Syracuse University

SURFACE

Electrical Engineering and Computer Science

1998

Adaptive Linkage Crossover

Ayed A. Salman
Syracuse University, ayed@top.cis.syr.edu

Kishan Mehrotra
Syracuse University, mehrotra@syr.edu

Chilukuri K. Mohan
Syracuse University, ckmohan@syr.edu

College of Engineering and Computer Science

Follow this and additional works at: https://surface.syr.edu/eecs

6‘ Part of the Computer Sciences Commons

Recommended Citation

Salman, Ayed A.; Mehrotra, Kishan; and Mohan, Chilukuri K., "Adaptive Linkage Crossover" (1998).

Electrical Engineering and Computer Science. 56.
https://surface.syr.edu/eecs/56

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/56?utm_source=surface.syr.edu%2Feecs%2F56&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Adaptive Linkage Crossover

Ayed A. Salman, Kishan Mehrotra!, and Chilukuri K. Mohan
2-120 CST, Dept. of EECS
Syracuse University
Syracuse, NY 13244-4100
ayed/kishan/mohan@top.cis.syr.edu

ABSTRACT

Problem-specific knowledge is often implemented in search algorithms using heuristics to deter-
mine which search paths are to be explored at any given instant. As in many other Al search
methods, utilizing this knowledge will lead a genetic algorithm (GA) faster towards better results.
In many problems, crucial knowledge is to be found not in individual components, but in interre-
lations between those components. For such problems, we develop an interrelation (linkage) based
crossover operator that has the advantage of liberating GAs from the constraints imposed by the
fized representations generally chosen for problems. The strengths of linkages between compo-
nents of a chromosomal structure can be explicitly represented in a linkage matrix and used in
the reproduction step to generate new individuals. For some problems, such a linkage matrix is
known a priori from the nature of the problem. In other cases, the linkage matrix may be learned
by successive minor adaptations during the execution of the evolutionary algorithm. This paper

demonstrates the success of such an approach for several problems.

Keywords Genetic algorithms, crossover operators, deception, linkage probabil-

ities.

TAuthor for correspondence

1 Introduction

What is the role of crossover in a GA? Current explanations mention maintaining diversity
in the population while preserving good building blocks. What constitute good building
blocks? The Schema Theorem (Holland, 1975) and the Building Block Hypothesis (Gold-
berg, 1989) imply that successive generations contain an exponentially increasing number
of instances of short, low-order, high (sampled) fitness schema, assuming the use of 1-point
crossover (1PTX) and fitness-proportionate reproduction selection. However, these results
do not say anything about schema whose order or defining length is non-trivially large. If
a problem is such that the first and last components of individuals need to evolve together,
such linkages are so likely to be disrupted that an operator such as 1PTX becomes useless
at maintaining such linkages. As in the case of any other weak (general-purpose) operator,
there are as many problems for which 1PTX works well as those for which 1PTX does not
work well, paraphrasing the No Free Lunch Theorems (Wolpert and Macready, 1995). Some
deceptive problems can be solved using linear transformations that change representation
(Lippens and Vose, 1991) and hence linkage structure. Harik and Goldberg (1997) have
formulated a “Linkage friendly” crossover operator very similar to the two-point crossover
operator. However, discovering the linkages of distant components is difficult. By contrast,
we develop operators that work well by exploiting known linkages between the components

of chromosomes.

The incorporation of pleiotropy (one gene affects multiple traits) and polygeny (many
chromosomal components are responsible for a single trait) remains largely unexplored by
researchers in evolutionary computation, although these are believed to exist in “all sys-
tems with complex behavior” (Atmar, 1992). Is there any advantage to such complicated
many-to-many (gene-to-trait) coding mechanisms? We hypothesize that such mechanisms
do serve an additional purpose equivalent to encoding “linkage probabilities” that deter-
mine the likelihood with which different traits are inherited from the same parent during

crossover.

Distributed representations carry the advantages of fault tolerance and robustness,
which partially explains the method behind the madness of pleiotropy and polygeny in
biological evolution. In addition, we argue that these mechanisms indirectly code for elab-
orate representations of linkages between traits, transcending the limitations of the linear
sequencing of genes. If we view nature’s algorithm in terms of traits rather than genes,
what emerges is not a simple string (linear sequence) in which each element (trait) is con-

nected to its immediate neighbors. Instead, we find a complex of multiple connections

between different traits implemented by the connections between multiple genes (for each

trait) within the linear chromosomal structure.

By analogy with nature, a GA with a “one-gene-per-trait” (or a “one-sequence-of-
genes-per trait”) representation must not rely merely on a sequential arrangement of the

genes with implied strong linkages only among neighboring genes. In order to be effective,

N N N TN N N N N N

912%2% 9% 9% 9% % % Y%

(©

Figure 1: Abstract interpretation of pleiotropy, polygeny, and linkages: (a) Simple gene-
level linkages; pleiotropy and polygeny trait representation, (b) Trait-level linkages; adja-

cencies in gene level representation, (c¢) Abstraction of linkage strengths between traits.

a GA must instead allow for an adaptation for the representations of multiple connec-
tions between traits. We suggest that this be accomplished via “linkage probabilities”:
each individual in the population is a collection of traits whose “sequencing” is irrele-
vant. The population consists of a number of individuals as well as a representation of
the species-specific linkages between traits. For simplicity of implementation and computa-
tional considerations, we propose that a two-dimensional array of first-order linkage values
is adequate for this purpose. In keeping with this understanding, we consistently use the
term “individual” instead of the traditional “chromosome” in reference to the members of

the population.

