Syracuse University

SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1993

An Interpretive Framework for Application Performance Prediction

Manish Parashar
Syracuse University

Salim Hariri
Syracuse University

Tomasz Haupt
Syracuse University

Geoffrey C. Fox
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

6‘ Part of the Computer Sciences Commons

Recommended Citation

Parashar, Manish; Hariri, Salim; Haupt, Tomasz; and Fox, Geoffrey C., "An Interpretive Framework for
Application Performance Prediction" (1993). Northeast Parallel Architecture Center. 57.
https://surface.syr.edu/npac/57

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/57?utm_source=surface.syr.edu%2Fnpac%2F57&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

An Interpretive Framework for Application Performance Prediction

*

Manish Parashar, Salim Hariri, Tomasz Haupt and Geoffrey C. Fox
Northeast Parallel Architectures Center
Syracuse University

Presented at

International Conference on Parallel & Distributed Systems (ICPADS), 1993

Abstract

Software development in parallel/distributed envi-
ronment is a non-trivial task and depends greatly on
the availability of appropriate support in terms of de-
velopment tools and environments. Perforamnce pre-
diction/evaluation tools form a critical part of any sofi-
ware development environment as they enable the devel-
oper to visualize the effects of various design choices on
the performance of the application. This paper presents
an nterpretive model for a source driven performance
prediction framework. A prototype framework based on
the proposed model has been developed for the iPSC/860
system. Numerical results obtained on this system are
presented. These results confirm the potential of in-
terpretive performance prediction techniques and their
applicability.

Keywords: Performance prediction, Performance
interpretation, Parallel/Distributed software develop-
ment, System & Application characterization.

1 Introduction

Software development in any Parallel/Distributed
computing environment is a non-trivial task and re-
quires a thorough understanding of the application and
the system architecture. This is apparent from the fact
that currently, applications are able to achieve only
a fraction of peak available performance [1]. During
the course of parallel/distributed software development,
the developer is required to select the optimal hard-
ware configuration for the particular application, the
best decomposition of the problem on the selected hard-
ware configuration, the best communication and syn-

*The presented research has been jointly sponsored by
DARPA under contract #DABT63-91-k-0005 and by Rome Labs
under contract #F30602-92-C-0150. The content of the informa-
tion does not necessary reflect the position or the policy of the
sponsors and no official endorsement should be inferred.

chronization strategy to be used, etc. The set of rea-
sonable alternatives that have to be evaluated is very
large. Selecting the best alternative among these is a
formidable task and depends greatly on the availability
of appropriate development support. It is imperative
therefore, that evaluations tools be provided as part of
any parallel/distributed software development environ-
ment, to enable the developer to visualize the effects of
various design choices on the performance of the appli-
cation.

Conventional evaluation/prediction tools and tech-
niques are either tuned to specific systems, or are
too general and lack feasibility and accuracy needed
in parallel/distributed software development. Analytic
models for parallel/distributed systems [2, 3] lead to
large state spaces which result in impractical evalua-
tion times. These techniques can be made tractable
by introducing simplistic assumptions, but this makes
them unrealistic and inaccurate. Monitoring tech-
niques [4, 5, 6], on the other hand, require exten-
sive experimentation and data collection on the ac-
tual hardware. The process is not feasible or cost-
effective since parallel/distributed systems are expen-
sive resources and usually not freely available for such
experimentation. Furthermore, these techniques are in-
trusive and can alter the execution of the application.
A detailed survey of existing evaluation tools and tech-
niques can be found in [7].

In this paper, we present the design of a practical
performance prediction framework targeted to paral-
lel/distributed computing environments. The frame-
work uses a novel interpretive approach to provide accu-
rate and cost-effective performance prediction. A com-
prehensive characterization methodology is proposed to
abstract the system and application components of the
computing environment into a set of well defined pa-
rameters. An interpreter engine then interprets the per-
formance of the abstracted application in terms of the
parameters exported by the abstracted system. The pa-
rameters required to abstract a system component can

of the tuple can be Compound, Simple, or Void. A com-
pound component can be further decomposed into one
or more levels in the hierarchy. A simple component
represents the lowest level in the classification hierar-
chy and exports actual timing information required to
abstract that component. A void component implies
that the particular component is not applicable at that
level. An SAU is considered compound if at least one
of its components is compound. Further, every SAU
has at least one component that is not void. Every leaf

