, and m is the total number of functional groups in the 

compound.  

The Li equation (Li, 1971) and the equation developed by Kreglewski and Kay 

(Kreglewski and Kay, 1969), suggested by API (API, 2006), were used to estimate critical 

temperatures and critical pressures of multicomponent DFSs, respectively. The Li 

equation (Li, 1971) reads, 

 

1

n

cm i ci

i

T T


  (3-13)  

where ζi is the volumetric fraction of component i and can be calculated by 

 

1

i ci
i n

i ci

i

xV

xV








 

(3-14)  

The equation for critical pressure of a mixture is as follows (API, 2006; Kreglewski and Kay, 



50 

 

1969), 

  1 5.808 4.93
cm pc

cm pc m

pc

T T
P P

T


 
   

  
 (3-15)  

where Tpc and Ppc are pseudocritical temperature and pseudocritical pressure, respectively, 

and ωm is the mean acentric factor; they are given as follows 

 

1

n

pc i ci

i

T x T


  (3-16)  

 

1

n

pc i ci

i

P x P


  (3-17)  

 

1

n

m i i

i

x 


  (3-18)  

All critical constants (Tci, Pci, Vci) and acentric factors (ωi) are obtained from literature. 

 

3.3.2.2  Critical properties of diesel fuel 

Since no experimental data on critical properties of DF were found in the 

literature, modeling techniques were applied to estimate these properties. Due to the 

complexity of DF and unknown detailed composition information, the methods presented 

in the preceding section cannot be applied to diesel fuel. Fortunately, other correlation 

methods have been developed based on the availability of characteristic information of 

hydrocarbon mixtures, mainly boiling point and specific gravity. These methods fall in 

three categories (Korsten, 1998) (a) polynomial empirical equations, e.g., the API method 
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(API, 2006), and correlations proposed by Cavett (Cavett, 1962), Kesler and Lee (Kesler and 

Lee, 1976), and Brule et al. (Brule et al., 1982), (b) exponential empirical equations, e.g., 

correlations proposed by Riazi and Daubert (Riazi and Daubert, 1980), Sim and Daubert 

(Sim and Daubert, 1980), and Zhou (Zhou, 1984), and (c) equations based on the 

perturbation of a reference system, e.g., the Twu correlation (Twu, 1984). Except for the 

API method which uses the volumetric average boiling point, others require the mean 

average boiling point. A review on critical properties of hydrocarbon systems can be 

found elsewhere (Korsten, 1998). Some of these methods have been applied to estimate 

critical properties of some jet fuels and gave satisfactory predictions (Yu and Eser, 1995).   

The methods used to estimate DF properties are described below. 

1. API Method (API, 2006) 

 
3 2186.16 1.6667 0.7127 10cT       (3-19)  

  100.0vSG T   (3-20)  

where SG is the specific gravity (60 
o
F / 60 

o
F),  Tv is the volumetric average boiling 

point, and both Tv and Tc are in 
o
F. Tv can be estimated by averaging ASTM D86 

distillation temperatures at 10, 30, 50, 70, and 90 vol % distillate points: 

  10 30 50 70 90 5vT T T T T T      (3-21)  

Critical pressure, Pc, can be obtained from Figure 4D2.1 in the API Technical Data Book, 

with the inputs of Tv, the ASTM slope (SL), and the API gravity (API) (API, 2006). SL and 

API are defined by 
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 90 10

90 10

T T
SL





 (3-22)  

 141.5 131.5API SG   (3-23)  

2. Cavett Correlation (Cavett, 1962; Korsten, 1998) 
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 (3-24)  
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 (3-25)  

where Tc is in 
o
R, Pc is in psia, and Tb is the mean average boiling point in 

o
F. Tb can be 

calculated from Tv by the method recommended by API (API, 2006), given below  

 b vT T   (3-26)  

    
0.6667 0.333

ln 0.94402 0.00865 32 2.99791vT SL     (3-27)  

3. Kesler and Lee Correlation (Kesler and Lee, 1976; Korsten, 1998)  

 
 

  5

341.7 811 0.4244 0.1174

0.4669 3.2623 10

c b

b

T SG SG T

SG T

      

   
 (3-28)  
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(3-29)  

where Tc and Tb are in 
o
R, and Pc is in psia. 

4. Brule Correlation (Brule et al., 1982) 

  
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4 2

3 7 3

27 2 8 2

429.138 0.886861 4.596433 10

2.410089 10 1.630489 10

9.323778 10 1.430628 10

c b b

b b

b b

T T T

API T T

API T API T



 

 

    

   
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 (3-30)  

where Tc is in K and Tb are in 
o
F. Pc is not avialable in this method. 

5. Riazi and Daubert Correlation (Korsten, 1998; Riazi and Daubert, 1980) 

 
0.58848 0.359619.0623c bT T SG  (3-31)  

 6 2.3125 2.32015.53028 10c bP T SG 
 (3-32)  

where Tc and Tb are in K, and Pc is in MPa. 

6. Sim and Daubert Correlations (Korsten, 1998; Sim and Daubert, 1980) 

   0.08615 0.04614ln 1.8 4.2009c bT T SG  (3-33)  

 
6 2.3177 2.48536.1483 10c bP T SG 

 (3-34)  

where Tc and Tb are in K, and Pc is in MPa. 
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7. Zhou Correlation (Korsten, 1998; Zhou, 1984) 

 0.42928 0.8294447.1126c bT T SG  (3-35)  

 0.87273 1.93053356.971c bP T SG
 (3-36)  

where Tc and Tb are in 
o
C, and Pc is in MPa. 

8. Twu Correlation (Twu, 1984) 

    
2

1 2 1 2o

c c T TT T f f      (3-37)  
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(3-38)  
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(3-39)  
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(3-40)  
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(3-41)  
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(3-42)  
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 1 o

b cT T  
 (3-46)  

     exp 5 1
o

T
SG SG SG    

   (3-47)  

     2 2exp 4 1
o

V
SG SG SG    

   (3-48)  

     exp 0.5 1
o

P
SG SG SG    

   (3-49)  

   3 120.843593 0.128624 3.36159 13749.5
o

SG      
 (3-50)  

where Tc and Tb are in 
o
R, Pc in psia, and Vc in ft

3
 lb

-1
 mol

-1
. 

 

3.3.3  Calculation of thermophysical properties 

3.3.3.1  Thermophysical properties of diesel fuel surrogates 

Two NIST software programs, i.e. REFPROP (Lemmon et al., 2010) and 

SUPERTRAPP (Ely and Huber, 2007), were applied to calculate thermophysical properties 

of DFSs, including density, viscosity, heat capacity, and thermal conductivity. A brief 

introduction of these two programs is given below. 



56 

 

“REFPROP is based on the most accurate pure fluid and mixture models currently 

available” (Lemmon et al., 2010). Three models are used for the thermodynamic properties 

of pure fluids: the modified Benedict-Webb-Rubin EOS (Jacobsen and Stewart, 1973), the 

Helmholtz EOS, and an extended corresponding states (ECS) model (Huber and Hanley, 

1996). For mixture calculations, a departure function is applied to the mixing rules. 

Transport properties, i.e. viscosity and thermal conductivity, are modeled with either an 

ECS method or the friction theory method. A detailed description of the models is given 

in the manual of REFPROP V7.0 (Lemmon et al., 2002). REFPROP was initially 

developed for predictions of refrigerant properties, and later expanded to natural gas 

components and other species. The number of fluids and mixtures in this database is 

relatively small and the application for fuel properties estimation is limited.   

SUPERTRAPP (Ely and Huber, 2007) is a robust interactive computer database for 

the prediction of thermodynamic and transport properties of pure fluids or mixtures of up 

to 20 components at temperatures and pressures up to 1000 K and 300 MPa, respectively. 

The predictive technique of it is based on the ECS method and the Peng-Robinson (PR) 

EOS (Friend and Huber, 1994; Huber and Hanley, 1996). Phase equilibrium problems are 

solved using the PR EOS, while transport properties are obtained by using the ECS 

method.  

SUPERTRAPP has been successfully used to predict thermophysical properties of 

a variety of fluids and mixtures, including natural gas (Vesovic, 2001), natural gas and 

hydrogen mixtures (Hourri et al., 1982), jet fuel surrogates and mixtures (Cormier, 2001; 

Doungthip et al., 2002; Ervin et al., 2003; Fan et al., 2006; Hirasaki and Mohanty, 2001; Huang et 

al., 2004; Senda et al., 2001), kerosene surrogate (Fan et al., 2006), ethane (Hirasaki and 
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Mohanty, 2001), organic fluid mixtures (Vijayaraghavan, 2003), and supercritical fuels 

(Helfrish, 2006; Huang et al., 2002; Micci and Long, 2000). Huang et al. (Huang et al., 2002) and 

Helfrich (Helfrish, 2006) applied it to calculate thermodynamic properties of supercritical 

jet fuels including JP-7, JP-8+100 and JP-10 in the temperature and pressure ranges of 

273 to 998 K and 1 to 85 atm, respectively. The results indicated that thermodynamic 

property data were only reliable up to 810.7 K since the program does not take into 

account the effects of endothermic reactions occurring in the fuel (Helfrish, 2006).  

REFPROP is first considered in this study due to the high accuracy and low 

uncertainty. Hydrocarbons of interest, which have been included in REFPROP, are n-

heptane, n-decane, n-dodecane and toluene. Accordingly, densities, viscosities, heat 

capacities and thermal conductivities of DFS-1, DFS-2, and DFS-3 were calculated using 

REFPROP. Properties of the rest of DFSs, i.e. DFS-4 to DFS-10, were calculated by 

SUPERTRAPP. 

 

3.3.3.2  Thermophysical properties of diesel fuel 

Empirical correlations recommended by Kolev (Kolev, 2007) were used to estimate 

density, viscosity, heat capacity, and thermal conductivity of diesel fuel. These 

correlations are based on SIEMEMS data and good for estimation at temperatures from 

293.15-393.15 K and pressures up to 240 MPa. They are given below. 

Density in kg/m
3
 is correlated by 

 

3 3
1 1

1 1

j i

ij

i j

a T P  

 

 
  

 
   (3-51)  
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(3-52)  

Kinematic viscosity in m
2
/s is correlated by 

  
2 3

6 1 1

10

1 1

log 10 j i

ij

i j

b T P  

 

 
  

 
   (3-53)  
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(3-54)  

Heat capacity in J/kg.K is correlated by 
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(3-56)  

Thermal conductivity in W/m.K is correlated by 
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(3-58)  

In Eqs. (3-51), (3-53), (3-55) and (3-57), T and p are in K and Pa, respectively. 
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3.4  RESULTS AND DISCUSSIONS 

3.4.1  Comparison of volatilities 

Fig. 3-1 presents original TGA curves for DF and DFSs, demonstrating very 

different volatility characteristics. Curves for DFS-1 and DFS-6 are not shown in the 

figure because they are so volatile that they completely vaporized during the loading 

stage and no TGA curves were obtained. The initial weights of DFS-8 to DFS-10 at 25 
o
C 

were much lower than those of others due to weight loss during the loading stage, 

indicating high volatilities. Weight loss before data recording changes sample 

compositions and hence brings uncertainties to the measurements. For DF, it is noticed 

that although it has a boiling point range of 150-370 
o
C (ConocoPhillips, 2007), it 

completely vaporized below 200 
o
C. The reason is that the DF sample was loaded in an 

open pan and vaporized in a flowing flow environment. This effect could be reduced by 

using a closed pan with a laser-drilled hole (Goodrum, 2002). 

Since the initial weights were different, TGA curves are normalized by dividing 

the corresponding initial weights. Results are plotted in Fig. 3-2. From Fig. 3-1 and Fig. 

3-2, it is found that DFS-1, DFS-2, and DFS-6 to DFS-10 were more volatile than DF, 

while DFS-3 to DFS-5 vaporized slower initially and then faster than DF. These results 

indicate that none of these DFSs has volatility close to DF.  

 

3.4.2  Comparison of critical properties 

Critical temperatures and pressures of DFS-1 to DFS-5 were adapted from 

literature, critical temperatures and pressures of DFS-6 to DFS-8 were calculated using 

the group contribution method given by Eqs. (3-1) to (3-12), critical temperatures and  
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Fig. 3-1  Original TGA curves for DF and DFSs. 



 

 

6
1  

 

Fig. 3-2  Normalized TGA curves for DF and DFSs. 
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critical pressures of DFS-9 and DFS-10 were calculated using API methods given by Eqs. 

(3-13) to (3-18), and those of DF were estimated using empirical correlations given by 

Eqs. (3-19) to (3-50). Constants for DFS compounds used in the calculations are given in 

Table 3-3. Lydersen’s group contributions for critical properties (Gupta, 2003; Lydersen, 

1955) are given in Table 3-4. Distillation curve data for DF and density of DF were 

adapted from Smith et al. (Smith et al., 2008) and are presented in Table 3-5 and Table 3-6, 

respectively. Critical pressure of DF was not obtained by the API method because 

temperature was out of range. 

Estimated critical properties for DFSs and DF are presented in Table 3-7 and 

Table 3-8, respectively. Results are also plotted in Fig. 3-3. Table 3-7 shows that critical 

temperatures of these DFSs vary significantly from 540.2 K for DFS-1 to 723.0 K for 

DFS-5, while critical pressures are in a range of 1.40 – 4.03 MPa. Table 3-8 shows that 

all empirical correlations give very close estimates of critical temperatures and pressures 

for DF, which are 739-754 K and 1.72-1.96 MPa, respectively. It is easily seen that 

critical temperatures of all DFSs are lower than those of DF. A lower critical temperature 

could lead to a design of the fuel delivery system where real DF only reaches the 

subcritical state upon injection. Therefore, care must be taken in choosing a DFS for 

supercritical fuel combution applications. Critical pressure is another important parameter 

in determining the critical state. However, it is not that important in engine design 

because injection pressure is much higher than the critical pressure. Fig. 3-3 shows that 

DFS-5 has a best estimate of critical temperature and pressure of DF. Therefore, better 

results would be expected when n-hexadecane is used as a DFS in engine experiments 

and simulations.   
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Table 3-3  Constants for DFS compounds 
a
. 

 

Name Formula 
MW Tc Pc ρc

# 
Vc Tb 

Zc ω 
g/mol K MPa g/ml ml/mol K 

toluene C7H8 92.141 591.75 4.108 0.292 316.00 383.79 0.264 0.264 

1-methylcyclohexane C7H14 98.188 572.19 3.471 0.267 368.00 374.09 0.268 0.235 

n-heptane C7H16 100.204 540.20 2.740 0.234 428.00 371.57 0.261 0.350 

m-xylene C8H10 106.167 617.00 3.541 0.283 375.00 412.34 0.259 0.327 

iso-octane C8H18 114.231 543.90 2.570 0.243 469.70 372.39 0.266 0.304 

n-propylbenzene C9H12 120.194 638.35 3.200 0.273 440.00 432.35 0.265 0.345 

n-propylcyclohexane
$
 C9H18 126.240 639.16 2.807 0.265 477.19 429.91 0.252 0.260 

n-decane C10H22 142.285 617.70 2.110 0.228 624.00 447.30 0.256 0.490 

1-methylnaphthalene C11H10 142.200 772.00 3.600 0.308 462.00 517.84 0.259 0.348 

n-dodecane C12H26 170.338 658.00 1.820 0.226 754.00 489.48 0.251 0.576 

n-tetradecane C14H30 198.392 693.00 1.570 0.222 894.00 526.76 0.244 0.644 

n-hexadecane C16H34 226.446 723.00 1.400 0.219 1034.00 559.98 0.241 0.718 

 

a
 Unless otherwise noted, all values presented in the table are adapted from Poling et al (Poling et al., 2001). Normal is a value from experiments; 

italicized is a value calculated from other values in the table; bold is an estimated value. 
#
 Values are calculated in this work. 

$
 Values are from 

API (API, 2006). 
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Table 3-4  Group Contributions for critical properties. 

 

 

Group 

types
a
 

- CH3 - CH2 - 
І 

 = CH 

І 
 =  C  -    

 
ΔT, K 0.020 0.020 0.011 0.011 

   

 
ΔP, bar 0.227 0.227 0.154 0.154 

   

 
ΔV, ml/mol 55 55 37 36 

   

         

Name Formula Number of groups qT, K qp, bar qv, ml/mol 

toluene C7H8 1 0 5 1 0.086 1.151 276 

n-heptane C7H16 2 5 0 0 0.140 1.589 385 

m-xylene C8H10 2 0 4 2 0.106 1.378 330 

n-decane C10H22 2 8 0 0 0.200 2.270 550 

1-methylnaphthalene C11H10 1 0 7 3 0.130 1.767 422 

 

a
 Lydersen’s group contributions (Gupta, 2003;Lydersen, 1955). 
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Table 3-5  Distillation curve data for DF
a
. 

 

Distillate vol% T, 
o
C T, 

o
F 

10 248.6 479.5 

30 269.7 517.5 

50 289.2 552.6 

70 308.3 586.9 

75 313.5 596.3 

80 319.8 607.6 

85 327.5 621.5 

90
b
 334.3 633.7 

 

a
 Data adapted from (Smith et al., 2008). 

b
 Value extrapolated using data at 75, 80, and 85 vol%. 
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Table 3-6  Density of DF at 0.1 MPa
a
. 

 

T, 
o
C Density, g/ml 

15.5
b
 0.85745 

20 0.8543 

25 0.8507 

30 0.8473 

 

a 
Data adapted from (Smith et al., 2008). 

b
 Extrapolated value. 
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Table 3-7  Critical temperatures and critical pressures of DFSs.  

 

DFS Tc, K Pc, Mpa 

DFS-1 540.2 2.74 

DFS-2 617.7 2.11 

DFS-3 658.0 1.82 

DFS-4 693.0 1.57 

DFS-5 723.0 1.40 

DFS-6 560.1 3.52 

DFS-7 664.2 2.65 

DFS-8 624.2 3.06 

DFS-9 652.1 3.13 

DFS-10 627.2 4.03 

 



68 

 

Table 3-8  Critical temperature and critical pressure of DF.  

 

Methods Tc, K Pc, MPa 

API 753.5 n/a 

Cavett 746.4 1.85 

Kesler & Lee 740.3 1.82 

Brule 744.1 n/a 

Riazi & Daubert 745.6 1.72 

Sim & Daubert 738.6 1.81 

Zhou 742.5 1.91 

Twu 749.0 1.96 
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Fig. 3-3  Critical temperatures and pressures of DFSs and DF. 
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3.4.3  Comparison of thermophysical properties 

For comparison, densities, viscosities, heat capacities, and thermal conductivities 

of DFSs and DF were calculated at 300-800 K and 10, 30, 50, and 100 MPa. Properties of 

DFS-1, DFS-2, and DFS-3 were calculated using REFPROP (Lemmon et al., 2010). The 

upper temperature limits for DFS-1, DFS-2 and DFS-3 are 600, 670, and 700 K, 

respectively. Properties of DFS-4 to DFS-10 were calculated by SUPERTRAPP (Ely and 

Huber, 2007). Although SUPERTRAPP has an extensive database, n-propylcyclohexane is 

not included in the original program. It was added as a new component with parameters 

given in Table 3-3. The required parameters include the critical temperature, the critical 

pressure, the critical volume, the normal boiling point, and the acentric factor. DF 

properties were obtained using empirical correlations (Kolev, 2007). As mentioned in 

section 3.2.3.1, those empirical correlations are good for temperatures up to 393.15 K.  

Density, heat capacity, viscosity, and thermal conductivity of DFSs and DF at 30 

MPa are plotted in Fig. 3-4 to Fig. 3-7, respectively. Results for 10, 50, and 100 MPa are 

available in Appendix A. It is clearly demonstrated in Fig. 3-4 to Fig. 3-7 that these DFSs 

exhibit significantly different behavior in predicting DF properties. For example, DFS-7 

gives best predictions of density of DF as shown in Fig. 3-4, but it shows poor fit for 

thermal conductivity of DF as show in Fig. 3-7. For a better comparison, average 

absolute deviations (AAD) are calculated by 

 
1

1
% 100

n
i i

i i

y z
AAD

n z

  
  

 
  (3-59)  

where y is properties of DFSs, z is properties of DF, and n is number of data points. 

Results are presented in Fig. 3-8 to Fig. 3-11 and also available in Appendix A.
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Fig. 3-4  Densities of DFSs and DF at 30 MPa. 
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Fig. 3-5  Heat capacities of DFSs and DF at 30 MPa. 
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Fig. 3-6  Viscosities of DFSs and DF at 30 MPa. 
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Fig. 3-7  Thermal conductivities of DFSs and DF at 30 MPa. 
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Fig. 3-8  Comparison of DFS’s capability in predicting DF density. 
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Fig. 3-9  Comparison of DFS’s capability in predicting DF heat capacity. 
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Fig. 3-10  Comparison of DFS’s capability in predicting DF viscosity. 
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Fig. 3-11  Comparison of DFS’s capability in predicting DF thermal conductivity. 
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Fig. 3-8 shows that DFS-7 gives best predictions of density of DF with AAD% 

less than 1% which is significantly lower than those of other DFSs. For most DFSs, the 

predictions are improved with reduced AAD values as pressure increases. For heat 

capacity, as shown in Fig. 3-9, DFS-4 gives best predictions followed by DFS-5. For 

viscosity, AADs for all DFSs except DFS-4 at 50 MPa and DFS-5 at 10 MPa are above 

10%, and DFS-4 gives a relatively better overall predictions, as illustrated in Fig. 3-10.  

For thermal conductively, DFS-9 gives a relatively better results as shown in Fig. 3-11. 

The DFS-10 proposed for this study has AAD% of less than 8% for density and heat 

capacity and 12% for thermal conductivity but exceeds 50% for viscosity for all pressures 

studied. These results lead to the conclusion that none of these DFSs are able to represent 

DF in terms of predicting all thermophysical properties of interest. Different DFSs are 

suggested to obtain different properties from these results. 

  

3.5  CONCLUSIONS 

Physical properties of DFSs are important parameters required for diesel engine 

design and simulation. The capabilities of ten DFSs in representing DF physical 

properties were evaluated. These properties include volatility, critical points, density, 

viscosity, heat capacity, and thermal conductivity. Volatility was measured using the 

TGA method, while other properties were estimated using various modeling techniques.  

As volatility is closely related to fuel compositions, it is not surprising that no simplified 

DFSs have volatility close to DF. However, it is not a big issue in the supercritical fuel 

system because fuel has already reached the supercritical state upon injection and hence 

volatility would have no effect on spray behavior. The critical point of DFS-5 is closest to 
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the estimated critical point of DF which is 739-754 K and 1.72-1.96 MPa. This suggests 

that DFS-5 may be considered where critical properties are key parameters. DFS-7 gives 

best predictions of density of DF with AAD% less than 1% which is significantly lower 

than those of other DFSs. DFS-4 gives overall best predictions of heat capacity and 

viscosity, while DFS-9 gives a relatively better results for thermal conductivity. 

Therefore, it is concluded that none of these DFSs are able to represent all thermopysical 

properties of DF. Different DFSs are suggested to obtain different properties. 
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CHAPTER IV 

DIFFUSIVITY MEASUREMENTS
1
 

 

4.1  INTRODUCTION 

Diffusivities are important parameters required for modeling of the multiphase 

fuel/diluents mixing processes and for simulation of spray atomization and combustion 

processes. This chapter describes experimental and modeling work on diffusion 

coefficients of diesel fuel and surrogate components in SCCO2 over a wide range of 

temperature and pressure. DF was treated as one fluid, and CO2 was chosen as a model 

compound for EGR. Experimental uncertainties are also extensively discussed.   

Diffusivity data obtained in this work are also useful for design of other 

supercritical fluid processes. Knowledge of thermophysical properties of SCFs and other 

species involved in SCF systems is crucial to advancing the SCF technology and to 

developing SCF processes. Binary diffusion coefficients are one such property that needs 

further investigation. Although binary diffusion coefficients in SCFs have been studied 

since the 1960s (Funazukuri et al., 2004), experimental data are still very limited (Suárez et 

al., 1998). Moreover, the accuracy of data from various sources has seldom been justified. 

A comparison of diffusion coefficients of benzene in SCCO2 from various sources 

showed large variations especially when the density of CO2 is below the critical value. 

                                                           
1
 The majority of this chapter is written based on two published papers: (1) Lin, R., Tavlarides, L.L., 2010. 

Diffusion coefficients of diesel fuel and surrogate compounds in supercritical carbon dioxide, The Journal 

of Supercritical Fluids 52(1), 47-55 and (2) Lin, R., Tavlarides, L.L., 2010. Determination of diffusion 

coefficients by supercritical fluid chromatography: Effects of mobile phase mean velocity and column 

orientation, Journal of Chromatography A 1217 (26), 4454-4462. Copyright permissions are attached in 

Appendix E. 
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These variations largely resulted from experimental errors. Therefore, a better 

understanding of those aspects that influence uncertainties of measurements of binary 

diffusion coefficients in SCFs is of practical importance.  

Besides, among fluid thermophysical properties, molecular binary diffusion 

coefficients are less understood than others due to both theoretical challenges and 

experimental difficulties. The accuracy of estimates for gases based on the Chapman-

Enskog theory is around 10%, while that for liquids based on the Stokes-Einstein 

equation or its empirical correlations is about 20% (Cussler, 2009). These estimates help to 

solve only the routine problems (Cussler, 2009). Limitations exist, for example, in the field 

of diesel engine combustion where mass diffusion can limit the combustion rates (Farrell 

et al., 2007), and the information on mass diffusion coefficients is less reliable (Harstad 

and Bellan, 2004). Therefore, the current study is also intended to make contributions to 

advance the fundamentals of fluid thermophysical properties. 