If we use a “one-gene-per-trait” encoding, then such linkage probabilities must be

explicitly stated and used by operators of the GA.

Problem-specific knowledge can be utilized by genetic search in several ways, one
of which addresses the “move-generation” step: how can we define genetic operators that
utilize knowledge specific to each class of problems? Maini, Mehrotra, Mohan & Ranka
(1994) have addressed two ways of doing this: incorporating allele-specific biases, and
utilizing information about the history of genetic search. Another simple approach is
found in the ‘particle swarm optimization’ system (see Kennedy and Eberhardt, 1995).
This paper explores a third, crucial approach, the development of operators that exploit

linkages between components of problem representations.

In order to show the effectiveness of our operators, we tested them against the well-
known one-point, two-point and uniform crossover operators. Our test set was composed
of three problems, two of which (30bits, order-three problem (Goldberg, Korb & Deb, 1989)
and bipolar, order-siz problem (Goldberg, Deb & Horn, 1992)) are theoretically constructed
to be GA-deceptive, yet have a well-known linkage structure, and the third of which is the
well-known bipartitioning problem, whose exact linkage structure is unknown a priori.

Experiments show the superiority of the linkage crossover over other operators.

The proposed framework is described in Section 2. Section 3 defines a class of
crossover operators using this approach and the relation of these to crossover operators
traditionally used in GAs. Section 4 elucidates our algorithms, Section 5 presents experi-
mental results that support our new approach, Section 6 evaluates the adaptive procedure,

and Section 7 concludes.

2 Framework

This section describes the overall framework establishing the relation between crossover and
probabilistic inference. In our notation, 1 < p; denotes the event that the ith gene in the
offspring comes from the jth parent when crossover occurs, m denotes a partial inheritance
assignment, and 7(¢) denotes the parent p; or py from which an offspring inherits the ith
gene. We assume that there is no a priori bias toward either parent, p; or py, i.e., symmetry

is assumed.

Without loss of generality we assume that parents p; and p; generate only one

offspring.? In examining which genes are inherited from which parent, we restrict attention

ZOperators that generate multiple offspring can easily be viewed as the results of multiple applications

of operators that generate single offspring. For instance, one-point crossover applied to py1, p» at position &

to those genes where the parents differ. Also, let {x1,x5,...,2,} denotes a permutation of

{1,...,n}, where n is the number of genes (components) in a chromosome.

Classical crossover operators break linkages among some genes, irrespective of po-
tential dependence among them, whereas it would be desirable to use a crossover operator
that honors special attractions between sets of alleles. This dependence can be reformulated
in terms of problem-specific conditional probabilities. Specifically, the crossover operator
should address: if the ith gene is inherited from parent p;, then what is the probability
that the jth gene is also inherited from parent p;? More generally, if xy,2o,...,x; are
the positions of genes inherited from (1), m(x2),...,7(x;), respectively, then what is the
probability that the x;1th element of the offspring is inherited from p;7 We view crossover
as accomplishing this probabilistic inference task, where the probability depends on the
problem, and is “hard-coded” into biological chromosomal structures via the mechanisms

of pleiotropy and polygeny.

Special cases:
One-Point Crossover

In one-point crossover (1PTX), the structure of linkages is linear, similar to probabilistic
inference with a chain structure. The only linkage between the (i + 1)th gene and the
(1 — 1)th gene is through the ith gene. The linkage probabilities associated with 1PTX may

be described in the following manner:
Ploep|(i4+a)p &(t—b)p)=1, wherea>0,0>0,

Pli+pi | (i4+a) p & (1 —b) + p3) =0, where a > 0,b > 0,

and

Plo—p | (i4+1) < p & (1—1)« py) =0.5.

One-point crossover is expected to work well when the linkages in the problem are
of a similar linear nature, e.g., when the desirable “building blocks” consist of alleles for

physically proximate genes.

is generally defined to produce two offspring, but can be viewed as equivalent to two separate applications
of an operator that generates only one offspring; the second application is obtained by reversing the order

of the parents.

The cases of two-point and k-point crossovers can be derived in a similar manner.

Uniform Crossover

In uniform crossover (UX), no linkages are preserved.

Pli = pilj ¢ 7(5)) = 0.5,V #1.

Whether 1PTX or uniform crossover works better on a problem depends on whether

the problem itself has implicit linkages of the kind preserved by 1PTX.

3 Linkage Crossover

A general class of crossover operators can be formulated using the framework of linkage
probabilities. This class is referred to as General Linkage Crossover (GLinX), and is de-

scribed below. We use the following additional notation:

o P(xiy1: xy1,...,2; m) denotes the conditional probability that the x,41th position

in the child chromosome comes from parent p;, given that the x;th position comes

from parent 7(j);7 =1,---,1, i.e.,
P(aigr 2y, ...,x5m) = P(J}H_l — pr|eg — m(e)& . &y W(J}Z))
e For the special case when xy, ..., z; are all inherited from p;, the “linkage probability”

L(xip1: @1,...,2;) denotes P(J}H_l —p o epr & &y %pl).

Computation of offspring components using GLinX: Suppose p; and p, differ from

each other in k& locations. Let xq,...,x; denote these locations.

o Alleles for the first two locations, x; and x,, of the offspring are inherited from p;

and py respectively.

e Alleles for the remaining (k—2) locations are successively assigned as follows: Suppose
¢ additional locations, x3,...,z;19, have been assigned alleles from p; or p,. Then.

the (¢ + 3)th component of the offspring is inherited from parent p; with probability

P(aiys @1,y ..., Tipa;m).

