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ALMOST SPLIT MORPHISMS, PREPROJECTIVE ALGEBRAS AND

MULTIPLICATION MAPS OF MAXIMAL RANK

STEVEN P. DIAZ AND MARK KLEINER

Abstract. With a grading previously introduced by the second-named author, the multiplica-
tion maps in the preprojective algebra satisfy a maximal rank property that is similar to the
maximal rank property proven by Hochster and Laksov for the multiplication maps in the com-
mutative polynomial ring. The result follows from a more general theorem about the maximal
rank property of a minimal almost split morphism, which also yields a quadratic inequality for
the dimensions of indecomposable modules involved.

1. Introduction

Let k be a field and let R be the polynomial ring in n commuting variables over k. Let Ri be
its ith graded piece consisting of homogeneous polynomials of degree i. A result of Hochster and
Laksov [4] says that if i ≥ 2 and V ⊂ Ri is a general subspace then the natural multiplication map
from V ⊗R1 to Ri+1 has maximal rank, that is is either injective or surjective, and it is not known
what happens if one replaces R1 by Rd for d > 1. One may wonder which other graded rings have
a similar property.

In [5] a new grading on the preprojective algebra was introduced. In this paper we show that
with this grading, the preprojective algebra of a finite quiver without oriented cycles satisfies a
property analogous to the Hochster-Laksov property for polynomial rings, and much of our proof
is quite similar to their proof. At one point the proof for preprojective algebras becomes easier
than the proof for polynomial rings: some of the more complicated dimension counts needed for
polynomial rings are not needed for preprojective algebras. This allows us to obtain a result for
preprojective algebras that is stronger than the analogous result for polynomial rings.

The key to making things work is the fact that the multiplication-by-arrow maps into a fixed
homogeneous component of the infinite dimensional (in general) preprojective algebra give rise
to a minimal right almost split morphism of modules over the finite dimensional path algebra
of the quiver [5], which implies the maximal rank property. In fact we show that a minimal
right almost split morphism g : B → C of finite dimensional modules over a k-algebra satisfies
a maximal rank property analogous to the Hochster-Laksov property for polynomial rings, and if
C is not projective and B1, . . . , Bl are the nonisomorphic indecomposable summands of B then
dimk C < (dimk B1)

2 + · · ·+(dimk Bl)
2. We do not know what happens if multiplication by arrows

is replaced by multiplication by paths of fixed length greater than one.
There is a natural dual to the Hochster-Laksov maximal rank property, and the two properties

always occur simultaneously. We give two explanations of this fact, one general homological and
the other based on the vector space duality D = Homk( , k). As a consequence, the multiplication-
by-arrow maps out of a fixed homogeneous component of the preprojective algebra satisfy the dual
Hochster-Laksov maximal rank property.
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2 STEVEN P. DIAZ AND MARK KLEINER

The organization of the paper is as follows. In Section 2 we prove a theorem that gives a general
situation in which one can obtain a maximal rank property analogous to the Hochster-Laksov
property for polynomial rings. This general situation does not include the polynomial ring as a
special case. In Section 3 we review some facts about almost split morphisms and preprojective
algebras and then show that almost split morhisms in general and the preprojective algebra in
particular fit into the general set up of Section 2. In Section 4 we use the material in Sections
2 and 3 to obtain results for the preprojective algebra that look very analogous to the Hochster-
Laksov result for polynomial rings. Then we conclude with some examples to illustrate the results.

In this paper for simplicity we work over a fixed algebraically closed field k and dim always
means dimk. For unexplained terminology we refer the reader to [1].

2. The General Theorem

Let V, V, ..., Vl,W,W, ...,Wl, U be finite dimensional vector spaces. Let T be a linear trans-
formation from the direct sum of the tensor products V ⊗W, V ⊗W, ... ,Vl ⊗Wl to U .

(2.1) T :

l
⊕

i=1

(Vi ⊗Wi) → U

Definition 2.1. We say that T satisfies the right omnipresent maximal rank property if and only
if for every choice of subspaces W ′

i ⊂ Wi for i = 1, ..., l the restriction of T to the direct sum of
the tensor products V1 ⊗W ′

1, V2 ⊗W ′
2, ..., Vl ⊗W ′

l has maximal rank, that is, is either injective or
surjective.

Notice that if T satisfies the right omnipresent maximal rank property then so does its restriction
to ⊕l

i=1Vi ⊗ W ′
i , and T must itself have maximal rank. Every injective T satisfies the right

omnipresent maximal rank property. The interesting case is when T is surjective but not injective.
Denote by End (Vi) the k-algebra of linear operators on Vi. The tensor product Vi ⊗Wi is a left

End (Vi)-module by means of ϕi · (vi ⊗wi) = ϕi(vi)⊗wi, ϕi ∈ End (Vi), vi ∈ Vi, wi ∈Wi. Applying
this to each term of the direct sum one obtains a bilinear evaluation map

e :

l
∏

i=1

End (Vi) ×
l
⊕

i=1

(Vi ⊗Wi) →
l
⊕

i=1

(Vi ⊗Wi).

Denote
∏l

i=1 End (Vi) by B. The map e defines a structure of a left B-module on
⊕l

i=1(Vi ⊗Wi).
Notice that B has dimension Σ(dimVi)

2. Let Pi be the projective space of one dimensional sub-

spaces of Vi⊗Wi and let P be the projective space of one dimensional subspaces of
⊕l

i=1(Vi ⊗Wi).
Notice that P has dimension Σ(dimVi dimWi) − 1. We shall study the product B × P together
with its two projection maps π1 onto B and π2 onto P .

