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ABSTRACT

In this paper we revisit the problem of choosing an optimally trimmed
mean. This problem was originally addressed by Jaeckel (1971). We propose
alternatives to Jaeckel's estimator and its modifications discussed in Andrews
et al. (1972). Jaeckel's procedure chooses the optimal trimming by minimiz
ing an estimate of the asymptotic variance of the trimmed mean. We use the
bootstrap procedure to choose the optimal trimming. A simulation study
shows that our procedure compares favorably with Jaeckel's procedure. We
also discuss modification of our procedure to the two sample setting.

1. INTRODUCTION

A common problem in nonparametric estimation is as follows. To esti
mate a characteristic (), the statistician must choose an estimate from a class
of reasonable estimates {O(a) : a E A} indexed by a parameter a. The
parameter a, of course, is selected according to some optimality criterion. If
the estimates are unbiased or nearly unbiased, it is reasonable to use that es
timate which minimizes the variance. However, the variance of the estimate
O(a) generally depends on unknown characteristics of the population and is

1



unknown to the statistician. Thus the optimal parameter a* is unknown. To
overcome this difficulty, the statistician can estimate the unknown variances
of the estimates and select a parameter value, say &, which minimizes this
estimate of the variance. The resulting estimate of () is then 0(&).

Here are two examples of this type of problem.
Example 1: Estimating the center of symmetry. Let F be a distribution

function which is symmetric about zero. Let (Xl' ... ' X n ) be a random
sample from the distribution function G = F(· - 0). A class of estimates of
(), the center of symmetry of G, is the class of trimmed means. The parameter
a is the amount of trimming. Thus one is looking for the trimmed mean with
smallest possible variance.

Example 2: Estimating the difference of location in a two sample problem.
Consider two independent random samples (Xl' ... ' X m ) and (Yi, ... ,Yn )

drawn from distribution functions F and F(· - (}), respectively. Here we
want to estimate the difference in location O. One possible class of estimates
is the difference of the a-trimmed means of the two samples. Another class of
estimates are the trimmed means based on the pairwise differences {(Yj - Xi) :
i == 1, ... ,m, j = 1, ... , n}. For both classes the parameter a is the trimming
portion.

The first example has been studied by Jaeckel (1971). Jaeckel recom
mends to estimate the asymptotic variance of the trimmed means and use
the trimmed mean which corresponds to the trimming which minimizes the
estimate of the asymptotic variance. He proposes an estimate of the asymp
totic variance of the trimmed means and verifies that the resulting randomly
trimmed mean has the same asymptotic distribution as the trimmed mean
smallest asymptotic variance. Modification of his method are discussed in
the monograph by Andrews et al. (1972). This monograph reports also the
results of extensive simulations.

Jaeckel's estimate of the asymptotic variance is a sample analogue of the
expression of the asymptotic variance of a trimmed mean for symmetric er
ror distributions. In other problems, however, explicit expressions for the
(asymptotic) variances may not be available, and (or) it will be difficult to
obtain an estimate of the variance. An approach which avoids these difficul
ties is as follows. Estimate the variances using the bootstrap method and
then select the trimming portion which minimizes the bootstrap variance
estimator. This method does not require an explicit expression for the vari
ances and works in other situations as well. For this reason the bootstrap

2



approach has become a major source in adaptive statistical procedures.
In this paper we shall study in the context of the above two examples

the performance of randomly trimmed means whose amount of trimming is
chosen to minimize a bootstrap estimator of the variances of the trimmed
means. In connection with example 1, we shall treat various versions of
this method and compare them with Jaeckel's estimate and its modifications
presented in Andrews et al. (1972). In connection with example 2, we shall
compare the randomly trimmed means for the two cases where in both cases
the amount of trimming is chosen by the bootstrap method.

Our paper is organized as follows. In section 2 we describe our proposed
estimates in the one sample case (see Example 1) and contrast it to Jaeckel's
estimate. We report the numerical results of a simulation study and compare
them with those reported in Andrews et al. (1972).

In Section 3 we discuss possible generalizations of our method to the two
sample case (see Example 2). We discuss three classes of estimates. The first
two classes of estimates consist of the differences of the trimmed means from
the two samples and the third class of the trimmed means of the pairwise
differences. Again we use the bootstrap method to select the amount of
trimming. We then report the results of a simulation and compare the two
resulting types of estimates.

2. THE ONE SAMPLE CASE

We only consider the problem of estimating the center of symmetry. We
shall consider four different estimates all of which are versions of randomly
trimmed means. The amount of trimming is chosen to minimize the boot
strap variance.