 

4.2  THEORETICAL BACKGROUND 

4.2.1  Taylor dispersion analysis 

Among all experimental techniques (Cussler, 2009) developed to date for 

determination of diffusion coefficients, the Taylor (or Taylor-Aris) dispersion method, 

also known as the chromatographic technique (Bruno, 1994; Funazukuri et al., 2004; 

Funazukuri et al., 2006; Liong et al., 1991; Roth, 1991) or the peak broadening technique, has 

been mostly applied in SCF systems. The Taylor dispersion phenomenon was first 

observed by Griffiths back to the early 1910s (Griffiths, 1910). During the investigation of 

the behavior of a short fluorescein solution pulse injected into a laminar water flow in a 
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capillary tube, Griffiths found that the colored pulse expanded symmetrically about the 

center which moved in a mean velocity of the liquid. In early 1950s, Taylor (Taylor, 1953; 

Taylor, 1954) experimentally confirmed Griffiths’ observation and first developed the 

theoretical description of the phenomenon. Following Taylor’s work, Aris (Aris, 1956) 

improved the theoretical analysis which formed a theoretical basis for Taylor dispersion 

towards the measurement of molecular diffusivity. A complete analysis of the theory was 

given by Alizadeh et al. (Alizadeh et al., 1980). Detailed descriptions of the theory can also 

be found elsewhere (Matthews, 1986; Pratt and Wakeham, 1975).  

Applications of this method to the measurements of diffusion coefficients in SCFs 

were substantially investigated and a number of reviews were published (Bruno, 1994; 

Funazukuri et al., 2004; Funazukuri et al., 2006; Liong et al., 1991). Recent applications of this 

technique include determination of diffusion coefficients of various organic compounds 

in SCCO2 (Pizarro et al., 2009a; Pizarro et al., 2009b). Although this method has been widely 

used, the reliability of its application in near-critical regions is still under debate and 

needs further investigations due to anomalous diffusivity behavior (Ago and Nishiumi, 1999; 

Funazukuri et al., 2000; Kong et al., 2008; Levelt Sengers et al., 1993; Nishiumi et al., 1996; 

Nishiumi and Kubota, 2007; Yang et al., 2000).  

The idealized Taylor dispersion experiment for the measurement of molecular 

diffusivity is illustrated in Fig. 4-1. In a circular straight tube of infinite length and 

uniform cross section, a fully-developed laminar flow is maintained and the velocity field 

is defined by  

   









2

2

12
R

r
Uru  

(4-1)  
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Fig. 4-1  The idealized Taylor dispersion experiment. U is the mean velocity, R is the 

radius of the dispersion column, L is the length of the dispersion column, and X is the 

width of the solute pulse. 
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where U  and R  are the mobile phase mean velocity and the pipe radius, respectively. 

Assume a δ-function pulse is injected into the flow at position 0z . As the solute pulse 

moves along the tube, due to the combined action of forced convection and molecular 

diffusion, it disperses symmetrically about the cross section which moves at the mean 

flow velocity. If time is long enough, a concentration gradient that follows the Gaussian 

distribution is formed.  

The mathematical analysis starts with the continuity equation. In the cylindrical 

coordinate system, the continuity equation for one component in terms of concentration 

C  which is a function of time ( t ), length ( z ), and pipe radius ( r ) is given by  
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 (4-2)  

 where 12D  is the binary molecular diffusion coefficient of solute 1 in solvent 2.  

Several assumptions are followed in this analysis. 12D  is assumed constant and 

independent of the concentration, no chemical reactions are considered, the fluid is 

incompressible, and the flow is the fully-developed laminar flow. Practically, it is more 

convenient to measure the mean concentration ( mC ) over any cross section than to 

measure the concentration at any point.  The mean concentration is defined by 

   drrC
R

C
R

m  02
2

1



 (4-3)  

Accordingly, Eq. (4-2) can be reduced to the one-dimension diffusion equation 
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where,  
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(4-5)  

K is the apparent diffusion coefficient also called the dispersion coefficient. Applying the 

similarity method by using dimensional analysis, a solution to Eq. (4-4) can be found in 

the form  

    Ktx
KtR

M
txCm 4exp

4
, 2

2



 

(4-6)  

where M is the total amount of solute injected into the tube.  

The Taylor dispersion analysis is provided in detail in Appendix B.   

 

4.2.2  Analysis of experimental data 

To obtain the molecular diffusion coefficient 12D , the moment method was 

applied to process experimental data (Matthews, 1986). Zero and normalized first and 

second moments are the sum function ( S ), the center of the gravity ( t ), and the variance 

(
2 ), respectively. They are defined by 

 dtCS m



0

 (4-7)  

 



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1
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t m  

(4-8)  

   dtCtt
S

m

2

0

2 1



  
(4-9)  

Inserting Eq. (4-6) into Eqs. (4-7) - (4-9) and performing the integrations, we get 

(Pratt and Wakeham, 1975) 
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where L is the length of the diffusion column. With the substitution of Eq. (4-5), it can be 

shown that (Alizadeh et al., 1980)  
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providing the following two conditions are satisfied 
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Eq. (4-12) is the final working equation for measurement of binary molecular diffusion 

coefficient by using the Taylor dispersion technique.  

To evaluate experimental uncertainties, curve-fitting errors between elution 

profiles measured in the experiments and those calculated by the Eq. (4-6) were estimated 

by (Funazukuri et al., 2006) 
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where subscripts exp and cal indicate experimental data and calculated values given by 
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Eq. (4-6). In this work, t1 and t2 were times at 1% peak height of elution profiles.  

 

4.3  EXPERIMENTAL 

4.3.1  Materials 

Benzene (99%), toluene (CHROMASOLV Plus, for HPLC, ≥99.9%), m-xylene 

(anhydrous, ≥99%), 1-hexadecene (99%) and 1-methylnaphthalene (95%) were 

purchased from Sigma-Aldrich, Inc. and used without further purification. Hexane 

(OPTIMA) was supplied by Fisher Scientific, Inc. No.2 diesel fuel was purchased from a 

local gas station. Liquid CO2 (industrial) was supplied by Airgas, Inc. 1-hexadecene 

instead of n-hexadecane was used because n-hexadecane is not sensitive to UV-vis light. 

 

4.3.2  Experimental setup 

Design of the Taylor dispersion experiment has been well described in the 

literature (Funazukuri et al., 2000a; Matthews, 1986; Umezawa and Nagashima, 1992). The 

experimental setup is mainly composed of five parts: a pump for mobile phase delivery, a 

valve for sample injection, a diffusion column, a temperature control unit, and a 

concentration profile detector. Fig. 4-2 shows schematic diagrams of three different setups 

used in this study. Three stainless steel tubes (Small Parts, Inc., I.D.0.762 mm × 30.4 m, 

I.D.0.508 mm × 30.48 m, and I.D.0.254 mm × 30.48 m) were used as diffusion columns. 

The tubes were coiled in a diameter of 0.2 m and installed either vertically in a gas 

chromatography (GC) oven (HP 5890) (Fig. 4-2 A and B) or horizontally in a water bath 

(Fig. 4-2 C). Liquid CO2 was delivered by a syringe pump (ISCO 100D or 260D). A 

second stainless steel tube was located in a water bath to pre-heat the mobile phase. 
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(A) 

 

 
(B) 

 

 
(C) 

 

Fig. 4-2  Schematic diagrams of experimental setups for measurement of diffusion 

coefficients using the Taylor dispersion method. (A) A six-port injection valve was used 

and a column was vertically installed in a GC oven; (B) A manual injection valve was 

used and a column was vertically installed in a GC oven; (C) A manual injection valve 

was used and a column was horizontally installed in a water bath. 
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Samples were loaded through either a six-port valve (Rheodyne 7010, 5 μL) (Fig. 4-2 A) 

or a manual injection valve (Rheodyne 7520, 0.5μL) (Fig. 4-2 B and C). When the six-

port valve was used, an HPLC pump (Dynamex, Model SD-1) was used to deliver 

samples. Pressures were controlled by the syringe pump, and flow rates were controlled 

by a manual valve after the second pressure transducer and measured by a digital 

flowmeter (Fisher Scientific, Model 520). A dual-wavelength UV-vis detector (Thermo 

Electron, Model 205) equipped with a high-pressure flow cell (Thermo Electron, Model 

9550-150) with an illuminated volume of 0.25μL was used to monitor elution profiles out 

of the diffusion column. Elution profiles and pressure data were recorded by a data 

acquisition system (LabVIEW, National Instruments).  

 

4.3.3  Experimental conditions and procedure 

The system was warmed up to reach experimental conditions and then stabilized 

for about two hours before each run. CO2 was delivered by the syringe pump at constant 

pressure mode to minimize pressure fluctuations. Pressure fluctuations for all runs were 

controlled within ± 0.02 MPa. Pressure drops along the diffusion column varied with 

flow rates and were less than 1.0% of working pressure for all runs. Flow rates were 

monitored by the digital flow rate meter and controlled by a manual valve within 3% of 

set points with the exception of a maximum value of 7.0 % which occurred in the critical 

region of CO2. Samples were injected continuously in an interval of 12-20 min, 

depending on pressure, temperature and flow rate conditions, to avoid peak overlapping. 

All temperature measurements were within ± 0.1 K of set points. The maximum working 

temperatures of the injection valve and the UV-vis detector flow cell are 353.15 and 
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313.15 K, respectively. As measurements went above these temperature limits, the 

injection valve and the detector were thermally stabilized at their maximum working 

temperatures.  

The experiment mainly includes three sections. First, various combinations of 

diffusion columns and injection volumes were tried and diffusion coefficients of benzene 

in SCCO2 were measured to examine the performance of the setup in getting accurate 

diffusivity data. Second, diffusion coefficients of diesel fuel and surrogate compounds 

including benzene, toluene, m-xylene, 1-hexadecene and 1-methylnaphthalene were 

measured. Finally, diffusion coefficients of benzene in SCCO2 were measured in a wide 

range of experimental conditions to examine experimental uncertainties. 

In the second part of this experiment, the retention time for all experimental 

conditions varied from 60 to 90 min with a velocity range of 0.006-0.008 m/s close to the 

one reported previously (Kong et al., 2008), and the laminar flow condition was satisfied 

with Re < 50. UV absorbance spectra of benzene, toluene, m-xylene, 1-hexadecene, 1-

methylnaphthalene and diesel fuel were measured and optimal wavelength ranges for 

each species were determined by measuring diffusion coefficients at 313.15 K and 10 

MPa with varying wavelengths. In the third part, experiments were conducted at 313.15 

and 333.15 K and 9-15 MPa. The dual-wavelength of 230 and 235 nm determined in the 

second part of this experiment was used. 

 

4.4  EXPERIMENTAL UNCERTAINTIES 

4.4.1  Sources of experimental uncertainties 

Diffusion coefficient measurement by the Taylor dispersion method is based on 
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the analysis of idealized Taylor dispersion behavior in a straight pipe. Any departures 

from the ideal case in real experiments result in uncertainties in the measurements. Fig. 4-

3 shows schematically difference between the ideal (Fig. 4-3A) and the real (Fig. 4-3B) 

Taylor dispersion experiments. In the ideal experiment, a δ-function type solute pulse is 

introduced in a laminar flow inside a straight cylindrical pipe. Under the combined action 

of bulk convection and molecular diffusion, the pulse disperses symmetrically, forming a 

Gaussian distributed concentration profile. The average cross-sectional concentration 

measured at the end of the pipe can be approximated by Eq. (4-6) with negligible error 

(Funazukuri et al., 2000a). In practice, however, a coiled dispersion column is usually 

applied to minimize space usage and for better temperature control. Moreover, an 

approximately rectangular pulse is injected instead of a δ-function type one, and the 

concentration of the effluent at the end of tube is averaged over a finite detection volume. 

These departures of the real experiment from the ideal one result in significant 

experimental uncertainties. Alizadeh et al. (Alizadeh et al., 1980) classified and examined 

these departures in four groups: sample injection, diffusion column geometry, 

concentration measurement, and fluid properties. In addition, flow conditions and P-T 

control (Bueno et al., 1993), dead volume (Bueno et al., 1993), and wall adsorption 

(Umezawa and Nagashima, 1992) may also contribute to experimental uncertainties.   

 

4.4.2  Peak tailing  

Peak tailing can cause large errors in diffusion coefficient measurement by the 

Taylor dispersion method. Umezawa and Nagashima (Umezawa and Nagashima, 1992) and 

van de Ven-Lucassen et al. (van de Ven-Lucassen et al., 1997) claimed that peak tailing is 
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(A) 

 

 

(B) 

 

 

Fig. 4-3  Comparison of ideal and real Taylor dispersion experiments for diffusion 

coefficient measurements. (A): A straight cylindrical tube is used a diffusion column; 

(B): A coiled cylindrical tube is used as a diffusion column. D: diameter of diffusion 

columns; Vinj: injection volume; Vdet: detection volume. 
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due to adsorption of solute onto the wall of the diffusion column. Umezawa and 

Nagashima (Umezawa and Nagashima, 1992) further pointed out that this effect becomes 

more significant in the low density range where the solvent power of CO2 is low.  

 

4.4.3  Effect of sample injection  

In real experiments, it is impossible to inject a δ-function pulse (Fig. 4-3A). 

However, a rectangular pulse (Fig. 4-3B) is produced if the sample instantaneously fills 

the rectangle upon injection. Alizadeh et al (Alizadeh et al., 1980) made corrections in the 

moment analysis by means of a perturbation treatment to account for the influence of the 

rectangular pulse on diffusion coefficient measurement. Bruno (Bruno, 1994) suggested 

that the error associated with non-δ-function pulse can be minimized by using a diffusion 

tube volume that is large with respect to the volume of the rectangular pulse. 

A new dimensionless parameter, φ, was proposed in this study to characterize the 

effect of the finite injection volume. φ
 
is defined by the ratio of equivalent length of the 

sample injected over the column diameter as follows  

 ,e injL

D
   (4-16)  

 
A

V
L

inj

inje ,  (4-17)  

where injeL , is the equivalent length of the sample injected, A  is the cross-section area of 

the diffusion column, and injV  is the injection volume. A literature survey shows a wide 

range of φ
 
values from 0.25 to greater than 100. Different combinations of injV  and D 

were examined to determine an optimal range of φ in which the influence of the finite 
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injection volume is minimized and can be neglected. 

 

4.4.4  Effect of concentration measurement 

The accuracy of diffusion coefficient measurements is directly proportional to the 

accuracy of concentration measurements. There are two aspects involved in concentration 

measurements which lead to measurement uncertainty: detector volume and detector 

linearity. The influence of detector volume is independent of the type of detector used, 

while detector linearity varies from one to another. A comprehensive theoretical analysis 

addressing the effect of finite detector volume was reported elsewhere (Alizadeh et al., 

1980). A finite detector volume results in a concentration profile of which each point is 

actually an averaged value over a finite length of the column. Similar to the treatment of 

the injection volume, an equivalent length of the detector volume was introduced to 

characterize this effect. The new parameter is defined by 

 
A

V
Le

det
det,   

(4-18)  

where detV  is the detector volume. The higher the det,eL  value is, the greater is the 

systemic error. In this work, DLe 5.2det,  .  

Different types of detectors have different linear ranges. Linearity of the UV 

detector used in the work depends on both solute concentration and the wavelength 

chosen. Also, the optimal linear range varies with wavelength. Fig. 4-4 demonstrates the 

effect of detector linearity on the accuracy of diffusion coefficient measurements. 

Assuming a linearity limit of absorbance unit (AU) AU=1, as concentration increases 

above the limit, the detector gives a lower value (experimental data) than what it should 



 

 
 

9
6 

 

 

Fig. 4-4  Demonstration of the effect of detector linearity on the accuracy of diffusion coefficient measurements. Open 

squares (□): data measured in this work for 1-methylnaphthalene at 353.15 K and 15 MPa; Filled diamonds (♦): data 

manipulated for demonstration only. 



97 

 

be (data manipulated for demonstration only), leading to a lower diffusion coefficient 

(15.5×10
-9

 m
2
/s). Under the same experimental conditions, the better linearity gives a 

higher diffusion coefficient value. Diffusion coefficients are theoretically independent of 

wavelength. Therefore, the optimal wavelength should be chosen where constant 

diffusion coefficients were obtained (Funazukuri et al., 2004). 

In this work, UV absorption spectra of diesel fuel and all surrogate compounds 

were measured. The effect of wavelength on diffusivity measurements was examined by 

measuring diffusion coefficients using different wavelengths, and the optimal wavelength 

ranges for each species were determined. 

 

4.4.5  Effect of column geometry and orientation  

It is well known that coiling of a tube brings centrifugal forces on flowing fluids, 

which creates secondary flows that can influence the dispersion process. The effect of 

tube curvature on the laminar dispersion of solute in a circular tube has been extensively 

studied (Alizadeh et al., 1980; Erdogan and Chatwin, 1967; Janssen, 1976; Nunge et al., 1972). 

Erdogan and Chatwin (Erdogan and Chatwin, 1967) treated the problem in a similar 

analytical way as Taylor (Taylor, 1953; Taylor, 1954) did for straight tubes using the 

velocity distribution of Dean (Dean, 1927; Dean, 1928) and predicted that the dispersion 

coefficient is always reduced by the curvature for all common liquids and most gases if 

the radius of the curvature is sufficiently large. Nunge et al.(Nunge et al., 1972), 

employing the velocity distribution of Topakoglu (Topakoglu, 1967), extended the previous 

analysis to small curvature and found that the dispersion coefficient may be increased 

substantially by curvature in low Reynolds number flows. The authors (Nunge et al., 1972) 
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attributed this behavior to the opposing impacts of the asymmetric axial velocity 

distribution, which tends to increase dispersion, and the secondary flow, which decreases 

the dispersion by creating a transverse mixing. Employing results of the previous study, 

Alizadeh et al. (Alizadeh et al., 1980) established conditions under which the effects of 

curvature are negligible, which provided a useful guide for the design of experiment for 

diffusivity measurements.  

A dimensionless group, ScDe , has been successfully formulated and applied to 

characterize the effect of curvature (Alizadeh et al., 1980; Bueno et al., 1993). The Dean 

number (De) and the Schmidt number (Sc) are defined as 

 ce RRD Re  
(4-19)  

 
12D

Sc



  

(4-20)  

where Re is the Reynolds number, R is the radius of the column,  Rc is the radius of the 

diffusion column coil, and μ and ρ are viscosity and density of the solvent, respectively. 

The secondary flow effects become negligible providing the following restriction 

is satisfied (Alizadeh et al., 1980; Funazukuri et al., 2000a; Liong et al., 1991) 

 De Sc   (4-21)  

Various   values were reported in the literature including 4.5 (Alizadeh et al., 1980), 8 

(Funazukuri et al., 2000a), and 10 (Liong et al., 1991). In this work,   was less than 7.5. 

All studies referred above were based on the assumptions that the mobile phase 

was incompressible and the density of the solute/mobile phase mixture was constant and 

independent of solute concentration. When the density of the solute differs from that of 
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the mobile phase and the density of the mixture depends on solute concentration, which is 

inevitably encountered in most SCF systems, the problem becomes much more 

complicated. Density gradients induce buoyancy forces which may cause significant 

uncertainties in diffusivity measurements. Reejhsinghani et al. (Reejhsinghani et al., 1966) 

observed the impact of density difference on dispersion in horizontal tubes. Erdogan and 

Chatwin (Erdogan and Chatwin, 1967) also studied this issue and concluded that the effect 

of buoyancy forces was related to the magnitude of Peclet numbers. Buoyancy effects 

have also been recognized in other transport property measurements (Laesecke et al., 1999). 

Coiled columns used in diffusion coefficient experiments were usually installed 

either horizontally (Ago and Nishiumi, 1999; Funazukuri et al., 2000b; Lai and Tan, 1995; 

Pizarro et al., 2009a; Yang et al., 2000) or vertically (Bueno et al., 1993; Fu et al., 2000; 

Funazukuri and Nishimoto, 1996; Nishiumi et al., 1996) depending on the temperature control 

instrument used. Less attention, however, has been given to the understanding of the 

impact of column orientation on measurements of diffusion coefficients in supercritical 

fluids. In studying diffusion coefficients of benzene in SCCO2, Funazukuri and 

Nishimoto (Funazukuri and Nishimoto, 1996) found that diffusion coefficients measured 

using the horizontally-installed column were higher than those measured using the 

vertically-installed one. Nishiumi et al. (Nishiumi et al., 1996) studied the effect of column 

orientation on diffusion coefficients of acetone in SCCO2 at 314.25 K and various 

pressures. Their results showed a good agreement with Funazukuri and Nishimoto’s 

findings (Funazukuri and Nishimoto, 1996) when pressure was less than 17 MPa. For 

pressures above 17 MPa, the effect of column orientation was reduced. The authors 

further pointed out that a vertical orientation should be avoided due to complicated 
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buoyancy effects especially near the critical point. In supercritical fluid systems, the 

impact of column orientation may become more significant due to substantial density 

difference between injected samples and SCFs. Further investigations are necessary to 

address this issue. 

In this work, the effect of column orientation was examined. Diffusion 

coefficients of benzene in SCCO2 were measured using a column either vertically-

installed in the GC oven (Fig. 4-2B) or horizontally-installed in the water bath (Fig. 4-2C).  

 

4.4.6  Effect of mean velocity  

The mean velocity, U, is an important parameter that practically affects diffusion 

coefficient measurements, although diffusion coefficients are theoretically independent of 

U. A typical relationship between measured diffusion coefficients and U is shown in Fig. 

4-5 (Bueno et al., 1993; Funazukuri et al., 1991; Funazukuri et al., 1989; Mantell et al., 2003; 

Yang et al., 2000). As U is reduced from a high level, the measured diffusion coefficient 

decreases initially and then reaches a constant value which is the real value of diffusion 

coefficient. The increase of measured diffusion coefficient with increasing U is known as 

a consequence of the secondary flow effects due to tube coiling. Therefore, accurate 

diffusion coefficients can be determined only within a limited range of U. This limited 

range within which measured diffusion coefficients are independent of U is defined in 

this work as the optimal velocity range (OVR). Various OVRs were reported in the 

literature (Bueno et al., 1993; Fu et al., 2000; Funazukuri et al., 1991; Funazukuri and Nishimoto, 

1996; Funazukuri et al., 1989; Lai and Tan, 1995; Mantell et al., 2003). However, no 

information is available about whether or not the OVR is affected by other operation  
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Fig. 4-5  Typical relationship between measured diffusion coefficient and U. 
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conditions. 

In this work, the effect of mean velocity was examined. Diffusion coefficients of 

benzene in SCCO2 were measured over a wide velocity range. A new D12-U relationship 

pattern diagram was generalized based on the current findings.   

 

4.5  MODELING OF EXPERIMENTAL DATA USING PREDICTIVE 

CORRELATIONS 

Three predictive correlations were evaluated with diffusion coefficients measured 

in this work, including Wilke-Chang (Poling et al., 2001), Scheibel (Scheibel, 1954) and He-  

Yu (He and Yu, 1998). Data were also fitted by 12 /D T   (Funazukuri et al., 2006) and 

TD1 2  correlations. 

The Wilke-Chang correlation (Poling et al., 2001) given in Eq. (4-22) is a semi-

empirical modification of the Stokes-Einstein relation and has been widely employed for 

diffusion coefficient estimation: 

 
 

1 2

215

12 0.6

2 1,

7.4 10
b

T MW
D

V





   (4-22)  

where MW2 is the molecular weight of the solvent in g/mol, μ 2 is the viscosity of the 

solvent in Pa.s, ψ is a dimensionless association factor of the solvent, and V1,b is the 

molar volume in 10
-6

 m
3
/mol of the solute at its normal boiling temperature. V1,b can be 

estimated from the critical volume by the Tyn and Calus method (Poling et al., 2001) 

 
0 4 8.1285.0 cb VV   (4-23)  

where subscript c indicates the critical point.  
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The Scheibel correlation (Scheibel, 1954) reads 

 

2/3

2,

1,
15

12 1/3

2 1,

3
1
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b

b

b

V
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V
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

  
          

(4-24)  

where V2,b is the molar volume of solvent at its normal boiling temperature. 

The Hu-Yu correlation (He and Yu, 1998) has the following form 

 

1/2

2,9
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1 2 2,

0.3887
10 exp

0.23

c

c
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D B
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
  

         
 (4-25)  
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  
     

 
 (4-26)  

The 12 /D T   correlation given by Eq. (4-27) is valid for various compounds at 

supercritical conditions (Funazukuri et al., 2006): 

 12
2

D

T

  (4-27)  

The TD1 2  correlation proposed in this work has a form very similar to the 

12 /D T   correlation: 

 
12

2

D

T

  (4-28)  

where 2 is the density of SCCO2 in kg/m
3
. β and γ in Eq. (4-27) and δ and ξ in Eq. (4-28) 

are constants to be fitted by experimental data. Units of other variables in Eqs. (4-23) - 

(4-28) are the same as described for Eq. (4-22). 
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4.6  RESULTS AND DISCUSSIONS 

4.6.1  Physical properties 

Physical properties of CO2 used in this work were calculated using the NIST 

Chemistry WebBook (Linstrom and Mallard, 2009). Properties used in modeling of 

experimental data are given in Table 4-1. Density of CO2 is also presented as a function 

of pressure in Fig. 4-6. Also presented in this figure is density of benzene provided by the 

supplier. Highlighted by red diamonds in Fig. 4-6 are conditions where diffusivities of 

benzene in SCCO2 were measured to understand experimental uncertainties. 

 

4.6.2  Validation of the apparatus 

Before acquiring data for diesel fuel and surrogate compounds, diffusion 

coefficients of benzene in SCCO2 were measured under different conditions and 

compared with data from literature to validate the reliability of the apparatus assembled 

in this work. Data presented in this section were obtained using the 0.508 mm I.D. 

column in the vertical orientation. Fig. 4-7 shows diffusion coefficients of benzene in 

SCCO2 as a function of the density of CO2. A good agreement with literature data (Bueno 

et al., 1993; Funazukuri and Nishimoto, 1996; Levelt Sengers et al., 1993; Sassiat et al., 1987; 

Suárez et al., 1993; Swaid and Schneider, 1979) validates the reliability of the measurements 

in this study. All literature data presented in Fig. 4-7 are listed in Appendix C. 