SAU in a SAG is simple.
2.3 Application Module

The application module is responsible for abstract-
ing the application description into a set of parameters
which define its structure and performance. These pa-
rameter are then exported to the interpreter engine so
that their performance can be interpreted in terms of
the parameters exported by the systems module. The
application module is composed of two components:
(1) Machine Independent Abstraction Module and (2)
Machine Specific Filter. The machine independent ab-
straction module is responsible for characterizing the
application into an abstraction graph according to ap-
plication abstraction model defined below. This graph
is then passed through the machine specific filter where
it 1s augmented to incorporate machine specific infor-
mation based on the mapping inputs provided. The
application module is designed to be general enough to
handle any structured application description.

2.3.1 Application Abstraction Model

The application abstraction model recursively charac-
terizes an application description into Application Ab-
straction Units (AAU’s). AAU’s represent the funda-
mental unit of abstraction of the application descrip-
tion. An AAU can be of two types: A Simple AAU
that cannot be further decomposed. It exports a set
of parameters which abstract the portion of the ap-
plication description associated with it. A Compound
AAU can be recursively decomposed into a set of sim-
ple or compound AAU’s. Various classes of simple and
compound AAU’s are used to represent standard pro-
gramming constructs. The AAU’s are combined so as
to abstract the control structure of the application, to
form the Application Abstraction Graph (AAG). The
communication /synchronization structure of the appli-
cation is superimposed onto the AAG by augmenting
the graph with a set of edges corresponding to the com-
munications or synchronizations between AAU’s. The
structure generated after augmentation is called the
Synchronized Application Abstraction Graph (SAAG).

The SAAG is then passed through the machine de-

pendent filter which uses the input mapping informa-

tion to define a Mapping Abstraction Function (ui) from
the SAAG to the SAG so as to assign: (1) Every
AAU; € SAAG to an SAU; € SAG on which it is to be
interpreted; and (2) Every communication or synchro-
nization edge in SAAG to an ordered set {sau} which
represents the actual route followed by the particular
communication/synchronization for the specified map-
ping (e.g a communication from an external unit to a
hypercube node has to be routed through the SRM).

2.4 Interpretive Engine

The interpreter engine is responsible for the actual
performance interpretation. It uses the system, appli-
cation and mapping abstractions, to predict the perfor-
mance of the application. The iterpretation model and
algorithm are described below.

2.4.1 Interpretation Model

The interpretation model consists of two components:
(1) An Interpretation Function (Q) that interprets the
performance of an individual AAU and (2) An interpre-
tation algorithm which recursively applies the interpre-
tation function to the SAAG to predict the performance
of the corresponding application.

Definition 1 The Interpretation Function () operates
from the set { AAG } to the set R of real numbers and as-
signs to each AAU € SAAG a subset of ® which represents the
performance statistics of that AAU. 1.e.

Q(AAU;, SAG, 1) : AAU; — {R};
where AAU; € {AAU} & {R} C ®

€ where w 1s the mapping abstraction function.

Before we state the interpretation algorithm, the fol-
lowing terminology needs to be defined: A Chain of a
SAAG is defined as a set of contiguous AAU’s in that
SAAG. The first AAU is called the Head of the chain.
FEvaluating an AAU consists of applying the interpreta-
tion function €2 to the AAU to obtain its performance
statistics. A Red AAU denotes an AAU that has been
evaluated. An Active AAU is an AAU whose immedi-
ate predecessors are red AAU’s. An Actwe Chain is a

chain whose head is active.

Let T4au, denote the time (measured from the start
of the application) at which AAU; became active. Tgy4r¢
represents the beginning of the application execution
and the reference point for all measurements made by
the interpretation model. Let 6441, denote the ex-
ecution time of AAU; returned by the interpretation
function €. The interpretation algorithm can now be
defined as follows:

Algorithm 1 Interpret

(1) color Start AAU red;

Tstart = 0;

bstart—SUAAUSstart, SAG, 1) [evaluate AAUg1qr4)
(2) for each active AAU

repeat until there is no active AAU

¢ for each AAU (AAU;) in the associated active chain
repeat until AAU; cannot be evaluated due to synchroniza-
tion requirements
TAAU; +— Taau,_; + 6,1
5;—Q(AAU;, SAG, 1) [evaluate AAU;]
color AAU; red
end repeat
end repeat (3) if all leaf AAU’s of the SAAG are not red
ERROR
end if

End

The above algorithm proceeds down each active chain
(i.e. depth first) in the SAAG, and evaluates each AAU
of the active chain. It also updates a global time base
(1) as it proceeds. If the current AAU cannot be eval-
uated because it has to wait for synchronization, that
AAU remains active and the algorithm moves to the
next active chain. If at the end of the algorithm, the
leaf AAU’s of the (topmost) SAAG are not red, an error
has occurred in the implementation of the application
and has caused it to hang-up.

