
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1993

An Interpretive Framework for Application Performance Prediction An Interpretive Framework for Application Performance Prediction

Manish Parashar
Syracuse University

Salim Hariri
Syracuse University

Tomasz Haupt
Syracuse University

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Parashar, Manish; Hariri, Salim; Haupt, Tomasz; and Fox, Geoffrey C., "An Interpretive Framework for
Application Performance Prediction" (1993). Northeast Parallel Architecture Center. 57.
https://surface.syr.edu/npac/57

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/57?utm_source=surface.syr.edu%2Fnpac%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

An Interpretive Framework for Application Performance Prediction �Manish Parashar, Salim Hariri, Tomasz Haupt and Geo�rey C. FoxNortheast Parallel Architectures CenterSyracuse UniversityPresented atInternational Conference on Parallel & Distributed Systems (ICPADS), 1993AbstractSoftware development in parallel/distributed envi-ronment is a non-trivial task and depends greatly onthe availability of appropriate support in terms of de-velopment tools and environments. Perforamnce pre-diction/evaluation tools form a critical part of any soft-ware development environment as they enable the devel-oper to visualize the e�ects of various design choices onthe performance of the application. This paper presentsan interpretive model for a source driven performanceprediction framework. A prototype framework based onthe proposed model has been developed for the iPSC/860system. Numerical results obtained on this system arepresented. These results con�rm the potential of in-terpretive performance prediction techniques and theirapplicability.Keywords: Performance prediction, Performanceinterpretation, Parallel/Distributed software develop-ment, System & Application characterization.1 IntroductionSoftware development in any Parallel/Distributedcomputing environment is a non-trivial task and re-quires a thorough understanding of the application andthe system architecture. This is apparent from the factthat currently, applications are able to achieve onlya fraction of peak available performance [1]. Duringthe course of parallel/distributed software development,the developer is required to select the optimal hard-ware con�guration for the particular application, thebest decomposition of the problem on the selected hard-ware con�guration, the best communication and syn-�The presented research has been jointly sponsored byDARPA under contract #DABT63-91-k-0005 and by Rome Labsunder contract #F30602-92-C-0150. The content of the informa-tion does not necessary re
ect the position or the policy of thesponsors and no o�cial endorsement should be inferred.

chronization strategy to be used, etc. The set of rea-sonable alternatives that have to be evaluated is verylarge. Selecting the best alternative among these is aformidable task and depends greatly on the availabilityof appropriate development support. It is imperativetherefore, that evaluations tools be provided as part ofany parallel/distributed software development environ-ment, to enable the developer to visualize the e�ects ofvarious design choices on the performance of the appli-cation.Conventional evaluation/prediction tools and tech-niques are either tuned to speci�c systems, or aretoo general and lack feasibility and accuracy neededin parallel/distributed software development. Analyticmodels for parallel/distributed systems [2, 3] lead tolarge state spaces which result in impractical evalua-tion times. These techniques can be made tractableby introducing simplistic assumptions, but this makesthem unrealistic and inaccurate. Monitoring tech-niques [4, 5, 6], on the other hand, require exten-sive experimentation and data collection on the ac-tual hardware. The process is not feasible or cost-e�ective since parallel/distributed systems are expen-sive resources and usually not freely available for suchexperimentation. Furthermore, these techniques are in-trusive and can alter the execution of the application.A detailed survey of existing evaluation tools and tech-niques can be found in [7].In this paper, we present the design of a practicalperformance prediction framework targeted to paral-lel/distributed computing environments. The frame-work uses a novel interpretive approach to provide accu-rate and cost-e�ective performance prediction. A com-prehensive characterization methodology is proposed toabstract the system and application components of thecomputing environment into a set of well de�ned pa-rameters. An interpreter engine then interprets the per-formance of the abstracted application in terms of theparameters exported by the abstracted system. The pa-rameters required to abstract a system component can