Example 1 Consider py = (0,0,1,0,0),ps = (0,1,0,1,1), differing in the last three posi-
tions (k = 3). The first position in the offspring is assigned 0, common to both parents.
Let (w1, 22, 23, 4) = (2,4,3,5). The second (x1th) position in the offspring is chosen from
parent py and the fourth (x9th) position in the offspring is chosen from py. Neat, the third
(xsth) position in the offspring is chosen from py with probability P(xs : x1,x9;m) = P25 <
prler pr&ay < pa). Suppose it is chosen from py. Finally, the fifth (x4th) position in
the offspring is chosen from py with probability P(xs : 1, 22,25 :) = P(xy < pr]|o1
p&ay — pp&eas « py).

Only in the ideal case, would probabilities P(x,41 < pi|e; < m(x)& ... &a;
m(x;)) be available for each i. There are far too many joint linkage probabilities to be
specified and these would be impossible to specify even for problems whose nature is rel-
atively well understood. In practice, these have to be estimated or approximated based
on limited information, a task similar to that of probabilistic reasoning with uncertainty
in expert systems while making conditional independence assumptions. For instance, the
expert systems literature addresses the estimation of P(A|B & C') given only P(A|B) and
P(A|C) in addition to the priors. For specific problems, a dependency structure may be
available, enabling calculations of such quantities. This is the approach we have taken,

described in later sections.

A first step toward using linkage information would be to develop a crossover op-
erator that makes use of pairwise linkage, L(x; : x;). Pairwise linkages among genes are
considered to be “first order” linkages. Information about such linkages is most likely to be
available as domain knowledge for practical problems. For instance, in the graph partition-
ing problem, the connection weight between nodes suggests a choice for the corresponding
linkage probability. Note that P(x; < p;|ar < p;) = L(x; : x1) We assume that conditional

symmetry prevails, i.e.,

P(x; « pilag < p2) = P(x; < palag < p1) =1 — Lz« xp). (1)

We assume that the problem description specifies the first order linkage probabilities,
L(i : 7), for each 7,j; no other information is available. Other probabilities, such as

P(xiy1: x1,...,2; m) need to be estimated from L(xi11 @ @1), ..., L{xiq1 0 @),

7

This is analogous to the expert system’s task of combining the conclusions obtained
from multiple sources of uncertain knowledge. We examine two heuristics used in the expert

systems literature. For any two events A and B, Bayes’ rule gives

P(BN A)P(A)
P(BNA)P(A)+ P(BN A)P(A)
_ P(BN A) _)
P(BN A)+o(A)P(BN A)

P(A|B)

where o(A) = P(A)/P(A) represents the odds (of the prior probabilities of occurrence) of
A. Applying Equation (2) to the problem of interest gives:

Plaipr tar,. . aim) = Plag ¢ pi m;:1 rj ¢ m(z))
P(Njoy ;< (@) |z < p1)

= - (3)

CP(Nisyxy ¢+ m(w)](wipr < p1) + o(wigr « p1)P(Nis @y m(x))|(wigr + p2))

It would be reasonable to replace the odds ratio o(wx;41) = P(xiy1 ¢ p1)/P(2ip1 < p2)
by 1; there is no a priori preference that the allele in the ¢ + 1th position of the offspring
should come from parent p; or py. In the rest of the development, we assume that the prior

probabilities are the same for inheriting any component from either parent.

Conditional independence assumption. Using this assumption, one writes

P(NA|C) = HP(A¢|C)

for arbitrary events (C, A, As,...). In the present context it is assumed that

P(l‘j —pr &g —p | Tig1 & p1) = P(SL‘]‘ Al U1 | Tit1 %p1)P(l‘k — DN | Tip1 1@1)7
and

Ple; «p1 & ap p1 | @ig1 < p2) = Plaj < pr | g1 < p2)Pag < pr | 2ip1 < p2).
Application of conditional independence assumption to Equation (3) gives

H§:1 P(zj « m(z;)|2ip1 < p1)
[Timy Plaj = 7))z <= p1) + [z Pl < m(2;)|wipn < p2)

Plripg txy,. . a0m) =

For the purpose of easy evaluation this expression can be further simplified.

Combining positive and negative evidence: As considered earlier, parents p; and py
differ in genes {xy,...2;}. In an offspring of p; and p, some of the genes in {1, xq,...,2;}
are inherited from parent p;, and others from p,. Let 5;; be the set of genes inherited from
parent p; and S;2 be the set of genes inherited from parent p,, then the above equation

can be written as

hy
P : : RN 7N =
(Tip1 21 T 7) i
where
hi = I Pa; ¢ m(xj)|wipr < p1) [Plaj + 7(x))|wips < p1)
JESi1 JESi2
= I L(zjiai) T (0= Liz; s 2i40)
JESia JESi2
and
ha = I Plaj ¢ m(aj)|wipr < p2) [Plej < 7(x))|(wigr < p2)
JESi1 JESi2
= JI (0= Llxj:2ipn) TT Bl : i)
JESi1 JESi2

Thus, approximation based on the independence assumption suggests that a joint
linkage probability such as L(xit1 @ y1,¥2,...y;) can be estimated based on the pairwise
linkage probabilities L(xiy1 :y1) , L(®ig1 2 y2)s ..., L(xig1 : y;). The amount of space taken
up by these pairwise linkage probabilities is O(number of genes per chromosome)?, which
is reasonable for most problems. For problems amenable to a hierarchical decomposition,
efficient sparse matrix representations can be used to reduce space requirements consider-
ably. Problem-specific information can also be easily stated in terms of pairwise linkage

probabilities; a local property that examines two components.

