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ABsTRACT

One of the recent important challenges in the research figlidobr air quality is the
identification of indoor Volatile Organic Compound (VOC) emission ssato clearly
pinpoint the sources of concern in a field condition. This study remieshe first
attempt in developing a new technique to find the sources that mayigible or hidden
based on the inspection even of experts when a building with problems of @idoor
quality is suspected. The objectives of this study were 1) tondee VOC emission
signatures specific to nine typical building materials by gisam on-line analytical
monitoring device, Proton Transfer Reaction - Mass SpectromBiffR-MS), 2) to
explore the correlation between the PTR-MS measurements andetsunements of
acceptability by human subjects, 3) to develop and evaluate a methodtolmpntify
individual sources of VOC emissions based on the measurements af anx@amples
and the PTR-MS material emission signatures, 4) to determirertgpg¢erm variation of
VOC emission signatures over time, and 5) to develop a methoddordador the long-
term variation of emission signatures in the application of thessom source
identification method. Samples of nine building materials westedeindividually and in
combination, including carpet, ceiling material, gypsum board, limoJetwo paints,
polyolefine, PVC and wood. VOC emissions from each materie¢ weeasured in a 50-
liter small-scale chamber. Chamber air was sampled RS to establish a database
of emission signatures unique to each individual material. Sotbkeatsampling and
TD-GC/MS analysis were also performed to identify the maj@Cg emitted and to
compare the resulting data with the PTR-MS emission siggmturThe data on the

acceptability of air quality assessed by human subjects weagethtfrom a previous



experimental study in which the emissions from the same bdtanaterials were
determined under the same area-specific ventilation ratés the case of the current
measurements with PTR-MS. The same task was perfotmedeasure combined
emissions from material mixtures for the application and vatidaif a signal separation
methodology and its source identification enhancement by the conisidevhlong-term
emissions. The methodology was developed based on signal progesscigles by
employing the method of multiple regression least squares (MBh& a normalization
techniqgue. Source models were employed to track the change ofduadivhaterial
emission signatures by PTR-MS over a long period of time clbncluded that: 1) PTR-
MS can be an effective tool for establishing VOC emissionasiges of material types,
and there were sufficient correlations (i.e. Correlation coeffir < -0.92 ) between the
PTR-MS measurements and the acceptability of air qualitthitomine materials tested
when the sum of selected major individual VOC odor indices was osegpresent the
emission level measured by PTR-MS; 2) the proposed method faresm@ntification
could identify the individual sources at high success rates unoeratary conditions
with two, three, five and seven materials present; and 3) tigetéom (over nine months)
variation of emission factors of the tested materials could Weremesented by an
empirical power-law model or a mechanistic diffusion based model, the model
coefficients could be estimated based on relatively a shaomt-eet of emission
measurements (i.es 28 days). The source models could also be used to predict the
variation of material emission signatures, which could in turn kel dsr source
identification. Further experiments and investigation are needadply the presented

source identification method under real field conditions.
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When | look back upon the past three years of my study and consi@dérfigoengs
hidden for a long time in nature He created, especially instience of material

emissions, | can not help confessing a song in praise of His greatnessj@stg:ma

Ol ord my God!l When | in awesome wonder,
Consider all the works Thg hands have made.

I sce the stars, ] hear the ro”ing thuncler,

T!’xfj power t!’]roug}ﬂout the universe clisplagea.

Then sings my soul, my Saviour (God, to | hee;
T”]ow great Thou art, how great Thou art!

When Christ shall come with shouts of acclamation,
And take me home, what joy shall fill my heart!

T hen | shall bow in humble adoration,

And there proclaim, my (God, how great T hou art!

Refrain:

T hen sings my soul, my Saviour (God, to | hee;
f”]ow great Thou art, how great Thou art!
Then sings my soul, my Saviour (God, to | hee;
T”]ow great Thou art, how great Thou art!

"“since what may be known about God
is plain to them. because God has made
it plain to them. “For since the creation
of the world God’s invisible aualities -
his eternal power and divine nature -
have been clearly seen. being
understood from what has been made.
so that peonle are without excuse.’
(Romans 1:19, 20)
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T CHAPTER 1. INTRODUCTION

1.1 Problem Definition and Hypothesis

A large number of emission sources of Volatile Organic Compounds gy©xist in

indoor and outdoor environments that can adversely affect the indoor aty @LsD)

which is vital to human health, comfort and productivity. When IAQ problanes
reported, it is often difficult to determine where and what gsbarce of pollution is
because many factors affect the measured or perceiv@dslikh as: the number of
pollutants in the air, the inter-zonal airflow patterns, thetemee of many emission
materials and human activities in a building, the interaction betwee indoor and

outdoor environment, and the variation of the climate and pollution conditions.

Building materials and furnishings are major contributors to indoo€ \¢Oncentrations
that impact IAQ. Over the past two decades, many reseands Wwave been conducted
to determine the emission characteristics of these matendksr laboratory conditions.
Each material typically emits a series of compounds, and ¢n@ssion rates decrease
over a long period of time. As a result, the VOCs emitted frordibgi materials are
often detected, but the specific material sources cannot be idéndifid pinpointed.

Source identification has been a challenging research topic iaréd@e of indoor and
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outdoor air quality, and solutions to this problem may lead to new apg@®dor source
control and removal to improve IAQ. A first step toward a souteatification would be
to determine if a unique emission signature exists for eadbriadaor each type of
material, and if the emission decay of individual VOCs and hencevahation in
emission signature can be predicted. The fundamental hypothees miesent study
are: 1) each type of material has a unique emission signatfineddéy its emission
compounds and emission rates; 2) the variation of the signaturetiovedue to the
emission rate decay of individual compounds can be modeled byi@amsssirce models.
If these hypotheses are proven to be valid, with the additionaimatan about the inter-
zonal airflow pattern (e.g. determined by a tracer gas tgagbnwhich is out of the scope
of this study), it is then possible to identify the emission ssuof VOCs of concern in a
complex indoor environment. This study is the first of its kind to ldpva source
identification method by using a near-real time measurememitpe, Proton Transfer

Reaction - Mass Spectrometry (PTR-MS).

1.2 Objectives and Scope of the Research

The ultimate goal of this study is to develop a novel methodologydeartifying and
locating emission sources of VOC in buildings based on multipleaanples and the
emission signatures of individual types of materials used in buddinghis goal is

achieved through the following three staged specific objectives:

1) Stage 1: Develop a method for determining the emission signatures of individua

building materials by using PTR-MS, and to explore the correkti@miween the PTR-
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MS measurements and the assessments of acceptability by hunestss This has been
accomplished by testing nine typical building materials that were préyistuslied using
human subjects at two leading-edge institutions, DTU (Technicaeiy of Denmark)
and SBi (Danish Building Research Institute) in the area of tha@ahuwxposure-response
research to building material emissions as part of the collaorbetween SU and
DTU/SBIi on indoor air quality research. Results obtained haverowedi that unique
emission signatures exist for the same types of materdalsaper has been published in

Indoor Air Journal (Han et al., 2010) for this work.

2) Stage 2. Develop and validate a methodology based on signal processing psncipl
that can identify/recognize the emission signatures of indivith&krials from mixed
signals due to simultaneous emissions from multiple materiademure This work deals
with mathematical modeling and laboratory experiments with ptel{up to seven) as
well as individual materials. The outcome of this task isthodology and procedure to
identify individual sources based on the measurements of a mixedmaple. A paper
has been submitted #tmospheric Environment Journal (Han et al., 2011) for this

work.

3) Stage 3: Extend the application of the developed identification methodology by
considering the long-term change of emission signatures ofutied building materials

for enhancing the performance of source identification, and to provide a prpoticadol

for establishing a library of material emission signaturedutare works. A paper has

been submitted tommdoor Air 2011 Conferencefor this work (Han et al., 2011b).
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Figure 1.1 Study scope and contents.

In the present studyr{gure 1.1), emissions from nine (9) common building materials, the
same types previously studied by DTU and SBi to investigate theamiexposure-
response relationship in terms of acceptability, were firgtsoned individually in a 50-
liter small-scale chamber with specified airflow ratesutting in the similar pollution
levels. Exhaust air was sampled by PTR-MS to determinesemisignatures followed
by sorbent tube sampling for identifying major VOCs emitted femoh material and for
comparing with the PTR-MS emission signatures. Because thecBubjrelationships
have been established for these key building materials, the quaiatifiaad composition
of VOCs in each material causing acceptability differemeediscussed by use of PTR-
MS and GC/MS analyses. In addition, the feasibility of emissigmature separation by
a novel and effective methodology of signal processing for idemgifgach emission
signature under material mixture conditions and for determining ¥@{Ssion sources
in indoor environments are challenged with the consideration of iemissgnature

change over a long-term period. Finally, a practical testaiggdule for establishing a
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library of material emission signatures are presented h&svpossible applications with

the use of a complete database of PTR-MS emission signatigaese(1.1).

1.3 Outcomes

The results of the present study can be further used to develop mighody on-line
material identification and detection, 2) VOC source detectiorfiglcacondition, and 3)
deeper understanding of VOC behaviors in material mixtures amehptsct on human
health and perception. Results of this study have shown that uniqueoanpaterns
may indeed exist for different types of building materials. s€hgatterns, or signatures,
can be established by using PTR-MS. A correlation between dasurements from
PTR-MS and the acceptability of air quality assessed by hunoigacss have also been
established, so the PTR-MS measurements can provide a relblonvenient way of

assessing perceived indoor air quality.

In the following sections, previous research works related to tiieN?S technology,
VOC emission studies by use of analytical measuring deviagtfhaman subjects, and
the development of VOC source identification are reviewed (Ch&)teo find out
knowledge gaps, research niches and possible applications in theohiedsor air
quality. The detailed procedures and results on the three stadgespksent study are
dealt with afterwards: 1) the determination of VOC emissiomasiges for building
materials and their correlations with the acceptability assests by human subjects
(Chapter 3), 2) the development of a novel methodology for indoor VOC source

identification (Chapter 4), and 3) the consideration of the emisgjoatsire change over
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long-term emissions for the enhancement of the source idetdifig€hapter 5). Finally,
the major concluding findings are summarized (Chapter 6) with seazgnmendations

for future works and possible promising applications of this study (Chapter 7).
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T CHAPTER 2. LITERATURE REVIEW

Literature reviews are performed in the five major areas for #sept study as follows:
* A novel analytical monitoring technology, PTR-MS and itsteeldechniques/applica-

tions

Past and on-going studies on human perceived indoor air quality

Characteristics of building material emissions

Chemical compositions and dynamics in indoor environments

Potential techniques for source identification
The purpose of this chapter is to provide an overview of relevatitosh@ogies and

techniques, and to identify research needs.

2.1 PTR-MS Analysis Technology

2.1.1 Fundamentals

W. Lindinger et al. (1998) and Taipale et al. (2008) described theipes of PTR-MS
and its operating conditions in detail. Hence, only a brief descrigiprovided in this

section.
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PTR-MS is based on the principle of measuring the ion products of pt@osfer
reaction between the compound to be measured and a reflaigemne (2.1). As a reagent
source, the hydronium ions {8) are generated from pure water vapor in a hollow
cathode discharge. A controlled water vapor flow of 6.0 @in (STP stands for
Standard conditions for Temperature of 293KL5and Pressure of &tm by NIST’s
version) is continuously pumped into the reaction region via the sodice.air to be
analyzed is continuously pumped into a drift tube reactor, and aofract VOCs is
ionized in proton-transfer reactions with hydronium ionsQH as a chemical reagent.
At the end of the drift tube, the reagent and product ions are medsuie quadrupole
mass spectrometer, and the signal of the product ion, the detemssdof which equals

the VOC mass plus one, is proportional to the VOC concentration sarfede(2.1).

(a) B DTR: Drift tube reactor
B EM: Electron multiplier

B HC: Hollow-cathode discharge
M |C1: Intermediate chamber 1
W |C2: Intermediate chamber 2

Deflection
by plates

Quadrupole mass filter

Air out

Figure 2.1 (a) Schematic diagram of a PTR-MS device. (b) PTR-MS system illustration
(in BEESL/SU).

The hydronium ions are not reactive with some compounds having lower pfionay a
(PA) than that of water (165Kal/mo) such as CO, C Os, NO, CH,, C;H; and etc.,
but does react with most of organic compounds of interest in a nonate&rproton

transfer reaction shown as the following:
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H,O0' +R—5RH" +H,0 (2.1)

where R represents a target organic compound in the drift thh€, is a primary

hydronium ionRH" is a product ion, anklis the proton transfer reaction rate constant.

In the quadrupole mass spectrometer, the ions are mass-seladtemunted with an
electron multiplier. The chemical reaction rate occurringai closed system under

constant volume conditions can be expressed as follows:

__dH,0"] d[RH"]
dt dt

=k-[H,0"]-[R] (2.2)

where [ ] indicates the number density of trace species or the concentration.

Assuming the first-order reaction conditions (in other words, theidosdirst-order
approximation is valid due td_] >> [H30"] keeping a constant value d][within the
short reaction time for most of the general applications), dheantration of fizO"] can

be calculated by settifgR] as a constant:

[H0"]1=[H;0"], -exptk-[R]-t) (2.3)
Then, the number density of a trace compound in the drift tedecdn be obtained by
the following:

[RH*]=[H,0'],-(1— ™™ )= [H,0"],-k-[R] -t (2.4)
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[Rj= oL

-kt [H,0°], 9

wheret is the drift time of the primary hydronium ions in the reaction region.

As the ion count rates measured at the device (counts per sepgrate proportional to
the respective densities of the ions, the densities can be substiititethe measured
count rates, and the volume mixing ratios of the target compounggbw can be

calculated by the following equation:

+ Tr, .
[R] ppbv — ﬂ X 109 = 1 . (RH )Count ___H0
[air] constkt (H,0") Tr

(2.6)

count H*

whereconstis a constant value determined by the temperature and pressdligons of
the reference air, (quntindicates the measured count rates of the ionsTamepresents
the instrument specific relative transmission efficiency ofitims, whose value ranges
from zero to one, and is mainly mass-dependent but vary also ovedgnéouw et al.,

2003; Steinbacher et al, 2004).

The transmission efficiencies can be found from transmission cutmethis way, from

the well-defined conditions in the reaction region, the volume mixdtigs of trace-level
VOCs can be calculated by use of gas standards without any furtheatah. For more
accurate measurements, sensitivity calibration for attaa@apound can be performed.

In this dissertation, the count rates of the product iaps (were normalized by per
million hydronium ion (HO") count rates to compensate the variations in the hydronium

ions as other researchers in this area usually do (e.g. de Gouw and &/a0@3k Jobson

10
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et al., 2005; Whyte et al., 2007). This normalized ion count ratgs (becomes directly

proportional to the concentration level of a target VOC.

In order to get VOC volume mixing ratios, another method can beadtilbased on
calibrating the sensitivity factors of the devippljv/ncp}y with gas standards. However,
because the device tries to measure a large number of differapbunds for which gas
standards may not be available at all times, the use oRH].fér determining the VOC

concentrations is still required.

2.1.2 Other techniques that can be integrated with PTR-MS

2.1.2.1 GC/MS

Gas Chromatography / Mass Spectrometry (GC/MS) is an sasahethod by means of
integrating the features of gas/liquid chromatography and spesgrometry together for
identifying different species taken in a test sample. Theofisemass spectrometer as a
detector in gas chromatography was traced back to the late 1950s dewgiéhedohlke
(1959). At that time, this sensitive instrument was huge, &agid initially limited to
laboratory settings only. The development of personalized and smedl«<omputers has
motivated the simplification of the use of this tool, with greapriotmements in the
processing time of a sample. In 1996, a state-of-art high-$p€AdS unit succeeded in
accomplishing the analysis of fire accelerants in less thare®@ihds, whereas the first
generation of GC/MS would have required at least 16 minutes. Tiesevements in

GC/MS technology have stimulated its widespread adoption in a muafbareas.

11
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Applications of GC/MS include drug detection, fire investigation, remvhental analysis,
identification of unknown samples and investigation of explosives. G@AnSalso be
utilized in airport security to detect any dangerous compoundgygagie or on human
bodies. In addition, it can identify trace species in matethalswere previously thought
to be beyond identification. Especially, GC/MS has been widely asedgold standard
for forensic investigation because this instrument can be useerfiarm a specific test.
A specific test positively identifies the actual presence péréicular element in a given
sample, whereas a non-specific test can indicate only thatieugarsample falls into a

category of some elements.

GC/MS consists of two major components: gas chromatograph andspessometer.
The gas chromatograph utilizes a capillary column mostly depermtinpe column's
dimensions (length, diameter and film thickness) as well as phegeerties. The
difference in the chemical properties among different compounds mixture will
separate each compound as the sample travels the length of the c&aamcompound
takes a different amount of time, called retention tirRd),( to elute from the gas
chromatograph, allowing the downstream mass spectrometer to capbaiee,
accelerate, deflect and detect the ionized molecules selgardthe mass spectrometer
performs this task by breaking each compound into ionized fragmentietealing these

fragments in terms of their mass to charge ramt)(

These two components, when utilized together, allow a much fineeele§rcompound
identification than when either unit is used separately. Actually impossible to make

an accurate identification of a particular compound by either otlyammatography or

12



Ph.D Dissertation Kwanghoon Han ($-4%)

mass spectrometry alone because there is ambiguousness iondierd and pattern of
ionized fragments in a mass spectrum for some compounds. Combiningvdhe
processes together makes the possibility extremely unlikelywioadifferent compounds
behave in the same way from both a gas chromatographic point ofanévwa mass
spectrometric point of view (de Gouw et al.,, 2003; de Gouw and Warneke, 2007;

Warneke et al., 2003).

This GC/MS technique can be integrated with PTR-MS to solvepibafiity issue of
PTR-MS indentifying and relating each ion mass detected froR-MS to possible

specific compounds (e.g. VOCSs).

2.1.2.2 GC-PTR-MS

As mentioned in short from the introduction, though PTR-MS allows num&o@&s of
interest in air to be monitored and measured with a high sens#ind rapid response
time, only the masses of ionized VOCs and their fragmehtangi) can be detected,
which means it is not a unique indicator of the VOC identity. €eolve this ambiguous
issue on the VOC identity, the specificity of PTR-MS has [stedied by coupling a gas
chromatographic column to the device (GC-PTR-MS). The columnaepa¥OCs in a
sample prior to the injection into PTR-MS, allowing the difféer¢ OCs detected at the
same mass to be separated at the cost of the rapid respoese #TR-MS. Overall,
this combined technique is a highly valuable tool for studying thafgpycof PTR-MS
for individual samples. Karl et al. (2001) introduced this methad, iawas further
improved in laboratory conditions to determine the specificity of RISRmeasurements

from urban air by de Gouw and Warneke (2007) and Warneke e20813)( It was

13
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demonstrated that the ions associated with methanol, acetomitel@|dehyde, acetone,
benzene, toluene and higher aromatic VOCs were free from sagttifinterference
(Warneke et al., 2003). A quantitative inter-comparison betweenNwSRnd GC-PTR-
MS measurements of target VOCs was performed and showetthelyavere accurately

measured by PTR-MS.

The GC-PTR-MS analysis is highly valuable in determining Wisigecies contribute to
the signal at a certain mass. Until now, GC-PTR-MS has beshtasanalyze certain
types of biogenic emissions (Karl et al. 2001) and urban air (dev@mad Warneke,
2007; Warneke et al., 2003). It will be meaningful that furtherkwean be done to

investigate the specificity of PTR-MS in other areas.

14
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2.1.3 On-going applications using PTR-MS

The analytical tools traditionally used in environmental researa industry areas for
analyzing related VOCs and its effects are Gas ChromalogréGC), High Pressure
Liquid Chromatography (HPLC), Isotopic Ratio Mass SpectrometRM@), sensory
assessments and several non-destructive/direct techniques silettrasie tongues and
noses, Nuclear Magnetic Resonance (NMR) spectroscopy and Atmosphessure
Chemical lonization (APCI) (Boscaini et al., 2004). These teclesigan be used in a
highly selective and reliable way, but the major disadvantagé® inge of them include
expensive instrumentation, experienced operators required, not-readihegsdly
automated test operation, off-line operation, time-consuming samgaraten and etc.
Meanwhile, one of the non-destructive and direct analysis tools, PIRalk revealed
its far-beyond merits compared with other techniques aforementiang irecent few
years, including compact/robust experimental setup, easy aperatv fragmentation in
the ionization process compared with electron impact ionization, no sgrgparation
necessary, outstanding low detection limit (10-1v) real-time measurement and
monitoring (Usually, the response time is less than m80 real-time quantification of
absolute concentrations possible without any previously direct atdibrmeasurements,
but losing some information of chemical details. By utilizing $®ng advantages
mentioned above, the following seven (7) areas are establishing jibreomaoing trend

of the applications of this new technique, PTR-MS.

15
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2.1.3.1 Atmospheric research

By utilizing the merit of PTR-MS enabling real-time measugats of VOCs in different
regions of the atmosphere, de Gouw and Warneke (2007) expanded the use of PTR-MS in
atmospheric research, aiming to establish a firm foundation foratkes in using this
device with the coupling of a gas chromatographic interface in ordeolt@ the
specificity issue of PTR-MS and to enhance the accuracy of theeder many VOCs of
atmospheric interest. Some highlights of airborne measuretmg®$R-MS in a global
scale were presented including the results obtained in fresh ashfoagst-fire and urban
plumes. After an extensive scale of examination about this dekieconcluded that
PTR-MS had become a useful tool for atmospheric research belaiiseould give a
chemical fingerprint of the origin and history of an air massi2)nasses impacted by
forest-fire, urban, marine and vegetation emissions could be rahsliigguished from
another, and 3) the degree of photochemical processing could bednfienm the data.
In addition, they added one more important mention that this kind of infiermbad

proven to be useful in many studies other than those aimed specifically at VOCs.

2.1.3.2 Automotive engineering

Jobson et al. (2005) used PTR-MS to measure VOC concentrations an-lhesel
engine exhaust as a function of engine load. The purpose ofithyevais to evaluate the
device as an analytical tool for the abatement study of deegghe emissions. Measured
sensitivities determined from gas standards were found to agrbenith calculated
sensitivities for non-polar species. The diesel exhaust spesdra were complex, but

displayed a pattern of strong ion signals at 14n+1 (n = 3, 4, 5, 6, 7,S8gswith a

16
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relative ion abundance similar to those obtained from electron impaization of
alkanes. As a conclusion, they wrote down their impression on this devicey sayline
analysis of diesel exhaust using this technology may be a vakoabl®r diesel engine

emission research.

2.1.3.3 Food and flavor research/industry

PTR-MS has been used in this area to classify different kinde®aaf products by
utilizing the analysis of PTR-MS volatile profiles: 1) diffateypes of Gana Cheeses
concerning the original place, 2) different types of Mozzaxeith regard to raw material
and production process, 3) different types of juices based on pasteurizaditment, 4)
different types of wine depending on its variety and 5) differgpég of strawberries

based on cultivars.

Granitto et al. (2007) coupled PTR-MS'’s direct injection and faatyais merits with
data mining techniques in order to extract a reliable and fagtferathe automatic
characterization of agro-industrial products. They tested the tyatifithis approach to
identify several samples of strawberry cultivars by meaguttie signals from single
intact fruits collected over 3 years and harvested in differeatitots. Three data mining
techniques were applied to the full PTR-MS spectra without aelynpnary projection or
feature selection. After all, they succeeded in demonstrataigstrawberry cultivars

could be identified by the PTR-MS rapid non-destructive measurements of singge frui

Another significant example of the identification/detection apfticaof PTR-MS in this

area was done by C. Lindinger et al. (2008). They developed a rottbst@oducible

17
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model to predict sensory profiles of different types of espreseecfrom instrumental
headspace data. The model was derived from 11 different esprefess @fd validated
using 8 additional espressos. The input of the model consisted oisbyyserofiles from
a trained panel and 2) on-line PTR-MS data. The experimentalM Bonditions were
designed to simulate those for the sensory evaluations. Siit@gh@racteristic ion
traces in the headspace were quantified by PTR-MS, requiring2zomiyn of headspace
measurements per espresso. The correlation was based on the kndbakmihe
standardization and normalization of both datasets, selectivelyctaxgrahe differences
in the quality of the samples, while reducing the impact of vanston the overall
intensity of coffees. Their work represents a significangmess in the sense of the
correlation extraction between sensory evaluations and PTR-MSunmsital

measurements.

Besides the above examples, Van Ruth et al. (2007) evaluated thidototihe

classification of milk fats (butters and butter oils) in tewwhgjuality and authentication
issues. Three different analysis methods were employed and reahtpgether: PTR-
MS analysis, sensory analysis and classical chemical @alydter this examination,
they concluded that their suggested combination method with PTR-MSddenbe a

promising approach with potential applications in quality control and regulatiorotontr

18
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2.1.3.4 Forensic investigation

Instead of using the current techniques for the forensic analyiie debris to detect the
presence of arson accelerants normally accomplished by uselioeatmpling with the
collection of accelerant vapors on activated charcoal strips athefypre-chemistry prior
to the analysis, Whyte et al. (2007), by using PTR-MS, tmedlt@rnative method for the
direct detection of arson accelerants requiring no sample ptereneia VOC fingerprints
of given fire accelerants from PTR-MS were collected bysihgle headspace analysis
of accelerant burned materials. Using a set of four most comanson accelerants and
four common household building materials, they successfully demonstthsd
characteristic VOC fingerprints could provide satisfactory idieatibn of the accelerants

used to burn each material.

2.1.3.5 Environmental science and technology

As an example of the power of on-line monitoring capability oRRMS, Filella and
Penuelas (2006) studies the daily, weekly and seasonal patterns abt moggns of air
concentrations of VOCs by using PTR-MS measurements taken onuserbly-minute
basis in the vicinity of a highway in a semi-urban site neacddana. Their results
showed that diurnal, weekly, and seasonal fluctuations in measuredcd@entrations
depended on variations in the strength of sources, as well as on photadraatingty

and meteorological conditions. All of their data provides useful nmition on the
dynamics of VOCs in an area where ozone levels in summeece>qdte often the

standard protection thresholds.
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2.1.3.6 Medical research

Wehinger et al. (2007) investigated the diagnostic usefulness RIMAE for detecting
primary lung cancer through the analysis of VOCS in exHaledan breath. They chose
this device as their analysis tool because, unlike gas chromatageaqatyses, PTR-MS
could be used without time-consuming preparation and pre-concentratios sdrgales.
Exhaled breath samples from patients with primary lung caneéi7§ were analyzed and
compared with both an overall control collective (controls total, n=1i0)tlaree sub-
collectives: hospital personnel (controls hospital, n=35), age-matchsdnpefcontrols
age, n=25) and smokers (controls s, n=60), respectively. The leadohgcprons am/z

= 31 (protonated formaldehyde) andz = 43 (a fragment of protonated isopropanol)
were found with significantly higher concentrations in the breasesg of the primary
lung cancer patients as compared to the healthy controls, suggbstingje two VOCs
identified could be the best determinants between the exhaledh lmfeatimary lung
cancer cases and the healthy controls. As a conclusion, theyiddrett PTR-MS might
become a new valuable tool for diagnosing primary lung cancaubesimple and time-
saving breath gas analysis by PTR-MS could be possible even forrasieageof clinical

evaluations.

20



Ph.D Dissertation Kwanghoon Han ($-4%)

2.1.3.7 Indoor air quality related

Bunge et al. (2008) attempted an analysis method for VOCs fricnobial cultures by
using PTR-MS. A newly developed sampling system was coupldd aviPTR-MS
instrument to allow on-line monitoring of VOCs in the dynamic hpadss of microbial
cultures. Headspace VOCs in sampling bottles containing actvelying cultures and
un-inoculated culture medium controls were sequentially analyzedTByMS, which
led to the detection of characteristic marker ions for certaicrobial cultures,
demonstrating the potential of this method to differentiate betweem @osely related
microorganisms. Although temporal profiles of some VOCs warelasi to growth
dynamics of microbial cultures, most VOCs showed different terhpprafiles,
characterized by constant or decreasing VOC levels or lgjesor multiple peaks over
24-hour of incubation. Their findings strongly indicated that the tempwaltion of
VOC emissions during growth should be considered if characterizatioffenedtiation
based on microbial VOC emissions is attempted. They establisheathlysis method of
VOCs by on-line PTR-MS as a routine method in microbiology asmda aool for

monitoring environmental and biotechnological processes.

The above illustrations of PTR-MS applications have been utilithegmerits of this
device mostly in terms of its on-line monitoring, practical/handgntification and
detection of VOCs. Especially as for source/quality identiioatseveral researchers
have tried to use PTR-MS, as aforementioned, in extracting @ &&nposition profile
specific to a given material so called as material sigra However, most of them have
been focused on the identification of each single source one by on&rtrang key ion

masses measured from PTR-MS onto an indirect/implicit domairsing several feature
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extraction methods such as data mining techniques, PCA (Principgad@ent Analysis)

and PLS-DA (Partial Least Square-Discriminant Analysis).

For instance, Whyte et al. (2007) applied this PTR-MS techniquedotdiké presence of
arson accelerants in arson sample candidates as an on-line sanppling and rapid
detection method, instead of other classical methods using off-lmpliag. In the
process of this identification, they used a method of PCA for thalyses. As a closing
mention, they suggested that it was possible that all of thedetdingerprints (i.e. VOC
mass profiles) could be collated into a database, so that thisadataould be used for
comparison against other external and blind samples, and that additiorkalusing
multiple sources of accelerant and material would be requirech&nee its application.
More specific investigation on the potential of PTR-MS applicationsource/quality
identification was performed by Van Ruth et al. (2007). They obsehesgotential of
PTR-MS as a tool for classification of milk fats by deglwwith the quality (Good or
Poor) and authentication issues (Matrix: Butter or Butter Oityezted milk fat samples.
In order to investigate the effect of the treatments: h&dio#-flavoring, they employed
PTR-MS analysis, sensory analysis and classical chemmefsés, and compared each
result to the PTR-MS identification method implemented by usi@g Bnd PLS-DA.
84% of the 37 samples in total were successfully classified batter and butter oll
matrix groups, and 89% of the samples were correctly classifigerms of sensory

quality (good/poor sensory quality).

As indentified from the above literature review, the matedahfiification from multiple

sources by using PTR-MS measurements itself without anyadiingéta transformation
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or pre-conception can be a good research topic enhancing its scopeliochtens,
because a novel signal separation technique can be entrainedneasuwement signals.

This is one of the research niches identified.

In addition, during the last several decades, many attempts hamenise to explain
human complains on perceived indoor air quality and its relevance fn@ys related to
buildings, human performance and its associated usage of energlgeobasis of
physiological effects of chemical polluting compounds such as VO@swvever, those
researches have not been satisfactory or successful. Eheslaxk of proper techniques
and methods in determining the quantification and composition of V@€tiag human
sensory response, indoor air quality researches on the human expsparese
relationships to VOC emissions have been done mostly by humanysassessments.
As suggested by Wolkoff and Nielsen (2001), it would be a better agfpno@valuating
VOC impacts on perceived air quality to consider the compound-bpmamd effects
rather than from a total VOC point of view. In this regard, tie& technique, PTR-MS,
can be integrated in human sensory research on perceived indooaldy, drying to
reveal the correlations of sensory response results to its gcatindii and composition of
VOCs in materials used in the sensory tests. As indicatethley researchers foretelling
the powerful potential of this device, the extraction of the coroglatbetween sensory
analysis and VOC quantity/composition analysis would be very signtfitask, which
was identified as a niche in this area of indoor air qualisgarsch and is tried in this

study as a brilliant subject required to be researched.