Since the evaluation map e is bilinear, we may conclude that the inverse image under e of KerT
is a Zariski closed subset of the domain of e. Furthermore using bilinearity again we see that
e−1(KerT ) is the affine cone over a Zariski closed subset of B × P . We denote this subset by
Y . For each i from 1 to l let Xi be an irreducible quasiprojective subset of Pi and let C(Xi) be
its corresponding affine cone in Vi ⊗Wi. Let X be the irreducible quasiprojective subset of P

corresponding to C(X) × C(X) × ...× C(Xl). Notice that dimX =
∑l

i=1 dimC(Xi) − 1.

Theorem 2.1. Assume that T satisfies the right omnipresent maximal rank property and that
∑l

i=1 dimC(Xi) ≤ dimU . Then π1(π
−1
2 (X) ∩ Y ) is contained in a proper Zariski closed subset of

B.

If T is injective then Y is empty and the result trivially follows. Thus we may assume that T
is surjective. To proceed with the proof we shall divide Y into two pieces based on the following



PREPROJECTIVE ALGEBRAS AND MULTIPLICATION MAPS OF MAXIMAL RANK 3

easy statement, and then deal with each piece separately. Denote by D the contravariant functor
Homk( , k).

Lemma 2.2. Let V and W be k-vector spaces and let α : V ⊗W → Homk(D V,W ) be the k-linear
map given by α(v ⊗ w)(f) = f(v)w, v ∈ V,w ∈ W, f ∈ DV (α is an isomorphism if dimV < ∞).
For x ∈ V ⊗W denote by End(V )x the cyclic End(V )-submodule of V ⊗W generated by x. Then
End(V )x = V ⊗ Imα(x).

Proof. We have x =
∑s

i=1 vi ⊗ wi. If s is the smallest possible, the sets of vectors {v1, . . . , vs}
and {w1, . . . , ws} are linearly independent [2, Theorem (1.2a), p. 142] so Imα(x) is the span of
{w1, . . . , ws} and the rest is clear. �

Definition 2.2. Let αi : Vi ⊗Wi → Homk(D Vi,Wi) be the k-linear map described in Lemma 2.2,
i = 1, . . . , l. If xi ∈ Vi ⊗Wi and 0 6= c ∈ k, then Imαi(xi) = Imαi(cxi), so if p ∈ P is represented
by [x1, . . . , xl], xi ∈ Vi ⊗Wi, then for each i the subspace Imαi(xi) of Wi is independent of the

choice of representative for p. We set Y = {(b, p) ∈ Y :
∑l

i=1(dim Vi)(rankαi(xi)) < dimU} and
Y = Y − Y1.

Lemma 2.3. Y = Y ∪ Y where Y is a closed subset of Y , and Y is an open subset of Y.

Proof. That Y = Y∪Y is obvious. For the other two statements consider the projection onto the
second factor π2 : B×P → P and note that Y (Y) is the intersection of Y with the inverse image
of the closed (open) subset of P consisting of points corresponding to tuples of tensors satisfying
∑l

i=1(dimVi)(rankαi(xi)) < (≥) dimU . �

Lemma 2.4. Assume that T satisfies the right omnipresent maximal rank property. Suppose that
(b, p) ∈ Y and b = [ϕ1, ϕ2, ..., ϕl]. Then for some i, ϕi is not an isomorphism.

Proof. If x = [x1, . . . , xl] represents p, then T (bx) = T ([ϕ1 · x1, . . . , ϕl · xl]) = 0 because (b, p) ∈ Y1.

By Lemma 2.2, Bx =
⊕l

i=1 End(Vi)xi =
⊕l

i=1 Vi ⊗ Imαi(xi), so the restriction of T to Bx is
injective because (b, p) ∈ Y1 and T satisfies the right omnipresent maximal rank property. Since
T (bx) = 0 then bx = [ϕ1 · x1, . . . , ϕl · xl] = 0 whence ϕi · xi = 0 for all i. Because p is a point in a
projective space, at least one xi is not equal to 0. For this i, ϕi is not an isomorphism. �

Lemma 2.5. Assume that T satisfies the right omnipresent maximal rank property and that
∑l

i=1 dimC(Xi) ≤ dimU . Suppose π−1
2 (X) ∩ Y is nonempty. Then π−1

2 (X) ∩ Y has Krull
dimension at most Σ(dim Vi)

2 − 1, one less than the dimension of B.

Proof. As with Lemma 2.3 we consider the projection map onto the second factor π2 : B×P → P .

Let X ⊂ X be the set of points p such that
∑l

i=1(dim Vi)(rankαi(xi)) ≥ dimU for any x =
[x1, . . . , xl] representing p. Since X is open in X and by assumption nonempty, dimX = dimX .
Pick any point p in X and, identifying B with B × {p}, consider the composite T ′ : B → U of

T and the k-linear map B →
⊕l

i=1(Vi ⊗Wi) sending b to bx. Clearly KerT ′ = π−1
2 (p) ∩ Y and

ImT ′ = T (Bx) = T (
⊕l

i=1(Vi ⊗ Imαi(xi))) (use Lemma 2.2). From the assumptions on the ranks
of the αi(xi) and that T satisfies the right omnipresent maximal rank property, we conclude that
T ′ is surjective. We then conclude that dim (π−1

2 (p) ∩ Y) = dimB − dimU .