be generated o�-line using existing techniques or viasystem speci�cation. The performance measures gen-erated by the framework provide information about allaspects of the application and at all levels of the appli-cation, i.e. application level, node level, process level,procedure level, etc. A prototype system has been de-veloped for the iPSC/860 hypercube. Our experiencewith this system and the numerical results obtainedcon�rm the potential of interpretive performance pre-diction techniques and their applicability.The rest of this paper is organized as follows: Sec-tion 2 introduces the interpretive model and describesthe structure of the performance prediction frameworkand its modules. Section 3 presents some numerical re-sults obtained on a prototype system implemented onthe iPSC/860 hypercube. Section 4 presents some con-cluding remarks.2 An Interpretive Model for Perfor-mance PredictionThe interpretive model provides a comprehensivecharacterization methodology to abstract and param-eterize the behavior of the application and the com-puting environment. Interpretation techniques are thenused to predict the performance of the abstracted appli-cation on the abstracted computing environment. Fig-ure 1 shows a functional block diagram of the perfor-mance prediction framework. The proposed framework

Figure 1: A Interpretive Performance PredictionFramework - Functional Block Diagramconsists of four modules: (1) Application Module, (2)Systems Module, (3) Interpreter Engine and (4) Out-

put Module. Each module abstracts a speci�c set ofcomponents of the parallel/distributed computing en-vironment and presents a well de�ned interface to therest of the system. A key feature of this framework isthat each module is independent i.e. it is viewed bythe rest of the system as a black box with the desiredinterface. This allows each module to be optimized in-dependently. The four modules are described below.2.1 Model InputsThe proposed performance prediction framework re-quires the following inputs: (1) An application descrip-tion which could be the source of the entire or part ofthe application, an algorithmic description or a set oftemplates; and (2) A mapping description which asso-ciates tasks in the application description to compo-nents in the computing environment on which they areto be evaluated. In addition to these essential inputs,the framework also accepts information about currentsystem run-time status and parameters (e.g. load, ex-isting faults, etc.). If these values are not provided, pre-set default values are used. If the inputs required bythe application are not speci�ed, the user is promptedfor them during the course of the interpretation.2.2 Systems ModuleThe systems module abstracts the target computingsystem into a set of parameters which are then exportedto the Interpreter Engine. The abstraction is performedin a hierarchical manner, wherein, at each level of thehierarchy every unit is independent and is viewed bythe other units as a black box with a well de�ned inter-face. A unit's interface can be generated using evalua-tion techniques best suited to that particular unit (e.g.analytic, simulation, speci�cations, etc.)2.2.1 System Abstraction ModelThe function of the system abstraction model is to pro-vide an abstract representation of the underlying com-puting environment and to de�ne the interface pre-sented to the rest of the framework. The model hi-erarchically characterizes any parallel/distributed com-puting environment into a System Abstraction Graph(SAG). SAG is a rooted tree such that each level of thetree represents a corresponding level in the characteri-zation hierarchy. Each vertex of the SAG is a SystemAbstraction Unit (SAU) that represents the fundamen-tal unit of abstraction at a particular level of the ab-straction hierarchy. Each SAU is a tuple with 4 compo-nents: viz (1) Processing Component (P), (2) MemoryComponent (M), (3) Communication/SynchronizationComponent (C/S), and, (4) Input/Output Component(I/O); i.e. SAU � hP;M;C=S; I=Oi. Each component