23



Ph.D Dissertation Kwanghoon Han ($-4%)

2.2 Studies on Human Perceived Air Quality

2.2.1 Methods of experimental sensory assessment studies

2.2.1.1 Study trend

Evidence from many building investigations and systematic stedgggested that among
several sources of indoor pollution, VOC emissions from building mategigher as
structural materials or as furnishings could be considered ther maptributor of the
pollution typically encountered indoors, due to its complex chemical congpgdarge
surface area and permanent exposure to indoor air (Haghighat and Dd@88).
Moreover, these VOC emissions are supposed to be perceived by warkesglents in
a building usually as odors (Fang et al., 2008). A lot of experiinstutdies using both
sensory and chemical measurements have been tried to demadhstraeissions from
building materials depend on air velocity (Haghighat and Zhang, 1988hita and
Kimura, 1994; Zhang and Haghighat, 1997), humidity (Berglund and Cains, 1989;
Bluyssen et al., 1996; Fang et al.,, 1996; Haghighat and DeBellis, 1@9&ka&nen,
1993), surface treatments, temperature, time after manufadtaresformations on
surfaces, ventilation rate (Gunnarsen et al., 1993) and pollutionbadson building

materials from other activities (Wolkoff et al., 1991).

Among these studies, Knudsen et al. (1998) developed a novel experimentalupeoc
for sensory assessments (which is described in the follosgagon) for determining the
human exposure-response relationships for building materials. Usimgdbedure, they

established several exposure-response curves for eight matsdsving that for some
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materials, the exposure-response relationship was rather flatthahdhe effect of
increased ventilation for those materials would be limited. irTireal conclusion was
that source control by using low polluting materials could be oftemthst practical way
to improve indoor air quality. And then, Knudsen et al. (1999) investighteimpact of
mixing the emissions from building materials on perceived indooquality. They
placed three materials in three chambers and then mixed theisexfaom these
chambers into a fourth chamber. This experiment was perfotmeexclusively
investigate human perception on pollutant mixture from different buildnaderials,
meaning that the interaction among materials was ignored. h8oapproach could
overestimate the level of human sensory response because ild adinglition, the
assessment of perceived air quality would be affected by thaation among building

materials.

In practice, a number of different materials are used to boddf@anish a building, and
there is interaction between materials and their emissionthis regard, Haghighat et al.
(2001) investigated from a series of experiments the impact ofGH¥ystem operation
and the combination of building materials on perceived indoor air quajitgmploying a
similar concept and method for human sensory tests in terms qitaodiey and odor
intensity. Experiments were performed in test chambers &blestt human exposure—
response relationships for three building materials, and in officdibgsd as well. They
assumed that the systematic quantification and assessmentimpé#oe of the emissions
from building materials on perceived air quality is possible dterént varying

concentration levels, resulting in a human exposure-response relationship.
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The scope and quality of the human sensory study started to Imelexktiey conflating
chemical evaluations using GC/MS from Knudsen et al. (1999) and G&@/MS in
other following studies. From then on, researchers tried to exgplaicauses and the

differences of their sensory assessments by using VOC chefateal

As the use of low-polluting materials as a means of indoor pollsomce control on
perceived air quality was known to be more effective than othethods such as
ventilation control or air-cleaning techniques, a well controllegdystconsidering
psychological/physical/physiological factors with severded#nt building materials was
performed in small-scale chambers and also under realistiscl conditions by
Wargocki and Knudsen (2007). The main objective of their study wawégtigate the
potential of reducing the energy used for building ventilation bygusow-polluting
building materials without compromising indoor air quality. To quwrttifs potential,
the exposure-response relationships were established for rooms fdmishedifferent
categories of polluting building materials, and the energy usedhé ventilation was
calculated by simulation. The exposure-response relationshipdased on a summary
of data reported by Knudsen et al. (2006) for materials testbdatioratory settings in
small-scale glass chambers and in full-scale climate lbbesn test rooms or normal
offices. New experiments were also performed to exanheeeffect of using low-
polluting materials on perceived air quality in terms of ptaiality. The experiments
were conducted in test rooms ventilated with different rates of ougiguply air. The
low-polluting materials were selected by utilizing smaklidecglass chamber tests. The
results suggested that the exposure-response relationships couldmamg different

building materials and that the perceived air quality could be imgraeasiderably
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when polluting building materials were replaced with low-pollutingssitutes. The
preliminary energy simulations also indicated that the sefeof low-polluting materials
would result in considerable energy savings as a result of redube ventilation

requirements to achieve acceptable indoor air quality.

Although the human exposure-response relationships between acceptédlaiityuality
and ventilation rate have been fully established for these keglirmimaterials in a
subjective sense, the quantification and composition of VOCs inreatdrial causing
the human acceptability difference were not quite revealed.le@balg this issue using
a new technology such as the combined analyses of PTR-MS aMBSG@H be a good

research topic, leading to a significant progress in indoor air qualityrcasea

2.2.1.2 Acceptability of indoor air quality

+1 =~ Clearly acceptable
Imagine that you, during your
daily work, would be exposed to
the air from the test chamber.

0 —— Just acceptable
) ) ) 0 -1= Just unacceptable
How acceptable is the air quality?
-1 == Clearly unacceptable

Figure 2.2 An example of acceptability and context question (Wargocki et al., 2007).

As a means of sensory assessments, an index with a continuaudreoal-1 to +1
named as acceptability was developed by Gunnarsen and Fanger (I®@x)dified by
Knudsen et al. (1998), coded as follows: Clearly not acceptable =ust, nbt

acceptable/Just acceptable = 0, Clearly acceptable = 1 @& shd-igure 2.2 The
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acceptability of air quality is assessed by an untrained humat \pahehe following
guestion: “Imagine that you, during your daily work, would be exposeletait in this
diffuser. How acceptable is the air quality?” The asseswrere usually performed
following a random order among established test chambers. In toraemimize the
effect of human sensory adaptation, at least several minutes &ineakd be taken
between each assessment. Knudsen et al. (1998) provides a fuiptaesaf the

acceptability.

2.2.1.3 Experimental design

Knudsen et al. (1998) suggested a novel experimental procedure for a hemsary s
assessment concerning the effects of building materials. follosvings are based on
their test procedure.

Unpolluted supply air

Excess polluted
exhaust air

Polluted air
at different
concentrations

Diffusor

Clamp rings for easy
change of orifice plates — CLIMPAQ

Figure 2.3 An example of a test chamber with a diffuser (with permission from
Knudsen, 1998).

Usually, an air-dilution system is designed to provide differententrations of polluted
air for sensory assessments. The system is connectedexhtngst of a small-scale test

chamber [Figure 2.3). Material samples are placed in test chambers each cedriect
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dilution system. The sizes of material samples are selexethat the area-specific
ventilation rates in the test chamber correspond to the aredficspeatilation rate in a
typical room. A sensory panel assesses the immediate acdgptatal odor intensity of
polluted air at different concentration levels for each building material.pl®atallection,
test specimen preparation, specimen conditioning and handling fartberg tests are in
accordance with the “Protocol for testing of building materig&ausen et al., 1995)
developed in the research program “European Data Base on Indoor latrdhabources

in Buildings” (Clausen et al., 1996).

Sensory Panel

A sensory panel consisting of around 40 to 50 untrained subjectsmperfioe sensory
assessments. The subjects are recruited in the neighborhood talehgfaconsecutive
tests to document their normal sense of smell. The teststcohswo parts to estimate
their smell abilities: 1) to discriminate among odorous subssafmatching test), and 2)
to rank different odor intensities of the same odorous substance (faekih The leader
of the experiment assesses and documents each subject’s a#stitddenotivation
concerning the experiment and the subject’'s personal hygiene. passiag the tests
satisfactorily become a part of the sensory panel. The foltpdistributions should be
considered: male/female, age (young/old) and smokers/non-smokersse paeson-
related data are collected via a questionnaire to be filled irthbysubjects upon
recruitment. The subjects receive written and oral instmsticoncerning sensory

assessments.
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Procedure

On each day of the experiment, the panel is divided into four to fieapgr of
approximately 10 persons. Each group finishes the assessméntsav2-hour period.
The subjects stay in a hall outside the test room, which isassadvaiting room between
assessments called antechamber. Before doing the assesantemtsain chamber, the
subjects wait for at least three (3) minutes in the antelsbalmetween assessments to
minimize the effect of human sensory adaptation. This proceslwu@ducted to adapt
the panel members to the general background air delivered to thessaialichambers
and the full-scale chambers. Then, the subjects enter thaestinoom and assessed the
immediate acceptability of air exhausted from one diffuser asded their assessments
on acceptability scale and odor intensity exemplifiedrigure 2.2 Before doing the
assessments, the panel is to be instructed on how to use theBeafgy this instruction,

it should be emphasized that they are not allowed to mark bejusteacceptable and
just unacceptable. Rather, they are requested to decide on whethearis acceptable or
unacceptable, and then to rate the degree of acceptability and adwitint They are

also to be instructed on how to use the exposure equipment.

The first day of experiments is a practice session day, lmutstimot communicated with
the subjects. The assessments collected during this day aredischeded. Sensory
measurements may be made for several consecutive weeks toab¢aisonable mean
value of the sensory assessment for each test. Exposuresdomisaassigned to the
subjects in a random order. The subjects enter the test roomyooeebat a time.

Pollution sources are hidden to the subjects by a special cabinb@tsihe exposure

conditions are not revealed to them. The assessments in theodestare made
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immediately upon reaching a marked spot on the floor in the middieeofoom, by
marking on the continuous acceptability scale and odor intensity printéldeopaper.
This procedure is used to standardize the test position armpgreximate time spent
prior to the assessments of indoor air quality. The assessarentnade upon taking one
inhalation of polluted air exhausted from one diffuser. The doors tesheoom are to
be closed during assessments. A break of at least three misutaken between

assessments in a well-ventilated antechamber for the next assessment.
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2.2.2 Quantification and composition studies of VOCs using other analyses

2.2.2.1 with GC/MS

Knudsen et al. (1999) studied over a period of 50 days the emissionsvieocorhmonly
used building materials in small-scale test chambers havintiff@ser for sensory
assessments, similar to that shownFigure 2.3 Odor intensities and concentration
levels of selected VOCs of interest for indoor air qualityevassessed and measured,
respectively. By using GC/MS, they performed a screeningaCs emitted from each
building material prior to sensory assessments. The measusewere done 2 days after
the placement of the building materials. About 30 different VO€eudentified from
each building material. For each building material, several &©C interest were
selected on the basis of low odor threshold, abundance and persisssureing that
VOCs with low odor thresholds might have an impact on perceived dlityqud he
impacts of VOC concentrations in air and of air velocity over bugidnaterials on the

odor intensities and emission rates of the VOCs of concern were studied.

By using GC/MS the selection of the effectual VOCs and tN€3¥8s’ quantity analysis
could be integrated with the results of sensory assessments tkinaugtudy, providing a
more firm foundation for validating a proposed hypothesis on the impact&Oaf

emissions. Still, the extensive preparation time and cost requiredck each VOC’s

concentrations are the burden of this method to be improved.
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2.2.2.2 with GC-O/MS

Knudsen et al. (2007) investigated how perceived indoor air quality couldlbenced
by emissions from building materials with linseed oil comparid svmilar conventional
synthetic substitutes without linseed oil. The emissions fromtypes of materials had
been monitored over one year in small ventilated test chambersoddheus emissions
were evaluated by sensory panel assessments of odor intersiig@eptability, and by
chemical analysis of odor-active VOCs and carbonyl compounds u§ifig$combined
with olfactometry (GC-O/MS). The results of the GC-O/Mfyastigations and VOC
measurements indicated that almost constant emissions of od@-8QICs with low
odor thresholds resulted in the persistency of odors. They demonsthatedhe
acceptability for the emission from floor oil was influencedliibhgeed oil used as a raw
element, suggesting that systematic use of less odorous linseedighltsimprove the
acceptability for emissions from building materials with legeoils. As a closing
mention, they concluded that the combination of sensory assessmerasc@ied air
guality and GC-O/MS seemed to be a useful approach in the effelitrtinate unwanted

odors from building materials.

GC-O/MS opened a new way for the research of VOC emissionstilbdtas the same

drawbacks as those of GC/MS. However, this method caught the imgoafadors in

perceived air quality researches.
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2.2.3 Integrated study cases using PTR-MS with sensory assessments

Fang et al. (2008) conducted two experiments to investigate thef uke co-sorption
effect of a desiccant wheel for improving indoor air quality. @xperiment was
conducted in a climate chamber to investigate the co-sorpticet effa desiccant wheel
on the chemical removal of indoor air pollutants; another experimehtanducted in an
office room to investigate the resulting effect on perceivedjaality. A dehumidifier
with a silica-gel desiccant wheel was installed in the iagn system of the test
chamber and office room to treat the recirculation airflomumidn subjects, flooring
materials and four pure chemicals (formaldehyde, ethanol, toluenk Ig2-
dichloroethane) were used as air pollution sources. PTR-MS and sass@gsments
were used to characterize the effectiveness of chemicalearsry pollution removal of
the desiccant wheel. The experiments revealed that all #esured VOCs were
removed effectively by the desiccant wheel with an averagaegity of 94% or higher;
more than 80% of the sensory pollution load was removed and the peradistagisfied
with the air quality decreased from 70% to 20%, concluding that thepm@tion of a
regenerative desiccant wheel in a ventilation system isffamert way of removing

indoor VOCs.

Instead of revealing the quantification and interaction of VOCspollated space, this
study monitored the reduction effect of a new air-cleaning tgakerby using the ability
of PTR-MS for on-line monitoring of emitted VOCs. In addition, ondyegal target
VOCs were traced, leaving a large space of other VOCs’ immodontributions on

perceived air quality.
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In this regard, this dissertation study tries to apply this nelantque, PTR-MS, opening
a new gate to the areas of indoor air quality assessment anddét@ication/detection,
particularly using it as a tool for determining VOC emissiognaiures of building

materials and furnishings.

2.3 Material Emission Characteristics

Although the emission signatures by PTR-MS might have beenisktblat a certain
representative time, due to the time decay of VOC emissios aa# changing indoor
emission dynamics, the shape of each emission signature coule cheerg long period
of time and over different ventilation scenarios. To extend theicapglty of the

emission signature technique to be developed from this study, dspsets affecting
VOC emission signatures should be considered, so that the probabl®emsigsatures
at a later different time can be predicted based on the infeammatntained in the
established database of material emission signatures byMSTR-The following two

sections (2.3.1 & 2.3.2) will deal with these aspects by reviewing theddigerature.

Chemicals present in indoor air can affect indoor air quality indimgs. Building
materials may be significant sources of chemicals founddadr environments. Due to
this aspect, the material emission characteristics aredavadi important and found to
have different trends significantly according to dry materaisl wet materials. To
address indoor air quality claims resulting from the emissionyaoious building
materials, a Consortium-supported project on Material Emission andrlidioQuality

Modeling (CMEIAQ) was initiated in April, 1996 at the Institute fBesearch in
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Construction, National Research Council of Canada (NRC/IRC). €pwtramong its
several tasks deals with how to measure VOC emissions frooakypiilding materials
using chamber test methods developed by CMEIAQ. Two smalllratest methods
have been developed by the CMEIAQ project. CMEIAQ Final Report 1.2 desctiss a
method using small-scale chambers for VOC emissions frorbudlging materials, and
CMEIAQ Final Report 1.3 deals with a test method using smaksdaambers for
measuring VOC emissions from wet building materials. In eudichemical analysis
procedures for chamber methods are reported in CMEIAQ Final RegdortUsing the
test methods described in the CMEIAQ Final Reports 1.2 and 1.3.€figtit (48) typical
building materials after extensive considerations on the smleatl typical and
commonly used building materials for testing were tested for VOC iems$sgsing small-
scale dynamic chambers. 30 of these were dry materiags geoustic tile, carpet,
gypsum wallboard, oriented strandboard, particleboard, plywood, solid woog, vin
flooring and underpad), and 18 were wet materials (e.g. adheaidking/sealant, floor

wax, paint, polyurethane and wood stain).

For dry materials, only the power-law part of the segmented matelised to describe

the emission characteristics over time between 24 and 100 houes adyfrtamic chamber

tests.

For wet materials, coefficients were calculated to fijeaeral empirical “Segmented VB

+ Power-law” model to the experimental TVOC and selected VOC data.
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2.3.1 Dry materials

VOC emissions from dry building materials between 24 and 100 hoursdghamic

chamber test may be characterized by a single powerdaatien (Eq. 2.7) using the

following steps:

E(t) =axt™

2.7)

whereE = emission factomg/(nth), anda, b= empirical constants in the power-law.

1. Calculate the emission facté(t) at timet directly from the chamber concentration.

2. Fit the power-law equation (Eq. 2.7) to #¢) data to determine coefficierdsandb.

Figure 2.4ashows the typical example of the emission characteristiasdry material,

gypsum wallboard over time and the performance of the prediction modeling.

0001

o 10 2 2 0 0 &0
Elapsed Time (h)

™
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Elapsed Time {h)

Figure 2.4 (a) Dry material emission characteristics and modeling. (b) For wet

materials (Zhu et al., 1999).
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2.3.2 Wet materials

VOC emission characteristics from wet coating matert@s be divided into three
emission periods. During the first period, the emission is maioiytralled by
evaporation and thus the emission factor is high and decreasing rapiaiyng the third
period, the emission is mainly controlled by internal diffusion d@ftermaterial is dried,
and the emission factor is low and slowly decreasing. In betwhkensecond period,
transition period shows the emission behavior controlled by both evapoasi internal
diffusion. The following “Segmented VB + Power-law” model has hesad to describe

the emission factor in the three periods:

Fort <t; (evaporation-controlled emission period):

E(t) = E. = K, x[(C, xM (t)/My,) -C(t)] (2.8)

Forty <t <t, (transition emission period):

E(t) = E, = E.(t,) xexp— k., - (t—t,)) (2.9)

Fort > t, (internal diffusion-controlled emission period, or IDC period):

E(t)=E, =axt™ (2.10)

where
E = emission factomg/(nfh)
E. = emission factor during the evaporation-controlled periugl(nfh)

Eq = emission factor during the diffusion-controlled periodgy/(nfh)
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Eeq = emission factor during the transition periogy/(nfh)

Km = gas phase mass transfer coefficient

C, = initial surface concentratiomg/n?

Moz = initial pollutant mass for evaporatiamg/nf

a, b= empirical constants in the power-law equation

t;, t, = hour time points dividing the emission process into the three,

kea = IN[Eq(to)/Ec(to)])/(t2-t1), exponential decay constant for the transition petidd,

Figure 2.4b illustrates the typical example of the emission charatt=i®f a wet

material, paint over time and the modeling performance.

39



Ph.D Dissertation Kwanghoon Han ($-4%)

2.4 Chemical Compositions and Dynamics of Indoor Air

2.4.1 Active and passive sources

In an indoor environment, there are many sources of indoor air pollutidundimg
bioeffluents from human beings, building materials (e.g. carpeiifigse engineered
woods, insulations and wall materials), combustion sources (e.goigy@s)d tobacco
products), electronic equipments (e.g. computers, copiers, radios, Qriatevisions and
etc.), HVAC systems, humidification/cleaning devices and outdaopdiution (llka,
2005). The relative importance of these sources can be deternyitbdibamount of
emitting pollutants, hazardous levels of their components in them arabéseof the
sources. These sources of indoor emissions can be divided intotégoriss: active
and passive sources. Active sources generate heat as welliganpgl depending on the
operating modes and processes of devices which activate emis3ibasexamples of
these sources are personal computers, printers and copiers. ©Oontrey, passive
sources in an office environment include building materials, furnitureotired emission

sources not involving heat generation or machine operations.

By considering these representative sources, llka (2005) deteritheeexperimental
emission properties of several active and passive sources typiea office indoor
environment by using small-, mid- and full-scale chambers. r Afiat, he used these
emission data to simulate the holistic impacts of the sourc®O&hconcentrations in a
typical office environment by utilizing a simulation program @ealMEDB-IAQ (Zhang

et al. 1999).
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2.4.2 Simulations of VOC emission dynamics in an indoor environment

This simulation (llka, 2005) was performed for a period of thres (&% hours). Printers

were operating from 9:00 to 10:00, and copiers from 13:00 to 14:00, everyday.

Per VOC Passive sources ) £ atensd

0.08 <
o
007 s
p . I3

Active sources Time (n) Time (h)

[—+— Ethyenzens —a— Formaldehyde m-pxylenes —— Styrene —e— Toluene [ +— Work surfaces —o— Partitions Cabinets & drawer —— Chair —x— Carpet

Figure 2.5 (a) Concentration dynamics per VOC. (b) Concentration dynamics per
material (llka, 2005).

Figure 2.5a shows the concentration levels of selected eminent VOCs such as
ethylbenzene, formaldehyde, m,p-xylene, styrene and toluene. Tolieich, emitted

from carpet, computer, copier, drawer, panel and printer, was lardkelgnced by the
active source emissions and its decay behavior over time wasdchyghe emissions
from the passive sources. Formaldehyde and m,p-xylene camé&anlgomputer and
copier emissions, so their peaks at different days had the sadenty due to the same
amount of emissions during the same hours of the day. Styreneewasatgd mostly
from printer emissions. Ethylbenzene was emitted from compungr as a constant

source.
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Figure 2.5billustrates the concentration behaviors for the period of three days. Fsym thi

the concentration decays of the passive source materials meecdn be seen evidently,
but not all of them at the same rate. The concentration due teetaas the one that
was fast decayed showing the decrease of 70% during the period48f [2girs. In
addition, chair was the most eminent passive source materialghbigher emission
while work surfaces were the lowest contributor on the indoor polla@amtentration

until the first 2 days.

Li and Niu (2007) developed a novel single-zone mass-transfer-baQechdel verified
by the comparison with the results from another model that has eogrmimentally
validated. Their model consists of a multi-phase emission and somptidal for multi-
layer floor, ceiling and wall materials with varying véaion schemes entrained,
considering reasonably realistic aspects typical in indoor envimisinas a decision-
making tool not alone for predicting indoor VOC concentrations, but also
guantitatively evaluate various IAQ strategies assessingdbgantial health impacts. In
their paper, the variation of indoor VOC concentrations over tirae the result of
diffusion/sorption within individual layers of materials and intécac of the indoor air
with interior building materials under a certain ventilation scherBemetimes, an air
cleaner could be used indoor to further reduce VOC concentratitrespréposed model
is useful in analyzing the level of contaminant buildup that would odcwing no
ventilation period for intermittent ventilation schemes and in deténg the amount of
outdoor air and the lead-time hours required to flush out the accuthatateaminants to

maintain the acceptable IAQ level prior to occupancy.
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In this way, by using this kind of well-established models, the anplachanging indoor
emission dynamics on the shape of emission signatures over @aiméectraced and
predicted compensating the shape change of emission signaturésnavand different

ventilation scheme of a given indoor environment.
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2.5 Potential Techniques for Signature Separation and Identification

Several techniques are reviewed in detail below to identifir fw®@s and cons for

possible applications in the current study.

2.5.1 Principal Component Analysis method (PCA)

2.5.1.1 Overview

Principal Component Analysis (PCA) was invented in 1901 by KarlsBeafPearson,
1901). PCA involves a mathematical procedure that transforms a nampessibly
correlated variables into a smaller number of uncorrelated blesiecalled principal
components. The first principal component accounts for as much ofrtabiMg in the
data as possible, and each succeeding component accounts for as rhectewfaining
variability as possible. Depending on the field of applicatios, @#iso named as discrete
Karhunen-Loéve Decomposition (KLD), Hotelling Transform or Pro@ethogonal

Decomposition (POD).

Now it is mostly used as a tool in exploratory data analysisfar making predictive
models. PCA involves the calculation of the eigenvalue decompositicm adita
covariance matrix or singular value decomposition of a dataxnasually after making
a given dataset mean-centered for each attribute. The resuRCA are usually
discussed in terms of component scores and loadings. PCA is tlessimf the true
eigenvector-based multivariate analyses. Often, its operationbeathought of as

revealing the internal structure of the data in a way which best explains idrecean the
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data. If a multivariate dataset is visualized as a seboifdinates in a high-dimensional
data space (1 axis per variable), PCA provides with a loweerdimanal picture, a
shadow of this object when viewed from its most informative viewpdid@€A is closely
related to factor analysis. Indeed, some statisticdgums deliberately combine the two

techniques.

In most of the identification/detection researches aforementioried B¥R-MS in the
literature review, this PCA method was employed for the purpose of

authentication/quality /source/type/VOC identifications and its cleasdns.

2.5.1.2 Underlying model

Let's define an N state variable vector adjusted v(x, t) dswe| given an observation

data vector U:

v(x,t) = U - <U>, then <v> = 0; where the brace < .> means ensemble average.

* Because the basis (mode) is derived from the ensemble of olhsersats {U}, the

eigenfunctiong ¢} that we have to find are usually called empirical eigenfunctions.

The PCA is a generalized Fourier expansion of a random spa@ssgxgrv(x,t) that has
the meaning of variation from the mean value, as the sum of orthahbasis functions

{p,} as follows:

45



Ph.D Dissertation Kwanghoon Han ($-4%)

VD =X a,00,00 B V(%) =22, 09,09

n=1

where

a,(t)= .[(0: (X)v(x,t)dx <€ Random Fourier coefficients denotes its conjugate transpose

(@.9)= j@” (X)p, (x)dx=o; € Orthonormality

Minimizing the mean square error from a partial sum ofiwhseleads to a homogeneous

Fredholm integral equation of the second kind like the below,

JROGX) 0 (x)dX= 25, (X) - ()
where

R(x,X) = <v(x,t)vH (x',t)>

By Mercer’s theorem, R can be expressed by the following feith the random Fourier
coefficients being orthogonal variables having its mean squaresvalgeal to the

eigenvaluest,,.

RO X) = (VOGV (x.,)) = 3 Ap (09 (x)
where

(a ®)a; (1)) = 45,
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And also, the equation (*) can be reduced to matrix eigenvalueseprshlsing the
trapezoidal quadrature. Then, we can solve the eigenvalues problemg get

eigenfunctions, its eigenvalues and

And then,
N &

v t) = Zan(t)(on(x) =a@ +ap, +A +ayp, = [(Pl A o] M|=0z(t)
n=1 aN

where

2ty =[a®) at) A a®][

When the approximation of is expressed by only M eigenfunctions,

Vi (xt) = Zan(t)%(x) +r= a,[0)¢,() = @2, ()

n=1

where
o, =g 9, A pul z,0=[a®) a® A a,®O], M<<N
these eigenfunction&oi }iN=1 are optimal in the sense of minimizing the approximation

error (residual r)
As a conclusion, this PCA eigenfunctions obtained using the abovesproae be used

effectively in getting huge data compression due to the wuse of

z, @,z, 2,A ,z, (N),o,,0,,A ,0,,<U>; © (2M by N)+N components, not of
M M M 1 2 M
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{U‘”,U‘Z) A ,U‘N’} : (N by N) components when expressing a given sample set like

snapshots, conserving the energy level of over 99.99%.

Usually, 2M << N becauseM < 1—& N.

To reduce the order of system states, the M veatas utilized instead of the N vector U.

To reconstruct the original state vector U, we can use this relation:

U(xt) =, z,{t)+{U)

2.5.1.3 Assumptions and limitations of PCA

PCA is theoretically an optimal linear scheme in terms a$tlenean square error, for
compressing a set of high dimensional vectors into a set of lomendional vectors and
then reconstructing the original set. It is a non-paramatralysis, and the answer is
unique and independent of any hypothesis about data probability distributiorevétow
the latter two properties are regarded as weakness aasagllength, in that being non-
parametric, no prior knowledge can be incorporated and that PCA camopesften
incur loss of information. The applicability of PCA is limited by the assumpti@uern

its derivation. These assumptions are:
1) Assumption on linearity:

The observed data set is assumed to be linear combinations af badaE. Non-linear

methods such as kernel PCA have been developed without assuming linearity.
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2) Assumption on the statistical importance of mean and covariance:

PCA uses the eigenvectors of the covariance matrix, and it odg the independent
axes of the data under the Gaussian assumption. For non-Gaussianti-onadal
Gaussian data, PCA simply de-correlates the axes. Whend$@&d for clustering, its
main limitation is that it does not account for class sepanabiiliice it makes no use of
the class label of the feature vector. There is no guarantee that the directr@snfim

variance will contain good features for discrimination.

3) Assumption that large variances have important dynamics:

PCA simply performs a coordinate rotation that aligns the tam&fd axes with the
directions of maximum variance. It is based on the common idea, when thesddata
has a high signal-to-noise ratio, that the principal componerits laiger variance
correspond to interesting dynamics and lower ones correspond to negantialy, PCA

involves only rotation and scaling. The above assumptions are maddeimnto simplify

the algebraic computation on the data set. Some other methods éeaveldveloped

without one or more of these assumptions.
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2.5.2 Partial Least Squares - regression method (PLS)

2.5.2.1 Overview

Partial Least Squares regression (PLS) was developed bedisBvstatistician, Herman
Wold. In statistics, the method of PLS bears some relatiopritwipal component
analysis; instead of finding the hyperplanes of minimum varianfieds a linear model
describing some predicted variables in terms of other observaidélea. It is used to
find the fundamental relations between two matricésafd Y), i.e. a latent variable
approach to modeling the covariance structures in these two spadesS model will

try to find the multidimensional direction in thé space that explains the maximum
multidimensional variance direction in tNespace. PLS-regression is particularly suited
when the matrix of predictors has more variables than observatiodsyhen there is
multi-collinearity amongX values. On the contrary, standard regression will fail inethes

cases.

PLS-regression is an important step in PLS path modeling, a midtevalata analysis
technique that employs latent variables. This technique is oftemee to as a form of
variance-based or component-based structural equation modelingvidelg applied in
the field of chemometrics, in sensory evaluation, and more recantlghemical
engineering process data (see John F. MacGregor) and tlysisarwdl functional brain

imaging data (see Randy Mcintosh).
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Van Ruth et al. (2007) and Granitto et al. (2007) used this methibdRG@A in their

researches for resolving their identification issues when utilizing MBR-

2.5.2.2 Underlying model
The general underlying model of multivariate PLS is

X=TP" +E

Y=TQ' +F (2.11)

whereX is ann x mmatrix of predictorsy is ann x p matrix of responseg, is ann x |
matrix (score componenbr factor matrix), P andQ are, respectivelyn x | andp x |
loading matrices, and matricds andF are the error terms, assumed to be independent

and identically distributed Gaussian.

2.5.2.3 Algorithm

A number of variants of PLS exist for estimating the faatat loading matrice§, P and

Q.

Most of them construct estimates of the linear regression beXvaadY as follows:

X =YB+B, (2.12)

Some PLS algorithms are only appropriate for ttee agherey is a column vector, while
others deal with the general case of a matrixAlgorithms also differ on whether they

estimate the factor matrik as an orthonormal matrix or not.

51



Ph.D Dissertation Kwanghoon Han ($-4%)

2.5.3 Chemical Mass Balance method (CMB)

2.5.3.1 Overview

The Chemical Mass Balance (CMB) is one of sevezakptor models that have been
applied to air resources management. The atmosjharvery complex system, and it is
necessary to greatly simplify the descriptionseality to produce a mathematical model
capable of being calculated on even the largestfastgést computers. Thus, although
significant improvements have been made over tls p@ years in the mathematical
modeling of dispersion of pollutants in the atmaa=eh there are still many cases where
the models are insufficient to permit the full dieyement of effective and efficient air
guality management strategies. Thus, it is necgdesahave other methods available to
assist in the identification of sources and theoajgnment of the observed pollutant
concentrations to those sources. Such methodsadlexl receptor-oriented or receptor
models since they are focused on the behavioreohthbient environment at the point of
impact, as opposed to the source-oriented disperaimdels that focus on the transport,
dilution and transformations that occur at the seuand follow the pollutants to the

sampling or receptor site.