Having computed the dimensions of the fibers of π−1
2 (X) ∩ Y over X2 we then see that the

dimension of π−1
2 (X)∩Y equals dimX+dimB−dimU =

∑l

i=1 dimC(Xi)−1+dimB−dimU ≤
dimB − 1 = Σ(dim Vi)

2 − 1. �

The proof of the theorem is now easy.
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Proof of theorem. By Lemma 2.4 the image of π−1
2 (X) ∩ Y in B will be contained in the proper

closed subset of B consisting of points where at least one ϕi is not an isomorphism. By Lemma
2.5 π−1

2 (X) ∩ Y has dimension less than that of B and so its closure also does. Since π1 is a

projective morphism, the image in B of the closure of π−1
2 (X) ∩ Y will be closed and have

dimension less than that of B. Since by Lemma 2.3 Y = Y ∪ Y we are done. �

Corollary 2.6. Assume that T satisfies the right omnipresent maximal rank property. Make a
choice of subspaces Zi ⊂ Vi ⊗Wi, i = 1, ..., l. Then there exists a dense Zariski open subset A ⊂ B
such that if [ϕ1, ..., ϕl] ∈ A then the restriction of T to the direct sum of the ϕi(Zi) has maximal
rank.

Proof. We first do the case where
∑l

i=1 dim (Zi) ≤ dim (U). In Theorem 2.1 set Zi = C(Xi).

Choose A to be the complement of any proper Zariski closed subset of B containing π1(π
−1
2 (X)∩Y ).

For [ϕ1, ..., ϕl] ∈ A,
⊕l

i=1 ϕi(Zi) intersects the kernel of T only in 0. Thus the restriction of T to
⊕l

i=1 ϕi(Zi) is injective. When
∑l

i=1 dim (Zi) = dim (U) it is also surjective.

For the case where
∑l

i=1 dim (Zi) > dim (U) choose subspaces Z ′
i ⊂ Zi such that

∑l

i=1 dim (Z ′
i) =

dim (U). By the previous case we find A such that if [ϕ1, ..., ϕl] ∈ A then the restriction of T to
⊕l

i=1 ϕi(Z
′
i) is surjective, so the restriction of T to

⊕l

i=1 ϕi(Zi) is also surjective. �

Corollary 2.7. Assume that T is surjective and satisfies the right omnipresent maximal rank
property. Fix integers ai, 0 ≤ ai ≤ (dimVi)(dimWi), i = 1, ..., l, such that

∑

ai = dimU . For
each i choose ai linearly independent elements m(i, j), 1 ≤ j ≤ ai, of Vi ⊗Wi. Then there exists
a dense Zariski open subset A ⊂ B such that if [ϕ1, ..., ϕl] ∈ A then the elements T (ϕi(m(i, j)))
form a basis for U .

Proof. In Corollary 2.6 set Zi equal to the span of the m(i, j)’s. �

Definition 2.3. We say that T satisfies the left general maximal rank property if and only if for
a general choice of subspaces V ′

i ⊂ Vi for i = 1, ..., l the restriction of T to ⊕l
i=1(V

′
i ⊗Wi) has

maximal rank, that is, is either injective or surjective.

By a general choice of subspaces we mean the following. Once the dimensions of the V ′
i ’s to

be chosen are fixed, the set of all possible choices of V ′
i ’s can be identified with a product of

Grassmanians. We mean that there exists a Zariski open dense subset of that product such that if
the choice of V ′

i ’s comes from that set, then the restriction of T has maximal rank.
Similar to Definitions 2.1 and 2.3 one can define what it means for the map T of (2.1) to satisfy

the left omnipresent or right general maximal rank property. With these definitions, we leave it to
the reader to interchange appropriately the words “left” and “right” in the above assertions and
obtain true statements. Of course, this comment also applies to the remainder of the section.

Corollary 2.8. If T satisfies the right omnipresent maximal rank property then T satisfies the left
general maximal rank property.

Proof. Make a choice of subspaces V ′
i ⊂ Vi for i = 1, ...l. In Corollary 2.6 set Zi = V ′

i ⊗Wi. Notice
that ϕi(V

′
i ⊗Wi) = ϕi(V

′
i )⊗Wi. A general tuple of endomorphisms [ϕ1, ..., ϕl] applied to a specific

tuple of subspaces [V ′
 , ..., V

′
l ] gives a general tuple of subspaces. �

In Section 4 we will give examples to show that the right omnipresent maximal rank property
does not imply the left omnipresent maximal rank property and the right general maximal rank
property does not imply the left general maximal rank property.
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We now indicate how to dualize the above results of this section. Let V1, V2, ..., Vl,W1,W2, ...,Wl,
Q be finite dimensional vector spaces and let

(2.2) S : Q→
l
⊕

i=1

(Vi ⊗Wi)

be a linear transformation.

Definition 2.4. We say that S satisfies the right omnipresent maximal rank property if and only
if for every choice of subspaces W ′

i ⊂ Wi for i = 1, ..., l the composition of S with the linear
transformation

⊕l
i=1(1Vi

⊗ τi) : ⊕l
i=1(Vi ⊗Wi) → ⊕l

i=1(Vi ⊗ (Wi/W
′
i ))

has maximal rank, that is, is either injective or surjective, where τi : Wi → Wi/W
′
i is the natural

projection. And we say that S satisfies the left general maximal rank property if and only if
for a general choice of subspaces V ′

i ⊂ Vi for i = 1, ..., l the composition of S with the linear
transformation

⊕l
i=1(σi ⊗ 1Wi

) : ⊕l
i=1(Vi ⊗Wi) → ⊕l

i=1((Vi/V
′
i ) ⊗Wi)

has maximal rank, where σi : Vi → Vi/V
′
i is the natural projection.

The following lemma shows that the question of whether a map of the type (2.1) satisfies the
omnipresent or general maximal rank property is equivalent to the same question for a map of the
type (2.2).

