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Abstract

A recurrent connectionist network has been designed to model sunspot data. Pre-
liminary experimental work shows that the network can produce competitive results
as compared to traditional autoregressive models. The method is not problem specific
and could be applied to other problems in dynamical system modeling, recognition,
prediction, and control fields. It is observed that statistical methods can be used to
design an appropriate neural network architecture.
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1 Introduction

The mysterious cycles in sunspot numbers have intrigued many investigators, including geol-
ogists, astronomers, climatologists, economists, historians, dendrochronologists, and statisti-
cians. Sunspots are high-intensity electromagnetic flares of solar radiation of largely unknown
and unpredictable causes. They have major effects on various terrestrial phenomena; an ex-
ample is the long-range weather prediction. Sun-weather relationships in the stratosphere
are well understood and sunspot numbers have to be taken into account in telecommunica-
tions and interplanetary flight. Moreover, sunspot variations are now proving important in
quaternary chronology and paleoclimatology.

Modeling sunspot data is a great challenge to statisticians. In the past half-century many
statisticians have tried to provide a functional relationship between the sunspot numbers.

As addressed by Izenman (1985),

“ ..the sunspot numbers have been shown to contain idiosyncrasies that sug-
gest, quite strongly, that the underlying statistical mechanism by which they are
generated is non-linear, non-stationary, and non-Gaussian, and as such they are
used primarily as a yardstick to compare and judge new statistical modeling and

forecasting methods.”

Even though sunspot number prediction via statistical methods has provided promising
results, new and traditional techniques are being explored with the hope of further improving
the results. Neural networks provide a promising tool for this task and are tested in this
paper.

Artificial neural networks are primitive models of the human brain. A neural network
can be briefly described as a directed graph with weighted edges. Each node in the network
is capable of simple nonlinear processing that typically involves calculating a weighted sum
of its inputs and then passing it through a nonlinear function. A series of experiments were
performed in which a neural network was trained to follow the curves depicting variations
in sunspot numbers (see Figure 1). This trained network was used to predict the sunspot
data for “future” periods on which the network had not been trained. These results were
compared with four autoregressive models obtained via statistical analysis and our results
compete well with traditional statistical methods. The prediction® of future observations
via neural networks is very good. However, our main result is evidence that traditional
statistical methods can be used in obtaining an architecture of the neural network that can
provide a better prediction than the statistical model alone because the network does not
depend on classical assumptions and is hence robust.

1In this paper we use “prediction” to describe the performance of a neural network on the data on which
it was trained, and “forecasting” to denote performance on new test data not used in the training phase.
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Figure 1. Sunspot cycles 0-21

The remainder of the paper is organized as follows. In Section 2 we describe the network
architectures that were designed and used in this study. In Section 3 the sunspot data
and statistical models are described. The results are presented in section 4. Finally, we

summarize our main findings in Section 5.

2 Network Architecture

In recent years many network models have been proposed for temporal sequence processing
tasks. Traditional feedforward neural networks can not learn to trace temporal sequences
since a given input will always produce the same output to track temporally changing pat-
terns. Some kind of recurrent connections are needed. By adding recurrent connections,
feedforward networks can be made to learn complex behavior (see discussions in Rumel-
hart(1986), Gallant(1988), Elman(1988), Jordan(1986), Williams(1988)). In the present
work, we choose a rather general scheme: a three-layer feedforward network with a fully-
connected hidden layer. (See figure 2 for a three-layer three units in the hidden layer fully

connected network.)
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Figure 2. A feedforward neural network with
a fully-connected 3-unit hidden layer

The proposed network has a single unit input layer, a single unit output layer, and a
fully-connected hidden layer. All units map real-value inputs to real-value outputs. For
network training and experimentation the sunspot data are normalized into real numbers
within the range [0, 1].

We experimented with a variable number of hidden layer units ranging between two to
eighteen units. The best performance, measured in terms of mean square error (MSE), is
offered by a network with eleven hidden larger units. This is an interesting observation
because the sunspot data have also shown peaks that occur cyclically with a frequency of
almost eleven years. All experimental results reported in Section 4 are based on the network

of 11-unit in the hidden layer.

3 Network Training

The network training phase can be described as follows. In each training step an input value,
i.e., a normalized sunspot number of some year, is presented to the network. The network
is asked to predict the next value in the sunspot number sequence. The error between the
predicted value and the value actually observed is then measured and propagated backwards
along both feedforward connections and recurrent connections. The weights between any
two nodes are modified in the same way as that in the back propagation algorithm. The
interconnections between the nodes in the hidden layer do not cause any major difficulty due
to the unfolding technique [11] which treats a recurrent network as an unfolded feedforward
network. In the back-propagation phase, at each time step the hidden units will receive error
values, not only from the output node, but also from other hidden units which are directly

connected to them.
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Figure 3. Data set 1: Overall error during training

In training the network, a small learning rate gave better performance, thus indicating
that the error surface of the problem has many local minima. In all training cases we chose a
learning rate of 0.3, and an associated momentum term of 0.6. The overall mean square error
was calculated repeatedly to monitor the training performance. Behavior of MSE plotted
against time is shown in Figure 3 for one of the four experiments described below. The
number of iterations required to train the network varied for each experiment and ranged

from 5000 to 30000.