Receptor models use the chemical and physical clesistics of gases and particles
measured at sources and receptors to both ideh&fgresence of sources and to quantify
source contributions to receptor concentrationscelgtor models are generally contrasted
with dispersion models that use the estimates ofutaot emission rates, the

meteorological transport and the chemical transébion mechanism to assess the
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contribution of each source to receptor concemnati The two types of models are
complementary, with each type having its own adsges that compensate for the

drawbacks of the other.

The CMB receptor model was first applied by Wind¢besand Nifong (1971). The
original applications used unique chemical speagsociated with each source type, the
so-called “tracer” solution. Friedlander (1973jranluced an ordinary weighted least-
squared solution to the CMB equations, and this thedadvantages of relaxing the
constraint of a unique species in each source typ& of providing estimates of

uncertainties associated with the source contobati

2.5.3.2 Underlying model
Assumptions:

» Compositions of source emissions are constaat the period of ambient and
source sampling.

* Chemical species do not react with each other ¢an be linearly added). For
many assessments, secondary formation of pariglesportant. While CMB is
not formulated to explicitly treat secondary tramsiation, a surrogate procedure
is available to give some information on at least @éxtent of secondary materials
in the ambient data.

» All sources with a potential for significantlgmtributing to the receptor have been
identified and have had their emissions charadriz

» The source compositions are linearly indepenadntach other with random,

uncorrelated and normally distributed measuremeoéiainties.
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* The number of sources or source categoriesssstlean the number of chemical

species.

The fundamental principle of receptor models i¢ thass conservation can be assumed
and a mass balance analysis can be used to idantifgpportion sources of airborne
particulate matter in the atmosphere. This metloagohas generally been referred
within the air pollution research community as pgoe modeling. The approach to
obtaining a dataset for receptor modeling is tewheine a large number of chemical
constituents such as elemental concentrationsim@er of samples. Alternatively,
automated electron microscopy can be used to diesiethe composition and shape of
particles in a series of particle samples. Inegitase, a mass balance equation for the
pollutant concentrations at a sampling location lmanvritten as the summation of the
contributions to account for ath chemical species in thresamples as contributions from

p independent various sources as follows:
P
X =Y.S-a;, j=12A,m forvi=12A ,n (2.13)
k=1

wherey; is the predicted concentration of compogimdeasured in sampiet the
sampling locationsy is the contribution of sourde(which is the unknown and to be

solved), andy; is the source profile for compounérom sourcek.

The value ofg can be found by minimizing the difference betwdenrmeasured) and

the predictedX) concentrations for all target compounds:
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fzzzm:l:iz'(cj—i:%'akj)z:l (2-14)

j=1| O

This is the common multiple regression analysidlam. When the uncertainties;)(in
the measurements are assumed to be constant aroommpunds, the solution can be

found by using least squares.

The collection ofp source profile vectors forms a source profile matr Initially,
ordinary least squaresere employed for the estimation (Friedlander, }973%ince
different elements have quite different scalestf@ir values (major elements ag/m’
concentrations, minor elements at concentratiomsinfireds of,g/m® and trace elements
atng/m® values), a weighted least squares regressionsisdigs been used to fit sources
with several elements for measured ambient samplasthese analyses, the ambient
elemental concentrations are weighted by the imvefsthe square of the analytical

uncertainty in that measurement.

It was recognized that there is uncertainty in seyrofile values. The inclusion of this
error is the statistical ‘error in X’ problem thaas been examined by a large number of
investigators. A mathematical formulation callefleetive variance weighting was
independently suggested, which included the unogga in the measurements of the
source composition profiles as well as the uncatitzs in the ambient concentrations. As
part of this analysis, a method was also develdpechlculate the uncertainties in the

mass contributions. This effective variance lesgtiares (EVLS) method has been
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incorporated into the standard personal computdtwace developed by the US
Environmental Protection Agency, or EPA (Watsonaét 1990). Because of the
distribution of this model approved by EPA, it Hascome virtually mandatory to use
EVLS in receptor modeling for regulatory purposdshas thus been widely applied and

those results are summarized in an EPA report (EP86).

2.5.3.3 Limitations and on-going improvements

In fact, the assumptions mentioned in the prevereion pose a limitation of the model
because source compositions are not constant fpryith changes in process inputs,
loads and cycles); components do react with edoér @nd systems are not linear; it is
not rarely known exactly how many sources are dmuting to a receptor; there are many
more sources than components which can be prdgtitedasured; many sources have
very similar compositions; measurement errors atenecessarily random, uncorrelated
or normally distributed; and very few sources hthar own unique tracer components.
In addition, the ordinary weighted least squareliten was limited in that only the
uncertainties of the receptor concentrations wenesidered; the uncertainties of the
source profiles, which were typically much highleant the uncertainties of the receptor

concentrations, were neglected.

While the implicit assumptions are fairly restrietiand will never be totally obeyed in

actual practice, CMB can tolerate deviations froesthassumptions with some penalty in
uncertainty. Several studies have been publishaeddibcument CMB's tolerance to such
deviations. The limitations of receptor models nbayoffset by their advantages. They

are relatively simple compared to source-orientextiets of comparable accuracy and
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precision. In addition, because an analytical wetlof determining the effects of
systematic errors on the mass balance equationdbéws developed, the precisions
required for measurements can be estimated to eawvitarget precision for the model

output.

Because of limitations of performing the least sqdaanalysis, it is useful to have
additional techniques that can help to determimeabplicability of source profiles to a
particulate apportionment problem to be solvedesehmethods have been developed as
solutions to the problem of calibrating multivagathemical analysis instruments, but
these methods can be applied to the receptor nmgdphioblem. The methods applied
until now include partial least squares, simulaaadealing, genetic algorithms and back
propagation artificial neural networks. Especialhe artificial neural networks showed a
better performance with respect to collinearitysofirces. However, these methods have

not been extensively tested in solving actual clhahmass balance problems.
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2.5.4 Positive Matrix Factorization method (PMF)

2.5.4.1 Overview

The Positive Matrix Factorization (PMF) is a recemiet of receptor model, developed by
Dr. Pentti Paatero (Department of Physics, Uniteis Helsinki, Finland) in the middle
of the 1990s (Paatero and Tapper, 1994). PMF iocatgs error estimates of the
measured data to solve matrix factorization oihadr model as a constrained, weighted
least squares problem. These error estimates @ictmusampling errors, detection limits,
missing data observations and outliers. The injath must be finite, positive numbers.
One portion of the model solution is a matrix afttas. These factors, which are roughly
interpreted as source profiles, represent theivel@mounts of each compound in each
source. Each factor is constrained to be nonnagatiThis requirement decreases the
rotational freedom used to produce meaningful fa¢tand often, the result is fully

unique with no rotational freedom.

If the number and the profiles of sources are knawe chemical mass balance method
(CMB) can be used to estimate the contribution @hesource to the pollution where

regression methods are used to provide quantitagiselts. However, in many cases,
source information is unknown a priori, so factoalgsis (multivariate analysis) needs to
be used to extract the sources information. Hogpheé co-workers applied principal

component analysis (PCA) to source identificatibit Paatero and Tapper (1994)
showed that PCA cannot provide a true minimal vexgasolution since they are based on

an incorrect weighting. In view of the limitatios PCA, a new technique, positive
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matrix factorization (PMF), was developed for s@sradentification and apportionment.
The distinct advantages of PMF over PCA are thatmegative constraints are built in
PMF models and PMF does not rely on the informatiomfthe correlation matrix, but
utilizes a point-by-point least-squares minimizatscheme. It has been reported that the
source profiles produced by PMF are better and measonable in describing the source
structure than those by PCA (Huang et al., 19@9jer the past few years, PMF has been
applied to a number of particle composition data.s®ecently, the PMF analysis can be
expanded by using a more general model, and a nalysss tool called the multilinear
engine (ME) was developed to solve such problematéifa 1999). ME is very flexible
and provides a general framework for fitting anytleé multilinear model, so it becomes
possible to obtain not only the sources profilast &#lso other interesting parametric
factors that may be important for source identtfara and pollution control/planning.

For example, wind directional information can hielpate the potential sources.

This becomes increasingly important with the intrcitbn of the Guide for Expression of
Measurements (GUM) and the derived Guide for Quaatibn of Analytical
Measurements (QUAM), which are nowadays commonlyedereferences underlying

numerous national and international standardss(iliet al., 2000; ISO/IEC, 2008).

2.5.4.2 Underlying model

Positive Matrix Factorization is as a weighted faettion problem with non-negativity
constraints. A measured dataset can be consideyemh input data matriX of ix]
dimensions (i.e. VOCs’ concentrations in this sjudy whichi number of samples and

chemical species were measured. The maticasde (uncertainty data matrix) and a
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selected number of factopsare known or given. The goal of the multivariadeaptor
modeling is to identify the species proffleof each source and the amount of mgss

contributed by each factor to each individual sa{pée Equation 2.18):
X=GF'+E, G:nxp, F:mxp (2.15)

0,20, f, 20 (2.16)

q.z
j O_ijzj (2.17)

{G,F} =argminJ (2.18)

{G.F}

whereX is the matrix of VOCs’ concentrationS, is the matrix of source contributiorfs,
is the matrix of source profiles, afdis the residual matrix. Their elemengs g andfic

can be respectively understood as the concentratioompound measured in sample
the strength of sourdeon sampla, and the concentration of compound the emission

of sourcek. oj is the standard deviation representing the uniogytan the observation;.

Results are constrained, so that no sample canaéhaegative source contribution. PMF
allows each data point to be individually weighedihis feature allows the analyst to
adjust the influence of each data point, dependmghe confidence in the measurement.
For example, data below detection can be retaimeduse in the model, with the

associated uncertainty adjusted, so these dataspoave less influence on the solution
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than measurements above the detection limit. TWE& Bolution minimizes the object

functionJ (Equation 2.17), based upon these uncertaingles (

The problem is symmetric with respect to the romd eolumns of the matriX and the
factorsG andF: this is a ‘bilinear model’. Its resolution isdéficult task, because it has
two different non-linearities: inequalities and gueots of unknowns. Two are the main
algorithms used to solve this problem: PMF2 (Paat@000) and ME (Multilinear
Engine; Paatero, 1999). The PMF2 program that emphts PMF includes non-
negativity constraints, but it is not written inckua manner that additional constraints can
be applied to the problem. Additional constraicas be imposed using the ME program
and it can also provide the other options avail&néMF. However, it is currently more
complicated to use as one has to script the constrendel for the problem. It would be
possible to produce a preprocessing program thatdywrepare the input files for the ME
program that could incorporate all of the constsaithat are appropriate for any given

problem.

Variability in the PMF solution can be estimatedhgsa bootstrapping technique, which
is a re-sampling method in which new data smissistent with the original data are
generated. Each data set is decomposed intogianiill contribution matrices, and the
resulting profile and contribution matrices are pamed with the base run. Instead of
inspecting point estimates, this method allowsahalyst to review the distribution for

each species to evaluate the stability of the swlut
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2.5.4.3 Limitations and comparisons with PCA and CMB

One limitation of PMF is its inability to extracadtors that fit widely varying exposure
concentrations, which is apparent when comparinglaieal concentrations from the
regression analysis with measured concentrationhen the measured concentrations
analyzed include both very high and very low valubge modeled concentrations are
generally much higher or lower than the true valudghen the measured concentrations
are restricted to a smaller range, the modeled esdrations reflect measured
concentrations much more closely. In addition, P@diSo in other multivariate receptor
models) cannot resolve sources/components whemrédjes are too similar, and (b)
sources/components show similar temporal variatidnother limitation of PMF is that
the characteristics of the sources to be identsigalild be inferred from or interpreted by
the characteristics of the profiles for several fagtors identified. PMF is also known to
have high bias for some cases having high varigbiind complexity of the
measurements, which makes the results from PMBughrestimates on the profiles of

sources, not knowing the true profiles.

Both CMB and PMF provide quantitative estimatesairce contributions. In the CMB
analysis, source profiles are provided whereasMifr,Rhe source profiles are estimated.
If some of the source profiles are known, they benused in PMF to constrain the
extracted source profiles and thereby reduce ttaiooal indeterminacy. Both CMB and
PMF are employing least squares fitting, but tresome important differences in how
the underlying error structures are modeled and mmawy unknowns are being estimated.
With PMF, it is not possible to precisely assigmoes to the source profiles and

contributions.  With CMB, it is possible to assigmror estimates to each source
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contribution value. However, there are no diagaegprovided in the CMB model that
would alert the analyst to misspecification of dwurce profiles. In addition, since the
CMB analysis is done on a sample-by-sample bdsesetcan be errors in the estimated
source contributions because of the variationsdhatoccur in the source profiles. PMF
uses all of the data and thus, estimates the avexagrce profile over the time interval,
during which samples were collected. Thus, thezesame similarities in the process and
the outcome, but there are also some importargrdifices in what is being estimated, the

input data that are required, and the estimatéseofincertainties in the calculated values.

PCA and PMF have the main difference in that tHetsm of PCA forms a hierarchy and
a higher number of factors contain all the factofrshe lower dimension, whereas the
factors of PMF are not orthogonal and, as a rethéte is no hierarchy. However, when
rotation is applied to PCA, the factors are notmaose orthogonal. Usually, in physical
sciences, the factors do not have the propertyritfogonality, so the missing of this
property in PMF may not be problematic. In additi®MF produces non-negative
distributions (factors) by definition and this aspprecludes the orthogonality. However,
resolving PMF algorithms is slower than PCA’s bessaBCA is simpler to use because of
less parameters to control. Other different aspbetween these two methods concern
the rank of the standard deviation matrX) @nd the p-rotatable property of SVD
(Singular Value Decomposition). The comparisonddferent cases can be found

elsewhere (Paatero and Tapper, 1994), and theégsesalsummarized as follows:

* The matrixe is of rank one and SVD of is p-rotatable: With PCA the matrix

can be scaled correctly and factorization by Svbpsmal. The factorization by
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PMF is always optimal, because it always uses treect standard deviations.
When the solution given by SVD is p-rotated, thebacomes a solution of the
PMF task, because both have the same residuald(@MF) = J(PCA) (Refer to
Equation 2.17 for the definition af). However, PMF produces a desired non-
negative solution directly, whereas the solutionF§yA must be rotated in order
to obtain a nonnegative solution.

* The matrixe is of rank one, but SVD of is not p-rotatable: It's impossible to
rotate the SVD-derived factorization, while PMF lvpitoduce the desired solution.
PMF solves the problem, but PCA does not.

* Rankg) > 1. Correct scaling is not possible with SVDs ionly possible to
approximate thes with a matrix of rank one, leading to loss of imf@ation. It
may also happen that the solution by SVD is nobtptable, preventing the

solution by PCA. However, PMF solves the origipadblem correctly.

From these considerations, it becomes apparenirticanclusion, PMF is generally more

powerful than the best possible PCA, or at leastvatent to PCA. On the other hand,

PCA is much faster than PMF in calculating the 8otuvia SVD.
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2.5.5 Method proposed in this study

Using the feature of material emission signatucebe established in a later chapter, we
proposed a methodology toward a source identiboatbased on signal processing
principles. The following is an introductory sectiaiming for this direction, and the

detailed descriptions and validation of the methoglp will be presented in Chapter 4.

2.5.5.1 No noise case in the x-axis (e.g. RT, m/z, etc.)

The combined signal intensity from a measured samsighal can be defined as:
Se(¥=a-S(X)+p-S,()+A +w, «,f,A >0

Then,

(1) If Ind(S,;) = Ind(Sy,) ., then find {db}.

(2) Find o, B, ... by regression. In this case, LSE (Least Squastisnition) such

that

J=min  Y(S,(0-a-S-p-S,-Af

x~measured

2.5.5.2 Noisy case

The combined signal intensity from a measured sarsighal with noise can be defined:

Sp() = [e S +w (] @ >0, Vi
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Then,

(1) If Ind(S,,)>Ind(S,) , wheres = 3" (X,

i~missed
then, find {db}.

(2) Find o1, O, ...

- xgb)z, & <Thresh,

an, Which minimize the following (MMSE, Minimum Mean

Square Estimation in this case). Check the madeaitiErr.

J=min Err=min E (Ssp(x)—Zoci

2.5.5.3 Example of preliminary tests
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Figure 2.6 Test example of signal separation.
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2.6 Summary and Conclusions

¢ Several studies performed in the areas of fog@ineering, medical research, forensic
investigations, etc. implied that a pollutant magectrum measured by an on-line
analytical device, PTR-MS, had the potential to lbeed for origin/quality

characterizations and source identifications.

¢ Extensive works of sensory assessments by huoigecss have been done to evaluate
the impact of VOC emissions from building materiatsindoor air quality, and attempts
have been made to correlate human sensory asseassamehchemical evaluations to
assess the human response on perceived air g{RAY) more practically and efficiently.
To expedite the establishment of human exposummrse relationships caused by
indoor VOC emissions from building materials ancebocidate the understanding of the
relationships, a more convenient and faster amalythethodology for the evaluation of

PAQ needs to be developed with a much wider deteetindow for indoor VOCs.

¢ Many studies claimed that building materials nhilgé significant sources of chemical
pollutants found in indoor environments. For treason, the emission characteristics of
building materials were considered important arnpbreed to have significantly different

emission profiles over time as per dry or wet mater

¢ VOC long-term emission profiles can be accoumbedby considering elapsed time and
dynamic conditions via proper source models, whiah also be applied to emission

signatures.
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¢ For the purpose of food origin/quality characation and pollutant source
apportionment, several factor analyses and recépt®ed methods are being used in
several research disciplines to get rough estima@essidering that polluting compounds
indoors mostly have multiple types of sources, dbeventional techniques using factor
analysis and the correlation with several elemedé&h are limited and difficult to be
used in clearly pinpointing the source or matefiam which the target compounds are
emitted. A new approach needs to be developeddouat for this source identification

issue specific to indoor environments.
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T CHAPTER 3. DETERMINATION OF MATERIAL ESs

AND THEIR CORRELATIONS WITH SENSORY DATA

3.1 Introduction

Odors from building materials may be an importaadtdr in their own right and for
human health effects in working or residential emwments. During the last two decades,
there have been many attempts to understand huomaplaints because of poor indoor
air quality and their impact on occupant healtmfast and performance. Wolkoff and
Nielsen (2001) reported that after formaldehyde vi@sused on as a major indoor
pollutant, there had been a considerable amouinterest in VOCs as potential causes of
sensory health effects such as odor annoyancegimyay irritation, headache and other
health effects. They argued that perceived in@moquality largely should be evaluated
from the sensory effects of specific indoor compisjrsuggesting that VOC evaluations
in terms of its impact on perceived air quality gldobe switched over from the use of
total VOCs to a compound-by-compound approach. déhde from many building
investigations and systematic studies suggestedatimang several sources of indoor
pollution, VOC emissions from building materialgrgstural or furnishing) could be
considered as a major contributor to indoor airlytimin, because of their complex

chemical composition, large surface area and pegniamxposure to indoor air
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(Haghighat and Donnini, 1993). These VOC emissamsse sensory effects on building

occupants because of odors and/or irritants (Faa,&2008).

Experimental studies using sensory measurementshiigan subjects have been
performed to examine the impact of VOC emissioomfbuilding materials on perceived
indoor air quality, and to establish human exposasponse relationships for building
materials. Knudsen et al. (1998) suggested a rexfrimental procedure to determine
this exposure-response relationship. Their fir@lctusion was that source control by
using low-polluting materials could often be thesmeffective way to improve indoor air
quality. It is generally acknowledged that the @qore-response relationships can be a
useful tool to systematically quantify and asséssimpact of emissions from building
materials on perceived air quality at different @amtrations (Haghighat et al., 2001,

Knudsen et al. 1998).

Attempts have been made to correlate sensory assets and chemical evaluations
using Gas Chromatographic (GC) methods (Knudsel.e1999) and using GC-O/MS
with olfactometry (Clausen et al. 2008; Knudseralet2007). Although detailed and
accurate, the traditional methods for the tracdyarsaof VOC chemical data require
extensive preparation time, and long measuremahtaalysis time (> 3 hours) even for
one sample. In order to expedite and elucidateutigerstanding of human exposure-
response relationships caused by the impact of ¥@i3sions from building materials,
the advent of a more convenient and faster chemiealsurement method with a much
wider detection window for indoor VOCs than anydttimnal chemical analysis methods

is urgently called for.
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An analytical method, PTR-MS, was developed to omere the disadvantages of GC
methods, providing on-line measurements of indi@ldcompounds at trace levels (i.e.
down toppb or evenppt level for some VOCs, depending on the concentrdeoel of
background air). In PTR-MS, the air to be analyisedontinuously pumped into a drift
tube reactor, and a fraction of VOCs is ionized proton-transfer reactions with
hydronium ions (HO") as a chemical reagent. The advantage of uijipioton transfer

is that it is a soft ionization method, meaningtthagenerally does not lead to the
fragmentation of product ions, and the mass of gaoduct ion equals the VOC mass
plus one. At the end of the drift tube, the reagem product ions are measured by a
guadrupole mass spectrometer, and the productigmalsis proportional to the VOC
concentration sampled. PTR-MS allows numerous VOfQsterest to be monitored with
a high sensitivity (Usually, the detection limitseawithin 10-100ppty) and a rapid
response time for sampling (< 1889. In addition, this technique does not requirg an
sample pre-treatment such as drying or pre-coraemr and is thus well suited for
oxygenated VOCs, which cannot be quantified fromstar samples used in a traditional
chemical analysis method. PTR-MS has been widagduin atmospheric, food,
environmental science, forensic investigation aretlical research (Blake et al., 2009;
Boscaini et al., 2004, de Gouw and Warneke, 200&lld& and Penuelas, 2006; Granitto
et al., 2007; Hewitt et al., 2003; Jobson et 0% Kato et al., 2004; C. Lindinger et al.,
2008; W. Lindinger et al., 1998, 2001; Lirk et &Q04; Mayr et al., 2003; Steeghs et al.,
2004; Van Ruth et al., 2007; Wang and Stout, 200&rneke et al., 2003; Wehinger et al.,
2007; Whyte et al., 2007). On the other hand ett@ve been rare studies in the field of
indoor air quality utilizing this technique withfew exceptions (Bunge et al., 2008; Fang

et al., 2008; Weschler et al., 2007; Wisthalerl e2807).
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One of the important research challenges in th&l faef indoor air quality is the
identification of emission sources of indoor VOE®K(@gson et al., 2000). Even though
several possible compounds with great potency Hmeen chemically measured and
reported through indoor field studies, the sounfabe detected compounds can not often
be pinpointed. To establish an effective count@snee against unwanted VOC
emissions, emission sources need to be identified. first step toward a source
identification would be to determine a material gson signature if it is unique for each
material or each type of material. This is simiiarhuman’s fingerprint for personal
identification. In addition, if a correlation etgsbetween measured emissions and odor
assessments by human subjects, the emission gigaaay be used for identification of
the responsible odor source that causes perceivgdality problems in a building. The
objectives of the present study in Chapter 3 weredeétermine the VOC emission
signatures of nine building materials using PTR-6IS a primary method for VOC
analysis, and to study the correlations betweenRh&-MS measurements and the

acceptability of air quality perceived by humanjsats.
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3.2 Materials and Methods

3.2.1 Overview

Nine typical individual building materials previdysised in an odor assessment study of
air quality by human subjects (Wargocki et al., Z0@ere placed one by one in a 50-liter
small-scale chamber. The materials included cammting material, gypsum board,
linoleum, paint 1 (water-based), paint 2 (with &ed oil), polyolefine, PVC and wood.
To achieve similar concentrations as in the previouman assessment tests, area-specific
ventilation rates defined as the ratio of ventiatrate to emitting surface area were set to
be similar in the two series of experiments. Chaméxhaust air polluted by the
emissions from the materials was sampled by PTRtdM8etermine material emission
signatures. The signature is the PTR-MS ion magg (vhich is a physical quantity
denoting the mass-to-charge ratio widely used endllectrodynamics of charged species)
spectrum of the air sampled for each material tésists were done for low, medium and
high airflow rates. Tenax sorbent tube sample®waso taken from the same exhaust air
to identify the major VOCs emitted from the matkriasing GC/MS analysis and for
comparison with the emission signatures from theR®IS measurements. The
experimental setup is shown Kigure 3.1, and the detailed illustrations of the test
equipment and facilities can be foundAppendix B. The PTR-MS measurements were
then analyzed to obtain the correlation with theraksessments by human subjects — the
ratings of acceptability of air quality. Their clges with area-specific ventilation rates

were also examined.
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An effective signal processing method to extrac¢@C emission signature for each
material from the relatively noisy signals of thERRMS device was developed as well as
a dataset (Se&ppendix A) of the PTR-MS emission signatures for the matetiested.

This method is outlined in the coming section ofdDanalysis procedure.

Exhaust

<« 3

Filtering Device

tO Sorbent Tube
for GC/MS Analysis

T)

to PTR-MS

Clean Air

Figure 3.1 Experimental setup.

The data on the acceptability of air quality webtamed from the previous experimental
study (Wargocki et al., 2007). The temperature ratative humidity in the test chambers
were 22 + 0.1°C and 31 * 6% RH, respectively. Thely was performed by DTU
(Technical University of Denmark) and SBi (DanishilBing Research Institute, AAU)

in small-scale glass chambers employing 38 untdaimenan subjects. The acceptability
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was evaluated as a continuous scale from -1 todefined as follows: Clearly not

acceptable = -1, Just not acceptable/Just acceptabland Clearly acceptable = 1. The
values of acceptability for the building materialere assessed with the following context
guestion: “Imagine that you, during your daily wprkould be exposed to the air in this
diffuser. How acceptable is the air quality?” Tdssessments were performed following
a random order among the established exposurebeirsmall-scale glass chambers.
During the assessments, the subjects could naheegweaterials. In order to minimize the
effect of human sensory adaptation, at least 3 mibhteak was taken between each

assessment. The average ratings of the assessmezatased in the analysis.
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3.2.2 Environmental conditions

A 50-I small-scale environmental chamber (% 0.4m x 0.25m high) made of electro-
polished stainless steel was used in the presedy.stlt was placed in a well-ventilated
laboratory maintained at a positive pressure tamengigh air quality. The chamber
assembly was comprised of four small-scale chambtrsked in a two-story frame
having a flow controller Alicat Scientifi¢ accuracy +0.1% of measured values) and a
humidity controller Yaisala INTERCAP HMP35Mccuracy +1% of measured values) for
each chamber, to set and maintain the desiredwinfate and relative humidity. The
temperature in the chamber was maintained by dtingothe temperature in the
laboratory (accuracy +0.5°C). The chamber wasilaetl with external air which passed
through a dedicated filtering devicaVNikerson 3-stage carbon filters with micro

filtration), ensuring conditioned and clean air glyp

In order to emulate the test conditions used inpitevious human subject experiments,
the air temperature and relative humidity in th@mber were maintained constant at
23.7~24.7°C (During each sampling period, the viamawas less than +0.02°C from the
mean) and 31 + 0.1% RH during the tests. Befoeetélsts, the inner surface of the
chamber was scrubbed with a paper towel that wasasad with isopropanol and DI
water SATPAX 1000pre-saturated non-woven polyester/cellulose wgiperAfter that,
they were ventilated for at least 24 hours wittaolair at 2 ACH (Air Change per Hour).

To confirm the effectiveness of this cleaning pss;ehe background concentrations of
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individual VOCs inside the empty chamber were messand were found to be below 1

ug/ne.

3.2.3 Test specimens

Nine typical building materials were investigated:
(D Ceiling: 10mmplain gypsum board covered with plastic coatedenieit

1 Wood: 14mmuntreated beech wood parquets

1 Carpet: 6.4nmtufted loop polyamide carpet with supporting lapérpolypropylene
web and polypropylene backing

1 Linoleum: 2.5mmlinseed-oil-based flooring, 52% wood meal

1 PVC: 2.0mmhomogenous single layered vinyl flooring, reinftavith polyurethane

1 Polyolefine: 2.0mmhomogenous polyolefine-based resilient flooriregnforced with
polyurethane

1 Gypsum: 13nmplain gypsum board lined with cardboard

1 Paint 1: 13mmplain gypsum board painted with one coat (0/if) of water-based
acrylic wall paint

1 Paint 2: 13mmplain gypsum board painted with one coat (0/i¥f) of water-based

wall paint with linseed oil

Detailed descriptions of these materials were tepoglsewhere (Wargocki et al., 2007).

It was the same batch of materials used in theiquevacceptability study by human

subjects. In other words, the originally sealedemals from the same batch were used
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instead of the same materials tested previousliie Materials were shipped after the
purchase from Denmark to Syracuse University byraiil, wrapped with aluminum foil,
tightly double-taped piece by piece to minimize @eymeation, and packed together in a
thick package box leaving almost no space insi@pecimens were cut and prepared
according to the sizes specifiedTiable 3.1 Most of them except for gypsum, paint 1
and 2 were stapled back to back together in oftlriioth sides of each specimen were
exposed to the air in the test chamber, and a M@€-&luminum tape3M 2113 was
applied to seal all edges. The prepared specimers placed vertically, parallel with the
airflow in the chamber (the same direction of thed side of the chamber). The same
range of area-specific ventilation rates as in phmevious experiments with human
subjects was set by adjusting the airflow to thanaber while keeping the size of
specimen unchanged. In the previous acceptabtlitgy, airflow rate was constant at 0.9
I/'s and specimen areas were varied to achieve theedesiea-specific ventilation rates.
Keeping the area-specific ventilation rates the esaensured that the resulting
concentration levels at the quasi-steady state vesmdlar between the PTR-MS

measurements and the previous human subject assdssm
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3.2.4 PTR-MS analysis

A PTR-MS device lpnicon Analytik high-sensitivity model with a dgten limit as low
as 1 pptv, Austripwas operated at the standard conditions (Drifetpressure: 2.3~2.4
mbar, PC: 455mbar, FC: 6.5 STRec/min U SO: 75V, U S: 100V, Drift tube voltage:
600V and Source: 6.0hA). Detailed descriptions of the device and itsh@ple can be

found in W. Lindinger et al. (1998).

The instrument measures ion count rates (countsgmmd cp9 which are proportional

to the respective densities of the ions. Thesesitles can be substituted with the
measured count rates, and the volume mixing ratidke target compounds ppbvcan

be calculated. The count rates of the product i@ps in the present work were
normalized by per million hydronium ion §8%) count rates to compensate the variations
in the hydronium ions as done by other researcherthis area (e.g. de Gouw and
Warneke, 2007; Jobson et al., 2005; Whyte et 80,72 This normalized product ion
count rate measured in normalized counts per segwpd is then directly proportional

to the concentration level of a target VOC.
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3.2.5 GC/MS analysis

For the identification and semi-quantification oOZs, air samples collected by Tenax
sorbent tubes were analyzed using a conventiondMGanstrument Perkin Elmer Auto
System XL GC, TurboMassGold MS EIl detector, Thedaabrber TuboMaxtrix ATD-
GC/MS systerandElite-624 GC Colummwvere used). Sample volumes were from 6-| to
10-l. All sorbent tubes were double pre-conditibag¢ 330°C for 40 minutes. To ensure
clean tubes, the cleaned sample tube was pre-adalyefore sample collection. The
total VOC mass for a clean tube was less tham§.(@quivalent to 0.8Qug/nt if a 10-|
sample was assumed). All abundant peaks in thelyasnatogram were selected and
identified by using the NIST MS library, but onljiase confirmed by spiking using
individual standards were reported. For the gtfiaation of compounds, only the
response factor of toluene from the GC/MS calibrativas used as a semi-quantitative
measurement since the main purpose of the GC/M§smmavas to identify the VOCs
emitted and to determine the relative abundanasawdus VOCs identified. The amount
of VOCs calculated by GC/MS was divided by its shngpvolume for each tube sample

to determine the VOC concentrations in the charaber
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3.2.6 Test procedure

Table 3.1 Flow rates and specimen areas for PTR-MS chemical measurements.