Lemma 2.9. Let

0




y

B′

i





y

0 −−−−→ A
f

−−−−→ B
g

−−−−→ C −−−−→ 0

q





y

B′′





y

0

be an exact diagram in an abelian category. Then gi is monic (epi) if and only if qf is monic
(epi).

Proof. By the 3 × 3 lemma the following commutative diagram is exact.
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0 0 0




y





y





y

0 −−−−→ Ker gi −−−−→ B′ gi
−−−−→ Im gi −−−−→ 0

h





y
i





y

j





y

0 −−−−→ A
f

−−−−→ B
g

−−−−→ C −−−−→ 0

p





y

q





y





y

0 −−−−→ Cokerh
r

−−−−→ B′′ −−−−→ Coker j −−−−→ 0




y





y





y

0 0 0

Hence gi is monic if and only if Ker gi = 0, if and only if p is iso, if and only if qf is monic. The
rest of the proof is similar. �

Corollary 2.10. (a) If a linear transformation T :
⊕l

i=1(Vi ⊗Wi) → U is surjective, it satisfies
the left omnipresent (general) maximal rank property if and only if so does the inclusion KerT →
⊕l

i=1(Vi ⊗Wi).

(b) If a linear transformation S : Q →
⊕l

i=1(Vi ⊗Wi) is injective, then it satisfies the left

omnipresent (general) maximal rank property if and only if so does the projection
⊕l

i=1(Vi ⊗Wi) →
CokerS.

Proof. The statement follows immediately from Lemma 2.9. �

We note that if the map T of Corollary 2.10(a) is injective, it satisfies both the right omnipresent
and left general maximal rank property, and if T is neither surjective nor injective then it satisfies
neither of the properties. A similar remark applies to the map S of Corollary 2.10(b).

A different way to relate the maps of the types (2.1) and (2.2) is through the vector space duality
D.

Proposition 2.11. A linear transformation T : ⊕l
i=1(Vi ⊗Wi) → U satisfies the left omnipresent

(general) maximal rank property if and only if so does its dual DT : DU → ⊕l
i=1(DVi ⊗ DWi).

Proof. For i = 1, . . . , l let Xi be a subspace of Vi and fi : Xi → Vi the inclusion map, then
D fi : DVi → DXi is an epimorphism with KerD fi = X⊥

i = {φ ∈ DVi : φ(Xi) = 0} so that DXi
∼=

DVi/X
⊥
i . Therefore T ◦ (⊕l

i=1(fi ⊗ 1Wi
)) is monic (epi) if and only if (⊕l

i=1(D fi ⊗ 1D Wi
)) ◦DT is

epi (monic), if and only if (⊕l
i=1(ψi ⊗ 1D Wi

)) ◦ D T is epi (monic), where ψi : DVi → DVi/X
⊥
i is

the natural projection. Note that Xi runs through the set of all subspaces of Vi if and only if X⊥
i

runs through the set of all subspaces of DVi. Hence T satisfies the left omnipresent maximal rank
property if and only if so does DT . For a fixed sequence of nonnegative integers di ≤ ni = dimVi,
the l-tuple (X1, . . . , Xi, . . . , Xl) runs through a dense open set of the product of Grassmanians
∏l

i=1G(di, Vi) if and only if (X⊥
1 , . . . , X

⊥
i , . . . , X

⊥
l ) runs through the corresponding dense open

set of the product of Grassmanians
∏l

i=1G(ni−di,DVi) under the isomorphism that is the product
of the natural isomorphisms D : G(di, Vi) → G(ni − di,DVi), see [3, p. 200]. Therefore T satisfies
the left general maximal rank property if and only if so does DT . �
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We end this section with a lemma showing that the right omnipresent maximal rank property
puts a restriction on the relative sizes of the vector spaces involved.

Lemma 2.12. (a) If T : ⊕l
i=1Vi ⊗Wi → U satisfies the right omnipresent maximal rank property

and T is surjective but not injective, then dimU <
∑l

i=1(dimVi)
2.

(b) If S : Q → ⊕l
i=1Vi ⊗Wi satisfies the right omnipresent maximal rank property and S is

injective but not surjective, then dimQ <
∑l

i=1(dimVi)
2.

Proof. (a) Suppose to the contrary that dimU ≥
∑l

i=1(dim Vi)
2. Let {vi1, ..., viki

} be a basis for
Vi. Express some nonzero element of KerT in the form

(

∑k1

j=1 v1j ⊗ w1j , . . . ,
∑ki

j=1 vij ⊗ wij . . . ,
∑kl

j=1 vlj ⊗ wlj

)

and let W ′
i equal the span of {wi1, ..., wiki

}. Then dim⊕l
i=1(Vi ⊗W ′

i ) ≤ dimU but the restriction
of T to ⊕l

i=1(Vi ⊗W ′
i ) is neither surjective nor injective because its kernel is not zero.