4 Experiments

We have used sunspot data taken from Anderson (1971) and Schove (1983). In our exper-
iments we have processed only the annual average sunspot numbers, although half yearly
data are also available and have been studied in statistical literature. Two sources of data
quoted above offer slightly different data for some years. In such cases we have used the
data in Anderson (1971).

Our results are based upon the comparisons between the predictive and forecasting abil-
ities of our network model and four well-known autoregressive (AR) statistical models. The
autoregressive models are briefly described below.

[NOTATION: “z;_;” denotes the sunspot numbers observed in the ¢-th year preceding the

year t currently being considered.]

Model 1: z, = 1.239z;-; — 0.55z-2 + 0.128z;_

Schaerf (1964) proposed to use this model based on annual sunspot data for the period
1749-1924. In this model z; is expressed as a function of z,_y, z;_2, and z;_g. This

4



implies that, according to this model, the sunspot number in the year ¢ can be explained
in terms of the sunspot numbers observed at years t —1,¢ — 2, and £ — 9.

Model 2: z; = 14.9 + 1.32z;_, — 0.63z;_,

Box and Jenkins (1970) proposed this model based on annual data for the period 1770-
1869. Note that in this model, as in the previous model, z; is expressed in terms of
Zi—1 and T;—s.

Model 3: z; = 5.055 + 1.250x;_; — 0.538z:—2 + 0.189z;_¢
Morris (1977) proposed this model based on annual data for the period 1755-1964.

Model 4: z;, = 9.8 +1.192;,_; — 0.53z;-2 + 0.242;_9 — 0.10x;_18

The model proposed by Per Hokstad (1983) is based on annual data for the period
1705-1968 and suggests a period of 18 years.

It should be noted here that there exist many other models more complex than the
autoregressive models. For instance, the outburst models discussed in Morris (1977) is one
such class. We do not consider them here because the main goal of this paper is not to
find a better model but to show that a neural network can be used toward the purpose of
forecasting sunspot numbers.

For a fair comparison, in each set of four cases the neural network was trained on the
same data set that was used in developing the AR model. Suppose that the training set
consists of data from year t; to t;; performance of the neural network was compared with
the corresponding AR model in its ability to:

1. Predict sunspot numbers over the training period, i.e., for years t; to ¢;.

2. Forecast sunspot numbers for each year ¢ given the data for ¢t — 1, t — 2, etc., for
t=ti+1,1=1,...,12.

3. Forecast sunspot numbers for years ¢;41,...,%41c based on data available up to ¢; only.

4. Forecast sunspot number for years #;41,...,%s5 based on data available up to #; only.

To further emphasize the third and fourth comparison above, the AR and neural network
models forecast the future data for years ¢i4; : ¢ > 0 based on data from ¢; to ¢; only. These
forecasts are then compared with the actually observed data that is available up to 1980.
Since models 3 and 4 use data up to 1964 and 1968, respectively, it is not possible to forecast
for the next 55 years and compare it with actually observed data. Hence, in the cases of
models 3 and 4 and fourth comparison we have trained the networks based on the data up
to year 1925.



5 Experimental Results

In this section we present the comparative results both by plotting graphs of predicted
vs. actual data and also by calculating the mean square error (MSE). Both methods of
comparison are meaningful because, for example, the MSE may show a large value due
to one or two large deviations only but that could be noted in the graphical comparison.
As stated above, an AR model is compared with the corresponding neural network in (i)
learning, i.e., how well the network predicts the data used in its training, (ii) in forecasting
sunspot numbers with a lag time of one year, and (iii) in forecasting the sunspot numbers

for the next few years.

5.1 Test 1: Comparison on the Training Data Set

The neural network predictions are tested against the corresponding AR models. Recall that
in each case the network is trained on the same data set that was used in the AR modeling.
The MSE results are shown in Table 1. It is observed that the neural network has better
performance than the corresponding AR model (offers lower mean square error) for all four

models.

Case 1 2 3 4
MSE Models | 680.51 | 229.0 | 235.51 | 253.16
Network | 79.73 { 87.76 | 93.16 { 90.60
Models 059 | 0.33| 0.31] 032
(“—MS-E Network | 0.20| 020] 0.20] 0.19

mean

Table 1. Testing against the training data set
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Figures 4 to 7 show how well the network and the AR model predictions match with the
actual data. From the figures it is clear that the network prediction follows the actual data

more closely than the model prediction.

5.2 Test 2: Lag One Forecasting

In this test, each AR model and our network were asked to forecast the next year’s sunspot
numbers immediately following the training time period, and such predictions are carried
out for a period of 12 years that approximates one sunspot cycle. In other words, this test
requires models to look only one year ahead during forecasting, and we always use actual
(observed) data at years ¢ — 1, 1 — 2, etc. to forecast the number at year ¢.

The quantitative result is shown in Table 2. Again we see that the MSE’s are higher for
all four AR models than for the corresponding neural network. The neural network performs
better than the corresponding AR model as verified from the graphical comparison also.