The method described above employs pairwise independence to approximate the

general linkage probabilities, and is called the LinX crossover operator.

3.1 Adaptive LinX

Few problems are understood well enough that the precise linkage probabilities are known
a priori. Indeed, the main reason for “tinkering” with several operators is ignorance of

relationships between different genes. In such cases, the hardest problem becomes that

of learning the linkage probabilities on the fly, during the application of the evolutionary
algorithm to the problem. The neural networks literature provides one useful paradigm for
such adaptation: Hebb’s rule states that the simultaneous (synchronous) excitation of two
neurons results in a strengthening of the connections between them, while asynchronous
activation for two neurons will result in a weakening of the connections. The linkage
probabilities are analogous to “connection strengths” (weights attached to edges between
nodes) in neural networks. In the context of learning pairwise linkage probabilities, Hebb’s
rule may be adapted as follows: The fitness of the offspring resulting from a crossover
should be used to judge the efficacy of the linkage probabilities used for that crossover
step, leading to a small change in the same. We use the following adaptation of Hebb’s

rule to estimate pairwise linkage probabilities.

Let X be an nxn matrix whose entries (X[j, k]) are initially randomly assigned to lie
in the interval (—1,1) and changes according to the Hebb rule. The magnitude of amount
of change in X[j,k] is directly proportional to (f(offspring) — f). A change in X[j, k] is
made whenever both genes in the pair (7, k) are inherited from parent p; or ps; a positive
change if f(offspring) > f, negative otherwise. Over the course of many generations,
| X[7, k]| can grow to be arbitrarily large. To obtain a value € [0,1], interpretable as
a probability, we use the linear transformation (subtract ming,,(X[¢,m]) and divide by
(maxg,(X[¢,m]) — ming,, (X[¢,m])). Finally, since the proposed changes in X[j, k] are

meant to reflect changes in the joint probability
Pl(x; « p&ay + p1)]

which, under our assumptions, cannot be larger than 1/2 at all times, the joint probability
matrix is obtained as J where
0.5(X g, k] — ming,, (X[l, m])

Mk = (maxem (X [0, m]) — ming,,, (X[(,m])

Associated conditional probabilities
Plz; + pi&xy + pi]

P(l‘j — pl)
= 2J[j,k]

P(xj < pilag < p1) =

will lie between 0 and 1.

The adaptive linkage crossover algorithm described in Figure 3 is derived from this

heuristic.

10

4 LinX and Adaptive LinX Algorithms

The canonical genetic algorithm implemented here has the following characteristics:

e Chromosomes are randomly initialized.
e Roulette wheel selection methodology is used to control the mating process.

e The best 10% of the existing population is merged with the best 90% of the generated

population.

e Necessary adjustments on chromosomes are applied when required by the problem
constraints (e.g., in graph bipartitioning problems, there must be equally many alleles

of each kind).

e The whole population, except the best individual, is reinitialized if |average fitness —

best fitness| < ¢, a small threshold.

A high-level description of LinX crossover is given in Figure 2. The adaptation steps

required by Adaptive LinX are shown in Figure 3.

5 Results

In this section, we address several general questions with respect to the performance of

LinX crossover and ALinX algorithm. Specifically, we address the following questions.

o If there are definite known linkages between genes, will LinX outperform other general

purpose crossover operators?

e Will ALinX be able to perform competitively when compared to other crossover

operators?

Three benchmark problems are used to address the above questions. These benchmark
problems belong to two major categories: the deceptive-problem category, and the unknown

linkage-structure category.

11

LinX Crossover:

e Copy all common genes from parents to the offspring. For the remaining genes of the

offspring, use the following steps.

e For two randomly chosen genes, select one allele from parent p; and the other from

P2.

e Find the remaining (unallocated) offspring genes iteratively as follows:

— Let S1 = {y1,...,y;} be the offspring’s genes inherited so far from parent p;.
— Let Sy = {z1,..., 2} be the offspring’s genes inherited so far from parent p.

— Randomly select ¢, a gene whose value has not yet been determined. Calculate

“RelativeLinkage”
ha

RL, = ———,
hi+ hgy

hy = H L(zj: 2 H (1= L(x; : wit1))

JES JES

and

hZZH(l_ . Z-|—1 HL . Z-|—1

JES]652

Generate a random number 0 < r < 1 from the uniform distribution and assign

ofi] = { pufi] if r < RL;
P2

[2] otherwise.

o Adjust the generated offspring, if required by the problem constraints.

Figure 2: A high-level description of LinX crossover

5.1 GA Deceptive Problems

The fundamental schema theorem states that the genetic algorithm works by giving the
most highly fit schemata an exponentially growing presence in the population, thereby less
fit schemata will diminish quickly. This reasoning directs the attention of GA-researchers
to a special group of problems known as “GA-deceptive” problems (Bethke, 1980; Gold-
berg, 1989b,c; Forrest and Mitchell, 1993), where the most competitive schemata are much

12

ALinX Linkage Adaptation Procedure:

Initial step: Initialize all entries L[j, £]’s randomly with positive real numbers between
0 and 1 (via X[j,k] € [-1,1], as explained in the text).

Reproduction step: Do the following for all offspring generated in this iteration and all

j# k.

Let f be the average fitness of the current population.

Let o be an offspring of p; and py produced in the current generation using LinX.
Let pi[j] denote the jth allele of p; and ps[k] denotes the kth allele of p,.

Let g(o) = fitness(o) — f.