Range of Q,/A in the

previous study

Test #0 Test #1 Test #2 Test #3 (I/s/m’)
0.50 / 290.7 1.55/290.7 4.641290.7 1.72/36.0
Ceiling 0.29 0.89 2.66 7.96 0887798
0.50 / 265.5 1.30/265.5 3.85/265.5 1.54/36.0
Wood 031 0.81 2.42 7.14 osLmTd
Carpet
Linoleum
050 / 240 1.28/240 3.83/240 1.72/36.0
0.89 ~ 7.96
0.35 0.89 2.66 7.96
PVC
Polyolefine
050 /416 1.03/416 3.08/416
Gypsum 0.20 0.41 1.23
050 / 402 0.99 / 402 2.97 /402 1.80/81.0
Paint 1 0.21 0.41 1.23 3.70 4L =30
0.50 / 490.2 1.21/490.2 3.63/490.2
Paint 2 017 0.41 1.23

The nine building materials were tested at foufedgnt area-specific ventilation rates
(Table 3.1). A total of 36 tests were conducted. For ead, the mass spectra for the
background emission signal from the empty chambdrfar the sample emission signal
with each prepared specimen inside the chamber measured all after three volumetric

air changes from the start of ventilation to allomncentrations in the chamber to reach
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over 95% of the quasi-steady state leva.(, _ 3 _ 3 _25 hours, where\, is
e N, (QVXSSOL) Q,

air change rate, ar@, is airflow rate in/min). PTR-MS was set to scan framiz= 21 to
m/z= 250 once every 12 seconds with an ion mass resolinterval of 50ms The total
sampling period was 10 minutes (600 seconds) witho& mass spectra collected for
each dataset. During each test, another set dfcedtgp mass spectra was scanned to
verify the collected data. For the identificatioh VOCs from each material, a Tenax
sorbent tube sample for GC/MS analysis was takémeagnd of Test #1 for each material

(Table 3.1 under the same chamber airflow condition.

3.2.7 Data analysis procedure

A dataset measured by PTR-MS has a raw signal isecd9 and a calculated
concentration set (irppby), each of which has a three dimensional data tstreic
consisting of the time of air samplinge, ion counts ¢p9 and ion massnf/2 axes.
The sample signal from PTR-MS is a random variadsumed to have at least three
components: true concentration signal of each i@sansystem noise and periodic
random bias — the last one seems to come fromntladl Suctuation of airflow rate as a
result of the airflow control effort by the flow teacontroller, having an amplitude of
+1.0% of measured values. The system noise parbeamodeled as Gaussian random
noise. After considering this random noise strgtthe following procedure was used
for analyzing the data and is illustrated Figure 3.2 with the corresponding step

numbers:
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Figure 3.2 Data analysis procedure exemplified for Linoleum.
(a) The background mass profile. (b) The background signals. (c) The sample signals at

the ion masses: m/z = 43, 75 and 33. Numbers (1) through (5) correspond to the steps
described in the data analysis procedure.

* BG: Background air, SM: Sample air.
* The letter ‘'S’ in Graph (1): Selected window size in data points for the moving-average.

(1) Filtering PTR-MS signalHigure 3.2(1): To remove noise in the PTR-MS raw data,
both for the background air in the empty chamlsegure 3.2b) and for the sample air
with a test specimen inside the chamber duringst(fégure 3.29, a moving-average
estimator (Kenney and Keeping, 1962) instead ofnth&imum likelihood estimator (i.e.
general averaging method) was applied to each etatath two filtering objectives: 1)
lowering the standard deviation of the filterednsilgless than half the original signal’s

noise level, and 2) keeping the signal dynamics twee not deviating from the original
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mean value (in other words, not to be overfittédeven samples were determined to be
sufficient for removing the system noise from the rsignal (i.e. the window size of the

moving average for this case: S = 11).

(2) Filtered mass profile: After the moving avesditer was applied for each ion mass,
consistent and stable mass profiles were obtaioeddth the background aiFigure

3.29) and the sample aiFigure 3.2(2).

(3) Material-specific mass profile: To obtain ateral-specific mass profile, the mass
profile for the background air was subtracted frtdme profile for the corresponding

sample airftigure 3.2(3).

(4) Normalization: By normalizing the resultingatarial-specific mass profile expressed
in percentage ratio using the maximum peak of thentrate of the ion masadpg, a

consistent mass profile could be establistiegure 3.2(4).

(5) Creating emission signaturieigure 3.2(5): To establish an emission signature, any
ion mass component was excluded, whose peak vahs|ess than three times the
standard deviation of the value at the same ionsnrashe corresponding background
mass profile. This additional step was done toovmmany ion mass peaks that could

occur because of the background noise signalsaftiein the uncertainty).

In addition, by using the GC/MS analysis resultgetber with the ion mass identification
data from the literature, each detected ion mass nekted to individual VOCs as a
probable or tentative identification. Togethersinédentified VOCs constitute a material

emission signature.
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3.3 Results and Discussion

3.3.1 Material emission signatures by PTR-MS
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GC/MS Analysis

VOC Compound M.W. Formula CAS#
OXIRANE, ETHYL- 72 C4H8O 106-88-7
ACETIC ACID, ANHY DRIDE
WITH FORMIC ACID 88 C3H403 2258-42-6
PENTANAL 86 C5H100 110-62-3
ETHANOL, 2-NITRO-,
PROPIONATE (ESTER) 147 C5H904N  5390-28-3
HEXANAL 100 C6H120 66-25-1
BUTANOIC ACID 88 C4H802 107-92-6
HEPTANAL 114.2 C7H140 111-71-7
CYCLOTETRASILOXANE,
OCTAMETHYL- 296 C8H2404Si4 556-67-2
PENTANOIC ACID 102 C5H1002 109-52-4
BENZALDEHYDE 106 C7H60 100-52-7
HEXANOIC ACID 116 C6H1202 142-62-1
NONANAL 142 C9H180 124-19-6

(Yes /No) ppb ug/m®
(No)
Yes
Yes 6.03 21.90
Yes
Yes 13.80 575
Yes 3.9 14.50
Yes 4.79 22.90
(No)
Yes 4.79 20.40
Yes 41.70 186.00
Yes 12.60 60.30
Yes 2.24 135

Figure 3.3 Emission signature of Linoleum.
* The detected compounds in the table of GC/MS analysis result indicate that the
corresponding VOCs were confirmed by individual compound spiking.

47: (100) Ethanol
61: (19.21) Acetic Acid
43: (10.42) Acetic Acid

75: (6.71) Ethanol
33: (4.06) Methanol

45: (2.34) Acetaldehyde
59: (1.74) Acetone, propanal
55: (1.35) Hexanal

48: (1.26) Some Isotope
57: (1.25) Acrolein

89: (1.23) Butanoic Acid
41: (0.98) Propanal

83: (0.72) Hexanal

103: (0.71) Pentanoic Acid
69: (0.58) Nonanal

117, 99: (0.51) Hexanoic Acid
97, 115: (0.32) Heptanal

* In the order of lon Mass, Magnitude, VOC Name.
* Range of Q,/A = 0.35, 0.89 & 2.66 (L/s/m’).
* The underlined above are the major peaks.

A complete dataset of the PTR-MS emission signatimethe nine building materials

tested was obtained (SAppendix A). As an illustrationFigure 3.3shows the emission

signature for Linoleum. The signatures were ehétl by using the test results from

Test #1 as a reference because, in that experithen§C/MS samples were taken by
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using Tenax sorbent tubes for VOC identificatidn.other tests with different airflow
rates (Test #0, #2 and #3), signatures with theegaattern were obtained. As for the
table of the GC/MS analysis, listed were only comi®Cs detected by the GC/MS
analysis among all the materials and consideré@ve an important role in the odor
assessments because of their low odor threshdlis.mass assignment to each VOC
was done by utilizing the GC/MS results and thaidieation information from the
literature. Unless confirmed by the GC/MS spikamglysis, the VOCs identified in the

PTR-MS results should be considered as probalilentative.

Figure 3.4indicates the shape consistency of the emissgrasire over time for
Linoleum, a high polluting material (maximum pedk'z= 47 at Test #1: Mean £ SD =
2974 £ 157cpg. The result for Polyolefine, a low polluting reaal (maximum peak of
m/z= 33 at Test #1: Mean = SD = 6.6 £ hép9, which was one of the most difficult
cases to measure a signal because of its low sigeakity, is presented Figure 3.5
This shape consistency over time was also seethar materials investigated in this
study, indicating the effectiveness of the filtgrtechnique used. The filtering method
led to the signature that was stable during theniiiste sampling period by eliminating

the effect of noise observed in the raw signgigyre 3.49.

The pattern of the emission signatures also dicchange under the different area-
specific ventilation rates testeligure 3.6). There were also identifiable differences in
the VOC emission signatures measured by PTR-MS griiendifferent types of building
materials as shown figure 3.7. The differences include the type of ion massemg

its relative amount or both. An effective index uantifying the differences is under
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development as part of a pattern recognition meti®tR-MS emission signatures were
specific to each material tested. Therefore, jitassible to identify the material based on
the emission pattern of the same material meaqw&I'R-MS. The differences in
emission patterns may potentially be used to ifiertnission sources (e.g. in buildings)
based on air samples measured by PTR-MS, but #isegnal processing and

separation method for pattern recognition is ydddaeveloped.
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Figure 3.4 Consistency of PTR-MS emission signature exemplified for Linoleum over
different sampling time. (a) Top, from the raw signals. (b) Bottom, from the filtered
signals.
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Figure 3.5 Pattern of PTR-MS emission signature for Polyolefine over different
sampling time. (a) Top, from the raw signals. (b) Bottom, from the filtered signals.
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3.3.2 Relationship between acceptability and PTR-MS measurements (ncps)

In order to examine the relationship between thRIS measurements and the

acceptability assessed by human subjects in theopiee study (Wargocki et al., 2007),
the ncps trend of each ion mass was correlatedlag(®./A). As shown irFigure 3.8a
for Linoleum as an example, there is a linear desweof the ncpwalues asQ./A

increases logarithmically (i.e. Correlation coaffitt: -1 <r < -0.93) except fom/z= 33,

methanol. This linear trend was also observeafioer eight materials.
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Figure 3.8 Correlation of the PTR-MS measurements with the acceptability for

Linoleum.

(a) Left, PTR-MS measurements over Q,/A. (b) Right, acceptability vs. ncps for several

materials at the corresponding Q,/A.

* Note: Figure (a) does not contain every trend, but only for selected ion masses with a

~
o
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high level of concentrations or probable to have small odor threshold values.

* For Figure (b), a good representative ion mass from each material was selected to have

a similar range of ncps values among different materials for comparison.

The previous human subject study showed that tbepaability had a linear relationship

with the change of area-specific ventilation ratea logarithmic manner (with a positive

0.4

slope). When combining this result with the firginabove from this study, one may
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conclude that, within each material investigatethis study, the acceptability is linearly
correlated (with a negative slope) with the PTR-M&surements1¢pg which represent
the concentration levels of VOCs emitted from eadterial (i.e. Correlation coefficient
r < -0.92 for all trends presented). The higher Yadues (cp9, the lower the

acceptability is as expecteigure 3.8b).
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3.3.3 VOCs responsible for the poor acceptability

What are the major VOCs affecting the human olfgctesponse to material emissions,

which resulted in the acceptability difference @garted in the previous study?
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Figure 3.9 VOC concentrations in the chamber air from the GC/MS analysis results
(Test #1).

* “Max 1”: The maximum individual VOC concentration.
* “Major 3”: The sum of the top three highest individual VOC concentrations.

* “Sum of VOCs”: The sum of the concentrations of all VOCs measured.

Figure 3.9illustrates how all three quantities of VOC cortcations defined in the figure
may be related to the acceptability determineduopdn subjects (Wargocki et al., 2007):
maximum individual VOC concentration (Max 1), sufrtlee top three highest individual

VOC concentrations (Major 3) and sum of the conegioins of all VOCs measured in
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reference to toluene (Sum of VOCs). It shows that three quantities all had lower
concentration values for the materials with highereptability values, indicating that the
outcome of subject assessments might be correlaiddthe level of most abundant
individual VOCs. However, in general, the percdivador intensity of an individual

VOC is better correlated with the ratio of its centration to the corresponding odor

threshold - i.ethe odor index (Knudsen et al., 1999).

We proposed to define a VOC odor index (VOI) akofes:

VOl Ei% | (3.1)

whereC; represents the PTR-MS concentration levgdpbvfor each selected VOG ;
is its odor threshold ippbv based on the VOCBASE database of the Danish Ndtion
Institute of Occupational Health (Jensen and WdJKId96), andN is the total number of

VOCs used in VOI calculation in a given materialested as follows:

1, if Ol,/Ol, <20%
N=12 if Ol,/(Ol,+0l,)<20% (3.2)
3, otherwise

whereOl; is thei™ highest Ol value.
In Equation (3.2), we applied “80-20% rule” (i.e dot include an additional compound

if its Ol (odor index) value is less than 20% loé tOl sum for the major VOCs already

selected), and only included up to 3 VOCs with hiighest Ol values to calculate VOI.
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The rationale behind this selection is: 1) odomigst likely influenced by the VOCs
having high Ol values assuming that similar typesdwors are present, and 2) threshold
values may not be available for all compounds dete@and limiting up to 3 major
compounds appeared to be practical while suffidientorrelating with the acceptability
to be shown from the data in this study. It shdmddnoted that PTR-MS has a much
broader detection window of VOCs than other tradiél methods (W. Lindinger et al.,

1998).

Note also that one may have a cautious mind aljplyiag any database values of odor
thresholds for VOCs due to the uncertainty assediatith the establishment of these
odor thresholds because of methodological diffexerend wide possible variations in
individual human responses (Amoore and Hautala,319&in and Schmidt, 2009).
Because of this caveat that may limit the usefidregsany odor threshold data, Cain and
Schmidt (2009) suggested using a homogeneous datatia VOC odor thresholds
collected by use of a uniform methodology to redtiee limitation of its applicability,
presenting an example of this kind of databaseeguats Tokyo set (Refer to Nagata,
2003). The present study used the threshold vatudse VOCBASE database (which
was derived from 3 multiple sources on odor thréskalues for the VOCs measured in
this study) because of its wide collection of VO@bothresholds (Jensen and Wolkoff,
1996). Most of the data on odor threshold valwesafi measured VOCs by PTR-MS in
this study could be found in the VOCBASE databasmept for ethyloxiranen/z= 91 of
PVC, m/z= 44 of Ceilingm/z= 60 of Paint 1m/z= 44 of Paint 2m/z= 48 of Linoleum
andm/z= 44,60,62 of Wood. Although this database igt@itogeneous one, most of the

values in the database are an order of magnituderldhan those in the Tokyo set,
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keeping a similar trend in the relative magnituael€¢ast for the measured VOCs used in
this study). This means that the resulting Ol galwill be increased when the Tokyo set
is applied instead of the VOCBASE used in this gtuazlt still maintaining a similar
correlation trend (This trend will be dealt with time following paragraphs) between the
odor assessments and the ratios of VOC concentsatiioodor threshold values (because
all resulting ratios would be increased altogethigh the relative ratio differences among

the materials unchanged; d&gure 3.12for the result when the Tokyo set is applied)

Both the contribution ratios ihable 3.2and the NOI values iRigure 3.10illustrate that
the odor acceptability is likely determined by & fégominant VOCs that have highest Ol
values. Table 3.2illustrates the possible dominant VOCs among alhsneed VOCs in
each material tested, having relatively high Oluesal The corresponding fractional
contribution of the selected VOCs to the overalbrothdex (CR) is also calculated. As
shown inTable 3.2 the selected VOCs have major contributions (C¥=98%) to odor
from the materials. In order to compare in a Visease the portion of the odor impact of
the dominant VOCs on human nasal perception congpbyrcompound and material by
material, the Ol value of each VOC was normalizéth the sum of all Ols for the VOCs
within the corresponding material, called a noraedi Ol (NOI) as shown iRigure 3.1Q
The Ol value for each compound listedrigure 3.10can be retrieved by multiplying to
its NOI value in the figure the sum of odor indi¢8©l) for all measured VOCs by PTR-
MS in the corresponding material (Note: SOI is giveFigure 3.10. The range of SOI
for each material was about 0.1~6.7. When the tideshold values in the Tokyo set are
applied, this range of SOl is increased to an oodeanagnitude larger than that in this

study.
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Table 3.2 List of possible VOCs responsible for poor acceptability.

Material (ID) Possible Dominant Odor VOCs Contribution Ratio (%)°
Polyolefine (1) Nonanaf, acetic acid pentanal 81.43
PVC (2) Nonanal, acetaldehyde acetic acid 92.21
Ceiling (3) Nonanal, acetaldehyde hexanal acetic acid 89.03
Gypsum (4)  Nonanal, hexanal pentanal, acetaldehyde, acetic acid 82.76
Paint 1 (5) Nonanal, hexanal pentanal, acetic acid, acetaldehyde 79.04
Paint 2 (6) Nonanal, hexanal acetic acid, propanoic acid, pentanal 63.66
Carpet (7) Propanal, nonanal, acetaldehyde, hexanal, acetic acid 65.01
Linoleum (8)  Acetic acid, butanoic acid, propanal, nonanal, pentanoic acid, hexanoic acid 56.50
Wood (9) Acetic acid, acetaldehyde 97.55

® The underlined are included in the VOI calculations defined in Equation (3.1).
® The contribution ratio is defined as the ratio of VOI to the total sum of odor indices for
all measured/identified species in a material

(i.e. CRleOxVO/( z % j, where C: i VOC's PTR-MS concentration, and
i~every h_i

Crn_i: its odor threshold).
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Figure 3.10 Odor index status of all measured VOCs in each material (The name of
VOC for each spot displayed in each column can be found in order in Table 3.2 only for
the major ones).

* SOl = Z % , where C: i VOC's PTR-MS concentration, and Cr, ;: its odor
h_i

i~every
threshold.
SOI: The sum of odor indices for all measured VOCs by PTR-MS in the corresponding
material. This value can be used to restore the Ol values of VOCs at Test #1 for each
material (i.e. Ol = NOI x SOI).
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Figure 3.11 Correlation between acceptability and VOI.

(a) Material rank according to odor assessments (Note: The axis values of the
acceptability are reversed for the purpose of comparison). (b) Material rank according

to VOI.

Together with the rank list according to the acabjity from the previous studyF{gure
3.119, Figure 3.11billustrates the list of material emission rankstémms of VOI.
Except for Paint 2 and Carpet, the relative rankbaged on VOI reasonably coincides
with that based on the acceptability, keeping simdlopes and relative gaps between
each material. Paint 2 had the lowest acceptaliithe previous human subject study,
while its VOI was not the highest in this study mlisely because of the relatively fast
decay rate in its emissions over time. Althougé thaterials have been sealed at all

times before the tests in the present study, tHe-M¥B tests were conducted about three

months after receiving the materials, while the horaubject study in Denmark had been
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performed for the same batch of materials withio twonths after the purchase. Carpet

became a less odorous material than Linoleum bamethe VOI value, while it was

determined to be more odorous in terms of accdptabagain possibly because of

emission decay over time.
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Figure 3.12 Correlation between acceptability and VOC odor index (VOI) with Tokyo

set used.

(a) Material rank according to odor assessments. (b) Material rank according to VOI with

Tokyo thresholds
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Combining the test results from the subject evanat and the VOC quantity
measurements using PTR-MS and GC/MS, the relatpndietween measured
concentration level (represented by VOI in loganjhand human sensory response
(represented by acceptability) can be extracteshasn inFigure 3.13 The combined
results form an S-shaped curve relationship inWerserrelated between concentration

guantity and sensory respons@té: Usually, human perceptions to physical stimuli related to

stimulus concentration levels have the sigmoid relationship exemplified in Fechner’s Law. In other words,
at both the edges of stimulus strength, the slope of the human response is decreased, while the response
slope is steeper at the middle range of the stimulus strength than those at the edges. In this sense, the

term of S-shape was used, although the detailed S-shape was not revealed clearly because there were

only three data points for each material). This kind of exposure-response relationship lwan

found and reported in the literature when reseasctieed to reveal the linkage between
measured concentration quantity and human sensspgonse (Knudsen et al., 1998;
Sheynin, 2004). From the viewpoint of this relaship, it seems to be possible to
estimate the expected impact of each building naten human’s perceived air quality
and also to label each material’s ranking list @nimg its potential pollution level based
on this kind of odor impact evaluation for the givematerial using PTR-MS on-line

measurements instead of relying completely on huso@jects.
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Figure 3.13 The relationship between VOI and acceptability.
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3.3.4 Emission factor characteristics measured by PTR-MS

The shape steadiness of the emission signaturelaisd to the different emission factor
characteristics of different VOCs in materials, @ad be explained from the decomposed
plot of the ncps signal trend by each ion mashaws inFigure 3.14 Each ion mass
corresponds to a VOC. Sometimes, two or threemasses represent one VOC due to
the fragmentation of the product ions in PTR-M$.(€or ethanolm/z= 47, 75; For
isopropanolm/z= 41, 43, 39). The investigation on this kind tdtp for all the materials
tested suggests that building materials may co@l@s that are either slowly or fast
decreasing (decaying) in emission rates. For slegaying compounds, a clear linear
relationship can be established between concemisatind area-specific flow raté3A)
on a log scaleFigure 3.14). To clearly see this trend mentioned here, tideroof the
tests was intentionally conducted as follows, st there was a time difference among
the three consecutive tests: medium leveDg@A (Test #1, in the middle of the figure)
high level ofQ,/A (Test #2, on the far rightp low level of Q,/A (Test #0, on the far left).
When this order of the tests was followed, meth&amdt= 33), which is considered to be
one of the fast decaying compounds over time imraterial, did not show a highest
concentration at the lowe&/A as it would have done so for a slowly decaying(lye

constant over time) emission compoufdy(re 3.14.
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Figure 3.14 Signal trend of each ion mass for Linoleum over log(Q,/A).
(a) Left, ncps vs. log(Q,/A). (b) Right, equilibrium emission factor (E.q) vs. log(Q,/A).
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Figure 3.15 Signal trend of each ion mass for Paint 2 over log(Q./A).
(a) Left, ncps vs. log(Q,/A). (b) Right, equilibrium emission factor (E.q) vs. log(Q,/A).

Figure 3.15shows the ncps trend of VOCs contained in Paioh2,of the representative

materials having many of the fast decaying compewwdr time. Many more of the

major compounds in this material exhibited the baraof VOCs with fast decaying

emission rates over time. Those compounds aré)stance, isopropanain(z= 41, 43,

39), hexanalrf/z= 55, 83) and methanain(z= 33). However, there are still several

compounds even in this material having the afore¢imeed strong linear relationship of

concentration with the logarithm Qf/A due to the different emission characteristics like

those of the major compounds in Linoleum 2. Acatid (m/z= 61) and ethanohf/z=

47) are the cases.
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Figures 3.14 and 3.15show that for many VOCs in a material there is reedr
relationship between the logarithm @Q{/A and PTR-MS measurementscps which is
proportional to a concentration level) with a negatslope. These findings are in
agreement with the experimental results of Linle{2009) and the mass-transfer based
diffusion model simulation results of Wang et &0Q6) on VOC emissions. It is also
noted that with the exception of methanol (a fastaying source over timelfigures
3.14 and 3.15how a higher emission rate for a higher areaispdow rate. Anderson

et al. (1996) also observed and reported this phenon between pollutant
concentrations in the air emitted from building eratls and VOC emission rates in their
paper. This means that the mass transfer acressoimdary layer played a significant
role in limiting the material emissions from theswterials, even though they are
considered as dry materials and conventional rélagomnas that emissions from such
materials had been considered to be primarily matediffusion controlled. A higher
area-specific flow rate would result in a lower centration in the chamber air, leading to
a higher concentration difference between the natsurface and the chamber air, and
hence resulting in the increase of a convectivesntesfer rate across the boundary
layer over the emitting surface. This convectivasmtransfer rate effect caused by the
flow rate change on the emission factor can be geeerally at least in all the building
materials tested in this study except for Polyolefand PVC from which most of the
major compounds have almost constant emission riactolependent of the flow rate
change [igure 3.19. Still, in these two materials, there are songhtweight
compounds showing the dependence of their emissites on the flow rate change,

which are acetaldehyden(z= 45) from Polyolefine and ethanwoh{z= 47) from PVC.
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The same compound may have a slight different eomissharacteristic in a different
material. But, several compounds still show siméaission characteristics even over
different material surfaces. Isopropanab/Z = 39) from Gypsum and Paint 2, and
methanol /z = 33) from Linoleum 2 and Wood (having a fast esiois-decaying
characteristic over time) are the cases over simdages of area-specific ventilation
rates. Another observation taken fréingure 3.16is that a heavier compound seems to
be less affected by the change of a flow rate keppather a constant emission factor
over the emission surface. On the contrary, adigbompound can get a huge effect
from the flow rate change on its emission factoe tlu the change of the corresponding

concentration difference of the air between theami@tsurface and the chamber air.
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Figure 3.16 Trend of equilibrium emission factors of VOCs in each material over
different area-specific ventilation rates.

* Note: For the purpose of good visual comparison, any VOC having very high emission
factor was not plotted in the above figure.
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3.3.5 The existence of pair ion masses

During the present experiments, in several caséss RH +1 ion masses had also been
detected wittm/z= RH'. For example, as for Wood, one of the major V@&=cted by
PTR-MS wasm/z= 61, 43 tentatively identified as acetic acidog&ther with these ion
massesm/z = 62, 44 were also detected at a relatively srpaltion, but were not
specified as any VOC in the emission signature ihe{®ee Appendix A(i)). One
possible way to explain the existence of these parr masses is to consider the
theoretical isotopic abundances of a given spehésto be detected by the device. If the
well-established isotopic abundances?pf and »*C are taken into consideration, the
relative signal intensity of PTR-MS for a given p&in mass containing th or *°C
atom can be calculated and compared with the iityeas the main ion mass (For the
wood case, the main ion massesrmarfe= 61, 43, and the pair ones/z= 62, 44). The
measured isotope ratios defined BR${(+1)/RH" in percentage were observed within the
range of 1~8% in the test results, which coincideth the abundance levels of the
expected isotope ratios for examined species f@z= 47,75; 57; 59; 61,43). Jobson et
al. (2005) also observed this phenomenon, and texpdrin their research paper on diesel
engine exhaust using PTR-MS. They used this isotopnsideration in testing and

detecting the mass interferences of several spketes one ion mass.
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3.4 Conclusions

A new method and procedure using PTR-MS was deedlap determine the emission
signature specific to each building material. TEmission signatures of nine common
building materials were determined. The measurd@dR-RIS concentrations were
compared to the acceptability of air quality assdss the previous study for the same
batch of materials to investigate the relationshipveen the quantity and composition
of VOCs emitted from the materials and the acceltadetermined by human subjects.
In addition, a VOC odor index (VOI) was proposedassess the impact of individual
material emissions on perceived air quality thatelates well with the acceptability

assessed by human subjects for the materials tested

The following major conclusions could be drawn frdme findings of the studySfage 1

described in Chapter 3:

¢ A stable VOC emission signature specific to epgie of building material can be
established by using PTR-MS with the signal praogssmethod and procedure
developed in the present study. A dataset fonthe common building materials tested
was obtained using the procedure. The signatuese ¥ound not to vary with area-

specific ventilation rates for the duration andditions of testing.

¢ The signal intensityncps which corresponds to a concentration level) ef #TR-MS
measurements had a tendency to linearly decreate the change of area-specific
ventilation rates, l10@},/A) in a logarithmic manner for most compounds emiftem the

building materials studied.
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¢ The acceptability of chamber air decreased ligeaith the PTR-MS measurements

(ncpg for the materials studied.

¢ The logarithm of VOI, defined as the sum of ratddsoncentrations to odor threshold
values of up to three compounds with highest camagon-to-odor threshold ratio, was
found to be inversely correlated with the accepitstbi This is in agreement with the
previous findings on the relationship between catreéion measurements and odor

responses, suggesting the validity of the prop&d&ad

¢ The material ranking based on the VOI using the ®#I&Rmeasurements provided a
similar ranking of the tested materials to thaterms of acceptability, and may be used

for evaluating the impact of each material on pesgkair quality.

The correlation between VOI and perceived air dqualerived in this study may be valid
only for the nine building materials investigatedrdn because the materials tested
appeared to have similar types of odors. A broaalege of materials and types of odors
should be investigated before the approach canidelywapplied. The selection of up to
three VOCs in defining VOI is somewhat arbitrarydaits implementation may be
difficult if the VOCs are not known or the correspiing odor thresholds are not
determined. In addition, emission signatures magnge over the course of long-term
emissions. Further study is needed to accourdudon variation over time (e.g. by using

appropriate emission source models).
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T CHAPTER 4. NOVEL METHODOLOGY FOR INDOOR

EMISSION SOURCE IDENTIFICATION

4.1 Introduction

Source identification has been a challenging rebetwpic in the area of indoor and
outdoor air quality because this issue may havek#yeto open a new gate to develop
optimal control protocols for protecting and impirey human’s life and welfare for the
coming ages. Over the last several decades, emsssif VOCs and Particulate Matter
(PM) have been of global concern because of thgmificant impact on human’s health,
comfort and performance. Exposure to these ailugaoits has been reported to have
various critical impacts on human performance aadliovascular/respiratory related
diseases in a negative way (Pope and Dockery, 20argocki and Wyon, 2006). For
example, Corbett et al. (2007) examined the linkveen PM emissions from ships and
human’s health, assessed their potential impadidgaup to 60,000 premature deaths on
a global scale annually and expected a furtheratityrincrease by 40% by 2012 under
current regulations and activity conditions. Irdéidn, VOCs have been shown to act as
precursors of many secondary air pollutants sucbrganic aerosols and ozone (Buzcu
and Fraser, 2006). High level of ozone beyondsiiexified limit in the standard is also

posing another severe concern of global air qualitich is in an increasing trend
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especially in many cities of USA. Moreover, thigdaspread concern about the critical
potency of VOC and PM emissions on human’s life hedilth is expected to increase far
more than the present situations in the comingsybacause of the fast growing rate of
global-scale commercial trade and worldwide distiell manufacturing, the associated
increase of vehicle/ship/air traffics and the cgp@nding massive use of diesel/gasoline

fuels (Corbett et al., 2007; EPA, 2009).

Although the predicted threats of these emissi@ve I[succeeded in attracting worldwide
attention for reducing these emissions, it has bgemerally agreed that the present
countermeasures for dealing with these emissiome weat sufficient to protect human’s
health (EPA, 2009). Because different sources iof pallution may affect the
exacerbation of human’s health effects in differamys, it has been suggested as a
desirable countermeasure to identify and quanhfy partial contribution each type of
major air pollution source makes to the overallcaiality condition (Lin et al., 2010). In
addition, the accurate and complete apportionmetitese pollution sources is regarded
as an essential step to the development of opttaatirol protocols for global and built

environments (Lin et al., 2010).

Source identification and apportionment has beeadive research subject for outdoor
air quality, but existing methods have shortcominddany receptor modeling studies
have been performed on ambient air quality dateecield for this apportionment purpose
(Cass, 1998; Cincinelli et al., 2003; Didyk et a@D00; Edwards et al., 2001; Hagler et al.,
2006; Graham et al., 2004; Lewis et al., 2004; Siemp 2002; Wu et al., 2007).