of the tuple can be Compound, Simple, or Void. A com-pound component can be further decomposed into oneor more levels in the hierarchy. A simple componentrepresents the lowest level in the classi�cation hierar-chy and exports actual timing information required toabstract that component. A void component impliesthat the particular component is not applicable at thatlevel. An SAU is considered compound if at least oneof its components is compound. Further, every SAUhas at least one component that is not void. Every leafSAU in a SAG is simple.2.3 Application ModuleThe application module is responsible for abstract-ing the application description into a set of parameterswhich de�ne its structure and performance. These pa-rameter are then exported to the interpreter engine sothat their performance can be interpreted in terms ofthe parameters exported by the systems module. Theapplication module is composed of two components:(1) Machine Independent Abstraction Module and (2)Machine Speci�c Filter. The machine independent ab-straction module is responsible for characterizing theapplication into an abstraction graph according to ap-plication abstraction model de�ned below. This graphis then passed through the machine speci�c �lter whereit is augmented to incorporate machine speci�c infor-mation based on the mapping inputs provided. Theapplication module is designed to be general enough tohandle any structured application description.2.3.1 Application Abstraction ModelThe application abstraction model recursively charac-terizes an application description into Application Ab-straction Units (AAU's). AAU's represent the funda-mental unit of abstraction of the application descrip-tion. An AAU can be of two types: A Simple AAUthat cannot be further decomposed. It exports a setof parameters which abstract the portion of the ap-plication description associated with it. A CompoundAAU can be recursively decomposed into a set of sim-ple or compound AAU's. Various classes of simple andcompound AAU's are used to represent standard pro-gramming constructs. The AAU's are combined so asto abstract the control structure of the application, toform the Application Abstraction Graph (AAG). Thecommunication/synchronization structure of the appli-cation is superimposed onto the AAG by augmentingthe graph with a set of edges corresponding to the com-munications or synchronizations between AAU's. Thestructure generated after augmentation is called theSynchronized Application Abstraction Graph (SAAG).The SAAG is then passed through the machine de-pendent �lter which uses the input mapping informa-

tion to de�ne aMapping Abstraction Function (�) fromthe SAAG to the SAG so as to assign: (1) EveryAAUi 2 SAAG to an SAUj 2 SAG on which it is to beinterpreted; and (2) Every communication or synchro-nization edge in SAAG to an ordered set fsaug whichrepresents the actual route followed by the particularcommunication/synchronization for the speci�ed map-ping (e.g a communication from an external unit to ahypercube node has to be routed through the SRM).2.4 Interpretive EngineThe interpreter engine is responsible for the actualperformance interpretation. It uses the system, appli-cation and mapping abstractions, to predict the perfor-mance of the application. The iterpretation model andalgorithm are described below.2.4.1 Interpretation ModelThe interpretation model consists of two components:(1) An Interpretation Function (
) that interprets theperformance of an individual AAU and (2) An interpre-tation algorithm which recursively applies the interpre-tation function to the SAAG to predict the performanceof the corresponding application.De�nition 1 The Interpretation Function (
) operatesfrom the set f AAG g to the set < of real numbers and as-signs to each AAU 2 SAAG a subset of < which represents theperformance statistics of that AAU. i.e.
(AAUi; SAG; �) : AAUi 7! fRg;where AAUi 2 fAAUg & fRg � <& where � is the mapping abstraction function.Before we state the interpretation algorithm, the fol-lowing terminology needs to be de�ned: A Chain of aSAAG is de�ned as a set of contiguous AAU's in thatSAAG. The �rst AAU is called the Head of the chain.Evaluating an AAU consists of applying the interpreta-tion function
 to the AAU to obtain its performancestatistics. A Red AAU denotes an AAU that has beenevaluated. An Active AAU is an AAU whose immedi-ate predecessors are red AAU's. An Active Chain is achain whose head is active.Let �AAUi denote the time (measured from the startof the application) at which AAUi became active. �Startrepresents the beginning of the application executionand the reference point for all measurements made bythe interpretation model. Let �AAUi denote the ex-ecution time of AAUi returned by the interpretationfunction
. The interpretation algorithm can now bede�ned as follows:Algorithm 1 Interpret(1) color Start AAU red;�Start 0;�Start
(AAUStart; SAG;�) [evaluate AAUStart](2) for each active AAUrepeat until there is no active AAU