Case 1 2 3 4
MSE | Models | 692.07 | 501.02 | 292.27 | 438.02
Network | 150.58 | 376.37 | 120.98 | 277.13
Models 061 045 0.29| 0.29
YMSE | Network | 0.28| 0.39| 0.19| 0.23

meagn

Table 2. Short-range prediction test

Figures 8 to 11 show the comparisons of the results produced by AR models and our
represents the observed data, ------ represents the network

network. (In Figures 8 to 15
results and,-—-— represents the model results.)
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Figure 8. A 12-year prediction for the time period 1749-1924:
comparison between the network and Schaerf (1964) model
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Figure 11. 12-year prediction for the time period 1705-1968:
comparison between the network and the model of Per Hokstad (1983)

5.3 Test 3: 12-Year Forecasts

As mentioned before, these forecasts are based on the data predicted by the AR models and
the neural network using only the training set. More specifically, the forecasts are made for
lag times 1 through 12 using the data in the training set only. The results are shown in

Table 3.

Case 1 2 3 4
MSE | Models | 4298.64 | 810.44 | 514.21 | 1218.98
Network | 673.55 | 342.60 | 854.07 | 829.60
Models 1521 057 0.38 0.48
¥YMSE | Network 060 | 0.37| 050 0.39

mean

Table 3. The result of a 12-year free prediction

It is observed that the network forecasts, measured in terms of MSE, are worse than the
forecasts given by the AR model of Morris (1977). Neural network forecasts are superior
(smaller MSE) in the remaining three cases. However, a closer look at the graphs indicates
that this could be explained by the large difference between forecast value and observed
value at only a few points; the network forecasts seem to follow the actually observed data

more closely for most years.

13



5.4 ‘Test 4: 55-Year Forecasts

This is a long-range forecasting task. The task is simple but as a test of a model it is much
more difficult than the previous tests; some AR models simply give no prediction at all after
one or two cycles. Table 4 shows the quantitative results.

Case - 1 2 3 4
MSE [ Models | 7162.73 [ 840.91 | 2081.26 | 2742.06
Network | 1669.14 | 343.27 | 1227.08 | 3435.38
Models 126 | 073 0.66 | 0.76
| YMSE | Network | 0.61| 047| 051 0.85

Table 4. The result of 55-year forecasts

The forecasts produced by Model 1 and 2 decay rapidly. Model 1 is a 9-th order model,
and so is Model 3. The only difference between these two models is that the contribution of
the lag 9 term (coeflicient of z,_g) of Model 1 is smaller than in Model 3.

In these 55-year forecasts, the performance of the neural network is superior to the
forecasts of the corresponding AR models for the first three cases and inferior in the fourth
case. However, as in the 12-year forecasts above, the mean square error does not explain the
behavior of models as well as the comparisons in Figures 12 to 15. Note that the interval
between sunspot cycle 18 and 19 (years 1940 to 1950) is only about 9.5 years, inconsistent
with the other years. Even though both the neural network and Per Hokstad’s model (see
Figure 15) missed the peak positions of the cycles, our network does perform better in
predicting the maximum number of sunspots in those cycles.

t Number
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Figure 12. Result of a 55-year free prediction for the time period 1749-1924:
comparison between network and the model of Schaerf (1964)
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6 Discussion

Our preliminary results indicate that the proposed neural network can produce very good
results in modeling sunspot cycles, especially when doing long-range forecasting. Since the
network architecture and training scheme used in this work are both general, we have reason
to believe that this method could be applied to other temporal sequence processing problems,
such as in dynamic system recognition, behavior prediction, and control. More theoretical
and empirical work needs to be done to explore the capabilities and limitations of these types
of networks (and other recurrent networks as well).

At this stage, we do not have a clear explanation regarding the internal behavior of
the network. It is not a coincidence that the best results were produced by the network
with the same number of hidden units as the generally agreed upon length of sunspot cycle.
One speculation is that the hidden units perform some kind of state transitions, like finite
automata, to realize the periodic behavior of sunspot cycles. It follows that the knowledge
representation within the hidden layer must be localized. But this conjecture is not supported
by analysis of the outputs of hidden units. During a 55-year forecast test, all hidden units
actively contribute some potentials to the network output throughout the entire process. All
of the hidden units have similar cyclic properties, but no state transition could be found.

We also noticed the phenomenon that when more than 11 hidden units are used in a
neural network the majority of those units become inactive; namely, they produce constant
outputs throughout training cycles. Although the reason is not clear yet, this phenomenon
does hint that we may be able to construct a self-organizing system, using a systematic way
to eliminate the redundant hidden units and establish the final network. This method might

16



be more useful in forecasting problems where the processed temporal sequences do not have

explicitly identifiable cycles.
We believe that the prediction performance of our network can be improved by further

adjusting network configuration and training parameters. It is our belief that the network
configuration design can be aided by statistical modeling. This is because models 3 and 4,
which contain 9-year and 18-year autoregressive components, do better prediction than the
other two models that do not contain these terms; the neural network also contains 11 units
in the hidden layer (a number closer to 9 and 10.5; 10.5 is considered to be the cycle length

in sunspot numbers).
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