Traditional receptor modeling methods require speeific source profiles to accurately
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estimate the contribution of different sources.evitus source apportionment studies
have used Chemical Mass Balance (CMB) model (F@jital.,, 2003; Schauer et al.,
1996). The CMB model assumes that the concentiatvd target species in the ambient
air are linear sums of each contributing sourcethatlall potential sources for significant
contribution to the receptor have been identifiad aharacterized. This approach has a
limitation in identifying any new or unknown sousceOn the other hand, Positive Matrix
Factorization (PMF) is an advanced multivariateepgar modeling technique (Paatero
and Tapper, 1994), identifying source profiles fioe major sources present by cluster
analysis and calculating site-specific source fasfiogether with time variations of these
sources based on correlations embedded in the atmdiiedata (Begum et al., 2004,
Buzcu and Fraser, 2006; Kim et al., 2003, 200482&amadan et al., 2000; Viana et al.,
2009). The limitation of this method is that thearacteristics of the sources to be
identified should be inferred from or interpretegltbe characteristics of the profiles for
several key factors identified. With the mentiorrdwbacks of the two apportionment
methods above, there is another critical limitatadrthese traditional tools. These two
receptor-based apportionment methods, CMB and Pd¥#-,most common techniques
used nowadays for the source apportionment purposere known to have high bias for
some cases because of high variability and contgleti VOC/PM emissions, which
makes the results from these methods as rough assnon the profile of sources not
knowing the true profile of emission sources (Zk&al., 2007). Most compounds can be
emitted from multiple types of sources, and thuentdying and quantifying sources on
the basis of their correlation with several elerakdata is limited and difficult because of

similar emission characteristics of different sas.c
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Different from the area of outdoor air quality, out source identification has rarely been
studied with a few exceptions (Arhami et al., 201@; et al., 2010; Liu and Zhai, 2007,
2008; Zhang and Chen, 2007), and the problem bashdllenge because of both indoor
and outdoor sources. The global issues VOC/PM sams are posing and the
corresponding human health concerns are also ianmart the area of indoor air quality,
because indoor air has been reported to be straffggted by outdoor air via traffic
emissions and long-range transport pollutants (Edsvat al., 2001; Zhao et al., 2007) as
well as indoor sources. In many cases, it has Hewwn that the strength of
indoor emissions has a more significant influencenoloor VOC concentrations than the
effect of infiltration from outdoor air (Kim et al2001). One of the recent important
research challenges in the field of indoor air gquak the identification of emission
sources of indoor VOCs. In several field studiesfggmed for residential buildings to
measure VOC emissions, it was possible to idestfyeral active compounds with great
potency to human health and perception, and theimical measurements were reported.
However, it was hard to trace the emission souotebe detected compounds clearly.
As an example, Hodgson et al. (2000) reported $uairce reduction treatment via
substitution of materials or modification of buiddi practices could be generally the
preferred method for reducing occupants' exposior®OCs. They identified acetic acid
as one of the important compounds, but were naaiceabout the sources of acetic acid
in the studied houses. To establish an effectuetermeasure against unwanted VOC
emissions, emission sources need to be identified. first step toward a source
identification would be to determine a material gson signature if it is unique for each
material or each type of material. This is simiarhuman’s fingerprint for personal

identification. A study previously conducted toatevith this issue (Han et al., 2010)

114



Ph.D Dissertation Kwanghoon Han ($-4%)

showed that unique emission patterns appearedisp fex different types of building
materials. These patterns, or signatures, coulestablished by using PTR-MS. Several
studies performed in other research areas sucloags dngineering, medical research,
forensic investigations, etc. implied that pollutamass spectra measured by this on-line
analytical device, PTR-MS, could be useful toolsdetection and identification purposes
(Granitto et al., 2007, 2008; Lirk et al., 2004; Wat al., 2003; Moularat et al., 2008;
Van Ruth et al., 2007; Wehinger et al., 2007; Whettal., 2007). With the definition of
emission signatures of different building materigisnay be possible to develop a signal
processing technique that can help pinpoint thesrizd$ responsible for certain VOCs of
concern in indoor air. The objectives of the studlyChapter 4 were to explore the
feasibility of a signal processing methodology éomission pattern recognition, validated
by Monte-Carlo simulations by setting related siatioin variables based on PTR-MS
experimental measurements, and to apply the mdtheeveral actual data of material
mixture emissions for identifying the individual lsoes of emissions based on the
measurements of mixed air samples and the PTR-MSs&m signatures of individual

building materials.
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4.2 Materials and Methods

4.2.1 Overview and basic assumptions

In a previous study (Han et al., 2010), chamberasghair polluted by the emissions from
nine individual building materials in a 50-I smadlale chamber was sampled by PTR-MS
at low, medium and high airflow rates to estabksket of material emission signatures
stable over different sampling time and over défdrarea-specific ventilation rates, and
to determine their variances because of noise. slgnature is the PTR-MS ion mass
(m/z which is a physical quantity denoting the masstarge ratio widely used in the
electrodynamics of charged species) spectrum ofathesampled from each material.
Five actual emission cases of material mixturesewstudied to validate source
identification methods developed. The experimesé&lp is shown ifrigure 4.1, and
the detailed illustrations of the test equipmert tacilities can be found iAppendix B.
Two signal separation methods were proposed, testied measurement-based Monte-
Carlo simulations, and validated on the five malaterial mixtures. Before going into
details, it would be useful to formally state thasic assumptions the separation methods
were based on: 1) Emission signature exists andigue for each material type, 2)
Interaction effects between material emissionssarell and can be modeled as noise or
compensated, and 3) Emission signatures for mhatandures can be established by the

superposition of individual emission signatureshaf co-located materials.
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Figure 4.1 Experimental setup for the validation of source identification method.
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4.2.2 Algorithms for source identification module

4.2.2.1 Algorithm 1

Under the basic assumptions stated in the oventi@svsource identification problem to
be examined in this study can be configured asestenation of the set of materials
present in the chamber {ID} expressed in terms eéwof integer material identification
numbers, or IDs (i.el = 1, 2, ..., 9 defined iMable 4.1 for each material) and the
corresponding emission concentration level of eaemtified material expressed as a
positive real numbet; which is the signal intensity multiplication factof materiali.
The measured output from PTR-MS is a mass speatfuire emissions from a material
mixture, consisting of ion mass(related to VOC) and its signal intensiyyx) (related

to concentration level) for all scanned ion massds;, X, ..., Xy]. Measurements from
single material emission tests have shown that unedssignal nois&(x,) of PTR-MS

for each ion mass, (wheren=1, 2, ...,N) can be roughly modeled as independent
Gaussian noises having the same variance througf®tearget ion masses (Note: Several
ion masses for the background air suchm#&s= 29, 30, 32 and 37 had larger variances
than others, so those were excluded from the taogeimasses). Now, the measured

emission signature of a material mixture by PTR-648 be modeled as follows:

S,(%,) = Z[ai -S(x,)+w (x,)] for vx ,withe; >0 for Vi,n=12K ,N  (4.1)

where sp represents ‘the measured sampieindicates the material ID of the correct
material set for the mixture, defined in the dassbaf material emission signatures,

SXn) is the PTR-MS signal intensity (not normalized)tioe measured sample for a
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given ion masx,, S(X,) is the normalized magnitude of emission signatarea given
ion massx, of materiali (Note: An emission signature for each studiedemnmat is
recorded in the database in a normalized form Igagirpeak magnitude of 100 as its
maximum. For details, see Chapter\8)x,) is the independent measurement noise for
the ion massx, contained in the signal for materigl and ¢; is the signal intensity

multiplication factor of the emission signature foateriali.

The measured sample signature can also be explessegctor form as follows:

8,00 =X o - §00+ K ()] (4.2)

where §Sp(x )represents the sample signal intensity vector uredsfor all scanned ion

masse defined asgsp(x)z[ssp(xl),A » Sep(X ) A Sip(Xy) ]T §(x)is the normalized
magnitude vector of the emission signature for nmete i defined as
§()=[S)A,S(X)A,Sx) ], & is given in Equation (4.1)W(x Js the
corresponding signal noise vector for materiali defined as
W) =[W(x), A, w(x),A w(x,) ], andx, is then™ ion mass in the scanned range
(Note: If there is no corresponding peak for tifeion mass recorded in the emission

signature of material then S (x,) = 0in this representation).

To perform a signature separation and identificatidhen §Sp(x )is the measurement

from PTR-MS, let us definend(g(x)), where Ind(.) is the set of ion mass indices
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corresponding to a given emission signature intgwvgctor §(x), with positive (or non-

zero) signal intensities. Then, in the first stépe set of possible material candidates

{db} in the database can be searched by comparingthmass components (related to

VOC components in a physical sense) of each ma&mession signaturlsmd(gI (x With
the measured onelsnd(gsp(x Yhder the epsilon conditiorg)(to be defined below.

While performing the comparison between the measent and the database signatures,
if all ion mass components of a signature are faartle measurement, then that material

i related to the signature will be selected as aiplesmaterial candidate (i.ec{db} ),

having all VOC components to be found. Howeveg tlunoise, some ion masses that
should be found in the measurement might be missedeasured falsely as any near ion

masses. For example, the emission signature fadWaterial ID=9) has ten ion mass
indices includingn/z= 33, 43, 44, 45, 47, 59, 60, 61, 62 and 75l,m11§9(x = {38, 43,
44, 45, 47, 59, 60, 61, 62, 75}. If the componiedices of the measurement from PTR-
MS are given al=.nd(§sp(x P {33, 43, 4446, 47, 59, 60, 61, 62, 696, 83}, in order for

Wood ori=9 to be selected as a possible material candittaemismatched two ion
masses n/z = 45 and 75) should be checked whether they arsepten the actual
emissions, but measured wrongly (a&z= 46 and 76) due to noise. For this case, the
epsilon condition, which considers the tolerableasg error level along the ion mass axis,
was considered. We assume that the noise occlaiamg ion masses can be modeled as
an independent Gaussian noise having much loweange than that of signal intensity
for each ion mass. The missing of any correct na$edue to this noise along ion

masses can now be considered in the Chi-squarédigin by setting a threshold value
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enabling the detection of the material at a 95%idence level. This threshold value is a
one-sided detection limit and can be determine@das actual PTR-MS measurements.

These considerations can be summarized as Steghlhat:

Step 1 If Ind(gsp(x))é Ind(gdb(x)) where ¢ = Z(x(”ear) - xn_db)zandg < Thresh

n_sp
n~no matched

(95% confidence level), then fingib}.

Here, x,ﬂ”_f;a‘j), which is an element ofx{} of the measured sample, denotes the nearest ion
mass component in the sample emission signature avfiositive signal intensity to an

ion mass &, ,) for which there was no match in the attemptedssion signature in the

database because of noise. For exampte(46-45§ + (76-75} = 2. If the calculated
threshold value for detection (in this case, foo whegrees of freedom) is larger than 4,
Wood ori=9 can be selected as a possible material candidBtg, if the detection

threshold is less than 2, Woodig® will not be included in the candidate set.

Assumingwi(X,) is an i.i.d. Gaussian noise (Note: i.i.d. stamais ‘independent and
identically distributed’), the signal intensity tac of each material candidate, where

i e{dl} , can be determined via the following linear regi@s approach such that:

Step 2 Find an optimal value of eaaly for i e{dl}, which minimizes the following

performance indexd (i.e. in the sense of MRLS, multiple regressiomstesquares. For

detailed descriptions, see Cohen et al., 2003).
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J=min > Issp(xn)— 2.4 'S(Xn)j (4.3)

{ai} | _ai'scanne i~{ db}

Here, it should be noted thats are unknown control variables to be estimateth@
sense of MRLS whil&sy(x,) is measured by PTR-MS a&{x,) is given in the database

for all scanned ion masses, whard,, 2, ... N.

The first step of the algorithm is the scanningtleé ion mass components in the
measured sample emission signature by the comparnsth those in the database.
Because of noise, several components can have dewaditions from the exact values of
ion masses. So, the algorithm tries to find anytchiag emission signatures in the
database (a set of materials denoted dig){ having the same ion mass components
under thes condition described above. Next, by using only $bkected set of material
emission signaturesip}, the algorithm attempts to find the optimal sésmnal intensity
factorse=[aps, ..., Cpj, ..., cab], Where IR is thej™ material ID in the set ofdb} selected

as possible material candidates. If the final gatdi ¢ is less than a specified small
threshold value (e.g. 10% of the smallest signtdnisity factor in the database, 0.007),

then material will be excluded from the final set of the matedandidates {ID}.

4.2.2.2 Algorithm 2

Let us set up the problem agXx,) being a function of the spectrumxgf wheren=1, 2,
..., N. In Algorithm 1, the error value for a relativedynall signal peak contributes less
(although it might be an important peak for detattand identification) to the overall

performance index than larger peaks. So, a nazatadn technique for adjusting the
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weight for each term might be useful to reflecthe overall error terms the contributions
of the errors for any small peaks in the proportomparable with those of larger peaks.
The other definitions and procedure are the santbas® of Algorithm 1 except for the

definition of the performance indexas follows:

(4.4)

{ai} aiiscanne i~{db}

J=min Y ﬁss,,(xo zai-smj /Ssp(xn)

4.2.3 Environmental chamber setup and conditions

A 50-I small-scale environmental chamber (0.5 m.4 & x 0.25 m high) made of
electro-polished stainless steEigure 4.1) was operated with a precise airflow controller
(Alicat Scientifi¢ accuracy +0.1% of measured values) and a huntdityroller {aisala
INTERCAP HMP50 accuracy +1% of measured values), using extesog@lply air
passing through a dedicated filtering assemblfikerson 3-stage carbon filters with
micro filtration). The chamber was maintained atomstant stable temperature in the
range of 23.5-25.4°C (with a small variation of 8.62°C during each sampling period)
and at a stable relative humidity of 31 + 0.1% R#fing the tests. The background
concentrations of individual VOCs in the empty clh@mwere maintained clean to be

less than Lug/n.
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4.2.4 Test specimens

Table 4.1 Flow rates and specimen areas determining the concentrations of emissions
for the PTR-MS experiments.

Flow rate — Q, (I/min) / Specimen area — A (cm?)

o 2
Material Q,/A (I/s/m’)
)
Meas. #1 Meas. #2 Meas. #3 Meas. #4 Meas. #5 Meas. #6 Meas. #7 Meas. #8
0.50/290.7| 1.55/290.7| 4.64/290.7 155/290.7 | 1.28/290.7
Ceiling (3) 0.29 0.89 2.66 0.89 073
0.50/265.5| 1.30/265.5| 3.85/265.5 1.28/2655 | 1.21/2655| 1.55/265.5| 1.28/265.5
Wood (9) 031 0.81 2.42 0.80 0.76 0.97 0.80
050/240 | 1.28/240 | 3.83/240 | 1.28/240 155/240 | 1.28/240
Carpet (7) 0.35 0.89 2.66 0.89 1.08 0.89
050/240 | 1.28/240 | 3.83/240 | 1.28/240 | 128/240 | 121/240 | 1.55/240 | 1.28/240
Linoleum (8) 0.35 0.89 2.66 0.89 0.89 0.84 1.08 0.89
0.50/240 | 1.28/240 | 3.83/240 1.28/ 240
PVC (2) 0.35 0.89 2.66 0.89
0.50/240 | 1.28/240 | 3.83/240
Polyolefine (1) 0.35 0.89 2.66
050/416 | 1.03/416 | 3.08/416
Gypsum (4) 0.20 0.41 123
050/402 | 0.99/402 | 2.97/402 1.08/ 402
Paint 1 (5) 0.21 0.41 1.23 053
0.50/490.2| 1.21/490.2| 3.63/490.2 1.21/490.2 | 1.55/490.2 | 1.28/490.2
Paint 2 (6) 0.17 0.41 123 0.41 053 0.44

* Meas. stands for ‘Measurement’.
* Measurements #1-3: from single material tests.
* Measurements #4-8: from material mixture tests with the selected materials put in the
chamber together.

Nine typical building materials were used includoegling, wood, carpet, linoleum, PVC,

polyolefine, gypsum, paint 1 (water-based acrydioyl paint 2 (with linseed oil) applied

on gypsum board.

The detailed descriptions of niegerials tested can be found

elsewhere (Han et al., 2010). Specimens were ruditpaepared according to the sizes
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specified inTable 4.1 The specimens except for Gypsum, Paint 1 aner2 wtapled
together back to back in order that only the matenpper surface was exposed to the air
in the test chamber. A VOC-free aluminum tapkl 2113 was applied to seal all edges.
The prepared specimens were placed vertically,llphvaith the airflow in the chamber
(the same direction of the long side of the chambefhe range of area-specific
ventilation rates defined as the ratio of ventilatrate to emitting surface area was set by

adjusting the airflow to the chamber while keeping size of specimen unchanged.

4.2.5 PTR-MS setting

A PTR-MS device lpnicon Analytik high-sensitivity model with a dgten limit as low

as 1 pptv, Austripwas operated at the standard conditions (Dridfetpressure: 2.3~2.4
mbar, PC: 455mbar, FC: 6.5 STRec/min U SO: 75V, U S: 100V, Drift tube voltage:
600 V and Source: 6.0nA). Detailed descriptions of the device, its pnobei and
applicability can be found elsewhere (Blake et2009; de Gouw et al., 2003; Han et al.,
2010; Hewitt et al., 2003; Lindinger et al., 192801, Lirk et al., 2004; Steeghs et al.,
2004). The signal intensity of VOC emissions uisethe present study was measured by
the instrument in the unit of ion count rates (dsuper secondcps), which were then
normalized by per million hydronium ion §B%) count rates to compensate the variations
in the hydronium ions as other related works irs thiea (e.g. de Gouw and Warneke,
2007; Jobson et al., 2005; Whyte et al., 2007)is Hormalized product ion count rate

(ncp9 becomes directly proportional to the concentratevel of a target VOC.
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4.2.6 Test procedure

The nine building materials were previously studigdthree different area-specific
ventilation rates (Measurements #1, #2 and #3)hasvis in Table 4.1 to establish a
database of emission signatures by PTR-MS spddafieach individual material. Five
multi-material mixture tests were conducted (Meaments #4-#8) in the present study to
obtain combined emission signatures for the studi@gtures and to validate the
feasibility of the proposed source identificatiorethods. The mixture tests were
performed within two weeks after the single matem@asurements were finished. For
each measurement, the mass spectra for the backbesaission signal from the empty
chamber and for the sample emission signal witth gaepared specimen inside the
chamber were measured all after three volumetriclreinges from the start of ventilation
to allow concentrations in the chamber to reachr 886 of the quasi-steady state level.
PTR-MS was set to scan from/z= 21 tom/z= 250 once every 12 s with an ion mass
resolution interval of 50 ms. The total sampliregipd was 10 min (600 s) with 50 ion
mass spectra collected for each dataset. Durimtp @@asurement, another set of

duplicate mass spectra was scanned to verify thected data.
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4.3 Results and Discussion

4.3.1 Relative signal intensity () and variance (&) of material emission signatures

The previous section (Chapter. 3) determined tleatification of each ion mass with a
related VOC by using GC/MS and PTR-MS togetherwNeach ion mass(/2 of PTR-
MS represents a VOC, and its signal intensitgp§ corresponds to the concentration

level of VOC.

To perform a signal separation simulation using tente-Carlo method, some
reasonable ranges of signal intensities (mean)renige levels (variance) for material
emission signatures are needed. To conduct a memasnot-based simulation, the
experimental data collected using PTR-MS througradtieements #1, #2 and #3 were
used to get the range information. The pattenrmaterial emission signatures determined
by PTR-MS with a special filtering method employedre found to be consistent and
stable in a normalized mass spectrum domain evaterunifferent area-specific
ventilation rates tested and also over differemyg@ang time (Han et al., 2010). There
were also identifiable differences in the VOC enoisssignatures measured by PTR-MS
among different types of building materials. Tlhigedences include the type of ion mass
present, its relative amount (signal intensity)bmth. This study used the emission
signatures collected at Measurement #2 (mediuntoairfate) as a reference, and the

variance of signal intensity for each material wlasermined based on the variations of
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all collected data from the corresponding referesigeature.Figure 4.2 summarizes the

results.

o= 0.28

"o, = 0.0

100

=
[==]

(1) PonoIe_fine (2) PvC

”
880
c
BOenhk
QJED
N
7540
gzu [ O |
o
Z g

0 A0 100 1580 200 ] A0 100

- (4) Gyp;um

[7,] : :
a
a0l
c
o118
QJED
N
‘_“40 .........................................
gzu PR | S P AR EEEEEEEE
o :
2 Mhl

0 a0 100 1580 200 0 a0 100

7) Car —
. !( ) rpet g,

wv : :
Q N
Qb
c
B = T T 1L N R =<y I A (N R = | S Y
GJED
N : :
7540 ....................................................................................
gzg FUUTRUTNY | | N | | ST H N S A B, | ) | SORPRURY ! T U S
o _ ; |
25 : i : 0 |1 | : : 0 : : :

] 50 1a0 1580 200 ] 50 100 150 200 u] 50 100 150 200

lon mass (m/z) lon mass (m/z) lon mass (m/z)

Figure 4.2 Relative signal intensity factors (a) and variances (&) of the emission
signatures for the nine building materials.

* The number in the parenthesis indicates the corresponding material ID (1-9) of each
studied material.

* o is the signal intensity multiplication factor to be applied to each material emission
signature to get the corresponding concentration level of each peak related to VOC
concentration at Measurement #2 (i.e. Concentration level in ncps = Normalized ncps of
each peak x o).

* ¢ is the variance of emission signature caused by noise. This value is defined as the
standard deviation of the maximum peak variation of a signature sample (worst case
among all scanned ion masses) from the corresponding reference signature for the
material. This value is obtained using all measured samples for each material, and
expressed in the percentage of the maximum peak value in the corresponding reference
emission signature for the material.
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4.3.2 Separation simulations of the algorithms for various material mixtures

To compare the performances of the suggested edgwmj Monte-Carlo simulations were
conducted by setting the design parameters bas@IBAMS measurements (for relative
signal intensities and noise levels). The Montédmethod is a class of computational
algorithms that rely on repeated random samplingptapute the performance results for
a given method when simulating physical and mathiealasystems, which tend to be
unfeasible to compute an exact result with a detestic algorithm. The noise
component,w, was modeled as white Gaussian random noise, t@ndariance was
determined by the corresponding percentage of niegel () which represents the
standard deviation of the noise with respect to thaximum peak value of the
corresponding reference material emission signatiliree number of random samplés,
was determined to make the variance of the fimalfation results less than 1% (ecgof
Success Rate < 1% out of 100%) with a computationed as small as possible. With
these considerationsl=1000 was selected in this study. For the perfocaaomparison

of the algorithms, three indices were introduceébdsws:
Err = E{{@uy — @e, |, Score= E{scr(N)}, SR=(N-N,, )x100/N (4.5)

whereErr is the expected value of the 2-norm of the difiese between the estimated
value of signal intensity factor vector and theetrone,Ns,; indicates the number of
material identification failures that occurred chgrithe simulation (If every material in
the sample is correctly identified with several mgacandidates, this case is classified as

success. However, if there is any missing matedeahtified in the final set of the
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material candidates, then it is declared as failtier example, for [5 6 8], if the ID result
is [1 35 6 8], this is considered as success., iBthe result is [3 5 6 7], this is failure),
Scoreis the expected value of success scece (vhich is defined as follows: for each
simulation, if the ID result is success with exaentification, therscr = 100; if success
with n wrong candidates, thaer = 100 - 10xn; and if failurescr = 0, and SR represents
the success rate in material identification defimepgercentage.

Note: To differentiate the ID performance resulthMiess wrong candidates from that
with more wrong candidates (e.g. For [5 6 8], [& 8] (scr=90) vs. [1 34 5 6 8)sfr=
70)), Scoreindex was introduced.

The results inTable 4.2 indicate five noticeable aspects concerning thopeance of
the two algorithms. The algorithm performance fsignature separation and
identification may rely mainly on key factors suahthe number of materials in a mixture,
the signal intensity ratio and the variance of eachmposing signature. Algorithm 1
always showed by far the better performance thgothm 2 in the present simulations
in terms of error expectatiokir), which implies that Algorithm 2 may get affectexdre
susceptibly to the variation of emission signatueeause of noise than Algorithm 1. For
some conditions, Algorithm 2 could show a betteffgrenance than Algorithm 1 in the
sense of success rate and score, which suggesthahzerformance of the two algorithm
can vary depending on given environmental and nahteonditions affecting the
performance difference. A mixture case having ossfble false ID can show a better
performance in terms of success rate and scorethizrwith several possible false IDs
potentially under similar conditions (e.g. [2 8. [3 6 8] or [1 7 9]). The material
number in a mixture seemed to strongly affect tegfgpmance difference because of

complexity increase (e.g. the low success ratd@f9tmaterial mixture case), but when
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focusing only on several major materials havinghkigsignal intensities, the two

algorithms suggested in this study still showedoeably high success rates (> 95%).

Table 4.2 Comparison of signature separation performance results of the two
algorithms for various cases.

Possible Max

false D | ratio (° Err1® Err2® Scorel Score2 | SR1(%) | SR2(%)

[8 9] 0.18 1.78 100.00 100.00 100.00 100.00

[7 8] 56.1 0.16 0.78 100.00 99.90 100.00 99.90
[18] 425 0.16 1.40 74.00 73.30 74.00 73.30
[234] 1.7 0.04 0.20 100.00 99.30 100.00 99.30
[567] 3,4 3.1 0.25 0.67 90.69 88.68 100.00 99.60
[679] 1,3 6.3 0.21 0.77 90.66 87.81 100.00 100.00
689 1,3 17.5 0.50 1.53 90.30 89.73 100.00 99.80
56 8] 1,3,4 27 0.67 1.45 86.03 82.37 100.00 96.40
[789] 3 55 0.26 1.14 95.26 94.35 100.00 99.80
[368] 1 106 0.35 1.27 83.04 90.26 87.20 93.90
289 119 0.23 1.65 94.60 96.10 94.60 96.10
[179] 3 153 0.09 0.16 80.58 89.40 84.10 94.50
[168] 3 425 0.34 1.20 68.53 61.97 71.80 65.30
36789 1 106 0.54 1.55 73.39 89.74 76.60 93.60
2356789 1,4 119 1.16 1.53 88.22 92.04 94.20 98.70
17.60 27.10

[123456789 425 1.15 1.75 17.60 27.10 (95.601) (98_5Qb

% 1: of Algorithm 1, 2: of Algorithm 2.

® indicates the success rate of separation/identification performance of the algorithms
when considering only the major five materials (Material 5, 6, 7, 8 and 9) having higher
signal intensities.

© This ratio is defined as the maximum peak value (ncps) in the emission signature of the
material with the highest signal intensity over the maximum peak value (ncps) of the
material with the lowest signal intensity (e.g. For [367 8 9], y = ag/ oz = 106).

* For dual-material mixture cases, except for the case of [1 8], most of the cases showed
> 95% of success rate when the two algorithms were applied.
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4.3.3 Monte-Carlo simulations for the nine-material mixture

100

80

Success rate (%)

4
3
Max ratio (v) 190 ™, 1 Noise level (%)

Figure 4.3 Monte-Carlo simulation results for 9-material mixture under various
conditions.

(a) Trend of success rate of Algorithm 1 (SR1). (b) Trend of success rate of Algorithm 2
(SR2). (c) Performance difference between the two algorithms (SR1 - SR2) within the

realistic ranges of yand .

The results iMable 4.2suggest that the two proposed algorithms in tiidysexhibited a
different quality of performance depending on giwemditions of the two key factors —
the maximum ratio of signal intensity factord &nd the variances). To examine this
aspect of the two algorithms as the two key pararaathange, the most complicated case

in this study, 9-material mixture, was selected] #re success rates of the two for this
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case were explored at various combinations joénd g varying within their
corresponding realistic ranges (i0< y» <100, 0<&<50%). Figure 4.3shows the

results.

As expected, the trends kigure 4.3aand4.3b represent the decaying performance of
both algorithms as the maximum ratio and the vagancrease, although the slope of the
decreasing performance of each algorithm is skgtitferent. Both algorithms exhibited

high success rates within narrow decent rangeleofrtaximum ratio 1.0 < y < 20) and
the variance 0<&£<10%) even for this complicated mixture. Within thedecent

ranges, Algorithm 1 showed a better performance thgorithm 2 in terms of success
rate. However, out of these ranges (more genarges), the latter seemed better than

the former in the sense of success ratgure 4.39.
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4.3.4 Experimental results of multi-material mixtures

* Case 1: [7 8] = Carpet + Linoleum (Measurement #4)

The algorithms validated by measurement-based MGat® simulations were applied
to actual emission measurements obtained from fudti-material mixtures. For
comparison, the ground truths for the correct nmatédds and the corresponding emission
levels (represented by signal intensities) werewknand obtained by the optimal
separation of each measured signature in terms REM(The exemplary separation
profile of the signature for Case 1 is shownFigure 4.4). Case 1 was comprised of
Carpet (Material ID=7) and Linoleum (ID=8). Botligarithms identified the correct
sources of material emissions with some false nadgefor Algorithm 1, Gypsum (ID=4),
so success scorscf)=90; for Algorithm 2, Gypsum (ID=4) and Wood (IDx%0 success
score 6cn=80. In addition, the corresponding emission levfeom the two materials
could be estimated by both algorithms with reasbnaimall errors (Error expectations,
or Err, were < 1.0 for both cases). The performancdtsestithe two algorithms for the
actual emission measurement from Carpet and Linoleould be summarized as below

in terms of the performance indices defined inghesious section:

Algorithm 1 IDest1=[47 §, &’esﬂ: [0.680.50 13.44 Errl = 0.81,scr1=90

Algorithm 2 1D es2=[47 89], &, = [0.280.53 13.63.02],Err2 = 0.39,scr2= 80.
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Figure 4.4 Optimal separation results of the measured emission signature for the
Carpet/Linoleum mixture in the sense of MRLS.

* Case 2: [89] = Linoleum + Wood (Measurement #5)

The optimal signal intensity factors for this ca\me&)t for [8 9] = [18.42 8.23] in the

MRLS sense. The following are the performanceltgsu

Algorithm 1 IDest1=[8 9, &’esu: [19.20 9.63 Errl = 1.60,scrl1= 100

Algorithm 2 1Des2=[8 9, &._, = [20.47 4.8}, Err2 = 3.98,scr2= 100.

* Case 3:[689] =Paint 2 + Linoleum + Wood (Measurement #6)

The optimal signal intensity factors for this ca\we&i for [6 8 9] = [6.09 5.96 4.41]

by MRLS. The following are the performance results

Algorithm 1 IDesy=[6 89, &,,,=[1.71 6.51 5.7B Errl = 4.62,scr1= 100

Algorithm 2 1D es2=[6 8 9, &,., = [3.63 6.76 3.7F Err2 = 2.67,scr2= 100.
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* Case 4:[36789] =_Ceiling + Paint 2 + Carpet + Linoleum + Wood (Measurement #7)

Measured, S, mp 3.1100S; (ce) + 1.2800Sg (pr2) + 4.4400Sg(un) + 3.42[00Se(wobp) +  Residual
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Figure 4.5 Optimal separation results of the measured emission signature for the five-
material mixture ([3 6 7 8 9]) in the sense of MRLS.

The optimal signal intensity factors waﬁgue for[367 8 9] =[3.11 1.28 0.00 4.44 3.42]

by MRLS (The detailed signature profile is givenFigure 4.5. The following are the
performance results:

Algorithm 1: IDesu=[18 9, &.,,=[0.164.28 3.58, Errl = 0.28

Algorithm 2 1Des2=[13 689, &..,=[0.382.33 1.84 4.87 1.§1Er2 = 2.21.