� for each AAU (AAUi) in the associated active chainrepeat until AAUi cannot be evaluated due to synchroniza-tion requirements�AAUi �AAUi�1 + �i�1�i
(AAUi; SAG;�) [evaluate AAUi]color AAUi redend repeatend repeat (3) if all leaf AAU's of the SAAG are not redERRORend ifEndThe above algorithm proceeds down each active chain(i.e. depth �rst) in the SAAG, and evaluates each AAUof the active chain. It also updates a global time base(�) as it proceeds. If the current AAU cannot be eval-uated because it has to wait for synchronization, thatAAU remains active and the algorithm moves to thenext active chain. If at the end of the algorithm, theleaf AAU's of the (topmost) SAAG are not red, an errorhas occurred in the implementation of the applicationand has caused it to hang-up.2.5 Output ModuleThe output module provides an interactive interfacethrough which the user can access the interpreted per-formance statistics. The user has the option of selectingthe type of information, the level at which the informa-tion is to be displayed. Performance statistics can beobtained at the following levels:AAG Level: Performance information at the AAGlevel deals with the entire application. Statistics avail-able at this level include cumulative execution times,the communication time/computation time breakupand the existing idle times.Sub-AAG Level: Performance information at thislevel deals with the speci�ed part of the AAG. Cumula-tive statistics for the speci�ed subgraph are displayed.AAU Level: Performance information at this level isspeci�c to a particular AAU. All statistics relevant tothat AAU are displayed.Visualization software can be interfaced to this moduleto provide graphical displays of the available informa-tion. Animation capabilities can also be incorporated.3 Numerical ResultsThis section presents some preliminary numerical re-sults obtained through experimentation on a prototypeperformance prediction framework. The objective ofthis experiment was threefold: (1) To validate the sys-tem and application abstraction model and to demon-strate their feasibility and applicability. (2) To validatethe performance interpretation model proposed. (3) Todemonstrate the cost-e�ectiveness of the approach interms of both, resources required and time taken.

0

5

10

15

20

8192 524288 1.04858e+06

E
xe

cu
ti

on
 T

im
e

Problem Size

Integration using Trapezoidal Rule - 8 Procs

Measured
Predicted

0

5

10

15

20

8192 524288 1.04858e+06

E
xe

cu
ti

on
 T

im
e

Problem Size

Integration using Trapezoidal Rule - 4 Procs

Measured
Predicted

0

5

10

15

20

8192 524288 1.04858e+06

E
xe

cu
ti

on
 T

im
e

Problem Size

Integration using Trapezoidal Rule - 2 Procs

Measured
Predicted

0

5

10

15

20

25

30

8192 524288 1.04858e+06

E
xe

cu
ti

on
 T

im
e

Problem Size

Integration using Trapezoidal Rule - 1 Procs

Measured
PredictedFigure 2: Comparison of Predicted and MeasuredTimes (sec)) - Application I: Integration using Trape-zoidal RuleTo meet the �rst objective we chose an architec-ture which is widely used to solve scienti�c and engi-neering applications. The computing system used con-sisted of an iPSC/860 hypercube connected to a 80386based host processor. The applications chosen are apart of a standard benchmark set (The Purdue Bench-mark Set [8]) and were written using FORTRAN 77and the NX/2 communication library. The implemen-tations were tweaked to incorporate a wide range ofprogramming constructs.Application I The �rst application evaluates the in-tegral, TN , of f(x) using the trapezoidal rule.TN = h � (f(a)=2 + N�1Xi=1 f(a+ ih) + f(b)=2)The implementation uses the host-node programmingmodel wherein the host program allocates the node pro-cessors and loads the node programs. It then uses cyclicdistribution to distribute the integration domain amongthe nodes and broadcasts integration parameters. Thehost program receives the integral from the nodes af-ter completion. The node processors calculate the in-tegral over their domains and then perform a globalsum. Node zero then sends the results to the host. Theabove procedure is repeated multiple times in a loop.The number of intervals into which the integration do-main was divided was an external input. The numberiteration were provided as external inputs.Application II The second application evaluates e�as follows: e� = nXi=1 mYj=1 �1:0 + e(�ki�jk)�

0

5

10

15

20

1 2 4 8

E
xe

cu
ti

on
 T

im
e

Processors

Evaluation of (e)* - M = 128; N = 128

Measured
Predicted

0

5

10

15

20

1 2 4 8

E
xe

cu
ti

on
 T

im
e

Processors

Evaluation of (e)* - M = 64; N = 1024

Measured
PredictedFigure 3: Comparison of Predicted and MeasuredTimes (sec)) - Application II: Evaluation of e�The implementation of this application also uses ahost-node programming model. The host processorbroadcasts limits m & n to the nodes. A cyclic distri-bution is used to to distribute the summation domainacross the nodes. Each node computes its partial sum.The global sum is then computed using a global reduc-tion operator. Node zero then sends the results to thehost. The above procedure is repeated multiple timesin a loop. The limits are provided to the host as exter-nal inputs. Experimentation with the two applicationsapplications consisted of varying two variables: (1) theexternal inputs and (2) the number of processing nodesused. The time on the host from the instant the nodeprogram was loaded till the �nal result was received,was measured.The experimentation was performed in two phases:Phase I consisted of implementing the application andthen running it for each combination of problem sizeand number of processors. The implementation was in-strumented to measure execution times. Multiple runswere made for each case to account for noise in the mea-sured timings. Phase II consisted of abstracting the ap-plication and feeding it to the performance predictionprototype. Then, using the interactive interpreter en-gine, prediction were obtained for all the desired com-binations. A comparison between the measured andpredicted times (in seconds) are plotted in Figure 2.The results obtain show that the predicted values liewithin 15% of the measured results. This meets oursecond objective.The cost-e�ectiveness of the interpretive approach isobvious from the fact the entire experiment was com-pleted in a single run and on a Sun workstation.4 Summary & Concluding RemarksEvaluation tools form a critical part of any softwaredevelopment environment and enable the developer tovisualize the e�ects of various design choices on the per-formance of the application.In this paper we presented the design of a perfor-mance prediction framework which uses a novel in-terpretive approach to to provide accurate and cost-

e�ective performance prediction. A comprehensive sys-tem abstraction model was de�ned which provides amethodology to characterize any parallel/distributedcomputing environment. A corresponding applicationabstraction model was also de�ned to characterize thestructure of structured applications. Finally an inter-pretation model was de�ned which used the system andapplication abstraction to achieve performance inter-pretation. The interpreted performance of a standardparallel benchmark on a widely used distributed mem-ory architecture was compared to the measured perfor-mance. The results obtained not only validated the ac-curacy and feasibility of the abstraction, and interpreta-tion model, but also demonstrated its cost-e�ectiveness,both in terms of resources required and time taken.References[1] Glenn Zorpette, \Tera
ops Galore", IEEE Spectrum,29(9):26{76, Sep. 1992.[2] Horace P. Flatt and Ken Kennedy, \Performance ofParallel Processors", Parallel Computing, 12(1):1{20,Oct. 1989.[3] Reda A. Ammar and Bin Qin, \A Technique to De-rive the Detailed Time Costs of Parallel Computa-tions", Proceedings of the 12th Annual InternationalComputer Software and Application Conference, pp.113{119, 1988.[4] Barton P. Miller, Morgan Clark, Je� Hollingsworth,Steven Kierstead, Sek-See Lim, and Timothy Torzewski,\IPS-2: The Second Generation of a Parallel ProgramMeasurement System", IEEE Transactions on Paralleland Distributed Systems, 1(2):206{217, Apr. 1990.[5] Thomas Bemmerl, Arndt Bode, Peter Braun, OlavHansen, Thomas Treml, and Roland Wism�uller, TheDesign and Implementation of TOPSYS, TechnischeUniversit�at M�unchen, Institut F�ur Informatik, July1991, Ver 1.0.[6] Markus Siegle and Richard Hofmann, \Monitoring Pro-gram Behavior on SUPRENUM", ACM SIGARCH,Proceedings of the 19th International Symposium onComputer Architecture, pp. 332{341, May 1992.[7] Manish Parashar, Salim Hariri, Tomasz Haupt, and Ge-o�rey C. Fox, \An Interpretive Framework for Applica-tion Performance Prediction", Technical Report SCCS-479, Northeast Parallel Architectures Center, SyracuseUniversity, Syracuse NY 13244-4100, Apr. 1993.[8] J. R. Rice and J. Jing, \Problems to Test Parallel andVector Languages", Technical Report CSD-TR-1016,Computer Science Department, Purdue University, Pur-due University, Dec. 1990.

	An Interpretive Framework for Application Performance Prediction
	Recommended Citation

	tmp.1285694644.pdf.YxmgK