 

4.6.3  Diffusion coefficients of diesel fuel and surrogate compounds in 

SCCO2 

Diffusion coefficients of benzene, toluene, m-xylene, 1-hexadecene, 1-methyl-  
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Table 4-1  Physical properties of CO2 as a function of temperature and pressure. 

          

T, K P, MPa ρ, kg/m
3 

V, 10
-6 

m
3
/mol μ, 10

-5
 Pa﹒s 

304.13
a 

7.38
a 

467.60 94.12 n/a 

313.15 10 628.61 70.01 4.78 

313.15 20 839.81 52.40 7.83 

313.15 30 909.89 48.37 9.38 

333.15 10 289.95 151.79 2.38 

333.15 15 604.09 72.85 4.61 

333.15 20 723.68 60.81 6.00 

333.15 30 829.71 53.04 7.68 

353.15 10 221.60 198.60 2.20 

353.15 15 427.15 103.03 3.25 

353.15 20 593.89 74.10 4.60 

353.15 30 745.60 59.03 6.38 

373.15 10 188.56 233.39 2.18 

373.15 20 480.53 91.58 3.72 

373.15 30 661.87 66.49 5.40 

              

 
a
 Critical point. 
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Fig. 4-6  Density of benzene and CO2 as a function of pressure. 
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Fig. 4-7  Diffusion coefficients of benzene in SCCO2 as a function of the density of CO2: a comparison with literature data. 

References: [1] (Levelt Sengers et al., 1993), [2] (Ago and Nishiumi, 1999), [3] (Nishiumi and Kubota, 2007), [4] (Funazukuri et al., 

2001), [5] (Funazukuri and Nishimoto, 1996), [6] (Sassiat et al., 1987), [7] (Swaid and Schneider, 1979), [8] (Suárez et al., 1993), and 

[9] (Bueno et al., 1993). TW: This Work. 
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naphthalene and diesel fuel in SCCO2 were measured at 313.15-373.15 K and 10-30 MPa 

using the 0.508 mm I.D. column in the vertical orientation. Results are presented in Table 

4-2 and Table 4-3, showing that diffusion coefficients increased with increasing 

temperature but decreasing pressure. Under the same conditions, diffusion coefficients 

decreased with increasing molecular weight in the order of benzene, toluene, m-xylene, 

1-methylnaphthalene, and then 1-hexadecene. Measured diffusion coefficients of diesel 

fuel were generally lower than those of all other compounds largely due to its mixture 

characteristics.  

Diffusion coefficients and their corresponding errors evaluated by Eq. (4-15) are 

plotted as a function of the density of CO2 in Fig. 4-8, illustrating that both diffusion 

coefficients and curve-fitting errors generally increased with decreasing density of CO2. 

However, when the density of CO2 reduced across the critical density, measured diffusion 

coefficients dropped, associated with a significant increase in curve-fitting errors as 

shown for 1-methylnaphthalene, 1-hexadecene and diesel fuel in Fig. 4-8. Furthermore, 

diffusivities could not be obtained for these compounds at lower CO2 densities due to 

significant peak tailing. For benzene, toluene and m-xylene, the same behavior is 

expected as shown previously (Nishiumi and Kubota, 2007) followed by large rebound in 

diffusivity values as the density of CO2 moves below 300 kg/m
3
. This abnormality is 

largely due to the reduced solubilities of these solutes in SCCO2 and shows the difficulty 

in measuring diffusion coefficients near critical regions by the Taylor dispersion method. 

Thus, a better understanding of phase equilibria of solute-solvent systems is helpful for 

an improved design of Taylor dispersion experiments. Also, this abnormality may be 

improved by reducing injection volume or using a larger-diameter diffusion column.
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Table 4-2  Diffusion coefficients of benzene, toluene, m-xylene, 1-hexadecene, 1-

methylnaphthalene and diesel fuel in SCCO2 at 313.15 and 333.15 K and 10-30 MPa. 

 

P 

MPa 

D12, 10
-9 

m
2
/s 

313.15 K 333.15 K 

Avg. Max. Min. Std. Avg. Max. Min. Std. 

 Benzene 

10 15.24 16.53 14.00 0.95 21.73 22.64 20.35 0.97 

20 11.86 12.30 11.15 0.53 14.09 14.82 13.46 0.56 

30 9.10 9.32 8.80 0.18 11.75 11.97 11.39 0.27 

 Toluene 

10 13.25 14.70 12.12 1.10 21.51 22.81 20.76 1.13 

20 11.24 11.59 10.80 0.35 12.83 13.41 12.35 0.44 

30 9.07 9.46 8.63 0.42 10.58 11.35 10.03 0.61 

 m-Xylene 

10 12.78 14.07 12.14 0.68 19.08 20.34 17.67 1.17 

20 10.57 11.57 9.98 0.75 11.97 12.38 11.56 0.34 

30 8.13 8.51 7.92 0.28 10.02 10.26 9.91 0.16 

 1-Hexadecene 

10 8.81 11.2 7.12 1.29     

15     11.82 13.22 10.52 1.35 

20 7.94 9.02 6.85 0.89 9.92 10.14 9.51 0.36 

30 5.48 5.82 5.17 0.33 7.32 7.65 7.08 0.28 

 1-Methylnaphthalene 

10 11.11 11.77 10.76 0.57     

15     12.57 13.11 11.88 0.51 

20 9.37 9.80 8.99 0.34 10.65 10.73 10.59 0.07 

30 7.26 7.62 6.81 0.38 8.88 8.99 8.82 0.07 

 Diesel fuel 

10 8.71 9.37 8.10 0.64     

15     10.19 10.28 10.12 0.08 

20 7.41 7.48 7.35 0.06 8.98 9.20 8.84 0.17 

30 6.05 6.08 6.00 0.05 7.39 7.48 7.27 0.11 
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Table 4-3  Diffusion coefficients of benzene, toluene, m-xylene, 1-hexadecene, 1-

methylnaphthalene and diesel fuel in SCCO2 at 353.15 and 373.15 K and 10-30 MPa. 

 

P 

MPa 

D12, 10
-9 

m
2
/s 

353.15 K 373.15 K 

Avg. Max. Min. Std. Avg. Max. Min. Std. 

 Benzene 

10 41.59 43.45 37.35 2.85 47.55 52.31 43.60 4.30 

20 17.80 18.96 16.99 0.89 25.07 26.47 23.86 1.39 

30 14.50 15.03 14.06 0.49 17.08 17.93 15.95 0.93 

 Toluene 

10 32.99 35.69 30.08 2.47 44.67 45.83 42.49 1.89 

20 16.72 18.93 14.95 1.92 23.29 24.07 22.61 0.61 

30 13.44 14.39 12.90 0.66 16.30 17.09 15.10 0.94 

 m-Xylene 

10 32.11 34.01 30.59 1.57 37.74 40.38 35.12 2.25 

20 16.86 19.74 15.47 1.56 22.87 24.65 21.70 1.25 

30 12.38 13.11 11.87 0.59 15.36 16.13 14.75 0.66 

 1-Hexadecene 

10         

15 13.23 14.85 11.89 1.22     

20 13.08 13.86 11.93 1.02 14.75 15.32 13.71 0.73 

30 9.26 10.88 8.63 0.95 12.29 12.85 11.60 0.64 

 1-Methylnaphthalene 

10         

15 14.78 15.77 13.35 1.02     

20 13.15 14.33 12.52 0.83 17.12 19.13 15.41 1.96 

30 10.97 11.35 10.64 0.36 13.09 13.91 12.19 0.82 

 Diesel fuel 

10         

15 10.45 11.29 9.51 0.89     

20 11.88 11.97 11.65 0.15 13.80 14.04 13.41 0.34 

30 8.75 8.91 8.63 0.11 10.74 11.00 10.41 0.24 
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Fig. 4-8  Diffusion coefficients of benzene, toluene, m-xylene, 1-hexadecene, 1-

methylnaphthalene and diesel fuel in SCCO2 (top) and corresponding curve-fitting errors 

(bottom) as a function of the density CO2. Errors bars indicate standard deviation. 
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4.6.4  Modeling of experimental data using predictive correlations 

As described in section 4.5, five predictive correlations were evaluated using data 

obtained in this work. They are Wilke-Chang, Scheibel, He-Yu, 12 /D T   and 

TD12  correlations. Properties of pure compounds used in this evaluation are given 

in Table 4-4. Diffusion data with ε > 5% were excluded from these evaluations. Fig. 4-9 

plots diffusion coefficients as a function of T/µ, showing a near linear relationship 

between them. However, this relationship with non-zero intersections was found to be 

slightly different than the Stokes-Einstein relation, and agrees with observations reported 

in the literature (Silva et al., 2004). Results of calculations are presented in Table 4-5. It was 

found that the He-Yu correlation had the best prediction performance with AAD of ~ 6.5-

12.5% followed by the Wilke-Chang correlations. The Scheibel correlation had worst 

predicting capability with AAD% > 20% except for 1-hexadecene. The performance of 

the Wilke-Chang correlation could be improved considerably by varying ψ values. 

Results also show that the 12 /D T   correlation fitted the data better than did the 

TD12  correlation with AAD of ~ 3-7.5%. 

A comparison of predicted and measured D12 of benzene in CO2 is presented in 

Fig. 4-10. It shows that the 12 /D T   and TD12  correlations give best predictions. 

The Wilke-Chang and Scheibel correlations predict higher values than measured ones, 

while the He-Yu correlation gives higher predictions when D12 is below ~ 30 ×10
-9

 m
2
/s 

but lower predictions when D12 is above ~ 30 ×10
-9

 m
2
/s. 
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Table 4-4  Properties for pure compounds. 

 

Species 
MW 

kg/kmol 

Vc  

10
-6

 m
3
/mol 

Vb 

10
-6

 m
3
/mol 

Carbon Dioxide 44.01 94.12
a 

33.36 

Benzene 78.11 256.00
b 

95.21 

Toluene 92.14 316.00
b 

118.72 

m-Xylene 106.17 375.00
b 

142.05 

1-Hexadecene 224.43 978.00
c 

387.90 

1-Methylnaphthalene 142.20 462.00
b 

176.76 

 

a
 Data from NIST (Linstrom and Mallard, 2009). b Data from Poling et al. (Poling et al., 2001). 

c 
Data from Wakeham et al. (Wakeham et al., 2002). 
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Fig. 4-9  D12-T/ε correlation for diffusion coefficients of benzene, toluene, m-xylene, 1-hexadecene, 1-methylnaphthalene 

and diesel fuel in SCCO2. 
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Table 4-5  Results of modeling of diffusion coefficients by predictive correlations. 

 

Species 

Wilke-Chang Scheibel He-Yu D12/T-µ D12/T
0.5

-ρ 

AAD% 

(ψ=1) 
ψ 

AAD

% 
AAD% AAD% β×10

14
 γ AAD% δ×10

7
 ξ AAD% 

Benzene 18.66 0.67 5.80 28.96 12.06 3.29 -0.97 5.70 3.31 -0.92 5.84 

Toluene 14.70 0.70 8.32 24.42 10.31 5.07 -0.90 6.96 2.14 -0.87 7.34 

M-xylene 11.72 0.74 6.93 20.47 9.38 4.88 -0.90 4.87 1.77 -0.85 8.59 

1-Hexadecene 22.07 1.39 8.35 10.10 6.56 6.89 -0.81 7.26 24.9 -1.29 9.47 

1-Methylnaphthalene 13.99 0.69 10.21 21.93 9.14 26.5 -0.65 3.33 6.73 -1.07 4.19 

Diesel fuel      20.9 -0.65 3.70 5.92 -1.08 4.89 
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Fig. 4-10  A comparison of predicted and measured D12 of benzene in CO2. 
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4.6.5  Experimental uncertainties 

4.6.5.1  Peak tailing 

Significant peak tailings were observed in this work, especially for 1-hexadecene, 

1-methylnaphthalene and diesel fuel, when the density of SCCO2 was below the critical 

value. Examples of peak tailing are illustrated in Fig. 4-11. The formation of peak tailing 

is likely the consequence of the combined effects of reduced solubility and wall 

absorption. As the density of CO2 decreases, solubilities of these species in CO2 decrease. 

At relatively low density, CO2 is unable to quickly solubilize the injected sample, leading 

to a multiphase flow in the diffusion column for a non-negligible period of time. The 

sample phase is more likely to stick to the wall and hence, peak tailing forms. Significant 

peak tailing was also observed for benzene in the near-critical region of CO2 (Fig. 4-12 

top). As pressure increased and hence solubility of benzene in CO2 increased, peak tailing 

reduced significantly (Fig. 4-12 middle) and then disappeared (Fig. 4-12 bottom). 

Strategies to minimize the solubility effect include pre-solubilizing a sample (Fu et al., 

2000) and reducing injection volume. The effect of injection volume will be further 

discussed in section 4.6.5.3. 

 Temperature gradients along the column, especially in the injection valve and the 

detector regions, may also result in peak tailing.  Fig. 4-13 shows that when the injection 

valve, the detector and connections to the column were not insulated, temperature 

gradients induced significant peak deformation.  

Peak tailing significantly affects the accuracy of diffusivity measurements. 

Therefore, in this study, the experimental apparatus was carefully designed and built to 

minimize peak tailing and/or deformation.  
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Fig. 4-11  Typical peak tailing of 1-hexadecene (top), 1-methylnaphthalene (middle) and 

diesel fuel (bottom) observed at 333.15 K and 10 MPa using the 0.508 mm column in the 

vertical orientation. 
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Fig. 4-12  The effect of pressure on the shape of benzene dispersion peaks. Open blue 

diamonds: experimental data; solid red lines: predictions by Eq. (4-6). Benzene 

dispersion peaks were obtained at 313.15 K and 7.5 (top), 8.5 (middle), and 10 (bottom) 

MPa using the 0.508 mm I.D. column in the vertical orientation. 
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Fig. 4-13  The effect of temperature gradients in the injection and the detection regions 

on the shape of benzene dispersion peaks. Peaks were obtained at 313.15 K and 10 MPa 

using the 0.508 mm I.D. column in the vertical orientation. Top: connections were not 

insulated; bottom: connections were insulated.  
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4.6.5.2  Effect of wavelength 

Linearity of a UV detector depends on wavelength. For the same species, different 

wavelengths may exhibit different linear ranges. An optimal wavelength is such that 

absorbance of any point in a dispersion peak falls in the linear range. Funazukuri et al. 

(Funazukuri et al., 2004) selected the optimal wavelength for any compound within a range 

where constant diffusion coefficients were obtained. A new hypothesis was proposed in 

this work: an optimal wavelength for any compound is such that the measured diffusion 

coefficient is maximized. This hypothesis was validated in the following way. First, 

spectra of species of interest were determined. Second, diffusion coefficients were 

measured using different wavelengths. Finally, diffusion coefficients were measured 

using different initial concentration and different wavelengths.    

Each chemical has different UV light sensitivity, which depends on the type of 

chemical bonds within the chemical and varies with wavelength. Fig. 4-14 shows an 

example of UV absorbance spectra determined in this work. As experimental conditions 

change, concentration profiles change and hence, UV absorbance spectra show some 

different shapes as shown in Fig. 4-16 as compared to Fig. 4-14 for 1-methylnaphthalene. 

Fig. 4-15 and Fig. 4-16 demonstrate the effect of wavelength on diffusion coefficients. 

Experimental data were obtained at 313.15 K and 10 MPa using the 0.508 mm column in 

the vertical orientation. It was found that diffusion coefficients of benzene, toluene and 

m-xylene exhibit very similar patterns of wavelength dependence due to similar 

molecular structures. They achieve near constant values in the wavelength ranges where 

the first half of the spectrum peaks are located and decrease when the wavelength moves 

below or beyond the ranges. This finding agrees well with observation for benzene by
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Fig. 4-14  Typical UV absorbance spectra of benzene (2), toluene (3), m-xylene (4), 1-hexadecene (1), 1-methylnaphthalene 

(5) and diesel fuel (6). 
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Fig. 4-15  Effect of wavelength on diffusion coefficients of benzene (top), toluene 

(middle) and m-xylene (bottom). Experiments were conducted at 313.15 K and 10 MPa. 

Solid lines: spectra; triangles: diffusion coefficients. 
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Fig. 4-16  Effect of wavelength on diffusion coefficients of 1-hexadecene (top) and 1-

methylnaphthalene (bottom). Experiments were conducted at 313.15 K and 10 MPa. 

Solid lines: spectra; triangles: diffusion coefficients. 
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Funazukuri et al. (Funazukuri et al., 2001). The diffusion coefficient of 1-hexadecene 

increased as wavelength increased and reached near constant beyond 205 nm, while that 

of 1-methylnaphthalene presented a maximum value at the wavelength where a sharp 

decrease in the absorbance unit occured. Wavelength dependence of diffusivity of DF 

was not determined due to the complex mixture nature of DF. It is worth pointing out that 

diffusion coefficients presented in Fig. 4-15 and Fig. 4-16 were obtained in more than one 

set of experiments using the single-wavelength detection mode. This results in 

discernable data fluctuations as shown, in particular, for m-xylene and 1-

methylnaphthalene.  

In order to further verify the criteria used to determine optimal wavelengths, 

dispersion peaks of benzene injected as solutions in hexane with varying concentrations 

were measured. The ratio of peak area over residence time, which is directly proportional 

to the mass of benzene injected, is plotted as a function of benzene concentration in Fig. 

4-17. The best linearity was found at 230 nm followed by 240 nm. Further verification 

was done by using the dual-wavelength detection mode and similar results were obtained. 

Accordingly, it is concluded that when a UV detector is used in diffusion coefficient 

measurements, the maximum value found at the wavelength where the best linearity is 

achieved is closest to the true diffusion coefficients. Table 4-6 summarizes optimal 

wavelength ranges determined in this work. Also listed in this table are the wavelengths 

used in the dual-wavelength mode to obtain data presented in other sections of this 

chapter.  

 

4.6.5.3  Effect of sample injection 
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Fig. 4-17  Detector linearity for benzene at various wavelengths. 
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Table 4-6  Optimal ranges of wavelength determined and wavelengths used in the 

experiments. 

 

Species 
Wavelength, nm 

Optimal range λ1 λ2 

Benzene 230-235 230 235 

Toluene 235-240 235 240 

m-Xylene 235-240 235 240 

1-Hexadecene 205-215 210 215 

1-Methylnaphthalene 305-315 310 305 

Diesel fuel 280-290 290 285 
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As described in section 4.4.3, different combinations of injV  and D, giving a wide 

range of φ values, were examined to determine an optimal range of φ in which the 

influence of the finite injection volume is minimized and can be neglected. These 

combinations are listed in Table 4-7.  

Diffusion coefficients of benzene in SCCO2 at 313.15 K and 10 MPa were 

measured using these different combinations to reveal the effect of θ. In the experiment, 

columns were vertically installed. Results are presented in Fig. 4-18, demonstrating a 

significant effect of θ on diffusion coefficient measurements. As θ increased from 1.4 to 

4.9, measured diffusion coefficients decreased slightly associated with a small increase in 

curve-fitting errors. However, as θ further increased to 38.9, significant reduction of 

measured diffusion coefficients was observed associated with a substantial increase in 

curve-fitting errors. When the 5 μL injection volume was used, which gives a θ value of 

388.5, no normal dispersion perks were obtained. Reduction of measured diffusion 

coefficients with increasing θ is mainly due to the violation of the δ-function-pulse 

injection assumption and the solubilization effect as mentioned in section 4.6.5.1. As θ 

increases, the equivalent length, Le, increases, which makes the initial conditions away 

from the delta-function-pulse assumption. On the other hand, it takes longer time for the 

sample to be solubilized by the mobile phase, which results in non-negligible peak tailing.  

Therefore, it can be concluded that θ is an effective parameter to characterize the 

effect of sample injection. The smaller the θ value, the more accurate the measurements. 

θ values can be minimized by either reducing the injection volume or increasing the 

column diameter. Also, the results suggest that a θ value below 5 would give good 

accuracy. 
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Table 4-7  Different combinations of  and D examined in this study. 

 

 , μL D, mm θ 

0.5 0.762 1.4 

0.5 0.508 4.9 

0.5 0.254 38.9 

5 0.254 388.5 
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Fig. 4-18  Effect of φ on diffusion coefficients (top) and curve-fitting errors (bottom). 

Error bars represent standard deviation. Experimental data are for benzene and were 

obtained at 313.15 K and 10 MPa using vertically installed columns. 
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4.6.5.4  Effect of the mean velocity 

To advance the understanding of the effect of the mean velocity on diffusion 

coefficient measurements, diffusion coefficients of benzene in SCCO2 at given T-P 

conditions were measured using different mean velocities from 0.002–0.025 m/s. 

Experiments were conducted at 313.15 and 333.15 K and 9-15 MPa using the I.D. 0.762 

mm column. The column was vertically installed in the GC oven. Results are plotted in 

Fig. 4-19 and Fig. 4-20 and also presented in Appendix D.  

Fig. 4-19 presents measured diffusion coefficients (top) of benzene in SCCO2 and 

corresponding curve-fitting errors (bottom) as a function of U at 313.15 K for the vertical 

orientation. At 15 MPa, as U reduced, measured diffusion coefficients decreased and then 

reached a constant value, which was in a good agreement with previous findings (Bueno 

et al., 1993; Funazukuri et al., 1991; Funazukuri et al., 1989; Mantell et al., 2003; Yang et al., 

2000) as demonstrated in Fig. 4-5. As pressure reduced down toward 9.5 MPa, diffusion 

coefficients increased and the D12 curves moved upward accordingly. Different to the 

pattern shown in Fig. 4-5, however, measured diffusion coefficients decreased further 

when U reduced below ~0.005 m/s. As pressure decreased, the U at which the decline 

started to occur increased, leading to a narrower OVR within which accurate diffusion 

coefficients could be determined. At 9 MPa, measured diffusion coefficients increased 

with increasing U in the entire velocity range, which implies that diffusion coefficients 

cannot be determined accurately under these conditions when the column is installed 

vertically. Moreover, curve-fitting errors increased significantly at low U, for example, 

from ~ 1% to ~ 3.5% at 10 MPa, as shown in Fig. 4-19, which implies that disturbance to 

the ideal Taylor dispersion became more pronounced as U decreased.  
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Fig. 4-19  Measured diffusion coefficients (top) of benzene in SCCO2 and corresponding 

curve-fitting errors (bottom) as a function of the mean velocity at 313.15 K for the 

vertical orientation. The solid lines in the top figure connect the data points. The solid 

lines in the bottom figure are trend lines. 
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Fig. 4-20  Measured diffusion coefficients (top) of benzene in SCCO2 and corresponding 

curve-fitting errors (bottom) as a function of the mean velocity at 333.15 K for the 

vertical orientation. The solid lines in the top figure connect the data points. The solid 

lines in the bottom figure are trend lines. 
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Similar D12-U-P behavior was observed at 333.15 K as shown in Fig. 4-20. By 

comparing two sets of data obtained at different temperatures for the same column 

orientation, it was found that the increase in temperature required a higher pressure to 

achieve an OVR. Both reducing pressure and increasing temperature result in lower CO2  

density and hence higher density difference between the SCCO2 phase and the sample 

phase. Therefore, care must be taken in diffusion coefficient measurements when the     

density difference between the mobile phase and the sample phase is relatively high and 

the column is vertically installed.  

In brief, results obtained in this set of experiments where the column was installed 

vertically disclosed two new phenomena. First, significant decline of measured diffusion 

coefficients occurred when U was relatively low. Second, measured diffusion coefficients 

were dependent on U in the entire velocity range at relatively low mobile phase density 

(< 580 kg/m
3
). Accordingly, it may be concluded that accurate diffusion coefficients can 

be determined only within a limited range of operating conditions, when the column is in 

the vertical position.  

New phenomena observed in the vertically-installed column are believed to be the 

consequence of the combined effects of buoyancy forces induced by density deference 

between benzene and SCCO2 and secondary flows due to tube curvature. In a horizontal 

straight tube, as Reejhsinghani et al. (Reejhsinghani et al., 1966) explained, the density 

deference has two effects. On one hand, the axial density gradient causes an axial 

pressure gradient and hence a change in the axial velocity distribution which may 

increase the dispersion and is critical in calculating dispersion coefficients (Nunge et al., 

1972). On the other hand, the radial variation of density can also induce secondary flows. 
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When the tube is coiled but still in horizontal position, the secondary flows are enhanced 

by superimposition of the effects of radial density variation and tube curvature, while the 

buoyancy effects are insignificant for the buoyancy forces are perpendicular to the axial 

velocity. When the coil is placed vertically, however, the buoyancy forces become 

parallel to the axial velocity plane, which is claimed to be the main cause of the reduction 

of measured diffusion coefficients especially when the density difference is significant 

and U is relatively low. To support this explanation, the column was moved from the GC 

oven and placed horizontally in the water bath where the preheating coil was located. 

Experiments were repeated under the same temperature and pressure conditions. Results 

and discussions are presented in the following sections. 

 

4.6.5.5  Effect of column orientation 

Diffusion coefficients and corresponding curve-fitting errors obtained at 313.15 

and 333.15 K for the horizontal orientation are presented in Fig. 4-21 and Fig. 4-22, 

respectively, demonstrating very similar D12-U-P behavior as observed for the vertical 

orientation. For a better comparison, data obtained at the same T-P conditions for both 

orientations are plotted in the same figure and presented in Fig. 4-23 to Fig. 4-32. It was 

found that at 40 
o
C and 9 MPa (Fig. 4-23) and 60 

o
C and 9-14 MPa (Fig. 4-28 to Fig. 4-31), 

OVRs appeared to be associated with substantial increase of measured diffusion 

coefficients and significant reduction of curve-fitting errors, when the column was 

switched from vertical to horizontal orientation. This suggests that under these 

temperature and pressure conditions, the vertical position of a column should be avoided 

in diffusion coefficient measurements when using the chromatographic technique.  