For each j, k, where parents p; and py differ in the jth and kth positions and both
alleles of the offspring come from the same parent, (i.e., p1[j] # p2[J], p1[k] # p2[k] and,
olj] = pi[y] and o[k] = p;[k] for p; € {p1,p2}) adapt the linkage matrix as described

below.

>
>
=

I

n x g(o)
(X[, k] — mingq (X[(,m])
(maxg,,(X[¢,m]) — ming ., (X[(,m])

Figure 3: A high-level description of Linkage matrix adaptation.

13

different than the optimal one. A problem with a relatively larger number of local optima
than global optima may then mislead the GA towards the wrong attractor. Goldberg,
Deb & Horn (1992), Goldberg and Richardson (1987), Goldberg, Korb, & Deb (1989), and
others have proposed different problems of this kind. Two of the problems proposed by
Goldberg and his colleagues are the order-3 30-bit deceptive problem (Goldberg, Korb, &
Deb, 1989) and the order-6 multi-modal bipolar problem (Goldberg, Deb & Horn, 1992).

The following subsections define each problem and corresponding results.

5.1.1 Goldberg’s Order-Three Problem

Goldberg, Korb, and Deb (1989) defined a 30-bit concatenation of an order-three deceptive
problems that is likely to be difficult for a standard crossover operator to solve. This
deceptive function depends on linkages across different genes. Linkages are expressed in
terms of a subfunction. The stronger the linkage, greater is the fitness of the subfunction.
Two versions of it, “Easyse” and “Hardsy” (Whitley, 1991) are defined below. Easysg is a
30-bit function, where each strongly related 3-tuple of bits (of the subfunction) are tightly
and minimally distributed across the chromosome, i.e., they reside adjacent to each other.
In Hardsg, the 3 bits of each subfunction are located far away from each other. Separated
by other bits, each 3-tuple of bits are located at 7,7+ 10, and ¢ +20 for : = 1,2,...,10. We
used the following subfunction in our experiments; minor variations of the function led to

similar results:

ws(1,1,1) = 1.0, ws(0,0,0) =0.9
w3(1,1,0) = ws(1,0,1) = ws(0,1,1) = 0.3
w3(0,1,0) = ws(0,0,1) = wy(1,0,0) = 0.6

Using this subfunction, we define

n—1

Easy,, = Z w3(51?3z’+1, T3i42, $3i+3)
=0

and

n
Hards, = > ws(@i, Titn, Tivan)
=1

A standard genetic algorithm should work fine on the Easyso problem using 2PTX or
1PTX. For UX, both problems are equally difficult. On the other hand, it has been shown

14

(Goldberg, Korb, & Deb, 1989) that they consistently fail to converge to the correct optima
for the Hardsg version. We apply LinX and ALinX on both problems, and compare with
2PTX, 1IPTX and UX. We fixed every parameter to be the same for all of the operators.
We execute each of the algorithms for three different sets of parameters as shown in Table

1.

Figures 4, 5 and 6 graph best fitness values against generation number for Easyso,
and Hardsg. As expected, LinX outperforms all crossover operators for Hardsy problem,
while competing favorably with other operators in the Fasysg case. For Easysg, note that

GAs using all operators converge to the correct answer.

Problem | Pop. | No. of Fitness
version | size | Gen. | LinX ALinX 2PX 1PX UX
50 500 | 10.00 9.98 9.99 9.98 9.79
Easysg 200 200 | 10.00 9.97 10.00 10.00 9.89
100 1000 | 10.00 10.00 10.00 9.99 9.93
50 500 | 10.00 9.96 9.50 9.46 9.84
Hardsg 200 200 | 10.00 9.98 9.65 9.55 9.88
100 1000 | 10.00 10.00 9.62 9.50 9.90

Table 1: Average of the best solutions over 30 iterations obtained using different crossover

operators. Global optimal fitness = 10.0.

5.1.2 Bipolar Deceptive Problem

For this deceptive problem, the solution string is constructed by concatenation of many
order-6 bipolar functions i.e., discrete functions with two global optima for complementary
bit-strings. Points near the global optima are the lowest in fitness, and the function tends
to take larger values as we move towards bit-strings with as many zeroes as 1s, where
local optima are located. Concatenation of five such 6-bit functions yields a problem with
5 million suboptima and 32 global optima (Goldberg, Deb & Horn, 1992), making this
problem a challenging one. By varying the coupling between each function’s bits, we can
instantiate different versions of this problem. An “easy order-6 bipolar” problem is defined
to have tightly coupled bits close together; i.e., the distance between the first and last bits
of the 6-bits is exactly 5; a “hard order-6 bipolar” problem is such that the six bits of each

15

Fitness

9.4 Hi

9.2

9 | | | |
0 100 200 300 400

Generations

(a)

500 600

700

Fitness

- LinX — 7}
_-—="""" Adaptive LinX -----
UX

2PX
1PX -~

300 400 500 600 700

Generations

(b)

Figure 4: Fitness of the best solution (average of 30 iterations) versus number of generation.

Population size = 50, maximum number of generations = 500. (a) Easyso (b) Hardsg

300

10.05 T
LinX —
10 = 2PX - E
1PX -----
Adaptive LinX i
9.95 UX ——-
9.9 - f
@ 985 E
@ -
2 L
i 9.8 . R
/
9.75 7 ,
9.7 ! B
9.65 E
96 | | | |
100 150 200 250
Generations

(a)

Fitness

T
- LinX — 7
T Adaptive LinX -----
- UX -----
2PX
1PX —--
Il Il Il Il
100 150 200 250 300

Generations

(b)

Figure 5: Fitness of the best solution (average of 30 iterations) versus number of generation.