Let X = (Xl, ... , X n ) denote a random sample from a distribution func
tion F which is symmetric about zero. Let X(l)' ... ,X(n) denote the order
statistics. The a-trimmed mean based on the sample X is defined by

T (X) - X(I+c.rn) +... + X(n-c.rn)
(X - n(l - 20:) V 2 '

where 0: E A = {* :i = 0, ... , [n;l]} represents the amount of trimming.
We are looking for the trimmed mean with smallest possible variance.

Note that this question makes sense even when the symmetry assumption
is dropped. If the symmetry assumption is violated the trimmed mean will
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estimate some quantity depending on the amount of left and right trimming.
In this case we actually select the quantity we are estimating as well.

To select the "best" a in A, Jaeckel (1971) proposed to use that trimmed
mean whose asymptotic varia.nce is minimum. He estimates the asymptotic
varIance

0-2(a) = ( 1 )2 ( 1
6

-
0

x2dF(x) + 2ae~)
1 - 2a lea

where e= Fol(a) and el-a = FO-
l (1 - a), by its sample analogue

2 1 (1 n~n) - 2 - 2 - 2 )
S (a) = (1 _ 2a)2 ;;. L...i Xi,a + aX[an)+l,a + aXn-[an),a

t=[an]+l

where Xi,a = XCi) - Ta(X), i = 1, ... , n. He then proposed the esti
mate T&(X), where & minimizes the estimated variance s2 over a compact
subset [ao, QI] of [0, .5]. Under the assumption that 0 < Qo < al < .5,
he then showed that this estimate has an asymptotic variance that equals
minoo<o<al (72(a), which is the smallest possible asymptotic variance for any
of the-estimates Tcx(X), ao ~ a ~ al.

In our opinion the asymptotic variance may not be a true representative
of the actual variance of a trimmed mean, especially in small samples. More
over, Jaeckel's estimator of the asymptotic variance of the trimmed mean
may be poor for values of a close to 1/2. For this reason, Jaeckel recom
mends to confine a to the interval [0, 0.25]. To avoid these difficulties we use
the bootstrap procedure to estimate the variances of the trimmed means.
Let us now describe our four estimates.

Estimate 1: We draw N independent samples

Y I = (Yi,l,. · · ,Yi,n), .. · ,Y N = (YN,l, · · ., YN,n)

of size n from X = (Xl, ... ,Xn ). Each sample is taken with replacement.
For each a E A, we compute the trimmed means Ta,i = To(Y i) based on

the bootstrap samples Y i, and calculate their sample variances

A 1 ~ - 2
yea) = (N _ 1) ~(Ta,i - Ta) ,

where TOt - iv E~l Ta,i is their sample average. Then we find Q. which
minimizes the sample variance, i.e., a. satisfies

V(a*) :S V(a), a E A.
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The estimate is Ta.(X).
The above estimate makes use of the symmetry assumption only in choos

ing a (symmetric) trimmed mean. To make additional use of the symmetry
assumption we will augment the sample by (28 - Xl, ... ,28 - X n ) and
then calculate the above estimate based on the augmented sample X s =
{Xl' ... ' X n , 28 - Xl' ... ' 28 - X n ). Here S denotes an estimate of 0, the
center of symmetry. Choices of S are discussed below.

Estimate 2 (8 = 0): Augment the sample X with the negative values
of the sample to obtain X o = (Xl, ... ,Xn , -Xl' ... ' -Xn ). Now calculate
Estimate 1 for the augmented sample X o.

Estimate 3 (Center at median): Let S = M, the median of the sample
X. Augment the sample X by the values 2M - Xl, ... ,2M - X n and denote
the result by X M = (XI , ... ,Xn ,2M - X I , ... ,2M - X n ). Now calculate
Estimate 1 based on the augmented sample X M .

Estimate -4 (Double bootstrap): Let S = T = Ta • (X) . .Augment the
sample X by the values 2T - X I, ... , 2T - X n and denote the result by
Xi = (Xl, ... ,Xn , 2T - Xl' ... ' 2T - X n ). Now calculate Estimate 1 based
on the augmented sample Xi.

We have performed a simulation study to compare our estimates with the
estimate of Jaeckel and its modifications proposed by Bickel and Jaeckel and
denoted as SJA, BIC, JBT and JLJ (See Andrews et al. page 2B3-2C for their
description). OUf simulations are for the choice n = 20 and N = 200. Recall
n denotes the sample size and N the size of the bootstrap samples. In the
table below we report the sample variance of our estimates based on 5000
iterations multiplied by n = 20. We have carried out our simulations for
five symmetric distributions. These distributions are the standard normal
distribution, the Cauchy distribution, the double-exponential distribution,
the logistic distribution, and a bimodal distribution with density

1 ( (x 1)2 (x + 1)2 )
f(x) = 2y'2; exp(- 2 ) +exp( 2 ), x E R.