2.5 Output Module

The output module provides an interactive interface
through which the user can access the interpreted per-
formance statistics. The user has the option of selecting
the type of information, the level at which the informa-
tion is to be displayed. Performance statistics can be
obtained at the following levels:

AAG Level: Performance information at the AAG
level deals with the entire application. Statistics avail-
able at this level include cumulative execution times,
the communication time/computation time breakup
and the existing idle times.

Sub-AAG Level: Performance information at this
level deals with the specified part of the AAG. Cumula-
tive statistics for the specified subgraph are displayed.
A AU Level: Performance information at this level is
specific to a particular AAU. All statistics relevant to
that AAU are displayed.

Visualization software can be interfaced to this module
to provide graphical displays of the available informa-
tion. Animation capabilities can also be incorporated.

3 Numerical Results

This section presents some preliminary numerical re-
sults obtained through experimentation on a prototype
performance prediction framework. The objective of
this experiment was threefold: (1) To validate the sys-
tem and application abstraction model and to demon-
strate their feasibility and applicability. (2) To validate
the performance interpretation model proposed. (3) To
demonstrate the cost-effectiveness of the approach in
terms of both, resources required and time taken.

Integration using Trapezoidal Rule - 8 Procs Integration using Trapezoidal Rule - 4 Procs
2 T 2 T

Measured <—
Predicted —+- |

Measured <—
Predicted —+- |

N
@
T

Execution Time
=
S
T
!
Execution Time
N
&
T

0
1.04858e+06 8192 524288
Problem Size

0
8192 524288
Problem Size

Integration using Trapezoidal Rule - 2 Procs Integration using Trapezoidal Rule - 1 Procs
20 T T

30
Messured ~o— 25 Measured - =]
o 15 Predicted —+—-~ ° Predicted”<+--
£ Enl R
= =
g 1 S5t 1
5 5
: RS 1
w - w
sk i
0 L 0 L
8192 524288 1.04858e+06 8192 524288 1.04858e+06
Problem Size Problem Size
Figure 2: Comparison of Predicted and Measured

Times (sec)) - Application I: Integration using Trape-
zoidal Rule

To meet the first objective we chose an architec-
ture which is widely used to solve scientific and engi-
neering applications. The computing system used con-
sisted of an iPSC/860 hypercube connected to a 80386
based host processor. The applications chosen are a
part of a standard benchmark set (The Purdue Bench-
mark Set [8]) and were written using FORTRAN 77
and the NX/2 communication library. The implemen-
tations were tweaked to incorporate a wide range of
programming constructs.

Application I The first application evaluates the in-
tegral, Ty, of f(z) using tj\lfl_eltrapezoidal rule.

T =hx*(f(a)/2+ Y fla+ih)+ f(b)/2)
i=1

The implementation uses the host-node programming
model wherein the host program allocates the node pro-
cessors and loads the node programs. It then uses cyclic
distribution to distribute the integration domain among
the nodes and broadcasts integration parameters. The
host program receives the integral from the nodes af-
ter completion. The node processors calculate the in-
tegral over their domains and then perform a global
sum. Node zero then sends the results to the host. The
above procedure is repeated multiple times in a loop.
The number of intervals into which the integration do-
main was divided was an external input. The number
iteration were provided as external inputs.

Application IT The second application evaluates e*
as follows: n

— 5 1.0 4 (N30
> I)
j=1

=1

1.04858e+06

Evaluation of (¢)* - M =128; N =128
T T g
Measured <—
Predicted —+- |

Evaluation of (¢)* - M = 64; N = 1024

T T

~
S
N
S

Measured <—
Predicted —+- |

Execution Time
= P
S &
T T
!