Population size = 200, maximum number of generations = 200. (a) Easyso (b) Hardsg

16

10.05 T T
LinX — = LinX —
2PX ---- Adaptive LinX ----
Adaptive LinX - [[e UX -
X 2PX
0F m UX ——- A 1PX N
)] ()] 1 T
7]] [
2 995 i g i
i i [
9.4 i/ 8
9.9 . w’
9.2 4
985 3 : | f | | | | | 9 | | | | | |
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200
Generations Generations

(a) (b)
Figure 6: Fitness of the best solution (average of 30 iterations) versus number of generation.

Population size = 100, maximum number of generations = 1000. (a) Easyso (b) Hardsg

constituent function are physically separated by greater distances.

Experiments were carried out attempting to solve both easy and hard-order-6-
bipolar problems with 1PTX, 2PTX, and UX along with the LinX and ALinX crossover
operators. In order to compare the performance of these crossover operators, all other

parameters of GA were taken to be the same in all experiments.

Problem | No. of | Pop. | No. of Fitness
Version bits | size | Gen. | optimal || LinX ALinX 2PX 1PX UX
30 30 1000 5.0 | 5.00 491 5.00 499 4.82
Easy 90 | 100 5000 15.0 || 15.00 14.19 14.81 14.21 13.00
120 | 200 5000 20.0 || 20.00 18.53 19.91 19.71 17.08
30 30 1000 5.0 | 5.00 4.94 453 451 478
Hard 90 | 100 5000 15.0 || 14.90 14.09 1236 1241 13.04
120 | 200 5000 20.0 || 20.00 18.00 16.46 16.34 17.00

Table 2: Bipolar order-6 problems: Average over 30 trials of the fitness of the best solutions
and the global optima.

Table 2 shows the average of the best solution fitness found at the end of the
execution. Graphs 7, 8, and 9 show that LinX outperforms all other crossover operators
for both versions of the problem, and the global solution is obtained in a very short time.

1PTX and 2PTX find the optimal solution most of the time for the easy versions of the

17

Fitness
1
]
Fitness

47 + - E

46 | e 4

45 ! I I I I I 4 I I I
200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400

Generations Generations

(a) (b)

Figure 7: Fitness of the best solution (average over 30 trials) versus number of generation
for population size = 30, maximum number of generations = 1000. (a) Easy bipolar with

30 bits, (b) Hard bipolar with 30 bits.

T 15.5 T
15 LinX —
Adaptive LinX -----
15 - UX - b
2PX
145 1PX -
145 | e
14 3
0 0 14 H T i
%] %]
< 2
Z 135 fi £ -
* i L 135 E
13 7 . T T T T T 7 13 T S B T - i
125 b . 125 1
x’
12 1‘ | | | | | | 12 | | | |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000

Generations Generations

(a) (b)
Figure 8: Fitness of the best solution (average over 30 trials) versus number of generation
for population size = 100, maximum number of generations = 5000. (a) Easy bipolar with

90 bits, (b) Hard bipolar with 90 bits.

18

T T
LinX — J 20 | LinX — J
T 2PX ----- Adaptive LinX ----
GG 1PX - UX -
Adaptive LinX 2PX
UX ===] 19 1PX -~]
B 18 - S -
0 1) -
%] %]
4] .) PSS
S - e S e - |
A T T W[
i (,
16 [e 16 b e
| “
! v
15 | E 15 § E
14 | | | | | | 14 | | | | | |
0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Generations Generations

(a) (b)
Figure 9: Fitness of the best solution (average over 30 trials) versus number of generation
for population size = 200, maximum number of generations = 5000. (a) Easy bipolar with

120 bits, (b) Hard bipolar with 120 bits.

problem, but fail to do so for the hard versions. For easy as well as hard versions, ALinX
manages to discover the approximate linkages between genes. This makes it possible for
AlinX to slowly advance towards the optimal solution and get much better results than
1PTX, 2PTX, and UX. Each generation of LinX and ALinX takes more time than those
for the other three crossover operators, occasionally by as much as factors of 2.5 and 5
respectively. The extra time is needed for the manipulation of the linkage matrix and
computation of probability values. Although the time to evaluate the next population is
higher for the ALinX operator, the best fitness obtained improves with each generation. On
the other hand 1PTX, 2PTX, and UX rapidly converge to local optima, and performance
does not improve with additional generations. Time required to obtain a good quality

result is much less for the new algorithms than using traditional crossover operators.

5.2 Graph Partitioning

The graph bipartitioning problem has been attempted by several researchers using the GA
approach (see Maini, Mehrotra, Mohan & Ranka, 1994b). The optimization criterion of
this problem is to minimize the total cost of communication between the two partitions.
As in the previous section, the purpose of the simulations is to compare the performance
of LinX and ALinX with other crossover operators. In this example, the linkage behavior

is not predetermined, it has to be learned. Several data sets were considered. For ALinX,

19

the linkage matrix was initialized randomly, whereas for LinX, the linkage matrix was

constructed using the following heuristic:

The larger the cost of communication between two nodes, the greater the need

to put them into the same bin.

To minimize the cost of communication across the two bins we attempt to maximize the
sum of edge costs between nodes belong to the same bin. A linkage matrix that reflects
this property will lead the algorithm in the right direction. To implement this heuristic we
make the linkage entries proportional to the communication costs between the nodes; the
higher the communication cost, the higher is the linkage, and vice versa. Table 3 shows the
results (minimum cost of communication) for each operator on three graphs containing 45,
80, and 100 nodes with random edge weights between 0 and 1, respectively. Results are
obtained by taking averages of the best solutions over 10 trials. Figure 10 shows how the
GA performance improves with the number of generations for various crossover operators.