(b) Follows from (a) and Proposition 2.11. �

3. Almost Split Morphisms and Preprojective Algebras

We apply the results of Section 2 to representations of algebras which provide a large supply
of linear transformations of the form ⊕l

i=1(Vi ⊗ Wi) → U or Q → ⊕l
i=1(Vi ⊗ Wi). Let Λ be

an associative k-algebra, let mod Λ be the category of finite dimensional left Λ-modules, and
let g : B → C and f : A → B be morphisms in mod Λ. Replacing B with an isomorphic
module if necessary, we may assume that B = V n1

1 ⊕ · · · ⊕V nl

l where V1, . . . , Vl are nonisomorphic
indecomposable Λ-modules, l, n1, . . . , nl are nonegative integers, and V m stands for the direct sum
of m copies of V . For i = 1, . . . , l denote by Wi the k-space with a basis ei1, . . . , eini

, and for each
j = 1, . . . , ni denote by hij : Vi → Vi ⊗ keij the isomorphism of Λ-modules sending each v ∈ Vi to
v ⊗ eij . Let

(3.1) h : B → ⊕l
i=1(Vi ⊗Wi)

be the isomorphism in mod Λ induced by the hij ’s. Denote by gij : Vi → C and fij : A → Vi the
morphisms in mod Λ induced by g and f , respectively, and consider the morphisms Ti : Vi⊗Wi → C
and Si : A → Vi ⊗Wi defined by Ti(v ⊗ eij) = gij(v), v ∈ Vi, and Si(a) = (fij(a) ⊗ eij), a ∈ A,
respectively. Let

(3.2) T : ⊕l
i=1(Vi ⊗Wi) → C and S : A→ ⊕l

i=1(Vi ⊗Wi)

be the morphisms in mod Λ induced by the Ti’s and Si’s, respectively. It is straight forward to
check that

(3.3) g = Th and S = hf.

Proposition 3.1. Let g : B → C and f : A → B be morphisms in modΛ with B = ⊕l
i=1V

ni

i

where V1, . . . , Vl are nonisomorphic indecomposable Λ-modules. Let h be the isomorphism in (3.1),
let T and S be the morphisms in (3.2) constructed from g and f , respectively.

If g is a minimal right almost split morphism in mod Λ then:

(a) T satisfies the right omnipresent maximal rank property.
(b) For a general choice of k-subspaces Ui ⊂ Vi, the restriction of g to ⊕l

i=1U
ni

i has maximal
rank.

(c) If g is surjective then dimC <
∑l

i=1(dimVi)
2.

If f is a minimal left almost split morphism in mod Λ then:

(d) S satisfies the right omnipresent maximal rank property.
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(e) For a general choice of k-subspaces Ui ⊂ Vi, denote by σi : Vi → Vi/Ui the natural
projection. Then the linear transformation (⊕l

i=1σ
ni

i ) ◦ f has maximal rank.

(f) If f is injective then dimA <
∑l

i=1(dim Vi)
2.

If 0 → A
f
→ B

g
→ C → 0 is an almost split sequence in mod Λ then:

(g) dimB < 2
∑l

i=1(dimVi)
2 − 1.

Proof. (a) Since g is minimal right almost split, so is T by (3.3). If W ′
i is a subspace of Wi, the

Λ-module Vi⊗W ′
i is a direct summand of Vi ⊗Wi. Hence the restriction of T to ⊕l

i=1(Vi⊗W ′
i ) is an

irreducible morphism and thus is either a monomorphism or an epimorphism [1, Ch. V, Theorem
5.3(a) and Lemma 5.1(a)], so (a) holds. According to Corollary 2.8, T satisfies the left general
maximal rank property. In view of the structure of the isomorphisms hij constructed above, we
conclude that (b) holds. Part (c) is a direct consequence of (a), formula (3.3), and Lemma 2.12(a).

(d) The proof is similar to that of (a) using the analogous properties of minimal left almost split
morphisms.

(e) If f is surjective, the statement is clear. If f is not surjective, it is injective, and so is S
in view of formulas (3.3). By (d) and Corollary 2.10(b), the projection ⊕l

i=1(Vi ⊗Wi) → CokerS
satisfies the right omnipresent maximal rank property. By Corollary 2.8, it satisfies the left general
maximal rank property, and so does S by Corollary 2.10(b). Then f satisfies the desired property
in view of formulas (3.3).

Another way to prove (d) and (e) is to note that both D f and DS are minimal right almost
split morphisms in mod Λop, and then use (a), Corollary 2.8, and Proposition 2.11 together with
formulas (3.3).

(f) The proof is similar to that of (c), using Lemma 2.12(b).
(g) The formula follows from (c) and (f). �

Remark 3.1. (a) Lemma 2.12 holds when k is an arbitrary field. Hence so do parts (a), (c), (d), (f),
and (g) of Proposition 3.1; moreover, they hold if mod Λ is replaced by any full subcategory of an
abelian category closed under extensions and direct summands where the objects and morphism
sets are finite dimensional k-vector spaces and composition of morphisms is k-bilinear.

(b) Parts (a), (b), and (c) of Proposition 3.1 hold if g : B → C is an irreducible morphism with
C indecomposable, and parts (d), (e), and (f) hold if f : A→ B is an irreducible morphism with A
indecomposable. This follows from the observation after Definition 2.1 that the right omnipresent
maximal rank property of a linear transformation is inherited by its appropriate restrictions, and
from the dual statement.

(c) Parts (c), (f), and (g) of Proposition 3.1 imply that for a fixed number of nonisomorphic
indecomposable summands of the middle term of an almost split sequence, the summands cannot
be much smaller than the end terms of the sequence, i.e., the multiplicities of the summands cannot
be too large, and that there is a balance between the sizes of the end terms. Part (c) is false if the
morphism g is not surjective, and part (f) is false if the morphism f is not injective.

We will apply this in particular to the preprojective algebra where the grading introduced in [5]
allows us to interpret the multiplication-by-arrow maps into (from) a fixed homogeneous component
as a minimal right (left) almost split morphism of modules over the path algebra of the quiver.
We recall some facts from the latter paper.