 

136 

 

 

 
 

 

Fig. 4-21  Measured diffusion coefficients (top) of benzene in SCCO2 and corresponding 

curve-fitting errors (bottom) as a function of the mean velocity at 313.15 K for the 

horizontal orientation. The solid lines in the top figure connect the data points. The solid 

lines in the bottom figure are trend lines. 
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Fig. 4-22  Measured diffusion coefficients (top) of benzene in SCCO2 and corresponding 

curve-fitting errors (bottom) as a function of the mean velocity at 333.15 K for the 

horizontal orientation. The solid lines in the top figure connect the data points. The solid 

lines in the bottom figure are trend lines. 
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Fig. 4-23  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 313.15 K and 9 MPa for both vertical and horizontal 

column orientations. The solid lines in the top figure connect the data points. The solid 

lines in the bottom figure are trend lines. 
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Fig. 4-24  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 313.15 K and 9.5 MPa for both vertical and horizontal 

column orientations. 
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Fig. 4-25  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 313.15 K and 10 MPa for both vertical and horizontal 

column orientations. 
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Fig. 4-26  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 313.15 K and 12 MPa for both vertical and horizontal 

column orientations. 
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Fig. 4-27  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 313.15 K and 15 MPa for both vertical and horizontal 

column orientations. 



 

143 

 

 

 
 

 

Fig. 4-28  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 333.15 K and 9 MPa for both vertical and horizontal 

column orientations. 
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Fig. 4-29  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 333.15 K and 10 MPa for both vertical and horizontal 

column orientations. 



 

145 

 

 

 
 
 

Fig. 4-30  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 333.15 K and 12 MPa for both vertical and horizontal 

column orientations. 
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Fig. 4-31  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 333.15 K and 14 MPa for both vertical and horizontal 

column orientations. 
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Fig. 4-32  Measured diffusion coefficients of benzene in SCCO2 (top) and corresponding 

curve-fitting errors (bottom) at 333.15 K and 15 MPa for both vertical and horizontal 

column orientations. 
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Moreover, improvements were found to be much more significant at the low U end that 

favors the buoyancy effects as shown in Fig. 4-23, Fig. 4-24, and Fig. 4-28 to Fig. 4-32. 

These results strongly support the argument that the buoyancy forces due to density 

difference play an important role in dispersion and may significantly influence diffusion 

coefficient measurements. Finally, as clearly demonstrated in Fig. 4-28 to Fig. 4-32, the 

difference between two D12 curves decreased as pressure (or density) increased. This can 

be explained by the competing relationship between the buoyancy forces and the inertial 

forces. Higher pressure results in lower density difference and higher viscosity, which 

reduces the impact of the buoyancy forces on the dispersion process. 

Diffusion coefficients of benzene in SCCO2 were determined by averaging 

measured values within OVRs. Under those conditions where no OVR existed for the 

vertical orientation, diffusion coefficients were interpolated at U of 0.008 m/s (333.15 
o
C, 

9-14 MPa) (Fig. 4-28 to Fig. 4-32). Results are plotted in Fig. 4-33 as a function of CO2 

density, more explicitly demonstrating the non-negligible impact of column orientation 

on diffusion coefficient measurements. It was found that when CO2 density was below ~ 

580 kg/m
3
, diffusion coefficients obtained when the column was installed horizontally 

were higher than those determined when the column was in the vertical position. Higher 

CO2 density beyond that value resulted in opposite outcomes, which is contradictory to 

previous findings (Funazukuri and Nishimoto, 1996). Further investigations are required to 

address this issue. Additionally, the difference between two sets of data decreased as CO2 

density increased. 

 

 



 

149 

 

  
 

 
 

Fig. 4-33  Comparison of diffusion coefficients obtained in vertically- and horizontally-

installed columns. V: vertical; H: horizontal. The solid lines connect the data points. 



 

150 

 

4.6.5.6  A new generalized D12-U pattern diagram 

A new pattern diagram of D12-U relationship was generalized based on current 

results and is presented in Fig. 4-34. The new pattern diagram is divided into three 

regions, I, II and III. Regions II and III at ρ2 and ρ3 are identical to the pattern shown in 

Fig. 4-5. In regions I and III, measured diffusion coefficients increase as U increases, 

while in region II, they stay constant at ρ2 and ρ3. As density decreases, both regions I 

and III expand and region II shrinks, and finally, regions I and III merge together and 

region II disappears. Since accurate measurements of diffusion coefficients can only be 

possible in region II, measurements at ρ1 will likely result in substantial uncertainties. 

Therefore, when measurements of diffusion coefficients in SCFs cover a wide range of 

SCF density, it is highly recommended to identify region II at both maximum and 

minimum densities to make sure that the U used is within region II, especially when a 

column is installed vertically.  

Formation of the new D12-U pattern can be interpreted by the combined action of 

the buoyancy effects induced by density gradients and the secondary flow effects due to 

tube curvature. It is well understood that increasing U enhances the secondary flow 

effects but weakens the buoyancy effects. At low U (region I), the buoyancy effects 

dominate, while at high U (region III), the secondary flow effects dominate. The 

combined impact of both factors is minimized in region II and measured diffusion 

coefficients are independent of U and represent the true diffusion coefficients. More 

specifically, as U increases in region I, the effect of buoyancy forces on laminar flow 

reduces gradually and consequently, the measured diffusion coefficient moves toward the 

true value. When U enters region II, the buoyancy forces become negligible compared to 
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Fig. 4-34  Generalized relationship between measured diffusion coefficients and the 

mean velocity. The solid lines indicate D12-U curves at different densities (ρ1 <ρ2 <ρ3); 

the dash line indicates the boundary among regions I, II, and III.  
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the inertial forces, while the centrifugal forces are still too small to create effective 

secondary flows. This results in constant measured diffusion coefficient values. As U 

enters into region III, however, the centrifugal forces produce secondary flows that are 

strong enough to affect the dispersion process, leading to higher measured diffusion 

coefficients.  

 

4.7  CONCLUSIONS 

In this chapter, diffusion coefficients of diesel fuel and surrogate compounds 

(toluene, m-xylene, 1-hexadecene and 1-methylnaphthalene) in SCCO2 were determined 

by the Taylor dispersion method at temperatures up to 373.15 K and pressures up to 30 

MPa. Results were correlated by Wilke-Chang, Scheibel, He-Yu, 12 /D T   and 

TD12  correlations. Among three predictive correlations, the He-Yu correlation 

had the best capability of predicting diffusion coefficients in SCCO2. The prediction 

performance of the Wilke-Chang correlation could be improved considerably by varying 

the association factor ψ. Diffusion coefficients of diesel fuel surrogate compounds in 

SCCO2 were best fitted by the 12 /D T   correlation with AAD% < 8%.  

The Taylor dispersion method encountered difficulty in measuring diffusion 

coefficients near the critical point of CO2 due to reduced solvent power of SCCO2. This 

difficulty may be improved by reducing injection volume or by increasing inner diameter 

of the diffusion column.  

Diffusion coefficients of benzene in SCCO2 were measured at 40 and 60 
o
C and 

9-15 MPa covering a wide range of CO2 densities (235-780kg/m
3
). Sources of 
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uncertainties including detector linearity, sample injection, mobile phase mean velocity, 

and column orientation were discussed. Some key points are outlined below.  

A new dimensionless parameter was proposed to account for the impact of finite 

injection volume and to guide experimental design. 

The linearity of the UV detector is crucial to the accuracy of diffusion coefficient 

measurements by the Taylor dispersion method. It was found that the best linearity results 

in maximum diffusion coefficients and that the wavelength which gives maximum 

diffusion coefficients should be selected for dispersion peak detection. 

Diffusion coefficient measurements by the Taylor dispersion method were 

significantly affected by U. Measured diffusion coefficients decreased dramatically as U 

decreased at very low U, which differs substantially from the well-known D12-U 

relationship. This implies that low U will likely bring significant experimental errors. 

Measured diffusion coefficients increased with increasing U over the entire velocity 

ranges and no OVRs were located at relatively low CO2 density, when the column was 

installed vertically. Significant improvement was achieved when the column was 

switched from vertical to horizontal position. Thus, it is concluded that accurate diffusion 

coefficients can only be determined using a horizontally installed column when mobile 

phase density is relatively low and density difference is large.  

A new generalized D12-U pattern was proposed, which is comprised of three 

regions, I, II and III, dominated by buoyancy forces, inertial forces, and centrifugal forces, 

respectively. At relatively low density, regions I and III merge together and region II 

disappears. Good care must be taken when conducting experiments under such conditions 

to assure measurements are made in constant D12-U region II. 
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Column orientation affects diffusion coefficient measurements mainly by 

enhancing or weakening the buoyancy effects. When density difference is substantial and 

the column is installed vertically, alternate upward and downward flow along the column 

will significantly enhance the buoyancy effects, leading to lower measured diffusion 

coefficients.  

When CO2 density was below ~ 580 kg/m
3
, diffusion coefficients obtained when 

the column was horizontally installed were higher than those obtained when the same 

column was vertically installed. When CO2 density was above that value, opposite 

outcomes resulted. These differences decreased, as CO2 density increased.   
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CHAPTER V 

THERMAL STABILITY OF DIESEL FUEL 

 

5.1  INTRODUCTION 

Thermal stability of DF is one major issue that needs to be addressed in the 

development of the supercritical fuel combustion technology because this new 

technology requires DF to be delivered near or above the critical temperature which is 

740-755 K (or 467-482 
o
C) as estimated in Chapter III. It is generally understood that fuel 

stability reduces as fuel temperature increases. Previous studies on the hypergolic 

combustion demonstrated significant fuel coking at high fuel temperatures, which caused 

the failure of the system (Scharnweber, 1984). When a fuel is thermally stressed at 

relatively high temperatures, fuel compositions and other chemical properties will change, 

which have a direct impact on fuel combustion. Also, significantly high fuel temperatures 

will produce solid deposits, which will block the delivery system. The new solution 

proposed by Tavlarides and Anitescu is to use diluents to prevent fuel coking (Tavlarides 

and Anitescu, 2009). 

This chapter reports the experimental studies on thermal stability of DF. The 

major objectives are to address the impacts of temperature, residence time, and CO2 

contents on thermal stability of DF. CO2 was used as an EGR surrogate to dilute DF in 

this study. Three different experiments were designed and conducted, i.e. batch thermal 

stressing of DF, batch thermal stressing of DF/CO2 mixtures, and continuous thermal 

stressing of DF and DF/CO2 mixtures. The upper temperature limit above which 
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significant degradation occurs was determined. The role of CO2 in preventing DF coking 

is discussed. 

 

5.2  EXPERIMENTAL 

5.2.1  Batch thermal stressing of DF 

The first experiment was batch thermal stressing of DF to reveal the effects of 

temperature and residence time on thermal stability of DF. Fig. 5-1 (bottom) shows a 

schematic diagram of the experimental setup. A high pressure stainless steel tee 

(Autoclave Engineers) (Fig. 5-1 upper right) was used as the thermal stressing cell. The 

volume of the cell was ca. 0.6 ml. A thermocouple (T2) was connected to the cell to 

monitor inside temperature. The cell was placed inside a GC oven (HP 5890) to achieve 

constant temperatures required for the experiment. A second thermocouple (T1) was used 

to monitor the oven temperature. Both thermocouples were connected to a data 

acquisition system (LabVIEW, National Instruments). To capture solid deposits formed 

during the thermal stressing experiment, a stainless steel sheet (Fig. 5-1 upper left) was 

added to the cell in each run. The metal sheets were washed by hexane before adding to 

the vessel. After experiments, they were rinsed by hexane, dried in air at room 

temperature, and then analyzed by the Scanning Electron Microscope (SEM) method. 

Since pressure inside the cell was not monitored during the experiments, it was necessary 

to estimate the maximum pressures at different DF loading amount to make sure that the 

actual pressures would be within the pressure limit of interest, which was 60 MPa. To do 

so, a P-T-ρ diagram of DFS-7, as shown in Fig. 5-2, was constructed to guide the design 

because DFS-7 gives best predictions of DF density as demonstrated in the Chapter III. 
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Fig. 5-1  Experimental setup for batch thermal stressing of DF. Top left: stainless steel 

sheets used to capture solid deposits; Top right: a photo of the thermal stressing cell; T1 

and T2: outside and inside temperatures of the cell.  
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Fig. 5-2  A pressure-temperature-density diagram for DFS-7. 
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No. 2 DF was purchased from a local gas station and used as received. The density of the 

fuel at room temperature measured in this work was 0.835 ± 0.004 g/ml. Accordingly, 

0.45 ml DF was added to the vessel in each run, giving a bulk density of 0.626 g/ml, and 

the pressure found in Fig. 5-2 at 440 
o
C is below 60 MPa.  

Experimental conditions are given in Table 5-1. Tests were first performed at 

200-440 
o
C for a residence time of 10-15 min to determine the temperature range where 

significant degradation of DF starts to occur. The rest of the experiments were conducted 

based on these tests. Fig. 5-3 presents an example of temperature history obtained in the 

experiments. The residence time is defined as the duration of the isothermal stage as 

illustrated in Fig. 5-3 excluding the heating and cooling stages. Fig. 5-3 also shows 

excellent temperature control of the GC oven. 

DF was manually added into the vessel. As described in section 2.3, oxygen 

exhibits significant impact on fuel stability. Therefore, to eliminate O2 from air, DF was 

loaded in CO2 environment for most runs. Several runs were made with samples prepared 

in air for comparison and to demonstrate the effect of O2. Thermal stressing of pure 

compounds, i.e. n-hexadecane, 1-methylnaphthalene and butylbenzene, were also 

conducted to explain DF color change after thermal stressing. N-hexadecane (>99%), 1-

methylnaphthalene (95%), butylbenzene (>99%) were purchased from Sigma-Aldrich 

and used as received. 

 

5.2.2  Batch thermal stressing of DF/CO2 mixtures 

The second experiment was batch thermal stressing of DF/CO2 mixtures to 

understand the effect of CO2 on thermal stability of DF and the role of CO2 in preventing 
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Table 5-1  Conditions for batch thermal stressing of DF. 

 

T, 
o
C 

Residence time, min 

10 30 60 120 180 300 600 

200
a 

× 
      

300 × 
     

× 

400 × × × 
 

× × × 

410 
 

× 
     

420 
 

× × × 
   

430 
 

× 
     

440 × × 
 

× 
   

 

a
 Actual residence time was 15 min. 
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Fig. 5-3  An example of temperature history for batch thermal stressing of DF. T1: 

temperature of the GC oven; T2: temperature of DF inside the cell. 
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DF coking. A schematic diagram of the experimental setup is shown in Fig. 5-4. A high 

pressure stainless steel cross (High Pressure Equipment Co.) was machined and used as a 

thermal stressing cell. The total volume of the cell was ca. 2 ml. DF and CO2 were added 

to the vessel by a syringe pump (ISCO 260D) and an HLPC pump (Dynamex, Model SD-

1), respectively. A second syringe pump (ISCO 100D) was used to pump hexane to wash 

the vessel after each run. A thermocouple (T2) and a pressure transducer (P) were 

connected to the cell to monitor inside temperature and pressure, respectively. A second 

thermocouple (T1) was attached to outside wall of the cell. Both the thermocouples and 

the pressure transducer were connected to a data acquisition system (LabVIEW, National 

Instruments). The cell was heated by a heating tape (Briskheat), and temperature was 

controlled by a percentage control unit (Briskheat, TP0941-000) which is not shown in 

Fig. 5-4. An example of T-P history is given in Fig. 5-5. 

In this experiment, a known amount of DF was first added into to the cell, and 

then CO2 was added by pressurizing the cell with CO2 to a desired pressure. 

Experimental conditions are given in Table 5-2. Two sets of experiments were conducted. 

In the first set of experiments, i.e. runs 1-5, the amount of DF was 1.7 ml for all runs, 

while the amount of CO2 varied by changing pressure from 0-4.83 MPa (or 0-700 psi). It 

is obvious that in a constant volume system, the system pressure increases with increase 

in initial CO2 pressure while keeping the amount of DF constant. To reduce pressure, the 

amount of DF needs to be reduced. Thus, the second set of runs, i.e. 1-a to 3-b, followed, 

where the amount of DF was varying from 1.6 to 1.2 ml and the initial CO2 pressure was 

either 0 or 4.83 MPa. The thermal stressing temperature was 440 
o
C for both sets, while 

the residence times were 30 and 45 min for the first and the second, respectively. These 
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Fig. 5-4  A schematic diagram for the experimental setup for batch thermal stressing of 

DF/CO2 mixtures. T1 and T2: thermocouples; P: pressure transducer; Red dash square: 

heating tape. 
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Fig. 5-5  An example of temperature/pressure history for batch thermal stressing of 

DF/CO2 mixtures (run 1-b). T1: outside wall temperature of the vessel; T2: temperature 

of DF inside the vessel. 
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Table 5-2  Conditions for batch thermal stressing of DF/CO2 mixtures. 

 

Run DF, ml CO2, MPa T, 
o
C τ, min 

1 1.7 0 440 30 

2 1.7 2.76 440 30 

3 1.7 3.45 440 30 

4 1.7 4.14 440 30 

5 1.7 4.83 440 30 

1-a 1.6 0 440 45 

1-b 1.6 4.83 440 45 

2-a 1.4 0 440 45 

2-b 1.4 4.83 440 45 

3-a 1.2 0 440 45 

3-b 1.2 4.83 440 45 

4-b
a 

1.0 4.83 n/a n/a 

 

a
 The apparatus was incidentally overheated and damaged during the experiment. 
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two sets of runs were designed to demonstrate not only the effect of CO2 but also the 

effect of pressure on thermal stability of DF.  

 

5.2.3  Continuous thermal stressing of DF and DF/CO2 mixtures  

The major drawback of both batch experiments described in the preceding 

sections is that they are not able to eliminate the pressure effect because pressure cannot 

be controlled in the batch systems. Accordingly, continuous isobaric thermal stressing 

experiments were designed and conducted. A schematic diagram of the experimental 

setup is presented in Fig. 5-6. Thermal stressing was accomplished in a stainless steel coil 

(I.D. 1.524 mm, 18.3 m), the main coil shown in Fig. 5-6, which was located in the GC 

oven. CO2 and DF were continuously delivered by a syringe pump (ISO 260D) and an 

HPLC pump (Dynamex, Model SD-1), respectively. The fuel, either DF or DF/CO2 

mixtures, was preheated before entering the main coil by a heating tape (Briskheat) 

controlled by a percentage control unit (Briskheat, TP0941-000). After thermal stressing, 

it was cooled down to room temperature in a water bath (Fisher Scientific) before 

entering a micro-filter (4200 series, Norman Filter). The 3-micron filter was installed to 

capture solid deposits formed in the process. A back pressure regulator (Swagelok) was 

located after the filter to control the system pressure. Preheating temperature (T1), GC 

oven temperature (T3), outlet temperatures of the preheating coil (T2) and the main coil 

(T4), and inlet (P1) and outlet (P2) pressures of the filter were monitored and recorded by 

the data acquisition system (LabVIEW, National Instruments). 

The hypothesis of this experiment is that if fuel coking occurs, deposits will 

accumulate inside the filter and the pressure drop (P1-P2) through the filter will increase. 
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Fig. 5-6  A schematic diagram of the experimental setup for continuous thermal stressing 

of DF and DF/CO2 mixtures. Red dash square indicates the heating tape. 
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If CO2 were able to prevent DF coking, the rate of pressure drop increase would be 

reduced. Thus, through monitoring the pressure drop, it would be possible to characterize 

thermal stability of DF under different temperature and pressure conditions, with or 

without CO2.  

Experimental conditions for both DF and the DF/CO2 mixture follow. 

Temperatures of the GC oven and the water bath were set at 440 and 20 
o
C, respectively. 

Fuels were preheated to about 350 
o
C. Pressure was set at 30 MPa. Flow rates for both 

pumps were determined based on a 30-min residence time, assuming a steady state at 440 

o
C and 30 MPa throughout the main coil. Consequently, pump flow rates for DF in the 

DF experiment and for DF and CO2 in the DF/CO2 experiment were 0.7339, 0.6309 and 

0.0617 ml/min, respectively. Details of calculation are given in Table 5-3.  Duration of 

each experiment was about 12 hr to ensure that change in pressure drop was captured. 

Samples were collected in one hour intervals and analyzed by GC-MS. 

 

5.2.4  Fuel characterization  

Fuel characterization includes four aspects: color, chemical composition, 

volatility, and solid deposits. Color change was analyzed simply by visual observation 

and recorded by digital photography. Chemical compositions were characterized by GC-

MS. Volatility was measured using the TGA method described in section 3.2.1. Solid 

deposits captured by the metal sheets were analyzed by SEM.  

A suitable GC-MS method was developed for DF analysis by trying different 

temperature programs. Key parameters for this method are presented in Table 5-4. 

Unless stated, all samples were prepared by diluting 2 µl fuel in 1 ml hexane, which gave 
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Table 5-3  Determination of pump flow rates for a given residence time of 30 minutes.  

 

Thermal stressing coil configuration   

Inner diameter, mm 1.524  

Length, m 18.3  

Volume, ml  33.36  

   

DF/CO2 mixture composition DF CO2 

wt% 90 10 

   

Density 
a
, g/ml 25 

o
C, 30 MPa 440 

o
C, 30 MPa 

DF 0.847 0.559 

DF/CO2 mixture 0.892 0.534 

CO2 0.963  

   

Residence time, min  30  

Average volumetric flow rate, ml/min 33.36 / 30 = 1.112 

   

Mass flow rate, g/min   

DF 1.112 * 0.559 = 0.6216 

DF/CO2 mixture 1.112 * 0.534 = 0.5938 

DF   0.5938 * 0.9 = 0.5344 

CO2   0.5938 * 0.1 = 0.0594 

   

Pump flow rate, ml/min   

DF 0.6216 / 0.847 = 0.7339 

DF/CO2 mixture   

DF 0.5344 / 0.847 = 0.6309 

CO2 0.0594 / 0.963 = 0.0617 

 

a
 Values are obtained from SUPERTRAPP.  DFS-7 is used.  
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Table 5-4  Equipment, chemicals and key parameters for the GC-MS method. 

 

GC HP 6790 

MS HP 5971 

Column 

HP-1MS 

Crosslinked methyl siloxane 

30m × 0.25mm × 0.25µm 

Carrier gas Helium 

Solvent Hexane 

Injection volume 1.0 µl 

Injector temperature 260 
o
C 

Detector temperature 285 
o
C 

Oven Program  

    Initial temperature 45 
o
C 

    Initial time 3 min 

    Temperature increase rate 1 
o
C/min 

    Final temperature 270 
o
C 

    Final time 5 min 

Column flow rate  

    Head pressure 8 psi 

    Linear velocity 30 cm/s 

    Column flow rate 0.9 ml/min 

Solvent delay 4 min 
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good peak resolutions.  

Fig. 5-7 shows an example of chromatographs obtained in this work. It is clearly 

seen that the abundances of C14 through C25 were reduced and those of C9 though C12 

were increased when the fuel was stressed at 440 
o
C, which indicates occurrence of 

significant fuel degradation. However, when degradation is not that significant or when 

stressing temperatures vary in a relatively narrow range, the shape of chromatographs 

will look very similar, making it very difficult to do analysis qualitatively, not to mention 

quantitatively, due to the complexity of DF compositions. Accordingly, a new method for 

GC-MS data analysis is proposed in this work, which is able to effectively characterize 

fuel degradation. The procedure of this method is as follows: 

(1) Obtain peak area through automatic integration of chromatographs. A sample 

of integrated chromatograph of fresh DF is illustrated in Fig. 5-8.  

(2) Calculate percentage of peak area (PPA) using the equation below: 

   100%i

i
i

A
PPA

A
 


 (4-29)  

where Ai is the area of peak i. 

(3) Calculate PPA change of stressed DF by 

      
Stressed DF Fresh DF

PPA PPA PPA    (4-30)  

A positive Δ(PPA) value means increase in the concentration of the 

corresponding component when DF is thermally stressed. 

(4) Plot Δ(PPA) versus GC retention time and then add a linear trend line. A 

negative slope of the trend line indicates fuel degradation. The greater 

negative the slope, the more significant the degradation.  



 

 

 

1
7

2  

 

 

GC retention time, min 

 

Fig. 5-7  Chromatographs of fresh DF (top) and DF stressed at 440 
o
C for 2 hours (bottom). C9 through C25 indicate normal alkanes. 



 

 

 

1
7

3  

 

GC retention time, min 

 

Fig. 5-8  Part of integrated chromatograph of fresh DF. Numbers above peaks indicate actual retention time. Horizontal and inclined 

red lines indicate base lines, while vertical red lines indicate integration boundaries between two peaks. 
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5.3  RESULTS AND DISCUSSION 

5.3.1  Validation of the Δ(PPA) analysis 

To demonstrate the feasibility of the Δ(PPA) analysis in characterizing fuel 

degradation, chromatographs of fresh DF of different initial concentrations were 

measured and analyzed. Horizontal trend lines were expected because theoretically, 

Δ(PPA) values for fresh DF equal to zero. Samples were prepared by diluting 1, 2 and 3 

µl DF in 1 ml hexane, giving DF concentrations of 1000, 2000 and 3000 ppm, 

respectively. The 2000 ppm sample was used as a reference to provide values for 

(PPA)Fresh DF in Eq. (5-2). Results are presented in Fig. 5-9 (top), showing that although 

variations of Δ(PPA) values occurred over the retention time range, near horizontal trend 

lines were obtained for both samples as expected. Δ(PPA) variations were mainly due to 

systematic errors, and it is reasonable to argue that the effect of such variations on the 

slope of the trend line is negligible. 

Next, chromatographs of two thermally stressed DF samples were analyzed; 

results are shown in Fig. 5-9 as well. When stressed at 400 
o
C for 10 min, DF showed no 

color change, indicating negligible fuel degradation. Increasing temperature to 440 
o
C 

resulted in slight color change. The Δ(PPA) analysis of these two chromatographs gave a 

horizontal trend line for 400 
o
C and a slightly inclined trend line with a negative slope for 

440 
o
C, which agreed well with color changes. Accordingly, it is confident to conclude 

that the linear trend line of Δ(PPA) is capable of capturing overall changes in fuel 

compositions and the slope of the trend line is an effective parameter for characterizing 

fuel degradation. A greater negative slope corresponds to more significant degradation. 
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Fig. 5-9  Δ(PPA) analysis of chromatographs of fresh DF (top) and DF stressed at 400 
o
C 

(middle) and 440 
o
C (bottom). The residence time was 10 min for both temperatures. 1K 

and 3K indicate DF concentrations of 1000 and 3000 ppm, respectively.  
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5.3.2  Batch thermal stressing of DF 

5.3.2.1  Color change 

Thermal degradation of hydrocarbon fuels is always associated with color change. 