* Case5:[2356789]=PVC+CEl+PT1+PT2+CAR+ LIN + WOD (Measurement #8)

The optimal signal intensity factors for this cails&eafe&)t for[2356789]=[0.00 1.05

rue

0.00 0.00 0.19 1.38 2.30] in terms of MRLS. Thkofeing are the performance results:

Algorithm 1 IDesy=[67 8 9, &,,= [0.40 0.32 1.26 2.32Err1 = 0.44

Algorithm 2 1Desp=[1367 89, &,,=[0.021.04 2.27 0.04 1.50 1.5EN2 = 2.37.
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4.3.5 Effects of adsorption

The experimental results indicate three importaspeats concerning the proposed
technique, which may provide a new insight on golsom effects occurring under
material mixture conditions and open a new gatgutantitatively analyze and assess this

adsorptive phenomenon inherent in material emission
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Figure 4.6 Comparison of the superposed and measured signatures for the two-
material mixture ([7 8]).

(a) The superposed signature and its enlarged figure composed of the two individual
signatures of Carpet and Linoleum. (b) The measured signature of the two-material
mixture and its enlarged figure.
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First, although there were some interactions amd@§C emissions from a material

mixture (which was observed in the measured sigeataf the tested material mixtures
having several different ion masses other tharoties found in the emissions from the
original individual materials, with very small signintensities), the chemical-interaction
effect appeared to be small enough to allow therdluns developed for separation and
identification on the basis of the superpositiosuasption of the co-located materials’

emission signatures.

In addition, the emission signatures of the mixdungaintained the individual emission
signature pattern of each material almost unchaeged in a mixture. For example, note
the similar pattern of the measured signature (R&fethe enlarged figure shown in
Figure 4.6b) of a material mixture (Case 1 - Carpet and Linolg to the superposed
signature of the two individual material&igure 4.63, considering the given area-
specific ventilation rates ihable 4.1 Generally, it was observed that the similargrat

of the measured signatures to the superposed cgresmaintained for all mixture cases
tested, but the measured signal intensities wehecesl significantly (meaning a lowered
level of VOC concentrations emitted from materialxtures) compared with the
superposed ones, mainly because of sorption effecing materials. Another possible
reason for this reduction of signal intensity maythe effect of VOC emission decay
over time, but this might be small or negligiblenswlering that the mixture tests were
performed right after the measurements of the singterials. Because of these special
phenomena, the algorithms could be applied to ttteah emissions of the studied

material mixtures and yield satisfactory perfornmesic
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The second aspect examined in this study is tleasdiption effect among materials can
be quantitatively assessed in an accurate manneatt mixture by using this technique
(Refer to another previous study on the assessofesrption impact among material
mixtures on perceived indoor air quality by humasessments, which is done by Sakr et
al., 2006). The approach derived from the prestatly is based on the reduced
percentage of the estimated signal intensity osion signature from a material mixture
when compared with that of the stand-alone emissignature for each individual
material obtained under the same emission conditiBi, temperature and area-specific
ventilation rate). For example, the mixture of @drand Linoleum (Case 1) should have
the relative signal intensity factors as = 0.53 for Carpet andg = 29.74 for Linoleum
under the given mixture emission conditionsTable 4.1 (Measurement #4) if there are
no interaction and no sorption effect between we tHowever, the experimental results
showed that the intensity factors were differenéras 0.72 for Carpet andg = 13.82 for
Linoleum Figure 4.4). Because of large porous areas in the surfaGagdet, the major
portion of the VOC emissions from Linoleum might toepped (i.e. adsorbed) in those
porous areas of Carpet because of adsorption,hencetluction effect of VOC emissions
from Linoleum could be estimated at the percentw@ig83.5% (from 29.74 to 13.82).
This sorption effect became more apparent whentigerpnaterials such as Carpet
(material ID = [7]) and Gypsum ([4]) or gypsum-bdsmaterials such as Ceiling ([3]),
Paint 1 ([5]) and Paint 2 ([6]) were present in thtedied material mixture. This
enhanced effect could be seen in the consecutinly stf material mixtures as shown in

Figure 4.7. The initial signature for Linoleum (the main ¢tmg material in this case)
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could be measured again with a similar level ohalgintensities after other added

materials were taken out of the chamber as showigime 4.7h

Lastly, by using this technique, emission sourcesl aheir corresponding signal
intensities (i.e. concentration levels of VOC enaiss) can be identified and estimated in
a laboratory condition. PTR-MS emission signatuvege specific to each material tested,
and the interactions among different material eimmss may not significantly affect the
pattern change of the individual emission signatume least for the studied material
mixtures. Therefore, it is possible to identify tletated material based on the emission
pattern of the same material measured by PTR-M8aat in a conditioned laboratory
environment. The differences in emission patter@ay motentially be used to identify
emission sources (e.g. in buildings) based onaainptes measured by PTR-MS. However,
emission signatures may change over the coursengfterm emissions, which will be

further investigated in Chapter 5.

If there is a VOC related problem in an indooraivironment, different relevant sources
can be identified and screened individually by PNIBR- Finding the source(s) would help
eliminating the problem efficiently and effectiveln advantage of this technique is that
it may find the sources invisible or hidden whehuiding with problems of indoor air

quality is suspected. Further studies are neededextending this technique into a

practical tool for emission source identificationreal indoor environments because of
the higher number of possible emission sourcesntbee complicated adsorption and
desorption effects and the change of emission patteer time for a given source. The
pattern change of material emission signatures aveng-term period may be accounted

for by using appropriate emission source modets &g discussed in the next chapter.

140



Ph.D Dissertation Kwanghoon Han ($-4%)

[N a b B o - -
2000 (89]38.1% 8~ [84] 465 Au. 2000 [87] 53.5/c.

3000 Linoleum [8] - Initial

( |
- (a) } ! (b) Linoleum (C) Linoleum (d) Linoleum
[7) _— —_— —_—
Q 2500 - - - - ——— - === =
e ! ! 1500 1500 1500
=.2000} - - - T —— * * *
> | |
"&; | |
€ 1500 - - - N 1000 Wood 1000 Gypsum | 1000 Carpet
£ l l
= 1000} - - - | - - - - oo
© | | 500 500 500
c [ |
80 500 - - - ‘7‘””‘ 77777
i | e |

| |

0 | | u ‘ L 0 0 0 | MLl
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
B0 50/| B3 6°/| 95 40/| 38.0%
r C v Q d Q - ’ C
2000 [89 6] 2000 [89637] 2000[896372_5] 2000[8] af‘ter7m‘onths
-~ @ () (9) (h) |
Q | |
& 1500 1500 1500 1500 - - - | [—— (N
> 1 |
-‘ﬁ | |
g 1000 1000 1000 1000 - - | - I
e | |
c | |
- | |
'_g 500 500 500 500 - - - R I
| |
.80 “l Ju ‘ ‘
[7,] | | | |
0 ul ‘ L 0 | il 0 | ‘ ul 0 | :n 1 :: 1
0 50 100 150 0 50 100 150 0 50 100 150 0 50 100 150
lon mass (m/z) lon mass (m/z) lon mass (m/z) lon mass (m/z)

Figure 4.7 The measured signature intensity/profile change of the Linoleum-plus
mixtures mainly due to adsorption effect as other materials were added to the mixture.
(a) The initial emission signature of Linoleum (Measurement #2 described in Table 1).
(b) The signature with Wood (Measurement #5). (c) With Gypsum. (d) With Carpet
(Measurement #4). (e) The signature when Paint 2 added to the mixture of
Linoleum/Wood (Measurement #6). (f) When Ceiling and Carpet added (Measurement
#7). (g) When PVC and Paint 2 added (Measurement #8). (h) The signature of Linoleum
obtained from another single material emission test after the 7-month conditioned
storage of the material, with other materials taken out of the chamber (with the same
test conditions as Measurement #2 for Linoleum).

® represents the reduction percentage of signal intensity of the Linoleum emission
because of adsorption effect, estimated by considering the difference between the
supposed signal intensity factor of the Linoleum emission at the given area-specific
ventilation rates and the measured/assessed signal intensity factor (i.e. factor value
difference between supposed factor and measured factor / supposed factor x 100).

® Another two-material mixture case with the same specimens of Linoleum and Gypsum
described in Table 1 and under the test conditions of 1.03 //min, 22°C and 31% RH.
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4.4 Conclusions

The results of this study demonstrate the feasibilf identifying emission sources with
high success rates when multiple materials areeptaadoors by utilizing the PTR-MS
and an effective signal processing method undeor#ébry indoor conditions. The
following conclusions could be derived from thediimgs of the studyStage 2 described

in Chapter 4:

¢ In a controlled environment, material emissiorurses could be identified at
reasonably high success rates even for seven-adateritures co-located at the same
time, with their individual relative source strengt (expressed in PTR-MS signal

intensities) estimated by the developed technique.

¢ The effect of VOC mixture emissions might be sppsed in the mass spectrum
domain of PTR-MS because of small interactions amoraterial emissions and the
conservation of individual material emission pattewven in the presence of emission

interactions such as sorption.

¢ The sorption effect among material emissions c¢dnd quantitatively assessed using

the new technique proposed.
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T CHAPTER 5. VARIATION OF ESs OVER TIME AND

ITS IMPACT ON SOURCE IDENTIFICATION

5.1 Introduction

Volatile organic compounds (VOCs) have multiple dod sources. VOC emitting
materials can introduce carcinogens, chemical nemsg endocrine disruptors,
neurotoxins, reproductive toxins and other harndhé&micals into indoor air. The
understanding and knowledge on emissions from imgjlchaterials are becoming more
important than before to global and local air dyapersonnel such as environmental
policy makers, product manufacturers, building essfonals, air quality managers and
regulators because of large portion of these nadsemmitting surface area occupied in
buildings, their permanent exposure to indoor oaotp and the distinguishing lifestyle
of the contemporary people in developed countiies $pending most of their time in

indoor environments).

The levels of indoor VOCs can be differentiatedoy primary and secondary emissions
of VOCs from materials. The primary emission is @ released directly from the
materials into indoor air. This is the highestdegf VOC emissions from the materials,

and typically decays relatively quickly initiallywer the first week and then decays slowly

143



Ph.D Dissertation Kwanghoon Han ($-4%)

over a long period of time (e.g. more than a yafer the introduction of a product in
indoor environments. This emission is a directltesf chemical constituents from the
materials. On the other hand, the secondary VO{Sstom can occur when other indoor
materials adsorb emitted VOCs and then continueetemit them slowly over a long
period of time, when other harmful compounds (éogmaldehyde) are produced via
chemical reactions (Particularly, ozone relate@; B®rrison and Nazaroff, 2002), when
air velocity or ventilation rate increases, or wientain materials contain chemicals that
maintain a slow but steady emission rate for a{i@mgn period. For some materials,
secondary emissions may exist for many years ane agreater impact on the long-term
indoor air quality than materials with higher prim@mission rates. As a result, human
residents can experience long-term exposure taetbesondary VOC emissions for a
long time, which draws more attention and careirfgsroving human’s comfort, health

and performance.

To support long-term future developments for thepriowement of human’s life and
welfare, the evaluation of the chemical long-tempacts of building materials on air
quality may be vital and change the custom andopat$ in the establishment of global
guidelines and standards, manufacturing practicesbwlding materials, material
selection strategies for indoor use, labeling andlity control schemes, and material
preparation/testing/validation methods. Hodgsonalet (2000) reported that source
reduction treatment via substitution of buildingterals with low-polluting products or
modification of building practices could be genbrahe preferred method for reducing
occupants' exposure to VOCs. They identified sdvasmpounds including acetic acid

as important compounds having great potency to hisreealth and perception, but were

144



Ph.D Dissertation Kwanghoon Han ($-4%)

not certain about the sources of the identifiedvactompounds in the studied houses.
There is a special need to identify and clearlyppint VOC emission sources for
establishing an effective countermeasure againsanted VOC emissions. If there is a
VOC related problem in an indoor air environmenffedent relevant sources can be
identified and screened individually by an on-liapalytical monitoring device (e.g.
Proton Transfer Reaction — Mass Spectrometry, drR-RI5). Finding the source(s)
would help eliminating the problem efficiently amdfectively. An advantage of this
approach is that it may find the sources invisibke hidden when a building with

problems of indoor air quality is suspected.

The consideration of long-term VOC emissions froniiding materials can also impact
the source identification study. A considerablepstoward source identification of
certain indoor VOCs of concern has been taken eieersl related studies (Han et al.,
2010, 2011) to show the existence of stable andquanemission signatures (ES) for
different types of building materials and to deyel methodology for separating and
identifying the individual material emission sigagds from mixture emissions. As far as
the possibility of the emission signature changer@vlong period of time is concerned,
the proper estimation and prediction of emissigmaiures at a later time are considered
as essential to extend to a field condition thdieglpility of the methodology for indoor
source identification developed in the previouslgt(Chapter 4 and Han et al., 2011).
The pattern change of material emission signatokes long-term emissions may be
accounted for by using appropriate emission sonrgdels. The objectives of the study
in Chapter 5 were to explore the change of longrt&OC emission profiles of building

materials and to develop a methodology to imprineeidentification of individual indoor
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emission sources based on the measurements of @ixedmples with emissions from
aged materials and the emission signatures of ichaay new building materials

determined by PTR-MS.

5.2 Materials and Methods

5.2.1 Overview

In the previous study (Han et al., 2010), chambaast air polluted by the emissions
from nine individual building materials in a 504nall-scale chamber was sampled by
PTR-MS at low, medium and high airflow rates toabish an initial library of material
emission signatures stable over different samplinmge and even over different area-
specific ventilation rates in terms of relative rag intensities and overall shape of
emissions, and also to determine their variancesus® of measurement noise. The
emission signature (ES) is the PTR-MS ion mas# (which is a physical quantity
denoting the mass-to-charge ratio widely used endllectrodynamics of charged species)
spectrum of the air sampled from each material,sitanted after subtracting the
background air signal from the measured and rengoaiy ion mass components within
the measurement uncertainty (< 3 sigma of the backg signal). Emissions of all
VOCs composing the ES for each material were trégedsing source models over the
course of long-term emissions to estimate the tengr ESs for the individual materials.
Actual combined emissions from three multi-matematures were studied to assess the

effect of the consideration of long-term ES chaogéehe ES separation and identification
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performance. The two algorithms previously devetbfpased on signal processing

principles (Chapter 4 and Han et al., 2011) weilezedl.

5.2.2 Environmental chamber conditions

A 50-1 small-scale environmental chamber (% 0.4m x 0.25m high) made of electro-
polished stainless steel was used with a precigtovai controller and a humidity
controller. The chamber was maintained at a cohstable temperature in the range of
19.87-25.99°C (with a small variation of < +0.021Gring each sampling period) and at a
controlled relative humidity of 31 + 0.3% RH durinhe 9-month period of the
experiment. The background concentrations of iddiai VOCs in the empty chamber

were maintained clean to be less thamgim®,

5.2.3 Test specimens

Nine typical building materials were investigatettluding carpet, ceiling material,
gypsum board, linoleum, paint 1 (water-based acyylpaint 2 (with linseed oil),
polyolefine, PVC and wood. The detailed descrididor the specimens can be found
elsewhere (Chapter 3 and Han et al., 2010). Smssnwere cut and prepared according
to the sizes specified ifable 5.1 The prepared specimens were placed vertically,
parallel with the airflow in the chamber. The rar@f area-specific ventilation rates was

set by adjusting the airflow to the chamber whigeping the size of specimen unchanged.
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Table 5.1 Flow rates and specimen areas for the PTR-MS experiments.

Flow rate — Q, (I/min) / Specimen area — A (cm’)

o 2
Material Q,/A (I/s/m’)
)
Meas. #1 Meas. #2 Meas. #3 Meas. #4 Meas. #5 Meas. #6
0.50/290.7 1.55/290.7 46412907
Ceiling (3) 0.29 0.89 2.66
050/ 265.5 1.30/265.5 3.85/265.5 1.21/265.5 1.28/265.5
Wood (9) 031 0.81 2.42 0.76 0.80
0.50 / 240 1.28/240 3.83/240 1.28/240
Carpet (7) 0.35 0.89 2.66 0.89
0.50 / 240 1.28/240 3.83/240 1.21/240 1.28/240 1.28/ 240
Linoleum (8) 0.35 0.89 2.66 0.84 0.89 0.89
0.50 / 240 1.28/ 240 3.83/240
PVC (2) 0.35 0.89 2.66
0.50 / 240 1.28/ 240 3.83/240
Polyolefine (1) 0.35 0.89 2.66
0.50/416 1.03/416 3.08/416
Gypsum (4) 0.20 0.41 1.23
050 / 402 0.99 /402 2.97 /402
Paint 1 (5) 0.21 0.41 123
0.50 / 490.2 1.21/490.2 3.63/490.2 1.21/490.2
Paint 2 (6) 0.17 0.41 1.23 0.41

* Meas. stands for ‘Measurement’.

* Measurements #1-3: from single material tests.

* Measurements #4-6: from material mixture tests with the selected materials put in the
chamber together.

5.2.4 PTR-MS setting

A PTR-MS device lpnicon Analytik high-sensitivity model with a dgten limit as low

as 1 pptv, Austripwas operated at the standard conditions (Drbfetpressure: 2.20 +
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1.9e-5mbar, PC: 355mbar, FC: 7.0 STRee/min U SO: 85V, U S: 120V, Drift tube
voltage: 600V and Source: 6.0nA). Lindinger et al. (1998) describes the detailed
explanations on the device and its principle. THoemalized product ion count rate

(ncpg was used in this study to quantify the VOC comions.

5.2.5 Test procedure

The nine building materials were previously studegdthree different area-specific
ventilation rates (Measurements #1, #2 and #3ytabéish an initial ES library by PTR-
MS specific to each individual material. One ya#ier the experiment for establishing
the initial ES library, the long-term experimeningsthe same nine materials preserved
for one year in a well-conditioned storage space leen performed for nine months.
Three multi-material mixture measurements wereectdld (Measurements #4-#6) after
the long-term experiment to obtain actual combiesussion signatures and to assess the
effects of the long-term emission signature chamge the source identification
performance of the developed algorithms. The E&smements for the long-term
experiment were collected at D-0 to D-2 (designaasdLong-term 1 measurement)
around 2 hours (to get a quasi-steady state caatiem level) after the start of
continuous ventilation in a well-controlled ventitan space (keeping a constant surface
velocity at 100ft/min, or 0.51m/9, 7-month (Long-term 2), 8-month (Long-term 3) and

9-month (Long-term 4), which are illustratedrigure 5.1
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Figure 5.1 Measurement schedule for constructing 9-month long-term emission
signatures.

* ES: Emission signature, IDC: Internal-diffusion controlled.

For each measurement except for the Long-term kunement (which was a continuous
measuring test with a sampling interval of 24 stieo days), the mass spectra for the
background emission signal from the empty chambdrfar the sample emission signal
with each prepared specimen inside the chamber mveasured all after three volumetric
air changes from the start of ventilation to allo@ncentrations in the chamber to reach
over 95% of the quasi-steady state level. PTR-MS set to scan from/z= 21 tom/z=
250 once every 12 s with an ion mass resolutioerwat of 50 ms. The total sampling
period was 10 min (600 s) with 50 ion mass spemiibected for each dataset. During
each measurement, another set of duplicate mastrapeas scanned to verify the

collected data.
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5.3 Results and Discussion

The previous study (Han et al., 2010) determinedsthecificity and identification of each
ion mass with a related VOC by using GC/MS and MR+together. Now, each ion
mass of PTR-MS represents a VOC, and its signansity (cp9 indicates the
corresponding concentration level of the VOC. Tdtisdy used the emission signatures
collected at Measurement #2 (medium airflow rateq aeference, and the variance of the
emission signature for a given material was deteechibbased on the variations of all the

scanned ion mass peaks from the reference sigrfatuttee material.

5.3.1 Emission pattern at each long-term period

5.3.1.1 2-day (D-0 ~ D-2) emission profile (Long-term 1)

(a) Linoleum (ID number = [8])

PTR-MS raw signals were filtered to effectively mre PTR-MS measurement noise by
utilizing a moving-average method with 11 samplesrriesponding to the sampling
period of 264 s) for each measuring point. Theaitket descriptions on the filtering
technique used can be found in the previous st@hagter 3 and Han et al., 2010).
Figure 5.2 exemplifies the raw and filtered signal patternerotwo-day emissions of
Linoleum. Contrary to the raw signal patternsdeveral major VOC compounds emitted
from Linoleum (m/z= 47,61,43), the filtered signals showed cleardseaf exponential
decay as shown iRigure 5.2 The fluctuations shown in the middle of the tdemight

be caused by the temperature change during thed#yoexperiment, because the
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temperature in the testing facility was not styictontrolled (other environmental
conditions were controlled), hence could slowlycfiate within a limited range.
Background components showed almost no changeein ¢bncentration levels during

the two-day emission test as exemplifiedrigure 5.2 (for m/z=29).

Figure 5.3 shows the emission patterns of several major comg® emitted from
Linoleum for two days. Ethanoinfz= 47,75), acetic acidr{/z= 61,43), acetaldehyde
(m/z= 45), etc. were those indicating higher emissioncentrations. Most of the VOC
emissions followed the exponential decay profil@ aimilar decay rate (50% of initial
concentrations were decayed after two days). Antbem, methanoln(/z= 33) showed

a faster decay over time than other compoundsh@rs in Figure 5.3, which might
impact the shape change of the emission signaturkifioleum at a later time. Except
for this ion mass peak, the emission signature inbleum during this two-day period
kept a very stable and consistent shape (< 2%naiwith regard to the maximum peak

of the reference signature).
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Figure 5.2 PTR-MS raw emission signal vs. filtered signal patterns of the major ion
masses for Linoleum.
* For each pair of figures, the left figure is the raw signal, and the right the filtered one
by utilizing a moving-average method.
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Figure 5.3 Emission patterns of major compounds from Linoleum during the initial 2

days.

(b) Paint 2 (ID number = [6])

The PTR-MS raw signals measured from VOC emissidrizaint 2 were also filtered in

the same way as the Linoleum case to attenuatedise in the measurementEigure

5.4 shows the raw and filtered signal patterns fornP&@ over two-day emissions.

Contrary to the raw signal patterns for severalomapn masses of Paint 2n(z =

41,43,61), the filtered signals exhibited cleamdi® of fast exponential decay. The

concentrations of background components (e = 29) showed almost no change

during the emission experiment.
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Figure 5.5shows the emission patterns of several major comggemitted from Paint 2
during the initial two-day ventilation period. [@@panol (h/z= 41,43,39), acetic acid
(m/z= 61,43), ethanolnf/z= 47;5), propanoic acidni/z= 75), etc. were those indicating
higher emission concentrations. Most of the m&0OIC emissions in terms of emission
concentration levels showed fast exponential dgwrafiles, especially for isopropanol
and methanol (More than 70% of initial concentnagiavere decayed after two days).
Still, several compounds such as acetic agitz € 61) and ethanolnf/z= 47) showed a
slower decay over time than those fast decayed cangs (as shown ifigure 5.5),
which led a huge effect on the shape change drtiiesion signature for Paint 2 at a later
time. The emission signature for Paint 2 at thé ehthis two-day period had a quite
different shape compared with the initial emissgagnature, or the reference emission
signature for this material. For this kind of catbe pattern change of material emission
signatures over a long-term period may be accouimiedy using appropriate emission

source models. This issue will be dealt with Iatar section.
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Figure 5.4 PTR-MS raw vs. filtered signal patterns of the major ion masses for Paint 2.
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Figure 5.5 Emission patterns of major compounds from Paint 2 during the initial 2 days.
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5.3.1.2 At 7-month (Long-term 2), 8-month (Long-term 3) and 9-month (Long-term 4)

The emission signatures for the building matersigdied in this study were found to
change over time. However, the long-term emiss@natures for these materials
appeared to be stabilized again after a certaiioghaaf time (~ 3 months or 90 days,
demonstrated in Herbarth and Matysik, 2010) if éh@ission signal intensities by PTR-
MS were high enough compared with those for thé&dpaxind air in the empty chamber
(or having a high enough signal-to-noise ratio, $NRhe results of long-term emission
signatures obtained for these periods implied tiate might be three types of materials
in terms of the change of long-term emission sigmrest Type 1- Materials with a single
stable ES from the beginningype 2— Materials with a stable initial ES and another
stable ES for long-term emissions, afgpe 3- unstable long-term ES due to low SNR.
The first type of materials had its own stable emois signature from the early stage of
emissions, and kept the similar shape of ES wgmall variation in the ES until the end
of the long-term emission experiment (up to 9 menththis study). An example of this
material type was Wood. Most of the materials bgéml to the second type, which had a
stable initial ES and another stable long-term E& @ certain elapsed time. Examples
of this type of materials were Paint 1, Paint 2yp@éa and Linoleum. If materials
themselves initially had a low-polluting propertiie emission signals (or SNR) were
measured in a very low level and kept decreasirgy timme. After a certain period of
time, the signals from these materials becamedbivwbthe background signal level (i.e.
< 10ncps or 1.4ppbv whereas the level of the background air signas around 50~60
ncps or 7~8ppby), and the corresponding ESs could not be staldetaluelatively high
level of noise (low SNR). All the low-polluting rteials in this study showed this trend

including Polyolefine, PVC, Ceiling and Gypsum.
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(a) Paint 2 (ID number = [6])

This belonged to the type 2 material. Becausesif ihitial decay, the initial ES for this
material could not be kept similar even after tvays] but after a certain period of time,
another stabilized long-term ES could be estahlishe illustrated irFigure 5.6. The
variance among these long-term ESs was less thawid?6egard to the maximum peak

of the ES at 7 months(Long-term 2).
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Figure 5.6 Stable emission signatures for Paint 2 after 7-month long-term emissions.

(b) Carpet (ID number = [7])
This belonged to the type 2 material. The stabigdterm ES was quite different with
the initial ES for this material. However, aftecertain period of time, another stabilized

long-term ES existed as shownkigure 5.7. The variance among these long-term ESs
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was less than 8% with regard to the maximum peathefES for this material at 7

months (Long-term 2).
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Figure 5.7 Stable emission signatures for Carpet after 7-month long-term emissions.

(c) Linoleum (ID number = [8])

This belonged to the type 2 material. Becausehef dteady initial decay of VOC

emissions, the shape of the long-term ES kept gitdar to that of the initial ES even

after the 9-month ventilation period. The longieESs for this material were quite

stable and consistent as demonstratdélgnre 5.8 The variance among these long-term

ESs was less than 1% (when not considemig= 59) with regard to the maximum peak

of the ES at 7 months (Long-term 2).
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Figure 5.8 Stable emission signatures for Linoleum after 7-month long-term emissions.

(d) Wood (ID number =[9])

This belonged to the type 1 material. The inisi@ble ES could be sustained even after
the 9-month long-term emissions. Initially, Linole was the highest polluting material
in the sense of VOC concentration levels, and Wwad the second. After 7 months,
however, this material became the highest one dubd low decay rates of its VOC
emissions compared with other materials (See themuen peak levels of Linoleum in
Figure 5.8 and of Wood at 7 months fgure 5.9 90 ncpsvs. 140ncps which were
initially 2974 ncpsfor Linoleum vs. 107Gicpsfor Wood). The long-term ESs for this
material were stable and consistent as illustrateBigure 5.9 The variance among
these long-term ESs was less than 5% with regatttetonaximum peak of the ES for this

material at 7 months (Long-term 2).
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Figure 5.9 Stable emission signatures for Wood after 7-month long-term emissions.

(e) Gypsum (ID number = [6]) — An example of matkriwith unstable long-term ESs
This belonged to the type 3 material. The inisi@ble ES could not be found in any of
the long-term ESs shown kigure 5.1Q and also the measured long-term ESs were quite
different from each otherFigure 5.10illustrates the low level of its signal intens#iall
below 5ncps(< 1 ppbv), far lower than that of the background air sign&o0~60ncps or
7~8 ppby. Materials having the concentration level lowbkan 10ncps might get
susceptible to the background signal change andumement noise, making it infeasible
to obtain a stable signature. In this study, wedealing with trace level of VOCs from
building materials, having tens of ppb level of centrations, and this level became
lower than even 1 ppb after the 9-month ventilatiéior either case, it may be hard for
human subjects to detect the effects of VOCs, obétow the detection limits of human

sensory systems. If we deal with much higher comagon levels than the present ones
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even for several type 3 materials classified is 8tudy, a stable long-term ES for each

case might be obtainable, considering that theilziialy trends for long-term ESs

appeared to exist in other materials and that thgme3 materials also had a stable initial

ES for each case when the pollution level was ivgt high in its early stage of

emissions.
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Figure 5.10 Unstable emission signatures for Gypsum at 7 & 8 months due to low SNR.
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5.3.2 Long-term ES estimations by using source models

Can the long-term emission signatures at a latepogheof time be estimated by using
some information on the initial material emissiagnatures? This section will challenge
this question, providing mathematical approachas §ource models) to reach possible
answers and recommending a practical procedurestablishing a library of long-term

emission signatures for future researches onabpis.t

5.3.2.1 By Double-exponential decay model

Brown (1999, 2002) used source models (i.e. doakpmnential and power-law decay
models) in his study for exploring persistent loavdls of VOC concentrations in
established dwellings due to long-term emissioosfbuilding materials. The present
study investigated the feasibility of the estimatiof long-term emission signatures by
using collected measurements and source models. naterials — Linoleum and Paint 2
were selected and studied in this aspect becaase ttvo materials are representative of
two characteristic material types distinct by aadte(or slow) emission decay and a fast
emission decay over time, respectively. First, double-exponential decay model was

applied to the long-term emission measurementthtwo materials, defined as follows:

EF = EF, -exp(k, -t) + EF, -exp(k, -t) 5.9)

whereEF represents the emission factor for source maseiriathe unit ofugm®h™, EF,

is the initial emission factor of short-term emiss, EF; that of long-term emissions
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(ugm? hY), ko andk; indicate the corresponding decay constants forstiwet-term and

long-term emissions, respectively'jhandt is the elapsed ventilation time (h).

(a) Linoleum
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Figure 5.11 Long-term emission fitting by the double-exponential model for major
compounds of Linoleum.

* The blue lines indicate the fits using the model, and the red dots represent the actual
measurements.

* R%, or COD (coefficient of determination) was presented in each legend of the figure.

For this case, the measurement$nais= [1, 14, 24, 29, 34, 39, 44 hours, 7-month, 8-
month and 9-month] were sampled to evaluate thimditperformance by the source

model used. The four unknown control variablesfitting were searched in the sense of
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least squared error between the estimated valuktharmeasured ones, by usiPavell
search algorithm (Powell, 1964) customized by ththar of the present study via Matlab.
The model fitted the measurements with high valwds COD (coefficient of
determination) for all selected compounds emittedmf Linoleum (> 0.95) as

demonstrated ifigure 5.11

(b) Paint 2
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Figure 5.12 Long-term emission fitting by the double-exponential model for several
major compounds of Paint 2.
* The blue lines indicate the fits using the source model, and the magenta stars
represent the actual measurements.
* R?, or COD (coefficient of determination) was presented in each legend of the figure.
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For this case, the measurement$yats= [1, 14, 24, 29, 34, 39, 44 hours, 7-month, 8-
month, and 9-month] were collected to check the§tperformance of the source model.
The fitting variables were determined via the |lesagtaréPowell search. The model quite
well fitted the measurements with high levels ofCfor all selected compounds emitted
from Paint 2 (> 0.95). The initial concentratiarfsthe presented compounds decayed at

very steep rates as shownrFigure 5.12

5.3.2.2 By Power-law decay model
Now, the power-law decay model was applied to dmgiterm emission measurements,

defined as follows:

EF =axt™ (5.2)

whereEF represents the emission factor for source maseinishe unit ofugm®h, a and
b are empirical constants in the power-law equatamdt is the elapsed ventilation time

().