For the remainder of this paper we fix a finite quiver Γ = (Γ0,Γ1) without oriented cycles with
the set of vertices Γ0 and the set of arrows Γ1. Let Γ̄ = (Γ̄0, Γ̄1) be a new quiver with Γ̄0 = Γ0

and Γ̄1 = Γ1 ∪ Γ∗
1, where Γ1 ∩ Γ∗

1 = ∅ and the elements of Γ∗
1 are in the following one-to-one

correspondence with the elements of Γ1: for each γ : t → v in Γ1, there is a unique element
γ∗ : v → t in Γ∗

1. To turn the path algebra kΓ̄ of Γ̄ over a field k into a graded k-algebra, we assign
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degree 0 to each trivial path et, t ∈ Γ0, and each arrow γ ∈ Γ1; degree 1 to each arrow γ∗ ∈ Γ∗
1;

and compute the degree of a nontrivial path q = δ1 . . . δr as deg q =
∑r

i=1 deg δi. Clearly, kΓ is
the k-subalgebra of kΓ̄ comprising the elements of degree 0.

Let N be the set of nonnegative integers. For all t ∈ Γ0, d ∈ N, let W t
d be the span of all those

paths in Γ̄ of degree d that start at t. Note that W t
d ∈ mod kΓ so

(3.4) kΓ̄ = ⊕
d∈N

⊕
t∈Γ0

W t
d

is a decomposition of kΓ̄ as a direct sum of its left kΓ-submodules
Let now a and b be any two functions Γ1 → k satisfying a(γ) 6= 0 and b(γ) 6= 0 for all γ ∈ Γ1.

If s(γ) is the starting point and e(γ) is the end point of γ ∈ Γ1, for each t ∈ Γ0 set

mt =
∑

γ∈Γ1

s(γ)=t

a(γ)γ∗γ −
∑

γ∈Γ1

e(γ)=t

b(γ)γγ∗

and denote by J the two-sided ideal of kΓ̄ generated by the element
∑

t∈Γ0

mt =
∑

γ∈Γ1

[γ∗, γ]a,b

where [γ∗, γ]a,b = a(γ)γ∗γ − b(γ)γγ∗∗ is the (a, b)-commutator of γ∗ and γ. The factor algebra
Pk(Γ)a,b = kΓ̄/J is the (a, b)-preprojective algebra of Γ.

Since the elements mt are homogeneous of degree 1, J is a homogeneous ideal containing no
nonzero elements of degree 0. Hence Pk(Γ)a,b is a graded k-algebra, and the restriction to kΓ of
the natural projection π : kΓ̄ → Pk(Γ)a,b is an isomorphism of kΓ with the subalgebra of Pk(Γ)a,b

comprising the elements of degree 0; we view the isomorphism as identification. From (3.4) we get

Pk(Γ)a,b = ⊕
d∈N

⊕
t∈Γ0

V t
d

where V t
d = π(W t

d) ∈ mod kΓ. If γ ∈ Γ1 we write β = π(γ) and β∗ = π(γ∗). If q is a path in Γ̄
starting at t and ending at v, we call π(q) a path in Pk(Γ)a,b starting at t and ending at v. Then
V t

d is the span of all paths of degree d in Pk(Γ)a,b starting at t. Since we identify kΓ with π(kΓ),
we in particular identify et with π(et), t ∈ Γ0; γ with β = π(γ), γ ∈ Γ1; W

t
0 with V t

0 ; and we set
W t

−1 = V t
−1 = 0.

We need the following statement. When appropriate, the map (c) : X → Y denotes the right
multiplication by c.

Theorem 3.2. Suppose V t
d 6= 0 where t ∈ Γ0, d ∈ N.

(a) V t
d is indecomposable in mod kΓ, and V t

d
∼= V s

c in mod kΓ, s ∈ Γ0, c ∈ N, if and only if
t = s and d = c.

(b) The map gt
d :

(

⊕
s(γ)=t

V
e(γ)
d

)

⊕

(

⊕
e(γ)=t

V
s(γ)
d−1

)

−→ V t
d induced by the right multiplications

(a(γ)β) : V
e(γ)
d → V t

d , s(γ) = t, and (−b(γ)β∗) : V
s(γ)
d−1 → V t

d , e(γ) = t, where γ ∈ Γ1, is a
minimal right almost split morphism in mod kΓ.

(c) The map f t
d : V t

d −→

(

⊕
s(γ)=t

V
e(γ)
d+1

)

⊕

(

⊕
e(γ)=t

V
s(γ)
d

)

induced by the right multiplications

(β∗) : V t
d → V

e(γ)
d+1 , s(γ) = t, and (β) : V t

d → V
s(γ)
d , e(γ) = t, where γ ∈ Γ1, is a minimal

left almost split morphism in mod kΓ.

(d) If V t
d+1 6= 0 then 0 → V t

d

ft
d−→

(

⊕
s(γ)=t

V
e(γ)
d+1

)

⊕

(

⊕
e(γ)=t

V
s(γ)
d

)

gt
d+1

−→ V t
d+1 → 0 is an almost

split sequence in mod kΓ.
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Proof. These are parts of [5, Theorem 1.1 and Corollary 1.3] combined with well-known properties
of preprojective modules, see [1, VIII.1]. �

Applying parts (b) and (d) of Proposition 3.1 to Theorem 3.2, we obtain the following statement.

Corollary 3.3. (a) In the setting of Theorem 3.2(b), for a general choice of k-subspaces U
e(γ)
d ⊂

V
e(γ)
d and U

s(γ)
d−1 ⊂ V

s(γ)
d−1 , the restriction of gt

d to ( ⊕
s(γ)=t

U
e(γ)
d ) ⊕ ( ⊕

e(γ)=t
U

s(γ)
d−1 ) has maximal rank.