Results show that ALinX outperforms the other operators, including LinX.

In the graph bipartitioning problem, it is difficult to predetermine the right linkage
matrix from the graph. Thus, it is not surprising that ALinX learns a linkage matrix that

outperforms the LinX operator whose linkage matrix was based on a reasonable heuristic.

No. of | Pop. | Generations | Communication cost of best Solution
Nodes | size ALinX LinX 2PTX UX
45 | 100 1000 | 222.68 222.80 222,74 222.73
75 90 10000 | 620.06 651.32 632.69 650.39
80 | 100 4000 | 714.24 748.05 731.14 747.16
100 | 200 6000 | 1154.81 1189.90 1180.49 1189.08

Table 3: Graph Partitioning Problem, average over 10 trials

6 Evaluating the Adaptation Process
This section examines some of the important issues relating to the linkage matrix adaptation
process. In particular, we consider how to evaluate the linkage matrix adaptation process.

Naturally, the first significant issue relates to performance — what is the quality of

the solutions obtained using the adaptively modified linkage matrix? The average and best

20

224

223.8

223.6

223.4

223.2

223

Fitness

222.8

222.6

222.4

222.2

222

200

660

655

650

645

640

Fitness

635

630

625

620

615

T
Adaptive

T
LinX
2PX
LinX

300

400 500 600 700 800

Generations

900

1000

Adaptive LinX —
2PX

|
2000

| |
4000 6000 8000 100

Generations

()

00

12000

Fitness

Fitness

760

755

750 f,

745 i

740

735

730

725

720

715

710

224.4

224.2

224

223.8

223.6

223.4

223.2

223

222.8

T T T
Adaptive LinX ——
2PX

| |
500 1000 1500 2000 2500 3000 3500 4000 4500

0
Generations
B T T T T
B 3 Adaptive LinX —— 1
: 2PX -
L UX - ,
LinX
| | | | | | |
0 50 100 150 200 250 300 350 400
Generations

(d)

Figure 10: Fitness (average over 30 trials) improvement versus number of generation for the

graph bipartitioning problem. (a) Graph size = 45 nodes, population size

number of generations = 1000. (b) Graph size = 80 nodes, population size

100, maximum

100, maximum

number of generations = 4000. (c) Graph size = 75 nodes, population size = 90, maximum

number of generations = 1000. (d) Graph size = 45 nodes, population size = 100, number

of generations = 300 with no reinitialization

21

fitness obtained using ALinX can be compared with the corresponding values obtained by
using other different crossover operators and algorithms. In the previous section, we used

this as the main comparison criterion.

The second issue is: Will the adaptation process stabilize? Will elements of the

linkage matrix deviate little in later iterations of the GA? A deviation measure such as

1N1N1

Dy = Z_j z__j (NewLinkage[i][j] — OldLinkage[i][])?

may be used to compare the linkage matrix entries before and after each generation. A

small value of D;, indicates that stabilization has occurred.

0.1 T
D.L. —
0.09 E
0.08 |- -
- 007 | -
S
< 006 - E
[)
o
x 005 E
3
£ 0.04 E
[}
j=2
g 003 -
=
- 0.02 _
0.01 -
0 L Il Il
0 50 100 150 200 250 300

Generations

Figure 11: Dy, (variation in linkage values) for ALinX for the graph bipartition problem
with 45 nodes and population size 100.

Finally, does the adaptive algorithm result in a linkage matrix whose elements are
reasonable and easy to interpret? This is easy to verify for those problems where the linkage
matrix is well known. An objective measure may be constructed as a function of the actual
linkage values and the linkage values obtained by adaptation. In the Easysg, Hardsg, and
the bipolar problems, we had prior knowledge of the linkage matrices. Our experiments
confirm that the ALinX is successful in adapting an initially random matrix to obtain the

desired linkage values.

In some problems, no detectable linkages among elements exist. In such cases,
an evolutionary algorithm may be successful if it uses linkage-neutral operators (such as
uniform crossover). The adaptive algorithm should approach the results of such algorithms.
However, since the linkage values are irrelevant to the problem, elements in the matrix may

fluctuate randomly in each iteration.

22

In many multi-constraint optimization problems, linkages exist between different
elements, but the best choice of a linkage matrix is not known a priori. In these situa-
tions, the adaptive algorithm is expected to be more successful than other strategies using
traditional crossover operators or a fixed linkage matrix. If some information about the
problem is available (e.g., in graph partitioning problems), this may be used to initialize the
linkage matrix; starting the adaptive process from such a state would give better solutions
faster than from a randomly initialized state. In other words, any available problem-specific

information should be utilized by the adaptive algorithm, not ignored.

Some problems are structured so that adjacent elementsin the individual are strongly
related, so that one-point or two-point crossover operators succeed in finding good qual-
ity solutions without much effort. In such cases, the adaptive algorithm is to be judged
satisfactory if its results approach that of IPTX or 2PTX, with high linkage values for
adjacent elements. Our experiments (on Goldberg’s Fasyso and bipolar problems) confirm

that ALinX is capable of achieving this result.

For other problems whose linkages are well understood, so that a good linkage
matrix can be chosen a priori, the adaptive algorithm is to be judged satisfactory if it
yields solutions whose quality approaches that of the algorithm using the predetermined
linkage matrix. We should also expect that the adaptive algorithm will yield a linkage
matrix close to the good linkage matrix known a priori. Experiments on Hardsy and other
deceptive problems confirms that ALinX satisfies this property as well. Data in Table 4

gives some of the values for strongly linked and weakly linked genes.