In order to have a better idea of the main cause of color change, three pure compounds 

were thermally stressed. They were n-hexadecane from the n-alkane group and 1-

methylnaphthalene and butylbenzene from the aromatic group.  Fig. 5-10 shows that at 

the same stressing temperature, color changes were most significant for butylbezene 

followed by 1-methylnaphthalene and then n-hexadecane. Fig. 5-11 to Fig. 5-13 show 

chromatographs of these three compounds, which further confirm that these chemicals 

are unstable at 440 
o
C. The thermal stabilities are in the order: n-hexadecane < 

butylbenzene < 1-methylnaphthalene. Thermal stressing of n-hexadecane at 440 
o
C 

produced large amount of both low MW and high MW n-alkanes and isomers. Although 

n-hexadecane is less stable, color change is not as strong as aromatics. Thermal stressing 

of 1-methylnaphthalene at the same time produced significant amounts of four-ring 

aromatics, while the products from butylbenzene were mainly single- and double-ring 

aromatics. Therefore, it is reasonable to conclude that color change during thermal 

stressing of DF is mainly caused by formation of multiple-ring aromatics and color is a 

simple, effective indicator of fuel stability.   

 

5.3.2.2  Effect of O2 

As described in Section 5.2.1, the cell was partially loaded to ensure a mild 

system pressure, which inevitably caused trapping of air when samples were prepared in 

air environment. Previous studies have shown the effect of O2 on thermal stability of   



 

177 

 

 

 

 

 

 

Fig. 5-10  Thermal stressing of n-hexadecane (top), 1-methylnaphthalene (middle), and 

butylbenzene (bottom) at 400 and 440 
o
C for 30 min. 



 

178 

 

 

 

 

 

 

Fig. 5-11  Chromatographs of n-hexadecane. Top: fresh; middle: 400 
o
C, 30 min; bottom: 

440 
o
C, 30 min. 
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Fig. 5-12  Chromatographs of 1-methylnaphthalene. Top: fresh; middle: 400 
o
C, 30 min; 

bottom: 440 
o
C, 30 min. 
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Fig. 5-13  Chromatographs of butylbenzene. Top: fresh; middle: 400 
o
C, 30 min; bottom: 

440 
o
C, 30 min. 
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fuels (Edwards and Liberio, 1994; Ervin et al., 1998; Hazlett, 1991; Stewart, 1999; Taylor, 

1974). To demonstrate the effect of trace amounts of O2 from air on thermal stability of 

diesel fuel, samples were prepared both in air and in CO2 environments and then 

thermally stressed under the same conditions. As shown in Fig. 5-14, no effect of O2 was 

observed at 300 
o
C simply because the temperature was not high enough to have 

noticeable fuel degradation. At 400 and 440 
o
C, great color enhancements were observed 

when air was trapped in the cell, and the effect became greater as temperature increased. 

This leads to the conclusion that DF is less stable with the present of O2.  

Results of Δ(PPA) analysis are presented in Fig. 5-15, showing that at both 400 

and 440 
o
C, the slope of the Δ(PPA) trend line increased with the presence of O2. Based 

on the hypothesis of the Δ(PPA) analysis, this leads to a contrary conclusion that DF is 

more stable with the presence of O2. Therefore, with the presence of O2, either color or 

the slope of the Δ(PPA) trend line or both are invalid as indicators of fuel thermal 

stability. One possible explanation is that the present of O2 results in different reaction 

mechanisms and hence different product distributions, which is beyond the scope of this 

discussion. In the rest of experiments, samples were prepared in the CO2 environment.  

Oxygen is the driving force for low temperature thermal oxidative reactions and 

has a significant effect on deposit formation. Removal of oxygen can dramatically lower 

the rate of deposit formation (Taylor, 1974) or even eliminate the thermal oxidative surface 

deposition (Edwards and Liberio, 1994), leading to a more stable fuel that can be heated up 

to relatively high temperatures (around 773 K) before significant coking occurs (Ervin et 

al., 1998; Stewart, 1999). The impact of oxygen content on pyrolytic deposition has not 

been well understood. It was reported that the absence of dissolved oxygen could lead to 
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Fig. 5-14  Effect of trace amounts of O2 on thermal stability of DF. Left column: fresh 

DF; middle column: samples prepared in CO2 environment, no air trapped; right column: 

samples prepared in air environment. Top: 300 
o
C; middle: 400 

o
C; bottom: 440 

o
C. 
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Fig. 5-15  Δ(PPA) analysis for stressed DF. Top: 400 
o
C; bottom: 440 

o
C. “Air” and 

“CO2” represent DF samples prepared in air and CO2 environments, respectively. 
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increased surface deposition in the pyrolytic region probably due to the oxidative 

products (alcohols, aldehydes, etc) acting as radical scavengers or hydrogen donors 

(Edwards and Liberio, 1994). It was also reported, however, that deoxygenation had little 

effect on pyrolytic deposition (Edwards and Atria, 1995). Oxygen content also affects 

deposit morphology (Hazlett, 1991).  

 

5.3.2.3  Effect of temperature 

To determine the temperature range where significant reduction of thermal 

stability of DF occurs, experiments were initially conducted in a relative broad 

temperature range from 200-440 
o
C for a residence time of 10-15 min. It was found that 

noticeable color change did not occur until the temperature increased to 440 
o
C, as shown 

in Fig. 5-16 (top). This result narrowed the temperature range down to 400-440 
o
C. Since 

the color change was very slight, a longer residence time was desired. Thus, the residence 

time was increased to 30 min in the second set of experiments. As shown in Fig. 5-16 

(bottom), fuel color remained nearly the same from 400-420 
o
C and then was gradually 

enhanced as temperature increased from 420-440
 o

C. Results from the Δ(PPA) analysis 

presented in Fig. 5-17 agreed well with color change; slope of the Δ(PPA) trend line 

dropped at 420 
o
C and them reduced further as temperature increased to 440 

o
C. Selected 

results from TGA are presented in Fig. 5-18. It is seen that volatility of DF remained 

almost the same when DF was heated up to 420 
o
C and stressed for 30 min. As 

temperature further increased to 440 
o
C, volatility change was observed. Increase in 

weight loss at T< ~120 
o
C suggests formation of low MW components due to fuel 

decomposition, while increase in weight percentage at T > 190 
o
C indicates formation of 
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Fresh DF 200-15 300-10 400-10 440-10 

 

 

Fresh DF 400-30 410-30 420-30 430-30 440-30 

 

 

Fig. 5-16  Changes in DF color at different stressing temperatures from 200-440 
o
C. The 

first and the second numbers indicate stressing temperature and residence time, 

respectively.   
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Fig. 5-17  Δ(PPA) analysis for DF thermally stressed at 400-440 
o
C for 30 min. 
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Fig. 5-18  TGA curves (top) and the corresponding slope curves (bottom) for DF 

thermally stressed at 400-440 
o
C. 
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large MW compounds, mainly aromatics which further form solid deposits. Volatility 

change became more significant at 440 
o
C when the residence time was increased to 2 

hours. The effect of residence time is further discussed in the next section.  

Accordingly, it can be concluded that 420 
o
C is an upper temperature limit below 

which temperature shows negligible effect on thermal stability of DF when residence 

time is relatively short (< 30 min). When temperature is above 420 
o
C, discernable 

reduction of thermal stability of DF occurs and becomes more significant with increasing 

temperature. 

 

5.3.2.4  Effect of residence time 

 When an engine runs, the residence time of fuel in the fuel line from the fuel tank 

to the injector is very short. However, during the start-up and shut-down stages, fuel 

residuals may experience a long residence time at high temperature. Although results 

presented in the preceding section show that DF was still quite stable when thermally 

stressed at 440 
o
C for 10 min, it is valuable to explore much longer residence time. 

Accordingly, residence time was extended to as high as 10 hours, as given in Table 5-1. 

Fuel color change is illustrated in Fig. 5-19, and results from Δ(PPA) analyses are shown 

in Fig. 5-20 and Fig. 5-21. At 300 
o
C for 10 hours, color was slightly enhanced, but the 

slope of the Δ(PPA) trend line remained nearly zero as shown in Fig. 5-21, indicating 

very good thermal stability at this condition. At 400 
o
C, no color changes were observed 

within 60 min. As residence time increased from 60 min to 300 min, DF Color increased 

associated with a gradual drop of the slope of the Δ(PPA) trend line as shown in Fig. 5-21. 

When residence time was greater than 300 min up to 600 min, color was not changing 
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Fresh DF 400-10 400-30 400-60 400-180 400-300 400-600 

 

Fresh DF 420-30 420-60 420-120 

 

Fresh DF 440-10 440-30 440-120 

 

 

Fig. 5-19  Changes in DF color at 400, 420 and 440 
o
C for varying residence time. The 

first and the second numbers indicate stressing temperature and residence time, 

respectively.   
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Fig. 5-20  Δ(PPA) analysis of stressed Changes in DF color at 300, 400, 420 and 440 
o
C 

for varying residence time. The first and the second numbers in legend indicate stressing 

temperature and residence time, respectively.   
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Fig. 5-21  Slope of Δ(PPA) trend lines as a function residence time at 300, 400, 420, and 

440 
o
C. 
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and the slope remained almost constant as well. At 420 and 440 
o
C, both color change 

and slope drop indicate that DF stability decreased as residence time increased. 

Significant degradation occurred at 440 
o
C for a 2-hour stressing period. These results 

reveal the impact of residence time on thermal stability of DF. More significantly, a 

targeted region in the temperature- residence time domain for engine operation was 

identified, which is 400-420 
o
C and < 60 min. 

 

5.3.2.5  Formation of solid deposits 

 Fig. 5-22 shows SEM photos of solid deposits accumulated on stainless steel 

sheets when DF was thermally stressed at 300, 400 and 440 
o
C for a residence time of 2 

to 10 hours. Long residence time was chosen, on the one hand, to see the effect on fuel 

stability as discussed in the preceding section, and on the other hand, to produce 

discernable amounts of solid deposits. As shown in Fig. 5-22 (top right), large ring-type 

deposits with ring diameter as large as 3 μm were formed when DF was heated to 300 
o
C 

for a 10-hour duration. Similar structure was observed at 400 
o
C for the same residence 

time as shown in Fig. 5-22 (middle right), but the size was slightly smaller. Reducing the 

residence time to 300 min at 400 
o
C resulted in much smaller size. As temperature 

increased to 440 
o
C, a substantial number of deposits were produced. A closer look (Fig. 

5-22 bottom right) shows crystal-like structures of solid deposits, the diameters of which 

are of the order of magnitude of 100nm. The different morphologies of solid deposits 

obtained at different stressing temperatures imply different mechanisms of deposit 

formation, further studies on deposit formation mechanisms would be valuable to 

development of strategies for preventing DF coking. 
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Unstressed                                                    300-600 

 

 
400-300                                                     400-600 

 

 
                             440-120                                                           440-120 

 

Fig. 5-22  SEM analysis of DF solid deposits. The first and the second numbers indicate 

stressing temperature and residence time, respectively.   
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5.3.3  Batch thermal stressing of DF/CO2 mixtures 

Fig. 5-23 shows photos of samples collected in the first set of runs, i.e. runs 1-5 in 

Table 5-2. Weak enhancement in sample color was observed from run 2 through run 5. 

However, the color of samples from runs 2-5 was slightly lighter than that from run 1, 

which is a good sign that addition of CO2 might prevent fuel degradation. Samples were 

analyzed by GC-MS and the Δ(PPA) analysis of chromatographs was performed. Results 

of the Δ(PPA) analysis are presented Fig. 5-24. The slopes of the trend lines became 

more negative from run 1 through run 5, indicating that addition of CO2 did not reduce 

but enhanced fuel degradation.  

Degradation mainly refers to breakdown of large molecules, while coking is 

associated with production of PAHs. Some PAH precursors identified by GC-MS are 

given in Table 5-5; they are naphthalene (A1), 2-methylnaphthalene (A2), 1-

methylnaphthalene (A3), and 1, 4, 5-trimethylnaphthalene (A4). As shown in Fig. 5-25, 

concentrations of these compounds increased, when DF was thermally stressed no matter 

how much CO2 was added. A1 demonstrated a continuous growing trend from runs 1 

through 5, while A2-A4 were nearly constant for all runs despite small variations.  

TGA results are presented in Fig. 5-26. It can be seen that at T < 100 
o
C, the curves for 

runs 1 and 2 are almost identical. As initial CO2 pressure increased from 2.76 to 3.45 

MPa (from run 2 to run 3), the rate of weight loss increased slightly, but further increase 

in initial CO2 pressure (run 4 and 5) made no difference. The increase in weight loss 

indicates a larger amount of low MW molecules. At T = 100-180 
o
C, the slopes of TGA 

curves for runs 3-5 are generally greater than those for runs 1 and 2. These results suggest 

that in the current system, addition of CO2 slightly promotes fuel degradation. 
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    Fresh DF          Run 2               Run 3                Run 4                Run 5              Run 1 

 

Fig. 5-23  Photos of DF samples collected in batch thermal stressing of DF/CO2 mixtures. 

Conditions for runs 1-5 are indicated on the bottles and also given in Table 5-2.  
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Fig. 5-24  Δ(PPA) analysis for runs 1-5 of batch thermal stressing of DF/CO2 mixtures.  
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Table 5-5  Examples of precursors of PAHs identified by GC-MS.  

 

No. 
GC retention 

time, min 
Name Molecular structure 

A1 33.78 Naphthalene 

 

A2 47.58 
2-methyl-

naphthalene 

        

A3 49.27 
1-methyl-

naphthalene 

 

A4 73.70 
1,4,5-trimethyl-

naphthalene 
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Fig. 5-25  Changes in concentration of PAH precursors in runs 1-5. A1: naphthalene;  

A2: 2-methylnaphthalene; A3: 1-methylnaphthalene; A3: 1, 4, 5-trimethylnaphthalene. 
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Fig. 5-26  TGA curves for fresh DF and thermally stressed DF from runs 1-5. Top: 

original TGA curves; bottom: slope curves. 
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It can be concluded from the above analysis that in the isochoric system, when the 

amount of fuel remained the same, addition of CO2 did not improve thermal stability of 

the fuel. However, one factor that has not been taken into consideration is pressure. Fig. 

5-27 plots thermal stressing P-T diagrams for these runs, demonstrating significant 

increase in final stressing pressures with increasing initial CO2 pressure from run 1 

through run 5. The T-P histories of these runs are given in Appendix D. The final 

pressure for run 5 was 30-35 Mpa, which was almost one-order-of-magnitude higher than 

that for run 1. Thus, it is reasonable to argue that the enhancement in fuel degradation 

might be due to the significant increase in pressure. 

To lower final stressing pressure at a given initial pressure, the amount of DF has 

to be reduced. Accordingly, in the second set of runs, three DF loads, i.e. 1.6, 1.4 and 1.2 

ml, were studied, with or without the presence of CO2. When CO2 was added, the initial 

pressure was 4.83 MPa for all loads as shown in Table 5-2. P-T diagrams for this set of 

runs are plotted in Fig. 5-28. T-P histories are attached in Appendix D. Fig. 5-29 plots 

Δ(PPA) trend lines and Fig. 5-30 illustrates changes in concentrations of PAH precursors 

A1-A4. It is clearly demonstrated that both the slopes of trend lines and the 

concentrations of A1-A4 increased for all DF loads when CO2 was added. These results 

are similar to those from the first set of runs and further confirm the apparent negative 

effect of CO2. Since the pressure effect could not be differentiated in the isochoric system, 

continuous isobaric thermal stressing experiments were carried out, results from which 

are presented in the next section. 

During the last run, i.e. 4-b in Table 5-2, 1.0 ml DF was added and the cell was 

initially pressurized to 4.83 MPa. The cell was heated, cooled, and then heated again to 
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Fig. 5-27  P-T diagrams for batch thermal stressing of DF/CO2 mixtures: Runs 1-5.  
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Fig. 5-28  P-T diagrams for batch thermal stressing of DF and DF/CO2 mixtures: Runs 1-

a – 3-b.  
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Fig. 5-29  Δ(PPA) analysis for samples from runs 1-a – 3-b of batch thermal stressing of 

DF/CO2 mixtures. 
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Fig. 5-30  Changes in concentration of PAH precursors in runs 1-a - 3-b. 
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check the repeatability of the T-P curve. Unfortunately, during the repeated heating stage, 

the cell was incidentally overheated to above 600 
o
C as shown in Fig. 5-31 (bottom). 

Interesting results were obtained from this “accident”.  

In the P-T diagram shown in Fig. 5-32, the P-T curves from first run are slightly 

above the second heating curve. This was probably caused by the dead volume effect; the 

repeated run was more homogeneous than the first one. Slope changes were observed at 

about 300 
o
C for both runs, indicating the occurrence of phase transition from gas-liquid 

to supercritical. More interestingly, a second slope change occurred at about 470 
o
C 

during the second heating stage, which was caused by production of large amounts of gas 

components due to significant thermal degradation. Also, significant amount of solid 

deposits was generated. This “accident” reveals the temperature range where significant 

thermal decomposition occurs.     

 

5.3.4  Continuous thermal stressing of DF and the DF/CO2 mixture  

Fig. 5-33 shows temperature and pressure histories for both DF and DF/CO2 

experiments. Both experiments continued for about 13 hours including the heating and 

cooling processes. As shown in Fig. 5-33 (top), for DF, the experiment reached the 

steady state at around 70 min; T1, T2, T3 and T4 were 461.1 ± 2.5, 356.6 ± 1.2, 431.6 ± 

1.3 and 235.3 ± 2.1 
o
C, respective, and P1 and P2 were 29.96 ± 0.12 and 29.89 ± 0.12 

MPa, respectively. T3 was slightly lower than the setting temperature which was 440 
o
C 

because the thermocouple was close to the inlet of the coil. T4 was much lower because 

the thermocouple was located outside the GC oven. Unfortunately, at 442 min, one 

syringe of the HPLC pump malfunctioned, leading to a reduced flow rate. Consequently, 
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Fig. 5-31  Temperature and pressure history for run 4-b. Top: first run; bottom: repeated 

run.  
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Fig. 5-32  A P-T diagram for run 4-b. Dash line circles highlight regions where slope 

changes occur.  
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Fig. 5-33  Temperature and pressure history for continuous thermal stressing of DF (top) 

and the DF/CO2 mixture (bottom). DF:CO2 = 9:1 by mass. 
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T1 increased significantly up to 490 
o
C, T2 reduced slightly to 345 

o
C, and T4 

continuously reduced to 195 
o
C until the pump returned to normal at 528 min. 

Temperature adjustment occurred at 496 min. Reduced flow rate resulted in increase in 

residence time, which promoted fuel degradation, and as a consequent more gas products 

were produced, which was evidenced by vibrations in the pressure profiles. 

As shown in Fig. 5-33 (bottom), for the DF/CO2 mixture, it took longer time, 

about 2 hours, for the experiment to reach the steady state due to the difficulty in pressure 

control of the initially inhomogeneous two-phase flow. At the steady state, T1, T2, T3 

and T4 were 458.6 ± 2.3, 356.8 ± 1.2, 430.3 ± 1.2 and 226.8 ± 1.3 
o
C, respectively, and 

P1 and P2 were 30.10 ± 0.16 and 30.07 ± 0.16 MPa, respectively. Compared to the DF 

experiment, T4 was slightly lower, which can be explained by a lower heat capacity of 

the DF/CO2 mixture. Similar malfunctioning occurred in the HPLC pump at 504 min but 

the pump did not return to normal afterward, causing significant fuel degradation. 

Fig. 5-34 shows photos of DF samples collected in one hour interval for a 12 hr 

period. Similar color changes were observed for both experiments, indicating occurrence 

of fuel degradation. Darkening of sample # 9 (Fig. 5-34 top) for the DF experiment and 

samples # 10-12 (Fig. 5-34 bottom) for the DF/CO2 experiment agreed well with the 

temperature profiles shown in Fig. 5-33. For the DF experiment, when the HPLC pump 

returned to normal, the color of the stressed fuel changed back to normal as shown by 

sample # 10-12 in Fig. 5-34 top. This did not occur in the DF/CO2 experiment and the 

color of the stressed fuel remained dark brown as illustrated by samples # 10-12 in Fig. 

5-34 bottom. 

Fig. 5-35 records changes in the pressure drop across the micro-filter during the 
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Fig. 5-34  Photos of DF samples collected in thermal stressing of DF (top) and the 

DF/CO2 mixture (bottom). Left to right: 0 through 12 hours. 
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Fig. 5-35  Changes in pressure drop across the micro-filter during continuous thermal 

stressing of DF (top) and the DF/CO2 mixture (bottom).  Red lines are linear trend lines. 
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steady state from 90-440 min for DF (top) and from 120-480 min for the DF/CO2 mixture 

(bottom). It is seen that in the DF experiment, the pressure drop increased about 30 % 

from 0.06 to 0.078 MPa, while in the DF/CO2 experiment, despite some variations, the 

pressure drop remained constant at 0.04 MPa. This suggests two possibilities: CO2 was 

able to reduce fuel degradation and prevent coking; addition of CO2 increased 

solubilization capability of the fuel mixture and hence prevented accumulation of solid 

deposits within the filter. 

Fig. 5-36 through Fig. 5-38 present results from the Δ(PPA) analysis of 

chromatographs. As shown in Fig. 5-38, the slopes of sample #1 from both runs are 

higher than others, while the slopes of sample # 9 from the DF run and samples # 10-12 

from the DF/CO2 run are much lower than others, which agrees well with visual 

observation as shown in Fig. 5-34. In the nearly steady state, i.e samples # 2-8 & 10-12 

from the DF run and samples # 2-9 from the DF/CO2 run, the slopes are in the same level,   

despite some small variations. Similar patterns were observed for variations of PAH 

precursor concentration as shown in Fig. 5-39. In the nearly steady state, concentrations 

of A1-A3 are nearly constant and the same for both runs, while variations are observed 

for A4 and A4 for the DF run is slightly higher than that for the DF/CO2 run. These 

results indicate that addition of CO2 did not effectively reduced fuel degradation under 

current experimental conditions. 

Results from analysis of pressure drop across the filter and analysis of DF 

chromatographs suggest that CO2 might not effectively prevent fuel degradation but was 

able to reduce accumulation of solid deposits along the flow path due the solubilization 

effect. One explanation of these phenomena is that addition of CO2 reduces the critical 
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Fig. 5-36  Δ(PPA) analysis for DF samples collected during thermal stressing of DF. 
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Fig. 5-37  Δ(PPA) analysis for DF samples collected during thermal stressing of the 

DF/CO2 mixture. 
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Fig. 5-38  Slopes of Δ(PPA) trend lines. 
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Fig. 5-39  Variations of concentrations of PAH precursors in thermal stressing of DF and 

the DF/CO2 mixture. 
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temperature of the fuel mixture, bringing the fuel from liquid state to the supercritical 

state.  For a rough estimate, Eq. (3-16) is used to obtain pseudocritical temperatures of 

DF/CO2 mixtures at varying compositions. Some constants required for the calculation 

include critical temperatures and molecular weights of both DF and CO2. Molecular 

weight of DF is calculated by Eq. (5-3) suggested by API (API, 2006), while other 

constants are described in Chapter III. 

 

4

3 1.26007 4.98308

20.486[exp(1.165 10 7.78712

1.1582 10 )]

b

b b

MW T SG

T SG T SG





  

 
 (4-31)  

where Tb is in 
o
R. With Tb = 1000.4 

o
R and SG = 0.85745 from Chapter III, it gives MW 

= 221g/mol. Critical temperatures at varying compositions are presented in Table 5-6.  It 

is shown that addition of 10 wt% of CO2 reduces the critical point from 472 to 314 
o
C, a 

value much lower than the thermal stressing temperature which was 440 
o
C. 

 

5.4  CONCLUSIONS 

 Thermal stability of DF is one major concern of the development of supercritical 

fuel combustion technology. Fuel degradation, on the one hand, directly influences fuel 

combustion and combustion efficiency. On the other hand, it leads to solid deposits, 

which could eventually block the fuel delivery system, causing failure of diesel engines. 

Therefore, a better understanding of DF thermal stability is desired. 

Three experiments were designed and conducted in this work to explore the 

impacts of temperature, residence time and CO2 on thermal stability of DF. They were 

batch thermal stressing of DF, batch thermal stressing of DF/CO2 mixtures, and 

continuous thermal stressing of DF and the DF/CO2 mixture. Stressed DF samples were 
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Table 5-6  Pseudocritical points of DF/CO2 mixtures.  

 

Wt % Molar ratio, x Tc, 
o
C 

DF CO2 DF CO2 

 
100 0 1.00 0.00 472.0 

95 5 0.79 0.21 379.7 

90 10 0.64 0.36 313.9 

85 15 0.53 0.47 264.7 

80 20 0.44 0.56 226.4 

75 25 0.37 0.63 195.8 

70 30 0.32 0.68 170.9 

65 35 0.27 0.73 150.1 

60 40 0.23 0.77 132.5 

55 45 0.20 0.80 117.4 

50 50 0.17 0.83 104.3 

45 55 0.14 0.86 92.9 

40 60 0.12 0.88 82.8 

35 65 0.10 0.90 73.9 

30 70 0.08 0.92 65.9 

25 75 0.06 0.94 58.7 

20 80 0.05 0.95 52.1 

15 85 0.03 0.97 46.2 

10 90 0.02 0.98 40.8 

5 95 0.01 0.99 35.9 

0 100 0.00 1.00 31.3 
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characterized by GC-MS and TGA methods. Solid deposits were analyzed using SEM.  