(b) In the setting of Theorem 3.2(c), for a general choice of k-subspaces U
e(γ)
d+1 ⊂ V

e(γ)
d+1 and

U
s(γ)
d ⊂ V

s(γ)
d , denote by σ

e(γ)
d+1 : V

e(γ)
d+1 → V

e(γ)
d+1 /U

e(γ)
d+1 and σ

s(γ)
d : V

s(γ)
d → V

s(γ)
d /U

s(γ)
d the natural

projections. Then the linear transformation (( ⊕
s(γ)=t

σ
e(γ)
d+1 ) ⊕ ( ⊕

e(γ)=t
σ

s(γ)
d )) ◦ f t

d has maximal rank.

Remark 3.2. As follows from Remark 3.1(b), if one leaves out any number of summands in the
direct sum of part (b) of Theorem 3.2 and replaces the map gt

d by its restriction to the sum of the
remaining summands, Corollary 3.3(a) will still hold. Likewise, if one leaves out any number of
summands in the direct sum of part (c) of Theorem 3.2 and replaces the map f t

d by its composition
with the projection onto the sum of the remaining summands, Corollary 3.3(b) will still hold.

The results of this section have dealt with left modules over a k-algebra Λ and with the right
multiplication-by-arrow maps in the preprojective algebra. One may ask if analogous results are
true for right Λ-modules and for the left mulitplication-by-arrow maps. We leave it to the reader to
state the analog of Proposition 3.1, and note that [5, Theorem 1.1 and Corollary 1.3] address left
multiplication by arrows in Pk(Γ)a,b by replacing W t

d and V t
d with Wt,d, the span of all those paths

in Γ̄ of degree d that end at t, and Vt,d = π(Wt,d), respectively. Since Vt,d is a finite dimensional
right kΓ-module for all t and d, with the appropriate replacements the analogs of Theorem 3.2 and
Corollary 3.3 hold. These remarks also apply to the considerations of Section 4.

4. Corollaries and Examples

In this section we strengthen Corollary 3.3 in a form that is analogous to the result of Hochster
and Laksov [4]. To help the reader see the analogy we shall first state their result.

Set R = k[x1, x2, ..., xr], the commutative polynomial ring graded by degree, and denote by Rd

its homogeneous piece of degree d. Let N(r, d) be the dimension of Rd as a vector space over k.
The following is then the result of Hochster and Laksov [4].

Theorem 4.1. Given an integer d ≥ 2, we determine an integer n by the inequalities

(n− 1)r < N(r, d+ 1) ≤ nr

and let s = N(r, d+ 1) − (n− 1)r. Then if F1, F2, ..., Fn are n general forms in Rd we have that
the (n− 1)r forms xjFi for j = 1, ..., r and i = 1, 2, ..., n− 1 together with the s forms xjFn for
j = 1, 2, ...s (in total N(r, d+ 1) forms) are a k-vector space basis for Rd+1.

By “general forms” they mean that there exists a dense Zariski open subset of the affine space
(Rd)

n such that if the n-tuple (F, F, ..., Fn) is chosen from that open set, then the conclusion
follows.

We wish to apply Corollary 2.7 to the maps gt
d of Theorem 3.2, which is possible according to

Proposition 3.1(a). To make the result clearly analogous to the result of Hochster and Laksov we
must set up our notation properly.

Fix a vertex t ∈ Γ0 and a nonnegative integer d. Let s1, s2, ..., sm be the distinct vertices that
have in Γ1 arrows from them to t, and let u1, u2, ...un be the distinct vertices with arrows in
Γ1 going from t to them. To match things up with the set up in Section 2, for i = 1, 2, ...,m
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let Vi = V si

d−1, let Wi be the k-linear span of the arrows β∗
i,j in Γ∗

1 going from t to si, and set

wi,j = −b(βi,j)β
∗
i,j . For i = m+ 1,m+ 2, ...,m+n = l let Vi = V

ui−m

d+1 , let Wi be the k-linear span

of the arrows βi,j in Γ1 going from t to ui−m, and set wi,j = a(βi,j)βi,j . For all i, we choose {wi,j}
as a basis for Wi and put the wi,j ’s in a column vector xi. Set U = V t

d . Let Mi be the vector

space of dimVi × dimWi matrices with elements in k. Let B′ be the affine space
∏l

i=1 V
dim Vi

i .
An element b′ of B′ is an l-tuple [b′1, b

′
2, ..., b

′
l] where each b′i is a dim Vi-tuple of elements of Vi,

written as a row vector. For b′ ∈ B′ and m(i) ∈ Mi, using ordinary matrix multiplication and
the multiplication and addition in the preprojective algebra, we see that b′im(i)xi is an element of
U = V t

d .

Corollary 4.2. Let d > 0 and V t
d 6= 0. Fix integers ai satisfying 0 ≤ ai ≤ (dim Vi)(dimWi),

i = 1, ..., l, and
∑

ai = dimU . For each i choose ai linearly independent elements of Mi and
call them m(i, j), 1 ≤ j ≤ ai. There exists a Zariski open dense subset E of B′ such that if
b′ = [b′1, b

′
2, ..., b

′
l] ∈ E, then the elements b′im(i, j)xi, 1 ≤ i ≤ l, 1 ≤ j ≤ ai, form a basis for

U = V t
d .