According to a NRC report published by National &esh Council of Canada (Zhang et
al., 1999), most of their tested emission case$fiding materials appeared to follow
internal-diffusion controlled emissions after 24ul®from the start of ventilation. This
phenomenon could also be found in most of the desdses of the present study. In this
regard, for this power-law implementation, the nueasient data only after the elapse

time of 24 hours were used.
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(a) Linoleum

For this case, the measurements.ak= [24, 29, 34, 39, 44 hours, 7-month, 8-month and

9-month] were sampled to evaluate the fitting peniance by the source model used.

The two unknown control variables for the fittingne searched in terms of least squared

error between the estimated values and the measures, by using?owell search

algorithm customized by using Matlab. The modekwast and stable in obtaining

proper fitting variables, and well fitted with tineeasurements as shownHRigure 5.13

This model showed a less performance than the deeXgonential one, but could fit the

measurements still with high COD values for allesg#d compounds emitted from

Linoleum (> 0.93).
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Figure 5.13 Long-term emission fitting by the power-law model for major compounds
of Linoleum.

* The blue lines indicate the fits using the source model, and the red circles represent
the actual measurements.

* R, or COD (coefficient of determination) was presented in each legend of the figure.

(b) Paint 2
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Figure 5.14 Long-term emission fitting by the power-law model for several major
compounds of Paint 2.
* The blue lines indicate the fits using the source model, and the magenta ‘X’s represent
the actual measurements.
* R%, or COD (coefficient of determination) was presented in each legend of the figure.

For this case, the measurementsnats= [24, 29, 34, 39, 44 hours, 7-month, 8-month,

and 9-month] were collected to evaluate the fittpegformance by this source model.
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The fitting variables were determined via the lesgtarePowell search in a faster and
more stable way than the double-exponential modéle model showed a good fitting
performance with reasonably high COD values forthoéshe selected compounds from
Paint 2 (> 0.98), but for some compounds, the C@MDeas were low as exemplified in

Figure 5.14for acrolein (n/z= 57).

5.3.2.3 Summary of the performance of long-term ES estimations

By utilizing the source models to trace the chaofyg¢ OC emissions for all compounds
composing an emission signature for a given majéoiag-term ESs can be estimated at
a certain given time. To show the feasibility lmtapproach in estimating long-term ESs,
Linoleum and Paint 2 were selected, and this matlieal approach was applied to
evaluate the estimation performance. The long-t€8s may also be predicted by using
a short-term dataset of ESs at an early period €elgmonth). This prediction approach
will be dealt with in a later section. After estting the long-term ESs for a given set of
material mixtures used, the dataset of ESs caredastablished, and used in effectively
separating and identifying emission signaturesirfggroving the performance of source
identification throughout long-term emissions. Shpproach will be verified in the next

section.

Figure 5.15 exemplifies the approach for emission signaturemesions and the
performance result using a source model for Linoleat the # month. The figure
implies that with some information on the measupdfile of material emission
signatures over time, the long-term change of Efsaf given material at a specific

elapsed time can be effectively estimated and neaysied for enhancing the performance
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of source identification. The estimation performamf long-term ESs was summarized

in Table 5.2with different source models used and at diffeetapsed times for the two

materials. Except for an outlier, the error vatias of the ES estimations were less than

5%.
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Figure 5.15 Estimation of emission signatures exemplified by the Linoleum case using
the double-exponential model at the time of 7 months (Long-term 2).

Table 5.2 Summary of emission signature estimation results by source models.

Long-term 2 | Long-term3 | Long-term4 | Long-term2 | Long-term3 | Long-term 4
of LIN of LIN of LIN of PT2 of PT2 of PT2
(7-month) (8-month) (9-month) (7-month) (8-month) (9-month)
Double 2.08% 1.71% 4.11% 3.24% 3.72% 6.86%
Power 3.29% 2.29% 2.54% 4.93% 4.66% 5.98%

* LIN: Linoleum, PT2: Paint 2.
* The percentage values in the table represent the error variances between the
estimated emission signatures and the measured ones at a given time. The smaller the
values, the better the estimation performance.
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5.3.3 ES separation performance with the consideration of long-term ES change

The mathematical approach described in the prevemreation for the estimation of
emission signatures with the source models may amgrthe ES separation and
identification over the course of long-term emissio First, the dataset of ESs for a given
set of materials can be established again at afisp@me by considering the long-term
emissions of all composing VOCs for each materiad e used for enhancing ES
separation and identification. The correspondiagfggmance can be assessed by using

the three indices defined in the previous chagidapter. 4) as follows:

Er = E{{@uy — @e, |, Score= E{scr(N)}, SR=(N - N, )x100/N (5.3)

est ~ “true

2
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5.3.3.1 Reconstructed library of ES
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Figure 5.16 Reconstructed emission signatures based on the estimation results at the
time of 9 months.

* This library was estimated for the 9-month period by use of the double-exponential
decay model with the full long-term emission measurements.

* The changes of emission signatures for Materials 1 to 4 were not reflected because of
their low signal intensities (< 1 ppbv).
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5.3.3.2 Summary of the identification performance

Table 5.3 Comparison of signature separation performance results of the two

algorithms for various cases.

Ground truths | IDegts = Olest1” IDest2 = Olest2” Err1® Err2® Score1
[678¢>[0.2,0.1% [678¢ > [0.0¢ 0.15 :
[6 8 9] w/ INIT 0.42 0.26 = 25.20
0.05 0.09] 0.19,0.32]
6.6 9w/ LT [3689>[0030.14% [368¢ - [0.080.1( Wi G697 | 5ao
> [0.12 0.39 0.49] 0.08,0.07] 0.31,0.25]
[67 € > [1.09 0.5% [67 € > [0.63 0.4
[7 8] w/ INIT 0.95 0.76 | 45.00
2.57] 2.84)
7 8w LT [37€9]>[0.26140C, [37€9]~ [0.20,093 e G | aE
> [0.60 2.53] 2.340.14] 1.80,0.02]
[368¢ > [0.0505% [6789 - [0.70,0.13
[8 9] W/ INIT 1.37 1.28 73.00
2.033.09] 2.35 3.08]
[1378¢ > [0.20; [1378¢ > [0.1%
[8 9w/ LT 0.82 1.38 65.80
> [2.50 4.25] 0.320.461.90,4.05  0.290.288 1.29 3.66]

Score2

23.00

81.80

44.60

83.00

66.60

61.60

28.00

56.00

50.00

92.00

88.00

88.00

26.00

90.00

50.00

98.00

88.00

88.00

® To exemplify the form of the results from the two algorithms, these estimation results
(material ID set and the corresponding signal intensity factor vector) were presented in
the table, which were obtained when applying the algorithms to the representative (i.e.
by averaging the measured 50 samples) emission signature measured for each given

material mixture.

However, the three performance indices shown in the table were

calculated using 50 measured samples for each mixture, following the definitions of the

three indices as shown in Equation (5.3). ° 1: of Algorithm 1, 2: of Algorithm 2.

* w/ INIT: with initial ESs; w/ LT: with the consideration of long-term emissions.

At the 9-month period, the emissions from threeemalt mixtures were measured under

the conditions defined iable 5.1 (Measurement #4-6). For each mixture, 50 emission

samples were measured by PTR-MS and processedllowifeg the signal processing

procedures described in the previous study (Haal.e2010) to get the corresponding

emission signatures for the mixtures. The PTR-M& Eheasured for these combined
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emissions were applied to the developed algoritiwitis and without the consideration of
long-term ES change, and the performance of ESrapa and identification for each
case was assessed by the performance indices .g. 5The comparison results were

summarized imable 5.3

The case of the three-material mixture (i.e. [6]8=9Paint 2 + Linoleum + Wood,
Measurement #4) without the long-term ES consideraf{6 8 9] with the initial ESs)
showed the lowest performance with low success (&&8%). The number of materials
and the large change of ESs especially for Paaypgeared to contribute to the resulting
low performance. On the other hand, the propemasibn close to the true shapes of the
long-term ESs using the source models seemed toovwaghe separation/identification
performance as demonstrated Tiable 5.3 With Algorithm 2, the success rate was
improved up to 90% from 26% before. This improvat®ould also be observed in the
two-material mixture (i.e. [7 8] = Carpet + Linolay Measurement #5). The long-term
ES for Carpet was also quite different from theiahione, so the adequate estimation of
the long-term ES for this material could improve twerall performance. For another
two-material mixture (i.e. [8 9] = Linoleum + Woollleasurement #6), however, there
was a small difference between with and without ltreg-term ES consideration. The
reason for this small difference may be that thed&SVood did not change much along
the course of long-term emissions (belonging toTiyge 1material) and also the ES for
Linoleum showed a small variation between theahiind the long-term ES even though
this material belonged to thieype 2material. These small changes in ESs between the
initial and long-term ones made no marked diffeeeimcthe consideration of long-term

emissions for this case.
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5.3.4 Recommendations on the practical establishment of a long-term ES library

5.3.4.1 Data analysis for the validation of ‘measurement generation’ approach

The study had been conducted to collect and prabestong-term emission data for 9
months, and additional material mixture measurememre collected for applying and
validating the consideration of long-term emissstgnature change to enhance the source
identification performance of the developed methogyp. As an additional consideration,
we are trying to recommend a practical testing doleefor the establishment of an ES
library for future works. To suggest this practiteeline for collecting ESs over time,
we need several data points in an early stagelfineonth test data), which were missed
in the present measurements because of the unegpeoct-readiness of the measuring
system at that time. We can generate these nezdaghoints based on the present actual
measurements, but to make this suggestion moreretencwe took another set of
experiments to validate the following approachdoggesting a practical testing schedule

for the ES collection:

* Assumption The present fitting function follows the actua¢asurement trend for each
selected ion mass. In other words, the decay anfystrky (Refer to Equation 5.1) of
each selected ion mass for a given material islaingven in different measurement

groups of the same material.

Because the storage periods of the two specimarpgr(ihe present one and the one to

be newly measured) are different, the initial scefguantity o) of the two may not be
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the same even though the same material is to be wsder similar environmental

conditions. After normalizing the measurell values by théeF value at the beginning

measurement time (i.e. at 24 hours) for each grdughe generated values from the

fitting functions determined by the present measa@s are aligned with the measured

values from the new experiment within a 10% degrafrom the generated trajectory, we

may validate the assumption declared above anthes#ata generation approach at least

within the validated period (i.e. 1-month).

Two materials, Linoleum and Paint 2, were seleard studied in this aspect because

these two materials are representative of two cheniatic types of building materials —

slow and fast decay.

(a) Linoleum
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Figure 5.17 Comparison of the emission profiles of the two different groups of

measurements for selected ion masses of Linoleum.

* RZ, coefficient of determination, was calculated for the new measurements with
respect to the corresponding fitting lines determined by the previous measurements,

and presented in each legend box of the figure.

176



Ph.D Dissertation Kwanghoon Han ($-4%)

* ‘Dev’ stands for the mean deviation of the new measurements at Day 7, Day 14 and
Day 28 from the corresponding fitting lines, and its magnitude was presented in
percentage with regard to the concentration level at 24 hours, or Day 1.

Figure 5.17 shows the comparison results between the new mezasat trends and the
fitting lines determined by the power-law decay elodith the previous measurements
for several major compounds emitted from Linoleuffor each case, the’ Ralues for
the whole samples presented and the mean deviatidhe new measurements at Day 7,
14 and 28 are included in the figure. The power-lmodel appeared to be more
physically realistic than the double-exponentialdelo so the fitting lines by the power-
law were used in this comparison. The generatédesafrom the power-law fitting

functions by the previous measurements are wedhad with the new measurements

within an 8% deviation from the trajectory (> 08fIR).
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(b) Paint 2
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Figure 5.18 Comparison of the emission profiles of the two different groups of
measurements for selected ion masses of Paint 2.

* RZ, coefficient of determination, was calculated for the new measurements with
respect to the corresponding fitting lines determined by the previous measurements,
and presented in each legend box of the figure.

* ‘Dev’ stands for the mean deviation of the new measurements at Day 7, Day 14 and
Day 28 from the corresponding fitting lines, and its magnitude was presented in
percentage with regard to the concentration level at 24 hours, or Day 1.

Figure 5.18 shows the comparison results for Paint 2. Thmditlines indicate a good
alignment with the new measurements within a 6%atiewm from the trajectory except

for an outlier, and with high levels of fitting @emination (> 0.75 of 8.
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From this investigation, the calculated decay rateswved a good repeatability even in
the two different measurement groups having moas th year gap between the two
measurements, which can validate the assumptiotarddcin the beginning of this

section, confirming the possibility of the data getion approach for a later study at

least within the validated period (i.e. 1-month).

5.3.4.2 Recommendations on a practical testing period for the ES library

This section is intended to suggest a practicattdbom testing schedule for collecting a
set of valid emission signatures for materials.e $ampling period generally accepted in
the practice for predicting long-term emissionsl| voé explored, which is to collect

emission measurements at Day 0-2, Day 7, Day 14 Rany 28 from the start of

ventilation (after the pre-conditioning period)

(a) Linoleum

The measurements @kas= [1, 14, 24, 29, 34, 39, 44 hours, Day 7, Day[ldy 28] were
sampled for this material. The source models, Dwakponential and Power-law decay
models, were applied to get the optimal fittingelifor each case in terms of least squared
error, and the results were used for predictingdhg-term emission concentrations at 7,
8 and 9 months. For the fitting with the power-lamdel, only the measurements after
24 hours were used. The prediction errors weresassl with regard to the concentration

level at 24 hours in the profile of each case.

Figure 5.19is well exemplifying this approach with the cagesthanol (n/z= 47) from

Linoleum.  The figure demonstrates that, because nwfasurement noise, the
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determination of sampling interval may affect tlesulting trend of fitting line in a
significant way, especially in the case of dealwgh very low levels of VOC
concentrations (due to low signal-to-noise ratighich did happen many times in this
study due to trace VOCs. The double-exponentialehseemed to fit the initial response
of the long-term emission concentration profile en@dequately than the power-law
model when the sampling schedule to be exploregdignsection was used. The number
of control parameters to be estimated for this rh{tigarameters) is more than that of
the power-law (2 parameters), which can make ttiedi process of this model harder
and more time-consuming (sometimes, infeasiblep tthee case with the power-law,
requiring more number of samples to be used fofittireg. In addition, the fitting results
from this model appeared to become more mathemgticeented than those of the
power-law mainly due to the short-term measuremends physically oriented, finding
the final solution with the least error to the giv@measurements. On the other hand, the
power-law model seemed to represent more propeelyphysical decay property of long-
term VOC emissions (Note: when samples only affen@urs were used) for most of the

cases investigated than the double-exponential.
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Figure 5.19 Prediction of the future concentrations at 7, 8 & 9 months by source
models with short-term meas. exemplified with ethanol (m/z=47) from Linoleum.
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* R? is calculated for all the points presented (ie. the sampled and future
measurements).

Because of this attractive property of this moedcting the proper physical decay even
with short-term measurements, the prediction ofjiterm emissions by the power-law
model had lower errors than that from the doubleeeential, which can be seen in
Figures 5.19 5.20 and5.21, and summarized ifiable 5.4 This model showed a fast
convergence and a high success rate in findindiriaé solution with a given tolerance

level. Figures 5.20and5.21 show the prediction trends for other major comisuaf

Linoleum with the double-exponential and power-@@cay models, respectively.
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Figure 5.21 Conc. predictions by the power-law model for selected compounds of
Linoleum.

* R? is calculated for all the points presented (ie. the sampled and future
measurements).
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(b) Paint 2

Same as the case of Linoleum, the measuremetis.at [1, 14, 24, 29, 34, 39, 44 hours,
Day 7, Day 14, Day 28] were sampled also for theganal. Even though this material
had a different decay property from that of Linatewsimilar fitting trends and prediction
performance results could be observed as the chdenoleum. Figure 5.22 well
indicates the fitting trends and the predictionoesrfor this material with the case of
propanoic acidri/z= 75) emitted from Paint 2. The figure indicatkat the sampling
interval may be important due to noise in determgrthe fitting functions like the case of
Linoleum. The double-exponential model followee fthitial response more adequately
than the power-law, but the power-law model seenmedeflect the physical decay
property of long-term VOC emissions for Paint 2 eng@roperly. Figures 5.22 5.23
(with the double-exponential model) abd®4 (with the power-law) show the trends and
prediction errors for other major compounds of P&nandTable 5.4 summarizes the
prediction performance for the long-term emissifumdPaint 2. Both source models quite
well fitted the measurements with high coefficisatues of fitting determination (i.e. >
0.91 of R with the double-exponential, > 0.86 of Rith the power-law), but the power-
law appeared to have a better performance in gredithe long-term emissions for Paint
2 (i.e. The prediction error percentage is < 8%swerK 26% with the double-exponential

model) as shown iRigures 5.22and5.23 and as summarized irable 5.4
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Figure 5.22 Prediction of the future concentration trends at 7, 8 & 9 months by source
models with short-term measurements (< Day 28) exemplified with propanoic acid
(with a small portion of ethanol, m/z=75) from Paint 2.
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Figure 5.23 Conc. predictions by the double-exp for selected compounds of Paint 2.
* R? is calculated for all the points presented (ie. the sampled and future

measurements).
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Figure 5.24 Conc. predictions by the power-law model for selected compounds of

Paint 2.

* R? is calculated for all the points presented (ie. the sampled and future
measurements).
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(c) Summary of the prediction error results

Table 5.4 summarizes the prediction performance of the kemgr emissions by the

double-exponential and power-law decay models atpgriods of 7, 8 and 9 months,

when the proposed short-term sampling schedul8(days) was used for Linoleum and

Paint 2 which represent the two different emisssbaracteristics of building materials

investigated in this study. Except for an outlitee mean percentage of prediction error

at the target months with the double-exponentiati@hevas < 15% for Linoleum and <

19.1% for Paint 2, whereas that with the powerzas < 3.3% for Linoleum and < 4.1%

for Paint 2. The absolute magnitude of this prgaoiicerror was calculated in percentage

with regard to the concentration level at 24 hairsach case.

Table 5.4 Summary of the prediction errors by two source models (w/ short-term data).

LIN PT2
7 months 8 months 9 months 7 months 8 months 9 months
Db Pw Db Pw Db Pw Db Pw Db Pw Db Pw
miz=47 755 152 507 336 475  3.23
10.65 077 1631 583 1054 047 m/z=43
61 1038 038 662 273 569  3.16
43 778 121 427 406 431 355
1449 320 1621 090 12.92 363 61
75 18.99 575 1148 1.38 918  3.21
41 13.85 3.06 1551 057 1291 261
2136 186 2474 537 13.00 567 75
89 18.16 559 1285 070 972 201
59 4161 779 2935 869 3648 3.18
2464 442 4676 17.46 28.80 4.18 57
48 471 398 556 265 511 266
117 1138 005 631 434 476 539
Mean 14.93% 3.26% 10.78% 3.16% 10.32% 3.22% | 17.78% 2.56% 26.00% 7.39% 16.31% 3.49%

* Db: By Double-exponential decay model, Pw: By Power-law decay model.
* The underlined in the table are considered as outliers.
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* The presented values in the table are the deviation percentage from the
measurements at the corresponding times with regard to the concentration level at 24
hours of the corresponding concentration profiles.

Table 5.5 Summary of ES predictions by the power-law model (w/ 28-day short-term

data).
Long-term2 | Long-term3 | Long-term4 | Long-term2 | Long-term3 | Long-term 4
of LIN?® of LIN of LIN of PT2°? of PT2 of PT2
(7-month) (8-month) (9-month) (7-month) (8-month) (9-month)
Power 3.91%" 2.85% 3.16% 4.92% 5.96% 6.87%
It was® 3.29% 2.29% 2.54% 4.93% 4.66% 5.98%

®LIN: Linoleum, PT2: Paint 2.
® The percentage values in the table represent the error variances between the
estimated emission signatures and the measured ones at a given time. The smaller the
values, the better the prediction performance is.
© The values in this row are the ES estimation results using the full long-term emission
measurements, and presented here for the comparison purpose with the prediction

results.
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Figure 5.25 Reconstructed emission signatures based on the prediction results at 9
months (w/ short-term data).

* This library was predicted for the 9-month period by use of the power-law decay
model with a short-term emission dataset (< 28 days).

Table 5.5shows the ES prediction results when the powerdasay model was used
with the 28-day short-term emission dataset. FEongarison, the estimation results by
the power-law with the full long-term measuremeate also presented in the table.
There was only slight degradation in the ES prashcperformance when a short-term
emission dataset was utilized as shown in the talfgcept for an outlier, the error
variances of the ES predictions were less thanBd4 (t was < 5%). Now, by use of this
prediction approach with a short-term emission gsktta the change of source

identification performance can be assesdédure 5.25is the predicted library of ESs at
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the 9-month period by utilizing the power-law decagdel and the 28-day short-term
emission measurements. The previous three measaterof actual material mixture
emissions were again used to assess the sourcéficdgion performance of the
algorithms when the ES library was predicted ammdmstructed by use of the short-term
emission dataset. The performance results are snmed inTable 5.6 As the cases of
the ES estimations with the full long-term emissioreasurements, the adequate
prediction close to the true shapes of the longrESs at a given time via source models
seemed to improve the separation/identificatiorfgoerance as demonstrated Tiable
5.6. With Algorithm 2, the success rate was improt@d6% from 26% before for the
three-material mixture (i.e. [6 8 9], Measuremedit #nd to 96% from 50% before for the
Carpet and Linoleum mixture (i.e. [7 8], Measurem&B). For the three-material
mixture, the source separation/identification perfance was slightly decreased when
compared with the ES estimation case using theldalj-term emission measurements.
However, for other two-material mixtures, the potidn approach with the short-term
dataset showed a similar performance to the fukhsueement case. In terms of Error
level and Score, this prediction approach with shert-term dataset showed a slightly
better performance than the estimation with therhdasurements. The reason for this
odd happening may be attributed to the use of tfierent source models for the two
cases; the double-exponential decay model wasfosele full case, and the power-law
for the prediction with the short-term dataset. gk®wwn inTable 5.2 the double-
exponential decay model provided good ES fittingules for an early period, but
degraded its fitting performance for a later per@ba faster pace than that of the power-

law (i.e. at the 9-month period).
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Table 5.6 Comparison of source identification performance by the ES prediction of the
power-law at the 9-month period via the two algorithms for various emission mixtures
(w/ 28-day short-term data).

SR1

Err1®

IDests =2 (lest1a Err2” @ Scorel Score2

a
| Destz 9 Olest2

SR2

(%)

(%)

o€ [368¢ > [0.05017, s s
(6891w ST [36] > [0.040.38] 0.20,0.26] 040 028 2720 66.00 3000 76.0
200. (28.00) (26.00)
GegwLre [3689>[002015 [3689[0080.16
5 012039048 0.08,0.0% 031.0.25] 046 027 5220 81.80 56.00 90.00
[37€§>[0.18034;  [37§ - [0.160.46
[7 8] wi ST 96.00 96.00
2001 2501 061 038 8600 8360 Jov o0
——r [37€9]>[0.2614C, [37 €9] > [0.20,0.93
5 1060253 234,014 180,003 084 082 73.60 83.00 92.00 98.00
[1389>[0.05026 [38 > [0.29243, 6600 86.00
89w/ ST . .
e 3661 063 072 7200 7420 Jio0 oo00
8] wiLT [1378¢ > [0.20 [1378¢ > [0.13%
- [2.50 4.25] 0.32 0.46 1.90; 4.0%) 0.290.288 1.29 3.66] 0.82 1.38 65.80 61.60 88.00 88.00

 To exemplify the form of the results from the two algorithms, these estimation results
(material ID set and the corresponding signal intensity factor vector) were presented in
the table, which were obtained when applying to the algorithms the representative (i.e.
by averaging the measured 50 samples) emission signature measured for each given
material mixture. However, the three performance indices shown in the table were
calculated using 50 measured samples for each mixture, following the definitions of the
three indices as shown in Equation (5.3).

®1: of Algorithm 1, 2: of Algorithm 2.

©w/ ST: with a short-term emission dataset via the power-law; w/ LT: with the full long-
term emission measurements via the double-exponential.

4 The values in the parenthesis come from Table 5.3 when without the long-term
consideration.
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5.3.4.3 How is the mechanistic diffusion model (CHAMPS-BES) different compared with
the empirical source models (double-exponential and power-law decay models)?

Many studies have been conducted to describe VOiSsamn processes by empirical
source models (Brown, 1999, 2002; Colombo et 890). For example, Colombo et al.
(1990) used double-exponential transient mass-balaquations to estimate four control
parameters for each emission case by a nonlinaat-$guares regression, and obtained
close fitting lines. However, such empirical ammioes typically involve chamber
studies, which can be time-consuming, expensivesabgect to several limitations due to
the lack of physical basis. These empirical methpdovide little insight on the
controlling mechanism governing VOC source behaviand, as a result, are of little
value when extrapolating to other environmentaldttions not covered by the chamber
experiments. On the other hand, for indoor soumsrolled by internal diffusion
processes, a mechanistic diffusion model has giatantial and considerable promise for
predicting emission characteristics when compaveghipirical models (Cox et al., 2002),
because diffusion is one of the most important raedms governing VOC source

emissions.

A simple physically based diffusion model, whichs@®es that all of the material
emissions are coming from the constituents of théenals, was utilized in this study to
evaluate the potential and advantages of this sldfumodel approach for predicting the
long-term VOC emissions and the resulting emissignatures, over the two empirical
source models. The detailed descriptions for diffsision source model can be found
elsewhere (Little et al., 1994). The basic modghmeters (i.e. the initial concentration

of VOC in a materialCy, the equilibrium partition coefficienk,, and the diffusion
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coefficient D) for each case were obtained from the iteratingcgss using”owell
searching method via Matlab, minimizing the leagtased error between the estimation
results and the actual measurements at the giveplisg times. Two representative
materials, Linoleum (om/z= 47) and Paint 2 (om/z= 75), were selected and studied
with this diffusion model. The measurements$,@is= [1, 14, 24, 29, 34, 39, 44 hours,
Day 7, Day 14, Day 28] same as the previous ones s@mpled and utilized for this
examination. Finally, the resulting optimal prefibf long-term emissions for each case
was checked again by utilizing CHAMS-BES (CouplesbH Air, Moisture and Pollutant
Simulation for Built Environmental Systems) withetlthree optimal model parameters

obtained.
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Figure 5.26 Prediction of the long-term emissions at 7, 8 & 9 months by a mechanistic
diffusion model with short-term measurements (< Day 28).

(a) Ethanol (m/z=47) from Linoleum. (b) Propanoic acid (with a small portion of ethanol,
m/z=75) from Paint 2.

Figure 5.26 demonstrates the prediction performance of th&usidn source model,
comparing this approach with the two empirical seunodels. The black lines represent
the optimal profiles resulted from the diffusion eed The mechanistic diffusion model

showed a better initial response than the power-lawd a similar initial fitting

performance equivalent to the double-exponentighis model could show the up-and-
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down concentration change at an early stage of \é@Mssions, well representing the
behind physics of VOC emission characteristicdlastrated inFigure 5.26 The long-
term emission predictions at 7, 8 and 9 months \geo#l and for some cases, better than
the power-law. Like the case of the double-exptiakdecay model, the fitting process
was hard and time-consuming (due to the use ofapalitferential equations), and even
infeasible with a bad-conditioned initial guess tbé model parameters. The good
prediction property of this diffusion model for thentire emission period was very
encouraging because the model parameters couldbalsmeasured using procedures
completely independent of the chamber studies lagid ineasurements, or obtained from
the comparison with expected values, where posé@ite et al., 2002; Little et al., 1994).
Because of this attractive property of this apphgaa shorter term of emission
measurements than 28 days might be used to prib@idong-term emission signatures
for a longer period of VOC emissions. The estimateodel parameters for the cases of
Linoleum (Figure 5.269 and Paint 2Kigure 5.268 and the corresponding prediction

errors at 7, 8 and 9 months are as follows:
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(a) Ethanol fn/z= 47) from Linoleum
The loading factoL for this case and its air change ritean be calculated using the

given information (Se&able 5.1) asL = 0.48 (m") andN = 1.5360 (i)

* [Co, Ky, D] = [6.05x1¢ (ncpy, 1.39x16, 1.09x10" (m?s)].

« R>=0.812.

* Note: R? is calculated for all the points presented (i.e. the sampled and future
measurements).

* Deviation = 0.57% at 7 months, 2.45% at 8 monding, 2.33% at 9 months with regard
to the concentration level at 24 hours.

* Note: The prediction performance is better than that of the power-law for this case.

(b) Propanoic acid/z= 75) from Paint 2
The calculated loading factar and the air change raté for this case aré = 0.9804

(m™) andN = 1.4520 ()

« [Co, Ky, D] = [4.54x16 (ncpy, 2.00x16, 1.75x10" (m?s)].

« R =0.977.

* Note: R? is calculated for all the points presented (i.e. the sampled and future

measurements).

* Deviation = 9.26% at 7 months, 12.94% at 8 maném 1.58% at 9 months with

regard to the concentration level at 24 hours.
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5.4 Conclusions
The following conclusions could be drawn from thedy (Stage 3) performed in Chapter

5:

¢ Two types of materials studied in this study welbserved and differentiated by using
PTR-MS, a whole-pictured on-line monitoring deviggh a wide detection window for
indoor VOCs: most of the major composing VOCs ia iimaterials steadily decaying over

time (e.g. Linoleum) or fast decaying over timgy(€aint 2).

¢ The emission signatures representing individudddimg materials could change over
time, but the long-term emission signatures for tnedghe building materials studied (if
with a high enough signal intensity) appeared tstestable and consistent after a certain
period of long-term emissions (Especially, durihg tlominant period of the secondary
VOC emissions when the relative difference of thession rate changes over time for

the composing VOCs of a given material becomeslsmal

¢ The long-term material emission signatures co@de$timated and predicted by using
empirical and mechanistic diffusion source modelhich could help enhance the

performance of source identification.

¢ For the prediction of the long-term VOC emissi@ml the corresponding emission
signatures, the power-law decay model was recomai@ado use because of its good
representation of the internal-diffusion controllethissions and its computationally
efficient solution (Note: The emission signature domaterial consists of tens of VOC

components).
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¢ The testing schedule generally used in the pmadtc predicting long-term emissions
(i.e. Day 0-2, Day 7, Day 14 and Day 28) was fotmbe valid and practical also for the
collection of material emission signatures to dgthba library of long-term ESs for
materials. Because of its physical basis, the mm@shc diffusion model might far

shorten the minimum period of required measurementhis prediction purpose.
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T CHAPTER 6. SUMMARY AND CONCLUSIONS

6.1 Summary and Conclusions

A new methodology and procedures using PTR-MS wieneeloped to determine the
emission signatures specific and consistent ovee tio individual building materials,
connecting the on-line measurements by PTR-MS & abceptability of air quality
assessed by human subjects. A VOC odor index (M@s$) proposed to assess the impact
of individual material emissions on human perceiagdquality, which correlated well

with the acceptability assessed by human subjecthié materials tested.

In addition, this study demonstrated the feasibibt identifying VOC emission sources
of concern with high success rates when multipléenas were present indoors by
utilizing the PTR-MS and an effective signal praseg technique under laboratory
indoor conditions. A database of emission sigratdor nine typical building materials
was established as a foundation for source ideatiéin in mixture emissions from the
materials. The measured emission signatures fratemal mixtures were compared to
the established database of emission signaturegdon single material through the

process of two proposed source identification aflgors. These algorithms were tested
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and validated by measurement-based Monte-Carlo Iaiions and by actual

measurements of five material mixtures.

The source identification could also be valid tlgleout VOC long-term emissions by
considering the pattern change of material emissignatures over the long-term period,
accounted for by appropriate emission source modeie following overall conclusions

could be derived from this study:

* A stable VOC emission signature specific to eyge of building material appeared
to exist by utilizing PTR-MS with the signal prosegy method and procedure
developed. The emission signatures for buildingenms tested were found not to
vary much with different area-specific ventilatiaates for the duration and conditions
of testing. The signatures might change over g lpariod of time, but the shape

change of emission signatures could be compensated.