It was found that DF exhibited very good thermal stability up to 420 
o
C for a 

residence time of 30 min. As temperature increased further from 420 
o
C, thermal stability 

of DF dropped and degradation accelerated. The higher the temperature, the more 

significant fuel degradation. At 400 
o
C, DF remained stable for a residence time as high 

as 60 min. These  results suggest that 400-420 
o
C can be an optimal temperature range for 

supercritical fuel delivery. 

Two different morphologies and structures of solid deposits were observed. At 

relative low temperature (300-400 
o
C), deposits had ring structure and the size was as 

large as 1 μm. At high temperature (440 
o
C), increasing amount of crystal-like deposits 

were captured on the stainless steel sheet. The size of these “crystals” was in the order of 

magnitude of 100 nm. The difference in solid structures was likely due to different 

reaction mechanisms that lead to formation of solid deposits.  

CO2 was not able to chemically reduce fuel degradation and hence to prevent fuel 

coking. However, a constant instead of increasing pressure drop across the fuel filter with 

addition of CO2 in DF implies that CO2 was able to reduce accumulation of solid deposits 

along the pipe line. This is well explained by enhanced solvent capacity due to a reduced 

critical temperature of the fuel mixture with addition of CO2. 

Finally, a new method based on GC analysis, named the Δ(PPA) analysis, was 

proposed in this work for characterization of DF thermal stability. When degradation 

occurs, a negative slope of the Δ(PPA) trend line is obtained. A greater negative slope 

indicates more significant fuel degradation.  
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CHAPTER VI 

CONCLUSIONS 

 

The clean diesel combustion technology using supercritical fluids incorporates 

two innovative concepts: injecting diesel fuel under the supercritical condition which is 

above 400 
o
C and using EGR/CO2 to prevent fuel coking. Implementation of this 

technology in conventional diesel engines requires not only technological innovations but 

also a deep understanding of fuel science. This study has been conducted to address some 

important issues related to fuel properties which were encountered in this project but had 

not been well explored in the literature yet. These issues include development of DFSs, 

diffusivity measurements, and thermal stability of DF. Both modeling and experimental 

techniques have been employed in this study.  

DFSs are often used in engine simulations and experimentations to mimic DF. In 

this study, ten DFSs were evaluated in terms of the ability to predict DF physical 

properties including volatility, critical points, density, viscosity, heat capacity, and 

thermal conductivity. It was found that none of these DFSs are able to predict all 

properties of interest. Different DFSs are suggested to obtain different properties. The 

critical temperatures of all DFSs are lower than that of DF with DFS-5 giving a closest 

value. The estimated critical temperatures of DFS-5 and DF are 723 K and 739-754 K, 

respectively. These estimates suggest that DFS-5 is a good surrogate candidate when 

critical properties are important. DFS-7 gives best predictions of density of DF with AAD% 

less than 1%, DFS-4 gives best predictions of both heat capacity and viscosity, while 
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DFS-9 gives relatively better results for thermal conductivity. These surrogates may be 

used to have rough estimates of DF properties, when no experimtal data are available. 

This work on DFS has provided the first evluation of the capability of DFSs in predicting 

DF thermophysical properties and a guidline for DFS selection.   

Diffusivity is one important parameter required for modeling of fuel-diluent and 

fuel-air mixing. Lack of experimental data in the literature motivated the study on 

diffusivities of DF and surrogate compounds in SCCO2. Measurements were done by the 

Taylor dispersion method at temperatures and pressures up to 373.15 K and 30 MPa, 

respectively. Experimental data were correlated by Wilke-Chang, Scheibel, He-Yu, 

12 /D T   and TD12  correlations. It was found that among the first three 

predictive correlations, the He-Yu correlation had the best capability of predicting 

diffusion coefficients in SCCO2. The 12 /D T   correlation had the best overall 

performance with AAD% < 8%.  

Experimental uncertainties in the diffusivity measurement experiments caused by 

sample injection, detector linearity, mobile phase mean velocity, and column orientation 

have been studied. It was found that the effect of sample injection volume could be 

characterized by a new dimensionless parameter φ proposed in this work, which is 

defined by the ratio of equivalent length of injection volume over column diameter. 

Measured diffusion coefficients decreased as φ increased. A φ value below 5 is suggested 

for a better design of Taylor dispersion experiments. Measured diffusion coefficients 

were significantly affected by the mean velocity. The current results lead to a new 

generalized D12-U-ρ pattern diagram which is comprised of three regions, I, II and III, 

dominated by buoyancy forces, inertial forces, and centrifugal forces, respectively. At 
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relatively low density, regions I and III merge together and region II disappears. Accurate 

diffusion coefficients can only be determined in the region II. Column orientation affects 

diffusion coefficient measurements mainly by enhancing or weakening the buoyancy 

effects. When the density difference between the injected sample and the mobile phase is 

substantial and the column is installed vertically, alternate upward and downward flow 

along the column will significantly enhance the buoyancy effects, leading to lower 

measured diffusion coefficients. The horizontal position is preferred especially when the 

density difference between the solute and the solvent is relatively large. 

The work on diffusivity measurements has provided significant advances by 

expending the data base for diffusivities of hydrocarbons in SCFs and by improving the 

understanding of experimental uncertainties.  

Both batch and continuous thermal stressing experiments have been conducted to 

demonstrate the impacts of temperature, residence time and CO2 on thermal stability of 

DF. It was found that thermal stability of DF generally decreases as temperature and 

residence time increase. At 400 
o
C, DF remained stable for a residence time as high as 60 

min. A 420 
o
C, DF exhibited very good stability for a residence time of 30 min. Above 

420 
o
C, thermal stability of DF dropped and degradation accelerated. The higher the 

temperature, the more significant fuel degradation. These results suggest that 400-420 
o
C 

can be an optimal temperature range for supercritical fuel delivery. CO2 was able to 

reduce accumulation of solid deposits along the pipe line due to the enhanced solvent 

capacity. However, it was found that CO2 was not likely to be able to chemically reduce 

fuel degradation.  

Two different morphologies and structures of solid deposits were observed. At 
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relative low temperature (300-400 
o
C), deposits had ring structures and their sizes were as 

large as 1 μm. At high temperature (440 
o
C), increasing amounts of crystal-like deposits 

were captured on the stainless steel sheet. The sizes of these “crystals” were in the order 

of magnitude of 100 nm. The difference in solid structures was likely due to different 

reaction mechanisms that lead to formation of solid deposits.  

The work on thermal stability has resulted in some important observations, 

improved the understanding of the impacts of process conditions on fuel stability, and 

provided conditions where the supercritical fuel combustion could work.  
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CHAPTER VII 

FUTURE WORK 

 

To date, research has not been focused on the challenges associated with 

supercritical fuel combustion. Thus, there are numerous opportunities for innovations and 

breakthroughs in fuel science and technologies that could allow fuels to be consumed in a 

greener, more efficient way. Research is needed to develop reliable, accurate fuel 

property database for applications in modeling, simulation, and design of conventional 

and supercritical fuel delivery and combustion systems. Research is also required to 

advance the understanding of the impacts of fuel temperature and diluents on spray 

behavior, fuel degradation, coke formation, and combustion efficiency. Some of the key 

areas recommended for further investigations are provide below: 

1. Thermophysical properties of fuels 

Improve equipment and develop methodology for measuring fuel properties. 

Reliable data depend on reliable instrumentation and experimentation. Equipment and 

instruments developed to date for measuring thermophysical properties are mostly limited 

for low temperature and/or low pressure applications. Measuring fuel properties at high 

temperature and high pressure is still a big challenge. Research is needed to improve 

current equipment and/or develop new equipment and methods to enable acquisition of 

fuel properties under severe conditions.  

Improve fuel property models. Predictive fuel property models and correlations 

are essential to engineering applications. With acquisition of new experimental data, 
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current theoretical models and empirical/semi-empirical correlations need to be improved 

to cover a broader range of operation conditions.  

Develop fuel property database. The long-term goal of research on fuel properties 

would be to develop a fuel property database to support R&D of advanced fuel and 

combustion systems including supercritical fuel combustion systems. Such properties 

include density, viscosity, heat capacity, heat of vaporization, thermal conductivity, 

thermal diffusivity, mass diffusivity, volatility, and many others. Furthermore, the 

database should include fuels manufactured from a variety of feedstock, both petroleum 

and biomass, as biofuels will play a major role in future global energy supplies. 

2. Thermal stability of fuels 

Advance the understanding of the impacts of EGR on fuel stability. Preliminary 

batch thermal stressing experiments of DF with trapped air have demonstrated effects of 

air on thermal stability of DF. Since EGR contains certain amounts of O2, N2 and water, 

research is needed to reveal the impacts of these species on thermal stability of DF. Also, 

optimal temperature and pressure conditions and the optimal amount of EGR/CO2 need to 

be determined.    

Develop fuel coking and solid deposit formation mechanisms. Two different 

morphologies of solid deposits were observed at different stressing temperatures in this 

work, which implies different fuel coking and solid deposit formation mechanisms. A 

better understanding of the mechanisms would benefit the development of new strategies 

for prevention of fuel coking. It is also valuable to investigate the effects of CO2 and 

EGR on formation of solid deposits.  

Determine thermal stability of biofuel and fuel/biofuel blends. Biofuel will play an 
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important role in future energy supplies, and supercritical fuel combustion is not limited 

to diesel fuel. Thus, thermal stability of biofuel and fuel/biofuel blends and the impacts of 

compositions of fuel blends on thermal stability need to be addressed. 

3. Supercritical fuel combustion 

One issue has been overlooked in design of the supercritical fuel combustion process is 

the impact of fuel degradation on combustion. Fuel degradation at high temperatures 

involves not only formation of solid deposits but also changes in chemical compositions. 

Changes in fuel composition would further influence volatility and cetane number. These 

properties are of primary importance in determining ignition quality and combustion 

efficiency. Thus, the impacts of fuel temperature and high-temperature induced fuel 

degradation on fuel combustion behavior must be addressed in the development of the 

clean diesel combustion technology using supercritical fluids. 
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APPENDIX A 

 

DENSITIES, HEAT CAPACITIES, VISCOSITIES, AND 

THERMAL CONDUCTIVITIES OF DF AND DFSs 

 

  



 

228 

 

 

 

 

Fig. A-1  Densities of DFSs and DF at 10 MPa. 
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Fig. A-2  Densities of DFSs and DF at 50 MPa. 

 



 

230 

 

 

 

 

Fig. A-3  Densities of DFSs and DF at 100 MPa. 
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Fig. A-4  Heat capacities of DFSs and DF at 10 MPa. 
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Fig. A-5  Heat capacities of DFSs and DF at 50 MPa. 
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Fig. A-6  Heat capacities of DFSs and DF at 100 MPa. 

 



 

234 

 

 

 

 

Fig. A-7  Viscosities of DFSs and DF at 10 MPa. 
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Fig. A-8  Viscosities of DFSs and DF at 50 MPa. 

 



 

236 

 

 

 

 

Fig. A-9  Viscosities of DFSs and DF at 100 MPa. 
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Fig. A-10  Thermal conductivities of DFSs and DF at 10 MPa. 
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Fig. A-11  Thermal conductivities of DFSs and DF at 50 MPa. 
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Fig. A-12  Thermal conductivities of DFSs and DF at 100 MPa. 
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Table A-1  AAD% in prediction of density and heat capacity of DF. 

   

P, MPa 10.0 30.0 50.0 100.0 

Density 

DFS-1 18.3 17.1 16.4 15.5 

DFS-2 12.2 11.6 11.2 11.0 

DFS-3 9.7 9.2 9.0 10.2 

DFS-4 7.8 7.4 7.2 7.1 

DFS-5 6.2 5.9 5.8 5.9 

DFS-6 11.8 10.7 10.1 9.3 

DFS-7 0.2 0.2 0.2 0.4 

DFS-8 6.7 6.1 5.8 5.5 

DFS-9 5.4 4.9 4.6 4.3 

DFS-10 5.4 4.8 4.4 4.0 

Heat Capacity 

DFS-1 9.1 7.9 7.4 6.4 

DFS-2 7.0 6.6 6.3 5.0 

DFS-3 7.3 7.0 6.4 8.2 

DFS-4 0.9 1.2 1.5 2.3 

DFS-5 1.8 2.2 2.6 3.5 

DFS-6 2.8 4.0 4.8 6.1 

DFS-7 7.5 8.1 8.5 9.6 

DFS-8 4.0 4.8 5.4 6.6 

DFS-9 18.3 18.9 19.4 20.3 

DFS-10 5.9 6.7 7.2 8.3 
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Table A-2  AAD% in prediction of thermal conductivity and viscosity of DF. 

 

P, MPa 10.0 30.0 50.0 100.0 

Thermal conductivity 

DFS-1 3.1 4.8 5.8 7.1 

DFS-2 1.6 3.0 4.3 6.3 

DFS-3 6.7 7.5 7.9 6.9 

DFS-4 6.5 8.4 9.6 11.3 

DFS-5 8.1 9.8 10.9 12.4 

DFS-6 2.3 5.3 7.6 11.4 

DFS-7 9.6 10.8 11.6 12.8 

DFS-8 6.5 8.7 10.2 12.6 

DFS-9 0.1 2.1 3.6 5.9 

DFS-10 5.6 7.9 9.5 12.0 

Viscosity 

DFS-1 81.0 79.4 78.6 78.6 

DFS-2 63.2 60.4 58.6 51.6 

DFS-3 46.3 42.0 36.9 41.1 

DFS-4 21.0 10.0 7.7 22.9 

DFS-5 5.8 22.7 39.9 87.9 

DFS-6 79.4 78.3 77.7 77.6 

DFS-7 47.1 44.2 42.0 38.9 

DFS-8 65.7 63.7 62.2 60.5 

DFS-9 52.2 48.7 46.0 41.9 

DFS-10 57.5 55.2 53.7 52.2 
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APPENDIX B 

TAYLOR DISPERSION ANALYSIS
*
 

 

The mathematical analysis of Taylor dispersion starts with the continuity equation. 

In the cylindrical coordinate system, the continuity equation for one component in terms 

of its concentration C  which is a function of time ( t ), length ( z ), and pipe radium ( r ) is 

given by  
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where 12D  is the binary molecular diffusion coefficient of solute 1 in solvent 2 and u  is 

the flow velocity given by 
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Inserting Eq. (B-2), Eq. (B-1) becomes 
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 (B-3)  

As described in Section 4.2.1, the pulse disperses about a plane which moves at a 

constant mean velocity U , so it is more convenient in the treatment to transfer the static 

z coordinate to such a coordinate that moves with the mean velocity of the flow. Thus, 

we define  

                                                           
* This analysis is based on the work of Taylor (1953;1954) , Aris (1956) , Alizadeh et al. (1980), Matthews (1986) and 

Pratt and Wakeham (1975) . No citations are placed in the context. 
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 Utzx   (B-4)  

Accordingly,  

 Udtdzdx   (B-5)  

 Urzurxu  ),(),('  (B-6)  

Consequently, Eq. (B-3) can be rewritten as 
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Generally, the transfer of solute along the tube by molecular diffusion is much 

smaller than by convection generated by the bulk flow. It is reasonable to assume, 

therefore, that 
2
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. Thus, the continuity equation Eq. (B-7) can be 

simplified as 
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The boundary conditions for Eq. (B-8) are as follows, 

 0




Rrr

C
 (B-9)  

 ')0,( CxC   (B-10)  

To solve Eq. (B-8), let  
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 edrcrbrarC  234
 (B-11)  

Taking the first and second derivatives with r , it becomes 
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Solving Eqs. (B-8) - (B-13), the parameters in Eq. (B-11) are obtained 
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 0d  (B-17)  

 'Ce   (B-18)  

Thus, a solution to Eq. (B-8) has the following form 
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In practice, however, it is more convenient to measure the mean concentration 

( mC ) over any cross section than to measure the concentration ( 'C ) in the center of the 

tube at 0r . mC  is defined by 
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   drrC
R

C
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
 (B-20)  

Substitute Eq. (B-19) into Eq. (B-20) and perform the integration, it gives 
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Eq. (B-21) can rewritten in the form 
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Substitute Eq. (B-22) into Eq. (B-19) and it gives 
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Similarly, the continuity Eq. (B-7) can be averaged by multiplying it by 
2

2

R

r
 and 

integrating from 0 to R . This results  
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Eq. (B-24) can be reduced to the following form by inserting Eq. (B-23) 
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or 
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where,  
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Eq. (B-26) is known as the one-dimension diffusion equation. K is the apparent 

diffusion coefficient or called dispersion coefficient.  To solve Eq. (B-26), the following 

initial and boundary conditions are applied 

  x
XR

M
xCm 

 2
)0,(   (B-28)  

 0),(  tCm  (B-29)  

where M is the total amount of solute injected, X is the length of the tube occupied by the 

solute, and  x  is defined by  

  
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
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00

0

x

x
x  (B-30)  

The similarity method based on dimensional analysis is applied to solve Eq. (B-

26). The first step in this analysis is to identify important variables and their dimensions. 

It is obvious in Eq. (B-26) that 



Cm  is a function of position (



x ) and time (



t ). Also, 



Cm  

depends on apparent diffusion coefficient (



K ) and the initial condition. The variables 

involved in the problem and their dimensions are summarized in Table B-1. Dimension 

characteristics of mass, length, and time are indicated by M, L, and T, respectively. 



A  is 

the cross section area of the diffusion column. 

Since the mean concentration distribution depends on position, time, diffusion 

coefficient, and the initial amount of solute, mC  is written as a function of these variables 

in the following form 
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Table B-1  Variables and Dimensions. 

 

Variables Symbols Dimensions 

Mean concentration  M/L
3 

Initial amount of solute per cross section area   M/L
2 

Apparent Diffusion coefficient  L
2
/T 

Position  L 

Time  T 
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or 
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m txK
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M
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  (B-32)  

Comparing dimensions of both sides of Eq. (B-32), it gives 

     kjih
TLTLLMLM 223   (B-33)  

which results 

 1h  (B-34)  

 ij 21  (B-35)  

 ik   (B-36)  

So, 
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The dimensional analysis indicates that the solution to Eq. (B-26) is of the form 
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with the function f  to be determined from the initial and boundary conditions. It is 

worth pointing out that f  is only a function of the dimensionless group 
Kt

x
. 

Next, a new variable is introduced in the form, 

 
Kt

x
  (B-39)  

Accordingly, both initial and boundary conditions become, 

   0f  (B-40)  

Taking derivatives of   and mC with  and , it gives 
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Inserting Eqs. (B-43) and (B-45), Eq. (B-26) becomes 
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which can be further simplified as 
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The dimensional analysis has successfully reduced the two-variable partial differential 

equation to a one-variable ordinary differential equation. 

To solve Eq. (B-47), the equation is first rearranged to have the following form  
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which can then be rewritten as an exact differential equation 
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Appling boundary conditions and integrating once, it gives 
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A solution to Eq. (B-50) can be easily found of the form 
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where   is a constant to be determined. 

A mass balance gives 
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Therefore, 
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Inserting Eq. (B-51) , Eq. (B-53) reads  
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Rearranging the equation, it gives 
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The integration on the left side of Eq. (B-55) can be calculated in the following 

way. Let yx 
2


, the integration equals to B  as  
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Changing Cartesian coordinates to polar coordinates, Eq. (B-57) becomes 
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Thus,  
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Finally, the expression for mC  reads 
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Table C-1  Diffusion Coefficients of Benzene in CO2. 

 

T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

307.95 9.68  702.86  14.90  1 

307.95 9.68  702.86  15.90  1 

307.95 9.68  702.86  17.40  1 

307.95 12.46  777.77  13.70  1 

309.65 10.24  701.36  15.30  1 

309.65 10.24  701.36  16.20  1 

309.65 10.25  701.76  14.90  1 

314.15 10.00  606.55  19.80  1 

314.15 13.53  745.62  15.10  1 

313.15 7.86  263.00  24.02  2 

313.15 8.37  329.44  23.39  2 

313.15 8.81  431.99  20.86  2 

313.15 9.35  558.75  19.47  2 

313.15 9.76  608.41  17.52  2 

313.15 10.30  648.82  16.15  2 

313.15 10.79  674.42  15.55  2 

313.15 11.82  712.44  14.25  2 

313.15 12.81  738.70  13.20  2 

313.15 13.61  755.84  12.75  2 

313.15 14.71  775.58  12.45  2 

313.15 15.69  790.56  12.38  2 

313.15 16.67  803.75  11.82  2 

313.15 17.56  814.53  11.28  2 

313.15 2.21  41.49  59.33  3 

313.15 2.84  55.23  56.06  3 

313.15 3.82  79.00  46.39  3 

313.15 3.82  79.00  44.60  3 

313.15 4.70  103.68  40.69  3 

313.15 4.70  103.68  38.82  3 

313.15 4.85  108.30  42.22  3 

313.15 5.68  136.68  30.73  3 

313.15 5.68  136.68  30.97  3 

313.15 5.68  136.68  34.27  3 

313.15 5.68  136.68  32.21  3 

313.15 6.14  155.13  4.72  3 

313.15 6.19  157.29  4.38  3 

313.15 6.71  181.98  1.73  3 

313.15 6.71  181.98  2.05  3 

313.15 6.71  181.98  2.19  3 

313.15 7.11  204.67  1.87  3 
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T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

313.15 7.11  204.67  1.66  3 

313.15 7.11  204.67  1.41  3 

313.15 7.68  246.24  9.86  3 

313.15 7.68  246.24  10.94  3 

313.15 7.68  246.24  10.82  3 

313.15 8.18  300.29  18.44  3 

313.15 8.18  300.29  18.34  3 

313.15 8.18  300.29  19.61  3 

313.15 8.72  406.53  24.90  3 

313.15 8.72  406.53  25.04  3 

313.15 8.72  406.53  23.90  3 

313.15 9.21  534.02  22.05  3 

313.15 9.21  534.02  23.82  3 

313.15 9.21  534.02  23.40  3 

313.15 9.70  602.58  18.94  3 

313.15 9.70  602.58  18.42  3 

313.15 9.70  602.58  19.72  3 

313.15 10.68  669.27  17.12  3 

313.15 10.68  669.27  17.20  3 

313.15 10.68  669.27  17.10  3 

313.15 12.64  734.66  13.88  3 

313.15 12.64  734.66  13.78  3 

313.15 12.64  734.66  13.87  3 

313.15 14.70  775.42  12.87  3 

313.15 14.70  775.42  12.81  3 

313.15 14.70  775.42  12.85  3 

313.15 16.71  804.26  11.56  3 

313.15 16.71  804.26  11.52  3 

313.15 16.71  804.26  11.55  3 

308.15 5.99  158.31  64.11  4 

308.15 5.99  158.31  64.42  4 

308.15 6.43  181.28  49.96  4 

308.15 6.44  181.86  56.63  4 

308.15 6.67  196.00  60.73  4 

308.15 7.03  222.56  49.18  4 

308.15 7.03  222.56  49.28  4 

308.15 7.21  238.91  45.42  4 

308.15 7.52  275.85  29.64  4 

308.15 7.53  277.33  24.53  4 

308.15 7.56  281.92  24.37  4 

308.15 7.58  285.12  31.10  4 

308.15 7.58  285.12  33.84  4 

308.15 7.59  286.76  34.08  4 

308.15 7.59  286.76  34.23  4 
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T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

308.15 7.59  286.76  30.28  4 

308.15 7.61  290.15  29.65  4 

308.15 8.11  497.21  24.24  4 

308.15 8.12  503.39  24.01  4 

308.15 8.30  574.13  22.70  4 

308.15 8.41  597.53  22.53  4 

308.15 8.44  602.75  21.52  4 

308.15 8.44  602.75  21.53  4 

308.15 8.48  609.13  20.96  4 

308.15 8.85  650.45  20.18  4 

308.15 8.87  652.12  19.27  4 

308.15 8.88  652.94  19.22  4 

308.15 9.00  662.13  19.35  4 

308.15 9.41  686.98  18.14  4 

308.15 9.79  704.53  17.20  4 

308.15 9.92  709.75  17.92  4 

308.15 10.10  716.48  17.44  4 

308.15 10.59  732.49  16.63  4 

308.15 11.08  746.03  16.55  4 

308.15 11.66  759.83  16.23  4 

308.15 12.11  769.30  15.88  4 

308.15 12.53  777.38  15.99  4 

308.15 13.11  787.55  15.29  4 

308.15 13.57  794.95  15.71  4 

308.15 13.94  800.53  14.87  4 

308.15 14.48  808.18  15.09  4 

308.15 15.75  824.27  14.03  4 

308.15 16.10  828.31  14.45  4 

308.15 16.70  834.92  14.27  4 

308.15 18.16  849.56  13.85  4 

308.15 19.03  857.48  13.37  4 

308.15 20.16  867.03  13.52  4 

308.15 21.09  874.37  13.02  4 

308.15 22.13  882.08  12.94  4 

308.15 25.14  902.09  12.44  4 

308.15 25.18  902.34  12.56  4 

308.15 25.18  902.34  12.36  4 

308.15 27.72  917.10  12.17  4 

308.15 30.29  930.56  12.04  4 

313.15 7.55  235.44  50.47  4 

313.15 7.62  241.13  47.69  4 

313.15 7.62  241.13  43.31  4 

313.15 7.66  244.51  42.72  4 

313.15 8.80  429.10  23.44  4 



 

257 

 