Proof. We already have a chosen basis for each Wi. Suppose we also choose a basis for each Vi.
The pairwise tensor products of these basis elements give a basis for Vi ⊗Wi, so we may identify
Vi ⊗Wi with Mi. We may also identify End (Vi) with V dim Vi

i by matching ϕi ∈ End (Vi) with
the image under ϕi of the chosen basis. Under these identifications the elements T (ϕi(m(i, j)))
appearing in Corollary 2.7 become identified with the elements b′im(i, j)xi appearing in Corollary
4.2. Thus Corollary 4.2 is a particular case of Corollary 2.7. �

With the proper choice of the m(i, j) we can get a corollary that sounds even more like the
result of Hochster and Laksov.

Corollary 4.3. Let d > 0 and V t
d 6= 0. For each i satisfying 1 ≤ i ≤ m, let β∗

i,j , 1 ≤ j ≤ dimWi,
be the new arrows going from t to si. For each i satisfying m+ 1 ≤ i ≤ l, let βi,j , 1 ≤ j ≤ dimWi,
be the old arrows going from t to ui−m. Choose positive integers ni, 1 ≤ i ≤ l, satisfying 1 ≤ ni ≤
dimVi and

∑l

i=1(ni − 1) dimWi < dimV t
d ≤

∑l

i=1 ni dimWi,

and set c = dimV t
d −

∑l

i=1(ni − 1) dimWi. Write c as a sum of nonnegative integers c = c1 + c2 +

... + cl, 0 ≤ ci ≤ dimWi. For a general choice of
∑l

i=1 ni elements Fi,k, 1 ≤ i ≤ l, 1 ≤ k ≤ ni,
where Fi,k ∈ V si

d−1 for 1 ≤ i ≤ m and Fi,k ∈ V
ui−m

d for m + 1 ≤ i ≤ l, the following dimV t
d

elements form a basis for V t
d :

Fi,kβ
∗
i,j for 1 ≤ i ≤ m, 1 ≤ k ≤ ni − 1, 1 ≤ j ≤ dimWi;

Fi,ni
β∗

i,j for 1 ≤ i ≤ m, 1 ≤ j ≤ ci;
Fi,kβi,j for m+ 1 ≤ i ≤ l, 1 ≤ k ≤ ni − 1, 1 ≤ j ≤ dimWi;
Fi,ni

βi,j for m+ 1 ≤ i ≤ l, 1 ≤ j ≤ ci.

Here in an inequality giving the range of possible j or k, if the number on the right is less than 1,
we simply mean there are no such j or k.

Proof. Choose the m(i, j)’s as follows. Note that ai = (ni − 1) dimWi + ci. For a fixed i, the ai

elements m(i, j) will be the (ni − 1) dimWi distinct matrices having a 1 in one place among the
(ni−1) dimWi positions available in the first (ni−1) rows of the dim Vi×dimWi matrices involved
and zeros elsewhere. The remaining ci elements m(i, j) have a 1 in one of the first ci places in the
ni-th rows, and zeros elsewhere. �

Corollary 4.4. (a) If d > 0 and V t
d 6= 0 then dimV t

d <
∑n

j=1

(

dimV
uj

d

)2
+
∑m

i=1

(

dim V si

d−1

)2
.
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If d ≥ 0 and V t
d+1 6= 0 then:

(b) 0 < dim V t
d <

∑n
j=1

(

dimV
uj

d+1

)2
+
∑m

i=1 (dimV si

d )2.

(c) 0 <

(

∑

s(γ)=t

dimV
e(γ)
d+1

)

+

(

∑

e(γ)=t

dimV
s(γ)
d

)

< 2
(

∑n

j=1

(

dimV
uj

d+1

)2
+
∑m

i=1 (dim V si

d )
2
)

−1

where γ ∈ Γ1.

Proof. This is a direct consequence of Theorem 3.2 and parts (c), (f), and (g) of Proposition
3.1. �

Example 4.1. This example shows that the Fi,j of Corollary 4.3 must be chosen generically. In
other words the right omnipresent maximal rank property does not imply the left omnipresent
maximal rank property. Let the quiver Γ have two vertices labeled 1 and 2 and one arrow β going
from 1 to 2. Γ̄ then has in addition one new arrow β∗ going from 2 to 1. For any choice of nonzero
functions a and b the relations become ββ∗ = β∗β = 0. In Theorem 3.2 set d = 1 and t = 2.
The map becomes V 1

0 → V 2
1 where V 1

0 has basis {e1, β}, and V 2
1 has basis {β∗}. The map is

multiplication by β∗ so e1 goes to β∗ and β goes to 0. Consider one dimensional subspaces of V 1
0 .

The one spanned by β maps to 0 and so does not surject onto V 2
1 , all others do surject onto V 2

1 .

Example 4.2. Here we show that if in Theorem 2.1 the hypothesis that T satisfies the right om-
nipresent maximal rank property is weakened to the right general maximal rank property, then
the conclusion might not follow. In other words the right general maximal rank property does not
imply the left general maximal rank property. Let V be a vector space of dimension 3 with basis
{v1, v2, v3}. Let W be a vector space of dimension 2 with basis {w1, w2}. Let U be the quotient of
V ⊗W by the subspace spanned by {v1⊗w1, v2⊗w1}. Finally let T : V ⊗W → U be the quotient
map. The only one-dimensional subspace W ′ of W such that V ⊗W ′ has nonzero intersection with
the kernel of T is the span of w1. Thus T satisfies the right general maximal rank property. Any
subspace V ′ of V of dimension 2 must have nonzero intersection with the span of {v1, v2}. Thus
V ′ ⊗W must have nonzero intersection with the span of {v1 ⊗w1, v2 ⊗w1}. This means that the
restriction of T to V ′ ⊗W cannot have maximal rank.
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