» The sum of odor indices for selected major indlinal VOCs determined by PTR-MS
could show a reasonable correlation with the aed®iityy of air quality assessed by
human subjects, and hence may provide a feasilgpagh to assessing perceived
indoor air quality in real-time. This on-line assment will open a new gate in
understanding the role of VOC emissions from buoddmaterials on perceived air
quality, forming a good foundation to develop reale or near real-time methods for
standard material emission testing and labelingiligucontrol of emissions from

materials, and assessing the acceptability oftality in buildings.
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» The material ranking of pollution based on thel\W&ing the PTR-MS measurements
provided a similar ranking for the tested matertalghat in terms of acceptability,
and may be used for evaluating the impact of eaatemal on human-perceived air

quality in a faster and more efficient way.

* In a controlled environment, the identificatiohimdoor emission sources was found
feasible with the estimations of their individualative source strengths when the
developed technique was utilized with a limited temof materials for composing a

mixture.

» The effect of VOC mixture emissions in indoor miight be superposed in the mass-
spectral domain of PTR-MS because of small intemastamong material emissions
and the conservation of individual material emissmatterns even under mixture
conditions. For this reason, the adsorption eff@sbng material emissions could be

guantitatively assessed in an accurate way by ukagew technique proposed.

» The long-term material emission signatures ctxalestimated and predicted by using
empirical and mechanistic diffusion source modalkjch could help enhance the
performance of VOC source identification. The poVesv decay model was
recommendable for this purpose with short-term iarppmeasurements (i.es 28
days) because of its computationally-efficient eleteristics with reasonably-well

reflecting the long-term emission decay of VOCs.

» The general testing schedule for predicting V@@gtterm emissions (i.e. Day 0-2,

Day 7, Day 14 and Day 28) was found to be valid g@nactical also for the
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establishment of a library of long-term emissiognsitures for building materials

studied.

6.2 Practical Implications

The present study shows that unique emission patteay exist for different types of
building materials. These patterns, or signaturas, be established by PTR-MS, an on-
line analytical monitoring device. The sum of s&& major individual VOC odor
indices determined by PTR-MS correlates well witie tacceptability of air quality
assessed by human subjects, and hence providesisiblée approach to assessing
perceived indoor air quality with PTR-MS on-line aserements. This on-line
assessment will open a new gate in understandiagrdle of VOC emissions from
building materials on perceived air quality, forigia good foundation to develop real-
time or near real-time methods for standard mdtenassion testing and labeling, quality
control of emissions from materials, and asses#iwegacceptability of air quality in

buildings.

If there is a VOC related problem in an indooraivironment, different relevant sources
can be identified and screened individually by PMIR- Finding the source(s) would
help eliminating the problem efficiently and effgely. The results of this study
demonstrate the feasibility of identifying emissigources with high success rates when
multiple materials (up to seven-material mixtureishvthe concentration difference of
about 430 times between the lowest and the higbektiting materials) are present

indoors by utilizing the PTR-MS and an effectivgrgl processing method under

202



Ph.D Dissertation Kwanghoon Han ($-4%)

laboratory indoor conditions. An advantage of tteshnique is that it may find the
sources invisible or hidden when a building witlolgems of indoor air quality is

suspected. In real indoor environments, the ifleation becomes more challenging than
in controlled indoor environments because of thgh& number of possible emission
sources, the adsorption and desorption effectstlamdhange of emission pattern over
time for a given source, and hence require furtdevelopment of the present

identification method.

6.3 Limitations

The correlation derived in this study between th&MS on-line measurements and the
human odor assessments on perceived air qualityo@aslid only for the nine building
materials studied here because the materials igaéstl appeared to have similar types
of odors. The selection of up to three dominantCgQn calculating VOC odor index
(VOI) can be somewhat arbitrary, and its implemeotamay be difficult in some cases
if the VOCs detected are not known or the corredpmn odor thresholds are not

determined yet.

The source identification methodology presentedhis study considered the possible
change of emission signatures over a long peridoha as a main possible contributor of
the change in a field condition. However, there ather possible causes affecting the
change of emission signatures such as temperatlagive humidity, surface velocity

over materials, large portion of chemical reactiansong material emissions, etc. The

source identification technique may break down mmigture condition having a certain
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large number of materials (e.g. 30 materials) omihighly reactive environment like

ozone-initiated chemical-reaction dominant spate.addition, for some materials, any
stable emission signature may not be establisheeisow. If some materials have heavy
VOCs as major compounds for their emission sigeatuthe measured signature from
their mixtures may be distorted from the superposmission signature mainly due to

different adsorption phenomena, leading to a breakdof the method.

For this reason, a broader range of materials goelstof odors should be investigated

before this new approach can be widely applied.
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T CHAPTER 7. RECOMMENDATIONS FOR FUTURE

RESEARCH AND APPLICATIONS

7.1 Recommendations for Future Works

The following subjects should be further studied:
1) Validation of the source identification techniqueai field condition
2) Development of low cost and portable mass spectrgni@ applying the source

identification method

During the present study, the appropriate handintpe background air was found to be
crucial in getting a well-conditioned stable anchsistent emission signature for a target
material. Different from the background air wedntrolled and conditioned under indoor
laboratory conditions with a dedicated filter systeéhe general indoor background air in
field environments might be substantially time-wilagywith higher concentration levels

and various noise effects. A well-designed studytlee background air profile under

field conditions can produce a special techniquextivact meaningful and stable signals

for the emissions of materials of concern from rmeas signals in a field condition.

The present validation of this technique for indawurce identification under a

laboratory condition can be extended and becomeifisignt by applying and
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demonstrating the source identification method iful&scale built environment (e.g.
Syracuse CoE headquarters building). Many differeaterials and furniture have been
used in the construction and furnishing of the dind. The air distribution inside the
building will also affect the identification of smes and the locations of emission
sources. A refined procedure should be develogecohsidering the complexity in its

airflow patterns.

To be utilized as a rapid and influential tool infield condition, the overall signal
processing for this technique should be implementgth a real-time processing
programming package (e.g. C++ or real-time JAVA). addition, if this methodology
can be proven valid even with the use of a low-qustable mass spectrometry, the
application of this technique can make a great shpa many research and industrial

areas. For example, a) the detection and anabfsMOCs on remediation sitegre

possible in a fast manner prior to site renewahy Aangerous and toxic materials such as

asbestos can be screened as b) a rapid threanisgréeol This method can be used as

C) emergency response testtogidentify unknown materials in a fast unambigsiovay.

d) Material verifications also possible. Raw material testing and idgnerification are

critical steps in the quality control process wittmendous impact on human health and
safety. Global pharmaceutical manufacturers agkisg technology that will allow them
to approach the goal of 100 percent raw materighention without additional staff or
prohibitive financial investments. Real-time matkidentity verification will open a
new gate to the users in this need. This cost&e solution will allow the users to
quickly develop corresponding adequate procedwmeabling the immediate release of

raw materials into production. e) Forensic invggionwill also be impacted by this on-
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line cost-effective identification method, identifg accelerants used in arson at a fire

scene with ease and accuracy.
7.2 Possible Applications using the Emission Signature Technique

DET 2

T N
~ / Emission Source ‘

DET 3
DET1 \T\'d'

DET 4

Figure 7.1 Schematic diagram of a source detection/localization system for VOC
emissions.

One of the feasible and novel applications basethisnnew technique might be a real-
time localization system of indoor emission sourcéot only can this technique detect
and identify each source material from a bunch arhloined emissions emitted from
material mixtures, but also the position of an &mis source with problematic effects
can be traced within a reasonable positioning a@oyuif some typical indoor conditions

in a huge space are assumed. A toxic and hazasioigsion or a target emission to be
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traced can be detected and identified, and morgbegposition of the emission source in
a working space or in a huge storage space canchézed in a real-time basiszigure

7.1shows the schematic concept of this approach withdetectors.
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APPENDIX A. A Library of ESs by PTR-MS for Nine Building Materials tested.
(a) Polyolefine:

1. Material ID & Name: (1) POLY, Polyolefine
2. Description on material: 2.0am homogenous
polyolefine-based resilient flooring, reinforced thvi
polyurethane
3. Test conditions:
T=23.8+0.07°C, RH =31.0 + 0.03%

POLY #1
e R N A S S S et S : 33: (100) Methanol
| T T | | | | | | . .
90*"T"‘*"*I**T"T**j::j;j;j_;j_t:‘t::: »»»»»»»»» 61: (88.90) Acetic Acid
gof - fr - : 47: (67.09) Ethanol
wv | | [ | | | | | | . .
] e 43: (52.71) Acetic Acid
O I O S R S U ey M 45: (46.88) Acetaldehyde
Q | | [ | - | - [ | | |
%50””17”‘*f;‘;:;jj;’if7J‘7”‘L7”}7”‘_W 55: (16.04) Hexanal
| [ | | | | | | /‘/" .
§40””L”‘+ ”L”L”L”L”L”Jf;i:ii 75: (13.33) Ethanol
3 S || R R S A 69: (12.84) Nonanal
0---=--fFf- -t A== F -t -
N | 87: (11.95) Pentanal
207777\777\7 B e A EE
| | y | | | | | |
10****:***:* **:* *: **:***{***:****:***:**** * In the order of lon Mass, Magnitude, VOC Name above.
0 } } ! } } } } } } * Range of Q,/A = 0.35, 0.89 & 2.66 (L/s/m?).
0 20 40 60 80 100 120 140 160 180 200 * The underlined above are the major peaks.
lon Mass (m/z) * Oxirane (m/z=73): Within the uncertainty.
* Benzaldehyde (m/z=107): Within the uncertainty.
GC/MS Analysis O O O [ Detected® Threshold® Threshold®
VOC Compound M.W. Formula CAS# L (Yes/No) ppb ug/m’
OXIRANE, ETHYL- 72 C4H80 106-88-7 C Yes O O
ACETIC ACID, ANHYDRIDE WITH FORMIC
ACID 88 C3H403 2258-42-6 [ (No) O O
PENTANAL 86 C5H100 110-62-3 C Yes 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 [ (No) O O
HEXANAL 100 C6H120 66-25-1 C Yes 13.80 57.5
BUTANOIC ACID 88 C4HB802 107-92-6 C (No) 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C (No) 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404Si4 556-67-2 C Yes O O
PENTANOIC ACID 102 C5H1002 109-52-4 C (No) 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 C Yes 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C (No) 12.60 60.30
NONANAL 142 C9H180 124-19-6 C Yes 2.24 13.5

? Q,/A=0.89 (L/s/m?), T=23.8°C, RH=31%.
b Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(b) PVC:

1. Material ID & Name: (2) PVC, Polyvinyl
2. Description on material: 2.6wn homogenous single =
layered vinyl flooring, reinforced with polyurethan |
3. Test conditions:
T=23.7+0.03°C,RH=31.0+0.07%

100 ; ; ; ;PV(;) #l; R e S 45: 100 Acetaldehde
e _,..,.i:.,--,-i‘—;;-:*:;:‘:'{,,,:r,,,i,,,%,,, p 61: (20.72) Acetic Acid
] L A B 47: (18.46) Ethanol
- Y I R S T S S IR 99: (10.90) Cyclohexanone
§50””3*”3*’”i””i*”i””i”*i””i*’:i** 69: (6.13) Nonanal
Sl Lo 91: (4.45) 727
A | R S P S e 107: (2.87) Benzaldehyde
) | | | | | ﬁiiiriii:jT‘vTiii
z 30 -~ ﬂ: - *:T r- *i* - T: ;?"F - ﬂ: - *;,:F“"Z*i* - % - * In the order of lon Mass, Magnitude, VOC Name above.
ool __1f_ ﬁ,’f,,,L,ﬁj’ii,‘,,,,‘,,,l,,, *Rangeonv/A=0.89(L/s/m2).
| }I b e | | | * The underlined above are the major peaks.
top - o=
e e
0 20 40 60 100 120 140 160 180 200

80
lon Mass (m/z)

GC/MS Analysis O O O [ Detected® Threshold® Threshold®

VOC Compound M.W. Formula CAS# L (Yes/No) ppb ug/m’
OXIRANE, ETHYL- 72 C4H80 106-88-7 C (No) O O
:gﬁDTIC ACID, ANHYDRIDE WITH FORMIC o8 C3H403 9258426 [ (No) O -
PENTANAL 86 C5H100 110-62-3 C (No) 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 L[ (No) O O
HEXANAL 100 C6H120 66-25-1 C (No) 13.80 57.5
BUTANOIC ACID 88 C4H802 107-92-6 C (No) 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C (No) 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404Si4 556-67-2 [ (No) O O
PENTANOIC ACID 102 C5H1002 109-52-4 C (No) 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 C Yes 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C (No) 12.60 60.30
NONANAL 142 C9H180 124-19-6 C Yes 2.24 13.5

? Q,/A=0.89 (L/s/m?), T=23.7°C, RH=31%.
b Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.

12/27/2010, Page 226 of 251



Ph.D Dissertation

Kwanghoon Han (333)

(c) Ceiling:
1. Material ID & Name: (3) CEl, Ceiling
2. Description on material: 16m plain gypsum board

covered with plastic coated material
Test conditions:
T=24.7+0.02°C,RH

0 CEI #1
""""" S A S R S
| | | | | |
OF--—1---4------ el it Bt R b s
""" [ | | | |
80 | | | | | |
e e e e e
[ | | | | | |
S N S O DR I
T i i i | T
< I I I I | i
O 60 \ - - 41 __J___L__J___1___|
Q | | | I | |
N ] | | | | |
.('__650 ,,,,,, T T i A
| | | [ |
1S I I T I -
= 40--—-——1-—-—-Hlt+----- e e B i B
o | T | e |
2 I | k- | | |
30 B B A A Bl M
I | | | | |
| | | | | |
20 L T I
| | | | | |
| | | ! | |
10 B
" | | | | |
I 1 1 1 1 1 1
0 160 180 200

100 120

80 140
lon Mass (m/z)

=31.0+0.1%

43: (100) Isopropanol, AceticAcid

41: (95.93) Iso

ropanol

45: (63.93) Acetaldehyde

39: (49.08) Iso

ropanol

61: (33.55) Acetic Acid
47: (25.46) Ethanol

55: (14.71) Hexanal
73: (8.79) Oxirane
75: (7.33) Ethanol
44: (3.59) ??7?

69: (3.28) Nonanal

* In the order of lon Mass, Magnitude, VOC Name above.
* Range of Q,/A = 0.29, 0.89 & 2.66 (L/s/m?).

* The underlined above are the major peaks.

* Pentanal (m/z=87): Within the uncertainty.

* Benzaldehyde (m/z=107): Within the uncertainty.

* Methanol (m/z=33): Rapidly decayed.

GC/MS Analysis O O O [ Detected® Threshold® Threshold®

VOC Compound M.W. Formula CAS# L (Yes/No) ppb ug/m’
OXIRANE, ETHYL- 72 C4H80 106-88-7 C Yes O O
ﬁg:zDTlc ACID, ANHYDRIDE WITH FORMIC g8 C3H403 258.42.6 [ Ves - -
PENTANAL 86 C5H100 110-62-3 C Yes 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 L[ (No) O O
HEXANAL 100 C6H120 66-25-1 C Yes 13.80 57.5
BUTANOIC ACID 88 C4HB802 107-92-6 C (No) 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C (No) 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404Si4 556-67-2 C Yes O O
PENTANOIC ACID 102 C5H1002 109-52-4 C (No) 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 C Yes 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C (No) 12.60 60.30
NONANAL 142 C9H180 124-19-6 C Yes 2.24 13.5

 Q,/A=0.89 (L/s/m?), T=24.7°C, RH=31%.

b Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(d) Gypsum:

1. Material ID & Name: (4) GYP, Gypsum board
2. Description on material: 18w plain gypsum board |

lined with cardboard
3. Test conditions:

T=245+0.09°C, RH =31.0 + 0.03%

100 GYP #1 -
T T e — P ™
d4----- == 17 i I I
| | | | | |

920 RO s Bt il L
______ e atuis it R I |
| | | | | |

80 St it Bl et e
(7] | | | | | |
| | | | | |

&70 N e e e
< I I I I I I

B 60 S B
O | I | | i P
N | | | | | I

—_ S N B
('550 | | i o | -r
| | I | A |

§40 B e L e
o | P [ | |
Lo 1 | | |

230 I e Bl et el nltiiy
- | | | | |
| I | | | |

20 e Y R I
| | | | | |
| | | | | !

10 "N N R T R
| | | | | |
0 ||\ I \I 1 1 1 1

80 100 120 140 160 180 200

lon Mass (m/z)

GC/MS Analysis O

VOC Compound M.W.
OXIRANE, ETHYL- 72
ACETIC ACID, ANHYDRIDE WITH FORMIC
ACID 88
PENTANAL 86
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147
HEXANAL 100
BUTANOIC ACID 88
HEPTANAL 114.2
CYCLOTETRASILOXANE, OCTAMETHYL- 296
PENTANOIC ACID 102
BENZALDEHYDE 106
HEXANOIC ACID 116
NONANAL 142

O

Formula
C4H80
C3H403
C5H100
C5H904N
C6H120
C4H802
C7H140
C8H2404Si4
C5H1002
C7H60
C6H1202
C9H180

Kwanghoon Han (%

41: (100) Isopropanol

43: (91.28) Isopropanol,AceticAcid
59: (36.67) Acetone

39: (24.85) Isopropanol
45: (20.42) Acetaldehyde
55: (15.43) Hexanal

61: (14.14) Acetic Acid
69: (12.03) Nonanal

83: (11.01) Hexanal

57: (10.58) Acrolein

73: (8.27) Oxirane

31: (7.72) Formaldehyde
75: (5.03) Propanoic Acid
42: (4.69) Acetonitrile

87: (4.66) Pentanal

101: (3.55) Hexanal

* In the order of lon Mass, Magnitude, VOC Name above.
* Range of Q,/A = 0.20, 0.41, 1.23 & 3.70 (L/s/m?).

* The underlined above are the major peaks.

* Benzaldehyde (m/z=107): Within the uncertainty.

* Methanol (m/z=33): Rapidly decayed.

O [ Detected® Threshold® Threshold®
CAS# C (Yes/No) ppb ug/m’
106-88-7 C Yes O O
2058426 [ (No) O O
110-62-3 C Yes 6.03 21.90
5390283 [ (No) O O
66-25-1 C Yes 13.80 57.5
107-92-6 C  (No) 3.9 14.50
111717 T (No) 4.79 22.90
556-67-2 C Yes O O
10952-4 [C  (No) 4.79 20.40
100-52-7 C Yes 41.70 186.00
142-62-1 C (No) 12.60 60.30
124-19-6 C Yes 2.24 13.5

? Q,/A=0.41 (L/s/m?), T=24.5°C, RH=31%.

Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(e) Paint 1:

1. Material ID & Name: (5) PT1, Paint 1

2. Description on material: 18w¥m plain gypsum board
painted with one coat (0.1/m?) of water-based acrylic

wall paint
3. Test conditions:

T=245+0.04°C,RH=231.0+0.03%

100 o )
I I — R [ r-
------- | | | | |
90 i e R e R el IR Ly
P docemn Fo-oo ="
””” i | | | |
80 il s e - T
(73 | | | | |
I ] | | |
&70 7777777777 [ T e N B
< I I I [
vB60-------44--4---L-— - I Y R
1) Lk | | |
N I | | | |
—_— e S PR
('650 | | | ot
| | - | |
§40 e e e e e
o e | | | |
| | | | |
230 i e e i e
|
|

100

120

lon Mass (m/z)

GC/MS Analysis

VOC Compound
OXIRANE, ETHYL-
ACETIC ACID, ANHYDRIDE WITH FORMIC
ACID
PENTANAL
ETHANOL, 2-NITRO-, PROPIONATE (ESTER)
HEXANAL
BUTANOIC ACID
HEPTANAL
CYCLOTETRASILOXANE, OCTAMETHYL-
PENTANOIC ACID
BENZALDEHYDE
HEXANOIC ACID

NONANAL

O

M.W.
72
88
86

147
100
88
114.2
296
102
106
116
142

i |

&

2] #-
I
i

N

TR i

43: (100) Isopropanol, Acetic Acid

41: (94.20) Isopropanol
59: (78.59) Acetone
61: (53.48) Acetic Acid
55: (35.24) Hexanal

39: (32.78) Isopropanol
47: (24.00) Ethanol

45: (23.11) Acetaldehyde
83: (21.74) Hexanal

69: (19.41) Nonanal

57: (13.15) Acrolein
73: (12.53) Oxirane

87: (8.62) Pentanal

60: (6.65) ???

101: (6.57) Hexanal

97: (3.85) Heptanal

75: (3.51) Ethanol

* In the order of lon Mass, Magnitude, VOC Name above.

* Range of Q,/A = 0.21, 0.41, 1.23 & 3.70 (L/s/m?).
* The underlined above are the major peaks.
* Benzaldehyde (m/z=107): Within the uncertainty.

* Methanol (m/z=33): Rapidly decayed.

O O [ Detected® Threshold® Threshold®
Formula CAS# L (Yes/No) ppb ug/m’
C4H80 106-88-7 C Yes O O
C3H403 2258-42-6 [ (No) O O
C5H100 110-62-3 C Yes 6.03 21.90
C5H904N 5390-28-3 L[ (No) O O
C6H120 66-25-1 C Yes 13.80 57.5
C4HB802 107-92-6 C (No) 3.9 14.50
C7H140 111-71-7 C Yes 4.79 22.90

C8H2404Si4 556-67-2 C Yes O O
C5H1002 109-52-4 C (No) 4.79 20.40
C7H60 100-52-7 C Yes 41.70 186.00
C6H1202 142-62-1 C (No) 12.60 60.30
C9H180 124-19-6 C Yes 2.24 13.5

4 Q,/A=0.41 (L/s/m?), T=24.5°C, RH=31%.
Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(f) Paint 2:
1. Material ID & Name: (6) PT2, Paint 2
2. Description on material: 18wn plain gypsum board}
painted with one coat (0.14m? of water-based wall
paint with linseed oil
3. Test conditions:

T=245+0.04°C,RH=31.0+0.1%

43: (100) Iso

PR 41: (87.75) Isopropanol
1 61: (37.66) Acetic Acid

100 ropanol, Acetic Acid

D
o
|
|
|

a1
o

,,,,,,

Normalized ncps

=
g S

100 120
lon Mass (m/z)

39: (21.46) Isopropanol

47: (15.68) Ethanol

75:(12.57) PropanoicAcid,Ethanol
55: (11.07) Hexanal

45:
59:
83:
57:
69:
44:
42.
31:
73:
87:
97,

(10.71) Acetaldehyde
(10.29) Acetone
(6.96) Hexanal

(5.57) Acrolein

(4.63) Nonanal

(2.96) ??2?

(2.77) Acetonitrile
(2.75) Formaldehyde
(2.11) Oxirane

(2.10) Pentanal

115: (1.34) Heptanal

99: (0.52) Decane
107: (0.31) Benzaldehyde

* In the order of lon Mass, Magnitude, VOC Name above.
* Range of Q,/A = 0.17, 0.41, 1.23 & 3.70 (L/s/m?).
* The underlined above are the major peaks.

GC/MS Analysis O O O [ Detected® Threshold® Threshold®

VOC Compound M.W. Formula CASH# L (Yes/No) ppb ug/m’
OXIRANE, ETHYL- 72 C4H80O 106-88-7 L[ Yes O O
ﬁgglc ACID, ANHYDRIDE WITH FORMIC a8 C3HA03 9258426 [ Ves O -
PENTANAL 86 C5H100 110-62-3 L[ Yes 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 L[ (No) O O
HEXANAL 100 C6H120 66-25-1 C Yes 13.80 57.5
BUTANOIC ACID 88 C4H802 107-92-6 L[ (No) 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C Yes 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404Si4 556-67-2 [ Yes O O
PENTANOIC ACID 102 C5H1002 109-52-4 C (No) 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 C Yes 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C (No) 12.60 60.30
NONANAL 142 C9H180 124-19-6  C Yes 2.24 13.5

; Q,/A=0.41 (L/s/m?), T=24.5°C, RH=31%.

Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(g) Carpet:

1. Material ID & Name: (7) CAR, Carpet
2. Description on material: 6.44n tufted loop polyamide
carpet with supporting layer of polypropylene weid a
polypropylene backing
3. Test conditions:
T=235+0.05C,RH=31.0+£0.1%

100 ; ; ; ;CA;R #! ; ; ; 45: (100) Acetaldehyde
90— - - ———i———%———i———a:———:f——_Jrj_—_:_%———‘—‘1"'—:____,—» 41: (60.47) Propanal, isepropanol
SIS D A N L e 57: (54.88) Acrolein
R IS =S SO ES S 43:(53.90) AceticAcid, isopropanol
s O (s T A SO IO 47: (47.59) Ethanol
& 50”41 ?,, R 59: (47.26) Acetone, propanal
SN 0 S AU BRSO oL (35.17) Acelic Acld
<2‘5 | (= e | 73: (18.14) Oxirane
S (/A et it it it i it 55: (17.79) Hexanal
20”"3"*31 - i**ﬁ"*i””}”f*”}”f”* 39: (12.91) Isopropanol
10————3———3 | \l} 71: (8.95) Methacrolein
00 2‘0 4‘0 60 | 8!)| Ill(‘)O 1‘20 1210 lf‘SO léO 200 £ (691) ——

lon Mass (m/z) 75: (6.44) Ethanol
69: (5.90) Nonanal
99: (4.10) Decane
81: (3.44) Limonene
97: (3.03) Heptanal

* In the order of lon Mass, Magnitude, VOC Name above.
* Range of Q,/A = 0.35, 0.89 & 2.66 (L/s/m?).
* The underlined above are the major peaks.

GC/MS Analysis O O O [ Detected® Threshold® Threshold®

VOC Compound M.W. Formula CASH# L (Yes/No) ppb ug/m®
OXIRANE, ETHYL- 72 C4H80 106-88-7 C Yes O O
ﬁgglc ACID, ANHYDRIDE WITH FORMIC o8 C3H403 2258426 [ Ves O -
PENTANAL 86 C5H100 110-62-3 L[ (No) 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 L[ (No) O O
HEXANAL 100 C6H120 66-25-1 C Yes 13.80 57.5
BUTANOIC ACID 88 C4H802 107-92-6 C (No) 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C Yes 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404Si4 556-67-2 [ (No) O O
PENTANOIC ACID 102 C5H1002 109-52-4 C (No) 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 L (No) 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C (No) 12.60 60.30
NONANAL 142 C9H180 124-19-6 L[ Yes 2.24 13.5

 Q,/A=0.89 (L/s/m?), T=23.5°C, RH=31%.
b Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(h) Linoleum:

1. Material ID & Name: (8) LIN, Linoleum
2. Description on material: 2.8un linseed-oil-based
flooring, 52% wood meal
3. Test conditions:
T=23.9+0.02°C, RH =31.0 + 0.03%

100 N ;Lll;\T #l; O ISR 47: (100) Ethanol
e e B 61: (19.21) Acetic Acid
sl e T 43: (10.42) Acetic Acid
Sl T 33: (4.06) Methanol
& Y B T R R ey 45: (2.34) Acetaldehyde
R 59: (1.74) Acetone, propana
<2‘54°’"T”:*’ ’T”T”T”T”’Jﬁ”’r"ﬁ'"’ 55: (1.35) Hexanal
I I et Sl s e 48: (1.26) Some Isotope
N 57: (1.25) Acrolein
T 89: (1.23) Butanoic Acid
ol 1 l.ulf.‘.l"Tl T N S S 41: (0.98) Propanal
0 20 40 60 80 100 120 140 160 180 200

83: (0.72) Hexanal

103: (0.71) Pentanoic Acid
69: (0.58) Nonanal

117, 99: (0.51) Hexanoic Acid
97, 115: (0.32) Heptanal

lon Mass (m/z)

* In the order of lon Mass, Magnitude, VOC Name above.
* Range of Q,/A = 0.35, 0.89 & 2.66 (L/s/m?).

* The underlined above are the major peaks.

* Benzaldehyde (m/z=107): Within the uncertainty.

GC/MS Analysis O O O [ Detected® Threshold® Threshold”

VOC Compound M.W. Formula CAS# L (Yes/No) ppb ug/m’
OXIRANE, ETHYL- 72 C4H80 106-88-7 C (No) O O
ﬁg:gl'lc ACID, ANHYDRIDE WITH FORMIC o8 C3H403 2258426 [ Ves - -
PENTANAL 86 C5H100 110-62-3 L[ Yes 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 L[ Yes O O
HEXANAL 100 C6H120 66-25-1 C Yes 13.80 57.5
BUTANOIC ACID 88 C4H802 107-92-6 C Yes 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C Yes 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404sSi4 556-67-2 [ (No) O |
PENTANOIC ACID 102 C5H1002 109-52-4 [ Yes 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 LC Yes 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C Yes 12.60 60.30
NONANAL 142 C9H180 124-19-6 C Yes 2.24 13.5

? Q,/A=0.89 (L/s/m?), T=23.9°C, RH=31%.
b Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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(i) Wood:

1. Material ID & Name: (9) WOD, Wood
2. Description on material: 1mm untreated beech wood
parquets
3. Test conditions:
T=245+0.04°C, RH =31.0+0.03%

100 wob#aA . 61: (100) Acetic Acid

% fr— 43: (52.07) Acetic Acid

gl - L e 33: (30~47) Methanol
§70 ****i***i""i*"i*;%‘:jiﬂﬁ . 59: (32.11) Acetone
s ISR O O S S O U e 47: (19.13) Ethanol
S I S R R S B e, 45: (2.93) Acetaldehyde
840 777i77i77j777L;>‘i;/l'j~;"/ 62: (2.36) Some Isotope
S S I S e 44: (1.12) Some Isotope

30 e e e B e Il sl

O e 60: (1.08) 22?2
? R 75: (1.02) Ethanol
0 8 1(‘)0 1‘20 14‘10 lE‘SO léO 200

o * In the order of lon Mass, Magnitude, VOC Name above.
* - 2

lon Mass (m/z) Range of Q..,/A =0.31,0.81,2.42 & 7.14 (L/s/m").
* The underlined above are the major peaks.

GC/MS Analysis O O O [ Detected® Threshold® Threshold®

VOC Compound M.W. Formula CASH# L (Yes/No) ppb ug/m’
OXIRANE, ETHYL- 72 C4H80 106-88-7 C Yes O O
ﬁgﬁjﬂc ACID, ANHYDRIDE WITH FORMIC o8 C3H403 9258426 [ Ves O -
PENTANAL 86 C5H100 110-62-3 C (No) 6.03 21.90
ETHANOL, 2-NITRO-, PROPIONATE (ESTER) 147 C5H904N 5390-28-3 L[ (No) O O
HEXANAL 100 C6H120 66-25-1 C Yes 13.80 57.5
BUTANOIC ACID 88 C4H802 107-92-6 C (No) 3.9 14.50
HEPTANAL 114.2 C7H140 111-71-7 C (No) 4.79 22.90
CYCLOTETRASILOXANE, OCTAMETHYL- 296 C8H2404Si4 556-67-2 [ (No) O O
PENTANOIC ACID 102 C5H1002 109-52-4 C (No) 4.79 20.40
BENZALDEHYDE 106 C7H60 100-52-7 C (No) 41.70 186.00
HEXANOIC ACID 116 C6H1202 142-62-1 C (No) 12.60 60.30
NONANAL 142 C9H180 124-19-6 C (No) 2.24 13.5

? Q,/A=0.81 (L/s/m?), T=24.5°C, RH=31%.
b Odor threshold based on "VOCBASE" database by the Danish National Institute of Occupational Health.
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