Execution Time
= =
S &
T T
!

o
T
!

o
T
!

o
L
o

4 4
Processors # Processors

Figure 3: Comparison of Predicted and Measured
Times (sec)) - Application II: Evaluation of e*

The implementation of this application also uses a
host-node programming model. The host processor
broadcasts limits m & n to the nodes. A cyclic distri-
bution is used to to distribute the summation domain
across the nodes. Each node computes its partial sum.
The global sum is then computed using a global reduc-
tion operator. Node zero then sends the results to the
host. The above procedure is repeated multiple times
in a loop. The limits are provided to the host as exter-
nal inputs. Experimentation with the two applications
applications consisted of varying two variables: (1) the
external inputs and (2) the number of processing nodes
used. The time on the host from the instant the node
program was loaded till the final result was received,
was measured.

The experimentation was performed in two phases:
Phase I consisted of implementing the application and
then running it for each combination of problem size
and number of processors. The implementation was in-
strumented to measure execution times. Multiple runs
were made for each case to account for noise in the mea-
sured timings. Phase II consisted of abstracting the ap-
plication and feeding it to the performance prediction
prototype. Then, using the interactive interpreter en-
gine, prediction were obtained for all the desired com-
binations. A comparison between the measured and
predicted times (in seconds) are plotted in Figure 2.
The results obtain show that the predicted values lie
within 15% of the measured results. This meets our
second objective.

The cost-effectiveness of the interpretive approach is
obvious from the fact the entire experiment was com-
pleted in a single run and on a Sun workstation.

4 Summary & Concluding Remarks

Evaluation tools form a critical part of any software
development environment and enable the developer to
visualize the effects of various design choices on the per-
formance of the application.

In this paper we presented the design of a perfor-
mance prediction framework which uses a novel in-
terpretive approach to to provide accurate and cost-

effective performance prediction. A comprehensive sys-
tem abstraction model was defined which provides a
methodology to characterize any parallel/distributed
computing environment. A corresponding application
abstraction model was also defined to characterize the
structure of structured applications. Finally an inter-
pretation model was defined which used the system and
application abstraction to achieve performance inter-
pretation. The interpreted performance of a standard
parallel benchmark on a widely used distributed mem-
ory architecture was compared to the measured perfor-
mance. The results obtained not only validated the ac-
curacy and feasibility of the abstraction, and interpreta-
tion model, but also demonstrated its cost-effectiveness,
both in terms of resources required and time taken.

References

[1] Glenn Zorpette, “Teraflops Galore”, IEEE Spectrum,
29(9):26-76, Sep. 1992.

[2] Horace P. Flatt and Ken Kennedy, “Performance of
Parallel Processors”, Parallel Computing, 12(1):1-20,
Oct. 1989.

[3] Reda A. Ammar and Bin Qin, “A Technique to De-
rive the Detailed Time Costs of Parallel Computa-
tions”, Proceedings of the 12" Annual International
Computer Software and Application Conference, pp.
113-119, 1988.

[4] Barton P. Miller, Morgan Clark, Jeff Hollingsworth,
Steven Kierstead, Sek-See Lim, and Timothy Torzewski,
“IPS-2: The Second Generation of a Parallel Program
Measurement System”, ITEEF Transactions on Parallel
and Distributed Systems, 1(2):206-217, Apr. 1990.

[5] Thomas Bemmerl, Arndt Bode, Peter Braun, Olav
Hansen, Thomas Treml, and Roland Wismiiller, The
Design and Implementation of TOPSYS, Technische
Universitat Munchen, Institut Fur Informatik, July
1991, Ver 1.0.

[6] Markus Siegle and Richard Hofmann, “Monitoring Pro-
gram Behavior on SUPRENUM?”, ACM SIGARCH,
Proceedings of the 19" International Symposium on
Computer Architecture, pp. 332-341, May 1992.

[7] Manish Parashar, Salim Hariri, Tomasz Haupt, and Ge-
offrey C. Fox, “An Interpretive Framework for Applica-
tion Performance Prediction”, Technical Report SCCS-
479, Northeast Parallel Architectures Center, Syracuse
University, Syracuse NY 13244-4100, Apr. 1993.

[8] J. R. Rice and J. Jing, “Problems to Test Parallel and
Vector Languages”, Technical Report CSD-TR-1016,
Computer Science Department, Purdue University, Pur-
due University, Dec. 1990.

	An Interpretive Framework for Application Performance Prediction
	Recommended Citation

	tmp.1285694644.pdf.YxmgK