Where available we have also reported the results of Andrews et al (1972).
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Table 1

Normal Cauchy D-Exp. Logistic Bimodal
JAE 1.105 3.500 1.480
BIC 1.088 16.600 1.450
SJA 1.110 3.700 1.390
JBT 1.110 3.300 1.450
JLJ 1.167 2.800 1.530
Estimate 1 1.067 3.108 1.528 3.338 2.303
Estimate 1 1.045 2.996 1.493 3.001 2.122
Estimate 2 0.905 2.465 1.088 2.563 1.888
Estimate 3 1.208 2.861 1.364 3.416 2.667
Estimate 4 1.070 3.034 1.450 3.136 2.190
Variance 1.000 2.584 1.304 3.004 2.000

Remarks: The values given in the table are the variances multiplied by n.
The numbers in the last row are the variances corresponding to the "best"
trimmed mean for the distribution. These values are based on 10,000 samples.

It can be seen that the smallest variances are observed for estimate 2.
But in this case an unfair use of the knowledge of location parameter is used
in augmenting the sample.

The ordinary bootstrap and the double bootstrap have better perfor
mances than the Jaeckel's estimator in most of the cases. In case of double
exponential distribution only the double bootstrap has better performance
than Jaeckel's estimate. Use of sample median to argument the sample helps
in the case of Cauchy and double exponential distributions. OUf variance cal
culation, based on 10,000 repetitions shows that in these two distributions
the minimum variances are actually seen near the median for samples of size
20. This is also an expected result.

In conclusion, it is observed that the bootstrap method gives very satis
factory results for a variety of distributions. The simulation results are given
only for the symmetric distributions. However, the same ideas apply to the
case of nonsymmetric distributions as welL In the later it would be desirable
to obtain the optimum trimming from the left and right end independently,
by the bootstrap procedure.
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3. THE TWO SAMPLE CASE

Let X = (Xl, ... , X m ) and Y = (}l, ... ,Yn ) denote two independent
random samples from distribution functions F and G, respectively. For sim
plicity we assume that m = n. Suppose that G = F(· - 0) for some 0 E R.
We consider three classes of estimates of 0, the differences of the trimmed
means from the two samples with equal trimming portions

the differences of trimmed means from the samples

and the trimmed means
Ta(Z)

based on the n 2 pairwise differences Z = Z(X, Y) = {lj - Xi : i =
1, ... ,n, j = 1, ... , n} of the observations from the two samples. For all
three estimates we select the trimming using the bootstrap. In all cases we
draw N independent samples

(Xl, Y 1), •.• , (XN , Y N),

where X i = (Xi,l' ... ' Xi,n) and Y i = (}Ii,l, ... , }Ii,n) are independent sam
ples from X and Y, respectively. In the first case, we compute for each
a: E Al = {* : i = O, ... ,[n;l]} the estimates ~Q',i = ~a(Xi,Yi) and
calculate the sample variance

OUf estimator is then AQ'l (X, Y) where al is chosen to minimize the sample
variance. In the second case we find the minimum variance X trimmed
mean and similarly the minimum variance Y trimmed mean, based on 200
bootstrap samples, and estimate () by the difference of these two trimmed
means. This estimate is only appropriate if the underlying error distribution
is symmetric about some value. If the error distribution is not symmetric
this estimate may be heavily biased. In the third case, we form the samples
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Zi = Z(Xi,Y i) and then compute for each Q' E A2 = {:2 : i = 0, ... , [n
2
;l]}

the estimates TOt,i = TOt (Zi) and the sample variance

Our estimator is then TOt3 (Z) where Q'3 is chosen to minimize the sample
variance. These estimators are called Estimate 1, Estimate 2, and Estimate
3, respectively. We have performed a simulation study to see how these
estimators perform. The results are summarized in Table 2.

Table 2

Estimate 1 Estimate 2 Estimate 3
Distribution mean varIance mean varIance mean varlance
Normal 1.005 0.207863 1.002 0.210760 1.006 0.218678
Cauchy 0.991 1.528480 0.957 1.404565 1.016 1.269137
Logistic 0.992 0.650573 0.970 0.658473 0.997 0.655253
D. Exp. 0.994 0.345908 1.007 0.345837 0.997 0.340930
Bimodal 0.999 0.418877 1.000 0.431048 1.001 0.400520

We observe that the variances of all estimates are almost equal in four out of
five distributions and differ only in the case of the Cauchy distribution. In
the case of the Cauchy distribution Estimate 3 clearly outperforms the other
the estimates. The first and the second methods of estimation are faster than
the third method by a significant factor. But difference in calculation time
will only show up for larger values of n and m. Recall also that Estimate 2
requires the error distribution to be symmetric about some value.
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