T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

313.15 9.02  490.71  23.41  4 

313.15 9.29  548.82  22.70  4 

313.15 9.58  589.70  21.58  4 

313.15 9.92  622.36  20.60  4 

313.15 10.32  650.02  19.43  4 

313.15 10.70  670.22  19.14  4 

313.15 11.07  686.37  18.76  4 

313.15 11.09  687.16  18.58  4 

313.15 11.57  704.51  18.09  4 

313.15 12.13  721.43  17.45  4 

313.15 12.20  723.36  17.27  4 

313.15 13.11  745.47  17.16  4 

313.15 13.22  747.84  16.90  4 

313.15 13.30  749.53  16.72  4 

313.15 13.62  756.04  16.80  4 

313.15 14.40  770.38  16.16  4 

313.15 14.42  770.72  16.12  4 

313.15 16.08  796.00  15.71  4 

313.15 16.11  796.40  15.31  4 

313.15 16.12  796.54  15.40  4 

313.15 16.13  796.68  15.31  4 

313.15 16.16  797.08  15.38  4 

313.15 16.43  800.66  15.68  4 

313.15 18.16  821.27  14.68  4 

313.15 20.08  840.56  14.05  4 

313.15 20.16  841.30  14.02  4 

313.15 21.17  850.28  13.88  4 

313.15 21.18  850.37  13.81  4 

313.15 22.12  858.17  13.53  4 

313.15 22.15  858.41  13.71  4 

313.15 25.17  880.64  12.62  4 

313.15 25.19  880.78  12.85  4 

313.15 25.27  881.32  13.16  4 

313.15 27.71  896.80  12.33  4 

313.15 30.28  911.41  12.13  4 

313.15 34.48  932.41  11.62  4 

318.15 9.28  378.02  24.79  4 

318.15 9.60  431.98  23.89  4 

318.15 9.94  489.07  23.33  4 

318.15 10.18  523.64  24.65  4 

318.15 11.00  603.15  21.70  4 

318.15 11.96  656.01  19.91  4 

318.15 13.01  693.95  18.76  4 

318.15 14.03  721.18  18.06  4 
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T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

318.15 15.08  743.52  17.13  4 

318.15 16.05  760.81  16.64  4 

318.15 17.00  775.53  16.19  4 

318.15 17.98  788.98  15.71  4 

318.15 19.06  802.23  15.34  4 

318.15 20.06  813.33  14.98  4 

318.15 20.56  818.52  15.11  4 

318.15 21.07  823.60  14.66  4 

318.15 22.03  832.64  14.54  4 

318.15 23.03  841.42  14.29  4 

318.15 24.08  850.03  13.91  4 

318.15 25.00  857.14  13.76  4 

318.15 25.96  864.17  13.67  4 

318.15 27.07  871.87  13.69  4 

318.15 27.98  877.87  13.29  4 

318.15 29.03  884.48  13.17  4 

318.15 30.18  891.38  12.91  4 

323.15 10.09  395.11  24.56  4 

323.15 10.28  418.40  23.85  4 

323.15 10.49  444.33  23.30  4 

323.15 10.67  465.96  23.45  4 

323.15 10.88  489.83  23.67  4 

323.15 11.12  514.79  25.96  4 

323.15 11.47  546.39  24.08  4 

323.15 11.95  581.51  23.27  4 

323.15 12.08  589.68  23.18  4 

323.15 13.13  641.47  21.10  4 

323.15 14.00  672.17  19.57  4 

323.15 15.13  702.91  18.87  4 

323.15 15.33  707.60  18.79  4 

323.15 16.07  723.50  18.35  4 

323.15 17.06  741.92  17.68  4 

323.15 18.03  757.58  17.09  4 

323.15 19.00  771.45  16.44  4 

323.15 20.00  784.29  15.95  4 

323.15 21.09  796.94  15.60  4 

323.15 22.05  807.12  15.66  4 

323.15 23.05  816.93  15.48  4 

323.15 24.07  826.24  14.77  4 

323.15 25.03  834.44  14.49  4 

323.15 26.09  842.95  14.44  4 

323.15 27.06  850.29  14.25  4 

323.15 28.01  857.12  14.04  4 

323.15 28.96  863.63  13.67  4 
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T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

323.15 30.19  871.64  13.56  4 

328.15 9.05  258.54  31.50  4 

328.15 9.74  304.92  28.54  4 

328.15 9.98  323.47  27.49  4 

328.15 9.99  324.27  27.40  4 

328.15 10.64  380.86  26.00  4 

328.15 11.24  437.73  24.66  4 

328.15 11.56  467.26  24.60  4 

328.15 12.07  509.99  24.64  4 

328.15 12.55  544.21  23.88  4 

328.15 13.14  578.38  23.25  4 

328.15 13.43  593.50  22.31  4 

328.15 14.10  622.40  21.59  4 

328.15 15.08  655.94  20.40  4 

328.15 16.13  684.31  19.19  4 

328.15 16.90  701.72  18.94  4 

328.15 17.16  707.10  18.65  4 

328.15 17.99  722.90  18.40  4 

328.15 19.03  740.28  17.62  4 

328.15 19.78  751.49  17.15  4 

328.15 20.06  755.44  17.70  4 

328.15 21.03  768.26  16.72  4 

328.15 21.99  779.82  16.38  4 

328.15 23.03  791.29  15.84  4 

328.15 23.96  800.78  15.98  4 

328.15 24.68  807.69  15.71  4 

328.15 25.75  817.35  15.28  4 

328.15 26.83  826.46  15.17  4 

328.15 29.23  844.80  14.54  4 

313.15 8.43  340.20  25.80  5 

313.15 8.53  360.21  24.50  5 

313.15 8.63  383.16  23.60  5 

313.15 8.73  409.28  25.40  5 

313.15 9.02  490.71  21.60  5 

313.15 9.32  553.90  20.70  5 

313.15 9.41  567.80  21.60  5 

313.15 9.51  581.27  19.40  5 

313.15 10.00  628.61  17.70  5 

313.15 10.90  679.30  16.20  5 

313.15 11.00  683.52  15.60  5 

313.15 11.10  687.56  16.60  5 

313.15 11.20  691.43  15.80  5 

313.15 12.00  717.76  15.40  5 

313.15 12.10  720.60  15.60  5 



 

260 

 

T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

313.15 12.70  736.10  14.90  5 

313.15 12.80  738.47  15.30  5 

313.15 12.90  740.78  14.70  5 

313.15 14.60  773.76  14.10  5 

313.15 14.70  775.42  13.30  5 

313.15 16.10  796.27  13.80  5 

313.15 16.20  797.62  14.10  5 

313.15 19.50  835.05  12.80  5 

313.15 19.70  836.98  13.00  5 

313.15 19.80  837.93  13.20  5 

313.15 19.90  838.87  11.70  5 

313.15 24.50  876.03  11.50  5 

313.15 24.60  876.73  11.60  5 

313.15 24.70  877.42  11.60  5 

313.15 30.00  909.89  11.30  5 

313.15 30.20  910.97  10.60  5 

313.15 11.00  683.52  21.30  6 

313.15 13.00  743.04  16.50  6 

313.15 15.50  787.81  14.90  6 

313.15 16.00  794.90  14.50  6 

313.15 21.50  853.08  12.80  6 

313.15 25.00  879.49  11.50  6 

333.15 13.00  505.35  25.80  6 

333.15 16.50  651.70  21.00  6 

333.15 26.50  800.93  14.80  6 

308.15 11.00  743.95  14.60  7 

308.15 13.00  785.70  13.70  7 

313.15 8.00  277.90  29.90  7 

313.15 8.50  353.91  23.70  7 

313.15 8.75  414.84  22.80  7 

313.15 8.80  429.10  22.20  7 

313.15 9.00  485.50  19.30  7 

313.15 9.20  532.04  20.10  7 

313.15 9.50  580.01  18.30  7 

313.15 9.50  580.01  18.90  7 

313.15 10.00  628.61  16.70  7 

313.15 11.00  683.52  15.80  7 

313.15 13.00  743.04  13.90  7 

313.15 13.00  743.04  14.00  7 

313.15 16.00  794.90  12.90  7 

318.15 11.00  603.15  19.70  7 

318.15 13.00  693.65  16.00  7 

323.15 11.00  502.64  21.60  7 

323.15 13.00  636.12  18.80  7 
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T, K P, MPa ρ, kg/m
3
 D12, 10

9
 m

2
/s Ref.* 

328.15 11.00  414.90  27.60  7 

328.15 13.00  571.33  19.40  7 

313.15 15.00  780.23  13.00  8 

313.15 16.00  794.90  12.60  8 

313.15 20.00  839.81  11.20  8 

313.15 25.00  879.49  10.30  8 

313.15 30.00  909.89  9.70  8 

313.15 35.00  934.81  9.00  8 

323.15 15.00  699.75  15.60  8 

323.15 20.00  784.29  12.90  8 

323.15 25.00  834.19  11.70  8 

323.15 30.00  870.47  11.10  8 

323.15 35.00  899.23  10.60  8 

333.15 15.00  604.09  18.20  8 

333.15 16.00  637.50  16.10  8 

333.15 20.00  723.68  15.40  8 

333.15 25.00  786.55  13.60  8 

333.15 30.00  829.71  12.40  8 

333.15 35.00  862.94  11.60  8 

313.15 15.00  780.23  12.99  9 

313.15 20.00  839.81  11.20  9 

313.15 25.00  879.49  10.27  9 

313.15 30.00  909.89  9.67  9 

313.15 35.00  934.81  9.01  9 

323.15 15.00  699.75  15.58  9 

323.15 20.00  784.29  12.97  9 

323.15 25.00  834.19  11.72  9 

323.15 30.00  870.43  11.10  9 

323.15 35.00  899.23  10.58  9 

333.15 15.00  604.09  18.18  9 

333.15 20.00  723.68  15.40  9 

333.15 25.00  786.55  13.60  9 

333.15 30.00  829.71  12.44  9 

333.15 35.00  862.94  11.57  9 

 

* 1 (Levelt Sengers et al., 1993), 2 (Ago and Nishiumi, 1999), 3 (Nishiumi and Kubota, 2007), 4 

(Funazukuri et al., 2001), 5 (Funazukuri and Nishimoto, 1996), 6 (Sassiat et al., 1987), 7 (Swaid 

and Schneider, 1979), 8 (Suárez et al., 1993), and 9 (Bueno et al., 1993). 
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D-1 

 

MEASURED DIFFUSION COEFFICIENTS OF BENZENE IN CO2  
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Table D-1  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 40 
o
C, 9-9.5 MPa, vertical coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

9 MPa 

0.26 0.00 8.08 0.25 8.71 

0.35 0.00 10.46 0.28 5.89 

0.39 0.00 12.16 0.35 5.75 

0.48 0.01 14.21 0.88 5.90 

0.57 0.00 15.13 1.29 5.52 

0.60 0.00 15.15 0.65 5.12 

0.73 0.00 16.06 0.76 4.26 

0.88 0.05 17.45 1.26 3.40 

1.07 0.03 19.00 0.72 3.01 

9.4 MPa 

0.21 0.00 10.64 0.26 7.62 

0.40 0.00 14.64 0.52 3.08 

0.54 0.00 15.28 0.83 2.43 

0.73 0.01 16.52 0.55 1.77 

0.91 0.00 17.79 0.83 1.53 

1.10 0.00 18.45 0.30 1.82 

1.25 0.01 19.23 0.83 2.47 

9.5 MPa 

0.31 0.00 12.78 0.77 4.26 

0.50 0.00 16.06 0.61 2.55 

0.70 0.01 18.00 0.92 1.91 

0.96 0.01 18.38 0.58 1.60 

1.14 0.00 18.68 0.36 2.76 

1.51 0.02 19.56 1.00 1.63 
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Table D-2  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 40 
o
C, 10-15 MPa, vertical coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

10 MPa 

0.20 0.00 11.83 0.11 3.51 

0.41 0.00 17.91 0.59 0.82 

0.85 0.01 17.77 0.73 1.35 

1.01 0.01 17.87 0.25 1.54 

1.36 0.01 18.54 0.38 1.74 

1.84 0.02 22.03 0.79 1.96 

12 MPa 

0.17 0.00 13.38 0.81 0.79 

0.30 0.00 14.52 0.81 0.80 

0.59 0.00 15.12 0.76 1.10 

0.85 0.00 15.24 0.25 1.19 

1.14 0.01 15.44 0.17 1.20 

1.49 0.02 17.34 0.47 1.42 

1.93 0.06 20.79 2.35 1.77 

15 MPa 

0.24 0.00 12.90 0.45 0.89 

0.71 0.00 13.15 0.27 0.90 

1.12 0.02 13.38 0.42 1.11 

1.36 0.04 14.05 0.41 1.28 

2.03 0.16 18.53 0.73 1.63 
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Table D-3  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 40 
o
C, 9-10 MPa, horizontal coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

9 MPa 

0.25 0.00 12.18 0.19 6.01 

0.31 0.00 15.66 0.31 2.38 

0.45 0.00 17.05 0.83 2.75 

0.63 0.02 16.98 0.23 1.98 

0.89 0.01 19.58 0.31 1.82 

9.4 MPa 

0.32 0.00 16.55 0.75 1.87 

0.58 0.00 17.38 0.59 1.25 

0.87 0.01 18.02 0.69 1.38 

1.15 0.01 19.28 0.12 2.16 

9.5 MPa 

0.51 0.00 17.59 0.27 1.34 

0.66 0.00 18.13 0.09 0.99 

0.81 0.00 18.23 0.61 1.07 

0.97 0.00 18.39 0.25 1.60 

1.14 0.01 19.06 0.44 1.25 

1.38 0.01 19.90 0.53 1.30 

10 MPa 

0.40 0.01 16.10 0.57 1.02 

0.54 0.00 16.59 0.33 0.98 

0.72 0.00 16.64 0.47 1.09 

0.80 0.01 16.53 0.88 1.21 

0.99 0.02 16.72 0.26 1.39 

1.32 0.01 19.08 1.23 1.79 

1.80 0.03 21.68 1.03 1.96 
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Table D-4  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 40 
o
C, 12 & 15 MPa, horizontal coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

12 MPa 

0.32 0.00 14.20 0.23 0.73 

0.51 0.01 14.89 0.37 0.75 

0.61 0.00 14.55 0.24 1.04 

0.77 0.00 14.78 0.62 0.98 

0.91 0.00 14.89 0.17 1.12 

1.26 0.00 16.29 0.21 1.19 

1.56 0.01 17.95 0.32 1.44 

15 MPa 

0.47 0.00 12.65 0.23 0.88 

0.71 0.00 12.90 0.34 0.83 

0.97 0.02 12.93 0.21 1.02 

1.38 0.01 14.95 0.35 1.40 

1.94 0.01 19.50 0.43 1.59 
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Table D-5  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 60 
o
C, 9-15 MPa, vertical coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

9 MPa 

0.23 0.00 13.31 0.29 17.10 

0.40 0.01 21.31 1.18 11.01 

0.49 0.00 24.80 1.17 8.39 

0.55 0.01 26.46 1.00 7.41 

0.70 0.00 31.20 1.11 5.86 

1.09 0.01 40.98 2.85 2.97 

10 MPa 

0.30 0.00 16.18 0.70 10.96 

0.55 0.00 21.97 0.42 7.45 

1.01 0.01 28.38 1.16 3.56 

1.48 0.06 33.93 1.63 2.01 

2.04 0.02 37.39 0.68 1.84 

12 MPa 

0.25 0.00 11.05 0.09 12.31 

0.60 0.00 18.80 0.81 4.98 

0.78 0.00 20.48 0.82 3.26 

0.93 0.01 21.50 0.83 2.89 

1.07 0.00 22.76 0.24 2.38 

1.50 0.03 24.46 0.57 1.81 

14 PMa 

0.40 0.00 16.02 0.55 4.36 

0.62 0.01 17.87 0.86 2.23 

0.87 0.01 19.85 0.66 1.80 

1.15 0.01 21.01 0.37 1.71 

1.60 0.01 22.72 0.94 1.66 

15 MPa 

0.26 0.00 14.14 0.42 4.53 

0.35 0.00 16.27 0.83 3.26 

0.45 0.00 18.34 0.35 1.63 

0.76 0.00 18.97 0.60 1.20 

1.14 0.01 19.35 1.00 1.19 

1.42 0.02 20.44 0.45 1.29 
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Table D-6  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 60 
o
C, 9-12 MPa, horizontal coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

9 MPa 

0.30 0.00 29.68 1.30 3.84 

0.50 0.00 39.88 0.88 1.30 

0.60 0.00 39.87 0.52 1.78 

0.63 0.00 41.41 1.89 1.44 

0.77 0.00 39.84 1.27 2.16 

0.82 0.00 42.43 1.48 1.29 

0.93 0.00 40.53 1.12 1.68 

1.03 0.01 43.89 2.10 1.41 

1.09 0.00 43.33 1.82 1.59 

10 MPa 

0.47 0.00 29.97 1.22 2.54 

0.60 0.00 32.42 1.25 2.23 

0.72 0.00 33.54 0.51 1.59 

0.90 0.00 36.26 1.51 1.27 

1.20 0.00 37.12 1.26 1.85 

1.50 0.00 37.07 0.85 1.64 

1.97 0.01 39.22 1.03 2.22 

12 MPa 

0.37 0.00 19.36 0.22 3.63 

0.64 0.00 22.72 0.48 1.75 

0.86 0.02 23.38 0.75 1.23 

1.05 0.02 23.73 0.66 1.29 

1.51 0.03 26.45 0.71 1.40 
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Table D-7  Measured diffusion coefficients of benzene in CO2 and curve-fitting errors as 

a function of mobile phase mean velocity: 60 
o
C, 14 & 15 MPa, horizontal coil. 

 

Avg_U 

(cm/s) 
StD_U 

(cm/s) 
Avg_D12 

(10
-9

 m
2
/s) 

StD_D12 

(10
-9

 m
2
/s) 

Avg_ε 

(%) 

14 MPa 

0.38 0.00 19.29 0.43 0.85 

0.53 0.00 20.03 0.53 0.86 

0.70 0.00 19.97 0.37 0.90 

0.82 0.01 19.85 0.11 0.95 

0.94 0.00 20.26 0.07 1.19 

1.14 0.00 20.99 0.35 1.09 

1.39 0.02 21.77 0.32 1.31 

15 MPa 

0.32 0.01 17.25 0.39 1.13 

0.50 0.00 18.64 0.23 0.97 

0.87 0.01 18.99 0.18 1.16 

0.98 0.01 19.15 0.21 0.94 

1.21 0.01 19.49 1.13 1.24 

1.53 0.05 20.21 0.51 1.20 
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D-2 

 

TEMPERATURE & PRESSURE HISTORIES FOR BATCH THERMAL STRESSING 

OF DF/CO2 MIXTURES 
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Fig. D-1  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 1. 
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Fig. D-2  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 2. 
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Fig. D-3  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 3. 
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Fig. D-4  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 4. 
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Fig. D-5  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 5. 
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Fig. D-6  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 1-a. 
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Fig. D-7  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 1-b. 
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Fig. D-8  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 2-a. 
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Fig. D-9  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 2-b. 
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Fig. D-10  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 3-a. 
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Fig. D-11  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 3-b. 
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Fig. D-12  T-P history for batch thermal stressing of DF/CO2 mixtures: Run 4-b. 
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D-3 

 

GC-MS REPORTS FOR FRESH DF* 

 

 

* Reports for thermally stressed DF are not attached in this dissertation, but are available 

in the lab at 411 Link Hall, Syracuse University, Syracuse, NY 13244.  
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Table D-8  GC-MS report for fresh DF – 

sample1 (S1) 

 

Pk R.T. Height Area %Tot 
1 4.539 18150 1121326 0.108 

2 4.7 22495 3151013 0.303 

3 6.452 13844 1258940 0.121 

4 7.569 37569 6250472 0.601 

5 8.193 17026 2077827 0.2 

6 8.596 31307 4817301 0.463 

7 9.029 17777 2815152 0.271 

8 10.146 53412 5753413 0.553 

9 11.586 14197 1546713 0.149 

10 12.512 30799 3721783 0.358 

11 13.126 42673 9784436 0.941 

12 13.73 25448 2408108 0.231 

13 14.022 21052 2981545 0.287 

14 14.726 22484 2769198 0.266 

15 14.958 25484 3346463 0.322 

16 15.622 72224 9047023 0.87 

17 17.867 24012 1995746 0.192 

18 18.119 117233 13794502 1.326 

19 20.243 25419 2228298 0.214 

20 20.495 38037 4220714 0.406 

21 21.028 20771 2676963 0.257 

22 21.25 25881 2901140 0.279 

23 21.612 42026 6703721 0.644 

24 22.025 33185 4623547 0.444 

25 23.565 13581 1914005 0.184 

26 24.169 33181 8107706 0.779 

27 24.612 34969 5473168 0.526 

28 24.934 32163 4072592 0.391 

29 25.578 23124 2507718 0.241 

30 26.052 15955 2198455 0.211 

31 26.615 12236 2635413 0.253 

32 27.803 27701 2686028 0.258 

33 28.397 26525 3347158 0.322 

34 29.041 192728 18906998 1.817 

35 29.545 30381 3553973 0.342 

36 29.937 24479 2448404 0.235 

37 30.954 37445 6961154 0.669 

38 31.921 59721 12859883 1.236 

Pk R.T. Height Area %Tot 
39 32.384 15312 1389192 0.134 

40 33.209 23261 3771847 0.363 

41 33.763 26525 3757469 0.361 

42 34.558 18062 2815768 0.271 

43 35.223 18234 2882860 0.277 

44 36.018 38967 9396914 0.903 

45 36.451 32478 4396244 0.423 

46 37.025 59315 6917828 0.665 

47 37.739 27732 2878112 0.277 

48 38.051 15834 4460385 0.429 

49 38.766 36933 4647243 0.447 

50 39.3 14098 1896196 0.182 

51 39.783 16492 1931379 0.186 

52 41.555 241182 26349134 2.533 

53 43.538 88828 9455752 0.909 

54 44.021 13235 1890504 0.182 

55 44.484 15587 1875338 0.18 

56 44.937 97639 12852843 1.235 

57 45.229 20611 1999903 0.192 

58 45.571 16793 1960872 0.188 

59 46.135 16610 3625711 0.349 

60 47.071 25369 3194907 0.307 

61 47.554 57859 7170625 0.689 

62 47.897 49371 5879254 0.565 

63 48.672 33578 3743407 0.36 

64 49.236 45899 6133318 0.59 

65 49.83 49526 7962771 0.765 

66 50.585 29154 3297788 0.317 

67 51.239 94373 9202217 0.885 

68 51.621 15750 1711407 0.165 

69 51.964 73302 10308357 0.991 

70 52.487 26851 3805266 0.366 

71 52.789 27225 3176300 0.305 

72 54.48 289048 29851574 2.87 

73 54.803 30248 3633307 0.349 

74 55.688 16029 2427580 0.233 

75 56.755 29567 4624279 0.445 

76 58.145 46289 6256805 0.601 

77 58.819 12819 1206393 0.116 

78 60.41 30551 3511474 0.338 

79 60.742 42185 5519155 0.531 

80 61.034 37219 4570262 0.439 

81 61.376 43839 4563032 0.439 
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Pk R.T. Height Area %Tot 
82 61.638 25265 2911967 0.28 

83 61.96 27302 2681984 0.258 

84 62.624 51573 5868747 0.564 

85 63.138 33422 5749612 0.553 

86 63.359 65214 9788868 0.941 

87 64.376 93609 14085600 1.354 

88 65.262 15203 2589460 0.249 

89 66.228 35926 4623472 0.444 

90 67.155 332633 32490079 3.123 

91 67.446 18970 2115259 0.203 

92 67.859 28902 4597708 0.442 

93 70.497 30910 5812997 0.559 

94 70.899 17745 2329135 0.224 

95 71.161 39318 7517945 0.723 

96 71.936 26859 7977458 0.767 

97 73.325 29272 5597194 0.538 

98 73.698 40138 5050959 0.486 

99 74.292 38712 4776432 0.459 

100 75.007 165032 22600720 2.173 

101 75.711 34053 5261108 0.506 

102 76.164 27024 4022099 0.387 

103 76.668 36325 5024616 0.483 

104 77.443 19092 2664627 0.256 

105 78.379 25857 6724945 0.646 

106 78.721 25819 3760412 0.361 

107 79.366 383447 42280793 4.064 

108 80.211 25080 3514102 0.338 

109 80.493 25691 6099628 0.586 

110 81.308 23033 4267198 0.41 

111 83.604 29085 3249278 0.312 

112 84.006 22260 2954412 0.284 

113 84.892 34685 6800908 0.654 

114 85.516 19342 2789523 0.268 

115 86.09 33522 6971416 0.67 

116 86.785 52645 6476707 0.623 

117 87.117 19317 2323692 0.223 

118 87.51 30705 3949769 0.38 

119 89.463 16491 2651875 0.255 

120 90.983 384278 42414579 4.077 

121 94.114 22558 3361766 0.323 

122 94.536 22716 4222259 0.406 

123 95.442 25754 3836129 0.369 

124 95.744 17549 1950705 0.188 

Pk R.T. Height Area %Tot 
125 96.107 27731 4191955 0.403 

126 96.771 99187 20449117 1.966 

127 97.405 21261 2888741 0.278 

128 98.04 35071 4092208 0.393 

129 98.764 26797 3890885 0.374 

130 100.878 8988 1034361 0.099 

131 102.056 350422 38657310 3.716 

132 102.972 150909 15891791 1.528 

133 103.103 168952 16265632 1.564 

134 106.727 35356 7383152 0.71 

135 107.15 17396 2038581 0.196 

136 108.771 27099 3195044 0.307 

137 109.486 19571 1925360 0.185 

138 112.596 312836 34272981 3.295 

139 113.694 74522 7123288 0.685 

140 113.834 79594 8249557 0.793 

141 117.438 22695 3252341 0.313 

142 118.425 15630 1812918 0.174 

143 118.999 21405 2439940 0.235 

144 122.089 21321 4719978 0.454 

145 122.643 274187 30071548 2.891 

146 127.616 21548 2522793 0.243 

147 128.753 16098 2086008 0.201 

148 132.237 234992 26733844 2.57 

149 141.407 180874 19564638 1.881 

150 150.196 126189 13303776 1.279 

151 158.632 72828 7870060 0.757 

152 166.756 33855 3613990 0.347 

153 174.558 13675 1449160 0.139 

End     

 

 

Table D-9  GC-MS report for fresh DF – 

sample 2 (S2)    

 