Pop. | No. of | Strongly linked genes | Weakly linked genes
size | Gen. | Initial Final Initial Final

50 500 0.634 0.552 0.616 0.169
200 200 0.507 0.694 0.463 0.164
100 | 1000 | 0.414 0.820 0.438 0.097

Table 4: Average conditional probabilities for strongly linked and weakly linked genes,
before and after adaptation using ALinX

23

7 Conclusion

This paper relates the field of probabilistic inference to the application of crossover oper-
ators in genetic algorithms. Probabilistic computations have a long history, and can be
used with considerable advantage in GAs. The framework presented in this paper allows
explicit formulation of problem-specific linkages and their subsequent use in crossover. A
new class of crossover operators is presented, implemented and tested. These operators
exploit problem-specific linkages among components in a chromosome. The concept of
adapting linkage between genes is shown to be effective and successful, even for problems
with only partially known linkage structure. Many practical optimization problems such as
load balancing, scheduling, routing, and assignment problems are characterized by a set of
constraints that relate some parameters. Such problems can be solved using a GA with the
LinX methodology, using the following principles, assuming a direct representation with

one gene per problem parameter.

o If a constraint relates parameter ¢ with parameter j, then the linkage probability is

high for the corresponding pair of genes.
e Hard constraints correspond to higher linkage probabilities than weak constraints.

o If x,4y depends on {xy,xq,...,2;} only through a subset S C {z1,22,...,2;}, then
Py @y, @9y ooy 2 1) = Playg 1 9).

o If a problem parameter x4 is deterministically dependent on {xy, ..., 2;}, then
the appropriately determined value is to be assigned to the offspring gene instead of

using linkage probabilities.

24

References

Atmar, W. (1992). On the rules and nature of simulated evolutionary programming, Proc.
First Conf. Evolutionary Programming, La Jolla (CA), pp.17-26.

Bethke, A. D. (1980). Genetic algorithms as function optimizers, Ph.D. thesis, University
of Michigan, Ann Arbor.

Forrest, S. and Mitchell, M. (1993) What makes a problem hard for genetic algorithm?
Some anomalous results and their explanation, Machine Learning, vol 13, pp. 285-319.

Goldberg, D.E. (1989a). Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley, Reading, MA.

Goldberg, D.E. (1989b). Genetic algorithms and Walsh functions: Part I, A gentle intro-
duction. Complex Systems, vol 3, pp.129-152.

Goldberg, D.E. (1989c). Genetic algorithms and Walsh functions: Part II, Deception and
its analysis. Complex Systems, vol 3, pp.153-171.

Goldberg, D.E. and Richardson J. (1987), Genetic algorithms with sharing for multimodal
function optimization, Genetic Algorithms and Their Applications: Proceedings of the
Second International Conference on Genetic Algorithms, Frlbaum, pp. 41.

Goldberg, D.E., Korb, B. & Deb, K.(19000). Erlbaum, Messy genetic algorithms: Motiva-
tion, analysis, and first results, Complex Systems, vol 3, pp. 493-530.

Goldberg, D.E., Deb, K. & Horn, J. (1992). Massive multimodality, deception, and genetic
algorithms, Parallel Problem Solving from Nature, vol 2, Elsevier Science, pp. 37-46.

Grefenstette, J. J. (1987). Incorporating problem specific knowledge into genetic algo-

rithms, Genetic Algorithms and Stmulated Annealing, L. Davis and Morgan Kaufmann,

eds..

Harik, G. R. & Goldberg, D. E. (1997). Learning Linkage, Foundation of Genetic Algo-
rithms — I'V, Morgan Kaufmann, pp. 247-262.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor.

Kennedy, J. and Eberhardt, R. C. (1995). Particle swarm optimization, Proceedings of the
IEEFE International Conference on Neural Networks, Perth, Australia, pp. 1942-1948.

Liepins, G. E. and Vose, M. D. (1991). Deceptiveness and Genetic Algorithm Dynamics,
Foundations of Genetic Algorithms, Morgan Kaufmann, pp. 36-50.

Maini, H. S., Mehrotra, K. G., Mohan, C. K., & Ranka, S. (1994a). Knowledge-Based
Nonuniform Crossover, Complex Systems, Vol.8, pp.257-293.

25

Maini, H. S., Mehrotra, K. G., Mohan, C. K., & Ranka, S. (1994b). Genetic Algorithms
for graph partitioning and incremental graph partitioning. In Proceedings of Supercom-
puting’94.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems, Morgan Kaufmann.

Shafer. G. & Pearl, J. (eds.), (1990). Readings in Uncertainty Reasoning, Morgan Kauf-

mani.

De Jong, K. A. (1975). An analysis of the behavior of a class of genetic adaptive systems,
Doctoral Dissertation, U. of Michigan.

Spears, W. M. and De Jong, K. A. (1991). An Analysis of Multi-Point Crossover, Founda-
tions of Genetic Algorithms, Morgan Kaufmann, pp. 301-315.

Syswerda, G. (1989). Uniform crossover in genetic algorithms, Proc. of the 3rd ICGA, pp.
2-9.

Whitley, L. D. (1991). Fundamental principles of deception in genetic search, Foundations
of Genetic Algorithms, Morgan Kaufmann, pp. 221-241.

Wolpert, D. H. and Macready, W. G. (1995). No free lunch theorems for search, Tech.
Rep. SFI-TR-02-010, Santa Fe Institute.

26

	Adaptive Linkage Crossover
	Recommended Citation

	tmp.1286291883.pdf.efuH0

