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Multicriticality, Scaling Operators and mKdV Flowsfor the Symmetric Unitary One Matrix Models�
Konstantinos N. Anagnostopoulos and Mark J. Bowick1Physics DepartmentSyracuse UniversitySyracuse, NY 13244-1130, USAAbstractWe present a review of the Symmetric Unitary One Matrix Models. In particular wecompute the scaling operators in the double scaling limit and the corresponding mKdV
ows. We brie
y discuss the computation of the space of solutions to the string equationas a subspace of Gr(0) �Gr(0) which is invariant under the mKdV 
ows.

June 27, 1992� Invited talk delivered by K. N. Anagnostopoulos at the XIVth Montreal-Rochester-Syracuse-Toronto Meeting, Toronto, Canada; May 7-8, 1992.1E-mail: Konstant@suhep.bitnet; Bowick@suhep.bitnet.



1. IntroductionIn this part of the proceedings we attempt to review some topics on the SymmetricUnitary One Matrix Models (UMM). These are statistical systems de�ned by partitionfunctions of the form ZUN = Z DU expf�N� TrV (U + Uy)g ; (1)where U is a 2N � 2N or a (2N + 1)� (2N + 1) unitary matrix, DU is the Haar measurefor the unitary group and the potentialV (U) =Xk�0 gk Uk ; (2)is a polynomial function in U . The interest in those models arose a long time ago whenGross and Witten [1] showed that the partition function of two dimensional U(N) QCDon a lattice is given by ZQCD = (ZU ) Va2 and that the theory undergoes a third orderphase transition in the large N limit (V is the volume of the two dimensional world anda is the lattice cuto�). The discovery of the double scaling limit [2{5] for the HermitianMatrix Models (HMM) and its relation to two dimensional theories of gravity coupled to(possibly non-unitary) conformal matter raised the question of whether UMM describe asimilar continuum limit for some statistical model coupled to two dimensional gravity thatis relevant to string theory. The model was solved in the double scaling limit N !1 and� ! �c with t = (1 � nN )N 2k2k+1 and y = (1 � ��c )N 2k2k+1 held �xed in [6,7]. The scalingfunction v, with v2 = �@2 logZ, satis�es a 2kth order di�erential equation in the variablex = t+ y, known as the string equation. It has solutions which in the weak coupling limitx!1 are asymptotic to series that one would like to identify with the genus expansion ofa string theory. The identi�cations of those solutions with conformal �eld theories coupledto two dimensional gravity or other interesting systems is still, however, an interesting openproblem [8,9]. Quite recently a world sheet interpretation of the UMM as an open-closedstring theory has been proposed in [10]. For another interesting suggestion see [11].Several authors have pointed out in the past (see [8] and references therein) that oneobtains the same continuum theory from the double scaling limit of the double-cut HMM asfrom the UMM. The reason is that the scaling behaviour of the density of eigenvalues nearthe multicritical points is identical for the two models. In [8] a series of multicritical pointslabeled by a positive integer k is found and the continuum limit of the scaling operators1