Pk R.T. Height Area %Tot 
1 4.693 5167 1167192 0.363 

2 7.541 8154 1077576 0.335 

3 8.578 4930 1038496 0.323 
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Pk R.T. Height Area %Tot 
4 10.118 10038 1402375 0.436 

5 12.483 4943 580062 0.18 

6 13.097 10329 1943662 0.604 

7 13.711 4896 410682 0.128 

8 15.593 21760 3532992 1.098 

9 17.858 6546 528337 0.164 

10 18.089 19512 2520142 0.783 

11 20.223 6319 637420 0.198 

12 20.485 7899 1086260 0.338 

13 21.219 7803 783044 0.243 

14 21.572 11192 1759531 0.547 

15 22.004 8933 1226862 0.381 

16 24.098 8379 2213638 0.688 

17 24.581 9785 1365309 0.424 

18 24.903 5880 809160 0.251 

19 27.782 7811 823813 0.256 

20 28.385 8378 1042330 0.324 

21 29.03 37936 3771377 1.172 

22 29.543 8534 965265 0.3 

23 29.935 7561 674296 0.21 

24 30.942 10122 1378310 0.428 

25 31.898 17887 3518268 1.093 

26 33.166 6031 896695 0.279 

27 33.76 8127 1011967 0.315 

28 36.115 12609 2634391 0.819 

29 36.457 8609 1050838 0.327 

30 37.031 15030 1673034 0.52 

31 37.736 6407 756134 0.235 

32 38.038 3848 478413 0.149 

33 38.772 10143 1186056 0.369 

34 39.809 6419 872844 0.271 

35 41.55 52177 6048562 1.88 

36 43.523 24641 3453926 1.073 

37 44.942 35833 4491941 1.396 

38 45.234 5994 506695 0.157 

39 46.13 5541 980043 0.305 

40 47.096 9114 1016427 0.316 

41 47.569 24366 2927478 0.91 

42 47.891 18120 1985913 0.617 

43 48.686 10715 1152319 0.358 

44 49.25 15570 2088414 0.649 

45 49.823 11134 2144608 0.667 

46 50.286 6577 664172 0.206 

Pk R.T. Height Area %Tot 
47 50.578 7179 715965 0.223 

48 51.253 22146 2200296 0.684 

49 51.977 26738 3680494 1.144 

50 52.501 10679 1341356 0.417 

51 52.813 9927 1136092 0.353 

52 53.165 7479 1064689 0.331 

53 54.483 60882 6281817 1.952 

54 54.815 8390 717305 0.223 

55 55.641 5851 786919 0.245 

56 56.748 10575 1522741 0.473 

57 58.167 15209 2127024 0.661 

58 60.422 12701 1254120 0.39 

59 60.754 19111 2341505 0.728 

60 61.035 11795 1642250 0.51 

61 61.378 17732 1702476 0.529 

62 61.639 11348 1305400 0.406 

63 61.972 7156 704839 0.219 

64 62.636 11147 1390906 0.432 

65 63.149 14862 2515979 0.782 

66 63.36 24701 3491540 1.085 

67 64.397 24477 4661130 1.449 

68 65.273 9716 2684724 0.834 

69 66.249 15541 2231955 0.694 

70 67.175 75461 7765231 2.413 

71 67.447 8036 936514 0.291 

72 67.88 11668 1463910 0.455 

73 68.111 8643 967481 0.301 

74 70.506 10163 1789213 0.556 

75 70.919 6674 789204 0.245 

76 71.171 14493 2684542 0.834 

77 71.915 11170 3091258 0.961 

78 72.65 4992 555614 0.173 

79 73.325 11522 2467539 0.767 

80 73.707 17522 2349423 0.73 

81 74.311 13700 2469584 0.768 

82 74.734 9165 1380124 0.429 

83 75.025 47177 6299144 1.958 

84 75.72 12268 2184956 0.679 

85 76.173 18915 2699672 0.839 

86 76.686 22484 3413489 1.061 

87 77.481 9531 1346848 0.419 

88 77.723 7314 689891 0.214 

89 78.357 16686 3881013 1.206 
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Pk R.T. Height Area %Tot 
90 78.719 17151 2377691 0.739 

91 79.373 104978 11272932 3.503 

92 79.957 7444 824688 0.256 

93 80.219 14097 1835342 0.57 

94 80.521 9745 1223646 0.38 

95 81.326 7626 1116851 0.347 

96 81.92 5955 746580 0.232 

97 82.393 7689 1055711 0.328 

98 83.128 8130 1136353 0.353 

99 83.601 10966 1224831 0.381 

100 84.013 11895 1594770 0.496 

101 84.919 17458 2996472 0.931 

102 85.553 6597 993326 0.309 

103 86.117 12493 2603274 0.809 

104 86.801 16385 2301439 0.715 

105 87.133 7317 815914 0.254 

106 87.526 9253 1059186 0.329 

107 89.65 19086 2875755 0.894 

108 90.425 8058 1804994 0.561 

109 90.998 107535 11392724 3.541 

110 92.679 9983 1501056 0.467 

111 94.138 12594 1833851 0.57 

112 94.541 15092 2414715 0.75 

113 95.477 8968 1507045 0.468 

114 95.759 6253 738600 0.23 

115 96.131 10812 1452753 0.451 

116 96.775 28847 6371307 1.98 

117 97.128 5347 607875 0.189 

118 98.034 10241 1288876 0.401 

119 98.768 8599 1679060 0.522 

120 99.332 6678 1632211 0.507 

121 101.2 5198 1184821 0.368 

122 102.05 96407 10917106 3.393 

123 102.97 46533 5538514 1.721 

124 103.12 52495 4641527 1.443 

125 106.71 12807 2689516 0.836 

126 107.14 8448 1234768 0.384 

127 108.77 8491 1371082 0.426 

128 109.48 6850 1133027 0.352 

129 111.74 5174 962642 0.299 

130 112.6 85838 9492242 2.95 

131 113.33 5925 749638 0.233 

132 113.69 27422 2998787 0.932 

Pk R.T. Height Area %Tot 
133 113.83 26815 2639290 0.82 

134 117.43 7339 938941 0.292 

135 118.41 5663 825006 0.256 

136 119.01 6415 1045058 0.325 

137 122.1 7200 1480219 0.46 

138 122.64 79068 8592977 2.671 

139 126.8 5887 1090844 0.339 

140 127.61 8592 1093341 0.34 

141 132.23 66029 7349723 2.284 

142 141.4 45942 4956062 1.54 

143 150.19 29831 3184493 0.99 

144 158.62 16995 1713286 0.532 

145 166.74 6050 661231 0.205 

End 
     

 

Table D-10  GC-MS report for fresh DF – 

sample 3 (S3)  

 

Pk R.T. Height Area %Tot 
1 4.733 3963 514178 0.206 

2 7.582 9806 1419608 0.568 

3 8.628 7261 1035362 0.414 

4 10.168 11951 1379055 0.552 

5 12.543 7032 901629 0.361 

6 13.147 13351 2868986 1.148 

7 13.751 7241 567595 0.227 

8 15.643 27218 4424711 1.77 

9 17.898 8507 724199 0.29 

10 18.15 25273 3128706 1.252 

11 20.263 7347 638379 0.255 

12 20.515 9142 1170955 0.468 

13 21.27 8958 1039850 0.416 

14 21.632 13947 2060162 0.824 

15 22.045 12069 1330855 0.532 

16 24.017 10390 2536386 1.015 

17 24.651 12619 1771887 0.709 

18 24.963 7869 929472 0.372 

19 27.822 8989 904356 0.362 
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Pk R.T. Height Area %Tot 
20 28.436 11465 1300522 0.52 

21 29.07 43109 4412394 1.765 

22 29.563 10718 1230151 0.492 

23 29.965 8287 745675 0.298 

24 31.002 13224 1740205 0.696 

25 31.918 21053 2640192 1.056 

26 31.968 20748 1747679 0.699 

27 33.216 7375 597304 0.239 

28 33.78 10542 1264746 0.506 

29 36.105 12384 2702239 1.081 

30 36.487 7288 654540 0.262 

31 37.071 15721 1773012 0.709 

32 37.776 6201 578358 0.231 

33 38.792 12521 836110 0.334 

34 38.833 11829 657446 0.263 

35 41.58 59264 6333864 2.534 

36 43.553 26712 2773627 1.11 

37 44.952 37004 4589473 1.836 

38 47.106 8593 967099 0.387 

39 47.579 29140 3224256 1.29 

40 47.921 18430 1926442 0.771 

41 48.706 10347 1020125 0.408 

42 49.27 16069 1658536 0.663 

43 49.864 11882 1621344 0.649 

44 50.608 7520 690020 0.276 

45 51.263 25260 2437865 0.975 

46 52.007 28118 3476939 1.391 

47 52.541 8428 1108651 0.444 

48 52.802 8277 752688 0.301 

49 54.513 67640 6924174 2.77 

50 54.835 7794 719524 0.288 

51 56.798 8850 1224596 0.49 

52 58.157 15142 1503216 0.601 

53 60.431 13332 1496923 0.599 

54 60.784 18291 2198378 0.879 

55 61.045 11858 1530957 0.612 

56 61.398 19701 1969874 0.788 

57 61.639 14827 1625175 0.65 

58 61.981 8525 817415 0.327 

59 62.636 13289 1674378 0.67 

60 63.028 14869 1565033 0.626 

61 63.159 18119 1599018 0.64 

62 63.38 27627 3898526 1.56 

Pk R.T. Height Area %Tot 
63 64.397 26841 4342995 1.737 

64 65.303 8528 1296266 0.519 

65 66.249 15283 1689890 0.676 

66 67.195 84846 8342317 3.337 

67 67.457 7287 726769 0.291 

68 67.869 6891 478817 0.192 

69 67.92 6971 322034 0.129 

70 70.547 11667 1863456 0.745 

71 71.191 14230 2843016 1.137 

72 71.935 9415 2553576 1.022 

73 73.697 13935 1522746 0.609 

74 74.331 10523 1134260 0.454 

75 75.035 42250 5116112 2.047 

76 75.73 8563 908860 0.364 

77 76.183 12873 1554539 0.622 

78 76.686 16469 1908986 0.764 

79 77.451 5267 639749 0.256 

80 78.357 11255 1906653 0.763 

81 78.749 11913 1420730 0.568 

82 79.383 97613 10246878 4.099 

83 80.229 11042 1267409 0.507 

84 80.521 7126 793729 0.318 

85 83.631 8933 954823 0.382 

86 84.043 8441 1100567 0.44 

87 84.909 14600 1065402 0.426 

88 84.959 13106 701092 0.28 

89 86.107 10174 1251554 0.501 

90 86.811 13937 1775060 0.71 

91 87.536 9171 900863 0.36 

92 89.639 17499 2540351 1.016 

93 91.008 93366 10268919 4.108 

94 94.148 8041 1057628 0.423 

95 94.511 7535 951480 0.381 

96 95.457 6220 681271 0.273 

97 96.121 7023 914553 0.366 

98 96.644 21319 2269653 0.908 

99 96.805 23517 2261629 0.905 

100 98.043 8451 828765 0.332 

101 102.07 89595 9461537 3.785 

102 102.98 41235 4224707 1.69 

103 103.12 46963 4429772 1.772 

104 106.75 5779 637705 0.255 

105 106.86 1938 30209 0.012 
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Pk R.T. Height Area %Tot 
106 112.6 79982 8383743 3.354 

107 113.71 23017 2235723 0.894 

108 113.84 21504 1816005 0.726 

109 122.65 70682 6714264 2.686 

110 132.23 58698 6387358 2.555 

111 141.4 45071 4912582 1.965 

112 150.19 29439 3241998 1.297 

113 158.62 15460 1539120 0.616 

End 
     

 

Table D-11  GC-MS report for fresh DF – 

sample 4 (S4)  

 

Pk R.T. Height Area %Tot 
1 5.89 27151 3003283 0.112 

2 6.051 22911 2402287 0.089 

3 6.917 59747 8410519 0.313 

4 7.863 54787 6882764 0.256 

5 8.276 37299 4415618 0.164 

6 9.333 95495 9907056 0.369 

7 10.652 35665 3657650 0.136 

8 11.538 64699 8134800 0.303 

9 11.961 70802 5257830 0.196 

10 12.092 93936 16664907 0.621 

11 12.676 74175 6926080 0.258 

12 12.938 77502 9199763 0.343 

13 13.613 50215 5385554 0.201 

14 13.844 48897 6462107 0.241 

15 14.458 159717 22506429 0.838 

16 14.831 33027 3374752 0.126 

17 16.603 54884 4855040 0.181 

18 16.845 282744 27614405 1.028 

19 18.879 62999 4851180 0.181 

20 19.13 85891 8943743 0.333 

21 19.644 43515 6169259 0.23 

22 19.825 55797 5834228 0.217 

23 20.157 90971 15118102 0.563 

24 20.6 71756 10359348 0.386 

Pk R.T. Height Area %Tot 
25 21.184 25445 3152255 0.117 

26 22.05 32538 4358888 0.162 

27 22.523 61090 10244419 0.382 

28 22.705 72221 7898134 0.294 

29 23.067 89283 11111798 0.414 

30 23.43 76854 8957394 0.334 

31 24.054 51599 5807786 0.216 

32 24.497 34396 4475517 0.167 

33 25 23186 5473616 0.204 

34 26.148 62030 6223828 0.232 

35 26.41 32565 3258173 0.121 

36 26.763 58293 6978362 0.26 

37 27.427 492344 44154915 1.645 

38 27.85 70024 7768709 0.289 

39 28.253 53066 5275034 0.196 

40 29.239 75994 9300185 0.346 

41 30.136 139530 26379553 0.982 

42 30.679 42483 3704252 0.138 

43 31.042 35424 3956747 0.147 

44 31.515 51953 8291342 0.309 

45 31.978 61386 7790353 0.29 

46 32.834 42003 6491409 0.242 

47 33.458 39869 4241776 0.158 

48 34.284 112269 21449937 0.799 

49 34.667 82898 8965317 0.334 

50 35.251 157789 15567727 0.58 

51 35.966 75710 6591973 0.246 

52 36.388 42135 8825002 0.329 

53 36.892 84383 12416745 0.462 

54 37.456 43850 6863125 0.256 

55 37.889 52282 13223226 0.492 

56 39.741 662950 68872081 2.565 

57 40.456 22753 3077143 0.115 

58 41.695 193665 23964210 0.893 

59 42.591 32449 3083108 0.115 

60 42.973 231943 25751816 0.959 

61 43.356 37630 2807199 0.105 

62 44.192 35856 4848985 0.181 

63 44.866 25851 4091026 0.152 

64 45.118 65939 6970919 0.26 

65 45.571 140548 15795668 0.588 

66 45.893 120444 12743361 0.475 

67 46.538 43410 4163393 0.155 
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Pk R.T. Height Area %Tot 
68 46.759 85723 10132548 0.377 

69 47.293 110404 12781726 0.476 

70 47.696 46033 6437670 0.24 

71 47.948 120978 11508783 0.429 

72 48.683 79303 7848486 0.292 

73 49.337 232062 23660620 0.881 

74 49.7 45383 4591488 0.171 

75 49.971 166555 20661527 0.77 

76 50.485 65519 10606923 0.395 

77 50.777 69021 8568016 0.319 

78 51.139 51401 7181842 0.267 

79 52.559 797203 81539362 3.037 

80 52.992 34456 5381337 0.2 

81 53.546 32623 3002179 0.112 

82 53.838 48467 6748012 0.251 

83 54.301 40520 5876310 0.219 

84 54.674 62560 7826062 0.291 

85 54.915 58386 5278059 0.197 

86 55.741 25700 2831733 0.105 

87 56.134 126765 16954690 0.631 

88 56.838 45813 5133796 0.191 

89 58.006 36187 7053536 0.263 

90 58.308 93014 9825405 0.366 

91 58.671 107396 16354762 0.609 

92 59.033 85953 12890171 0.48 

93 59.295 83052 10716250 0.399 

94 59.476 82262 9406913 0.35 

95 59.97 77625 7946701 0.296 

96 60.675 132999 12441141 0.463 

97 60.856 64580 5821892 0.217 

98 61.017 74817 6578221 0.245 

99 61.228 103237 11345878 0.423 

100 61.39 106527 12014030 0.447 

101 62.034 33375 4162795 0.155 

102 62.407 289237 28625708 1.066 

103 63.131 35563 6494035 0.242 

104 64.068 70453 10272026 0.383 

105 65.175 875625 93263750 3.474 

106 65.8 94319 17349341 0.646 

107 66.515 24498 2540438 0.095 

108 66.817 16925 2925413 0.109 

109 68.317 71611 9698781 0.361 

110 68.538 42365 3491907 0.13 

Pk R.T. Height Area %Tot 
111 68.8 46067 5248628 0.195 

112 69.072 99103 19686466 0.733 

113 69.797 78075 18434283 0.687 

114 70.542 26415 2986984 0.111 

115 70.824 29916 4055436 0.151 

116 71.146 70737 7457146 0.278 

117 71.287 61063 5150559 0.192 

118 71.65 76261 11856212 0.442 

119 72.274 85208 16210196 0.604 

120 72.999 443706 54819068 2.042 

121 73.674 88789 11078163 0.413 

122 73.986 69258 8182385 0.305 

123 74.499 77291 14380135 0.536 

124 75.365 52220 8605579 0.321 

125 76.11 62477 9403129 0.35 

126 76.523 67230 13091557 0.488 

127 77.339 1066015 112050856 4.173 

128 78.013 54293 7886429 0.294 

129 78.336 46599 8023674 0.299 

130 79.181 47960 11099734 0.413 

131 81.497 65230 8498400 0.317 

132 81.96 49998 7213361 0.269 

133 82.806 60640 8650676 0.322 

134 83.068 44723 3785197 0.141 

135 83.451 52345 6100891 0.227 

136 84.075 72548 13951977 0.52 

137 84.739 131832 14418005 0.537 

138 85.102 38440 4756198 0.177 

139 85.444 74288 8183771 0.305 

140 87.367 36839 3309675 0.123 

141 88.213 35572 8100330 0.302 

142 88.938 1055297 111649945 4.158 

143 89.885 29749 3417293 0.127 

144 90.348 38242 7120174 0.265 

145 91.929 48431 8073803 0.301 

146 92.291 57233 7642651 0.285 

147 93.328 72527 8543436 0.318 

148 93.63 45286 5164331 0.192 

149 94.053 69820 11423089 0.425 

150 94.547 215685 23191666 0.864 

151 94.708 271019 32971767 1.228 

152 95.342 57923 8210553 0.306 

153 95.966 95218 9066594 0.338 
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Pk R.T. Height Area %Tot 
154 96.671 64580 7044015 0.262 

155 98.775 48438 6123904 0.228 

156 99.974 992518 107086390 3.988 

157 100.88 417690 38745334 1.443 

158 101.031 479377 46984593 1.75 

159 104.595 91963 8934039 0.333 

160 104.726 83857 9977874 0.372 

161 105.048 48174 5195554 0.194 

162 105.491 41845 10452822 0.389 

163 106.055 43700 6267657 0.233 

164 106.68 75874 8697064 0.324 

165 107.384 51188 5602344 0.209 

166 109.549 27873 5760786 0.215 

167 110.496 888395 94842669 3.532 

168 111.573 194139 22473568 0.837 

169 111.734 197587 18973304 0.707 

170 114.795 32541 3639673 0.136 

171 115.309 59330 11680506 0.435 

172 116.295 39308 5372250 0.2 

173 116.859 54545 7253644 0.27 

174 117.574 33265 4274430 0.159 

175 119.96 57763 12627205 0.47 

176 120.524 796041 83127691 3.096 

177 124.481 44367 7334783 0.273 

178 125.438 63190 7413825 0.276 

179 126.082 26190 4257647 0.159 

180 126.616 44688 5518450 0.206 

181 127.291 27332 2789035 0.104 

182 130.1 665126 71200663 2.652 

183 135.094 27668 2915075 0.109 

184 136.635 25752 3172393 0.118 

185 139.263 525730 55446529 2.065 

186 148.023 367096 36435044 1.357 

187 156.44 218289 22096865 0.823 

188 164.556 99079 9950850 0.371 

189 172.339 45474 4662945 0.174 

End 
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Δ(PPA) ANALYSES FOR THERMALLY STRESSED DF 
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Fig. D-13  Δ(PPA) for  fresh DF (1000ppm, S1).  
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Fig. D-14  Δ(PPA) for  fresh DF (3000ppm, S1). 
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Fig. D-15  Δ(PPA) for thermally stressed DF (200 
o
C, 15 min, DF, S1).  
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Fig. D-16  Δ(PPA) for thermally stressed DF (300 
o
C, 10 min, DF, S1).  
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Fig. D-17  Δ(PPA) for thermally stressed DF (300 
o
C, 30 min, DF, w/air, S1).  
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Fig. D-18  Δ(PPA) for thermally stressed DF (300 
o
C, 600 min, DF, S1).  
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Fig. D-19  Δ(PPA) for thermally stressed DF (400 
o
C, 10 min, DF, S1).  
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Fig. D-20  Δ(PPA) for thermally stressed DF (400 
o
C, 30 min, DF, S1).  
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Fig. D-21  Δ(PPA) for thermally stressed DF (400 
o
C, 30 min, DF, w/o air, S1).  
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Fig. D-22  Δ(PPA) for thermally stressed DF (400 
o
C, 30 min, DF, w/ air, S1).  
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Fig. D-23  Δ(PPA) for thermally stressed DF (400 
o
C, 60 min, DF, S1).  
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Fig. D-24  Δ(PPA) for thermally stressed DF (400 
o
C, 180 min, DF, S1).  
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Fig. D-25  Δ(PPA) for thermally stressed DF (400 
o
C, 300 min, DF, S1).  
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Fig. D-26  Δ(PPA) for thermally stressed DF (400 
o
C, 600 min, DF, S1).  
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Fig. D-27  Δ(PPA) for thermally stressed DF (410 
o
C, 30 min, DF, S1).  
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Fig. D-28  Δ(PPA) for thermally stressed DF (420 
o
C, 30 min, DF, S1).  
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Fig. D-29  Δ(PPA) for thermally stressed DF (420 
o
C, 60 min, DF, S1).  
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Fig. D-30  Δ(PPA) for thermally stressed DF (420 
o
C, 120 min, DF, S1).  
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Fig. D-31  Δ(PPA) for thermally stressed DF (430 
o
C, 30 min, DF, S1).  
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Fig. D-32  Δ(PPA) for thermally stressed DF (440 
o
C, 10 min, DF, S1).  
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Fig. D-33  Δ(PPA) for thermally stressed DF (440 
o
C, 30 min, DF, S1).  
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Fig. D-34  Δ(PPA) for thermally stressed DF (440 
o
C, 30 min, DF, w/o air, S1).  
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Fig. D-35  Δ(PPA) for thermally stressed DF (440 
o
C, 30 min, DF, w/ air, S1).  
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Fig. D-36  Δ(PPA) for thermally stressed DF (440 
o
C, 120 min, DF, S1).  
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Fig. D-37  Δ(PPA) for thermally stressed DF (DF/CO2 run 1, S3).  
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Fig. D-38  Δ(PPA) for thermally stressed DF (DF/CO2 run 2, S3). 



 

320 

 

 

 

 

Fig. D-39  Δ(PPA) for thermally stressed DF (DF/CO2 run 3, S3).  
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Fig. D-40  Δ(PPA) for thermally stressed DF (DF/CO2 run 4, S3).  
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Fig. D-41  Δ(PPA) for thermally stressed DF (DF/CO2 run 5, S3).  
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Fig. D-42  Δ(PPA) for thermally stressed DF (DF/CO2 run 1-a, S2).  
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Fig. D-43  Δ(PPA) for thermally stressed DF (DF/CO2 run 1-b, S2).  
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Fig. D-44  Δ(PPA) for thermally stressed DF (DF/CO2 run 2-a, S2).  
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Fig. D-45  Δ(PPA) for thermally stressed DF (DF/CO2 run 2-b, S2).  
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Fig. D-46  Δ(PPA) for thermally stressed DF (DF/CO2 run 3-a, S2).  
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Fig. D-47  Δ(PPA) for thermally stressed DF (DF/CO2 run 3-b, S2).  
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Fig. D-48  Δ(PPA) for thermally stressed DF (Continuous, DF, #1, S4).  
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Fig. D-49  Δ(PPA) for thermally stressed DF (Continuous, DF, #2, S4).  
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Fig. D-50  Δ(PPA) for thermally stressed DF (Continuous, DF, #3, S4).  
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Fig. D-51  Δ(PPA) for thermally stressed DF (Continuous, DF, #4, S4).  
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Fig. D-52  Δ(PPA) for thermally stressed DF (Continuous, DF, #5, S4).  
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Fig. D-53  Δ(PPA) for thermally stressed DF (Continuous, DF, #6, S4).  



 

335 

 

 

 

 

Fig. D-54  Δ(PPA) for thermally stressed DF (Continuous, DF, #7, S4).  
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Fig. D-55  Δ(PPA) for thermally stressed DF (Continuous, DF, #8, S4).  
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Fig. D-56  Δ(PPA) for thermally stressed DF (Continuous, DF, #9, S4).  
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Fig. D-57  Δ(PPA) for thermally stressed DF (Continuous, DF, #10, S4).  
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Fig. D-58  Δ(PPA) for thermally stressed DF (Continuous, DF, #11, S4).  
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Fig. D-59  Δ(PPA) for thermally stressed DF (Continuous, DF, #12, S4).  
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Fig. D-60  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #1, S4).  
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Fig. D-61  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #2, S4).  
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Fig. D-62  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #3, S4).  
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Fig. D-63  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #4, S4).  
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Fig. D-64  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #5, S4).  
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Fig. D-65  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #6, S4).  
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Fig. D-66  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #7, S4).  
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Fig. D-67  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #8, S4).  
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Fig. D-68  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #9, S4).  
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Fig. D-69  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #10, S4).  
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Fig. D-70  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #11, S4).  
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Fig. D-71  Δ(PPA) for thermally stressed DF (Continuous, DF/CO2, #12, S4).  
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