is computed in the spirit of [12]. The dependence of the scaling function v on the sourcesof the scaling operators, which are treated as perturbations, gives the NLS hierarchy. Themulticritical points of the symmetric UMM correspond to even k and the corresponding
ows are the mKdV hierarchy. In section 3 we prove this result directly from the UMM.The calculation has never been presented written before. We have obtained similar resultsfor the odd order multicritical points but these will be presented elsewhere.In section 4 we discuss aspects of the integrability of the UMM as related to the SatoGrassmannian [13]. This was the main part of the talk delivered at this meeting. Dueto lack of space we summarize the results obtained in this work and refer the interestedreader to [13] for the details (see also [14] for a review). In [13] we used the result of [15]that the string equation for the UMM can be written in the form [P;Q] = 1, where P andQ are 2 � 2 matrices of di�erential operators of speci�c order, in order to compute thepoints in the Universal Grassmannian that solve the string equation [16]. The operators Pand Q correspond to the continuum limits of operators acting on the space of orthonormalfunctions used to solve the model. The solutions are found to correspond to a pair ofpoints V1 and V2 in the (big cell of the) Sato Grassmannian satisfying certain invarianceconditions. It is very important that the mKdV evolution of V1 and V2 gives new solutionsto the string equation. The � -functions that correspond to V1 and V2 are shown to satisfythe Virasoro constraints in this formalism [13], since the constraints are derived from thesame invariance conditions that solutions to the string equation satisfy [17{20].2. The Symmetric Unitary Matrix ModelThe �rst step in solving the symmetric UMM given by (1) and (2) is to reduce theintegral giving ZUN to an integral over the eigenvalues [1,21] zi = e�i of U which lie on theunit circle in the complex z plane.ZUN = Z fYj dzj2�izj g j�(z)j2expf�N� Xi V (zi + z�i )g= Z fYj d�jg j�(�)j2expf�N� Xi V (2 cos�i)g ; (3)
where j�(z)j2 = j�(�)j2 = Qk<j jzk � zj j2 = 42N Qk<j sin2 ��i��j2 � is the Vandermondedeterminant. 2



It is well known [1] that the critical behaviour of the model in the large N limit isgoverned by the stationary points of (3). The stationarity condition is given by2N� V 0(2 cos�i) sin�i + 2NXj=1i6=j cot �i � �j2 = 0 : (4)The continuum version of (4) in the large N limit will be given by the replacements�i = �( i2N ) = �(x) i = 1; : : : ; 2N ; x 2 [0; 1] and 12N Pi6=j ! P R 10 dx ; 12N Pi ! R 10 dx. Weintroduce the density of eigenvalues�(�) = dxd� � 0 such that Z 2���c�c d� �(�) = 1: (5)Then condition (4) and the free energy are given by1�V 0(2 cos�(x)) sin�(x) = �P Z 2���c�c d� �(�) cot �� �2 (6)and �F = � 1� Z 2���c�c d��(�) cos�+ P Z d�d� �(�)�(�) ln j sin �� �2 j+ const: : (7)Therefore the stationary solutions will be completely determined by the solutions of (6). Aphysical picture of the problem is obtained by realizing that (3) describes identical chargedparticles distributed over the unit circle subject to their mutual Coulomb repulsion and anexternal electric �eld given by V (2 cos�). Therefore in the limit � ! +1, the particleswill be distributed uniformly over the whole circle and as � ! 0+ they will be mostlyconcentrated around � = �. As we will show shortly, as � ! 1� the two ends of thesupport of the eigenvalues meet at � = 0 and �(�) exhibits scaling behaviour at the end ofits support. Then the third derivative of (7) has a discontinuity at � = 1 obtaining a thirdorder phase transition. Tuning the potential (2) accordingly, one can change the criticalexponents of �(�) and F and reach a series of multicritical points labelled by an integer k.In order to solve (6), we introduce the function [1]F (z) = Z 2���c�c d� �(�) cot z � �2 : (8)3



The function F (z) is periodic as z ! z + 2n�, real and analytic outside the real intervals(2n�+�c; 2(n+1)���c) and, as a consequence of (5) and (6), when one approaches thoseintervals F (�� i�) = � 1�V 0(cos�) sin�� 2�i�(�) : (9)Because of (5) and (6) F (z)! �i as z ! z1 � i1 : (10)Solutions to the above conditions are given byF (z) = � 1�V 0(cos z) sin z � P (sin2 z2) sin z2(cos2 z2 � cos2 �c2 ) 12 (11)where � refers to Re z > 0 and Re z < 0 respectively. P (z) is a polynomial of degreeone less than V (z). The coe�cients of P (z) and cos �c2 as a function of the couplings isobtained from (10). Then (9) implies that�(�) = P (sin2 �2 ) sin j�j2 (cos2 �c2 � cos2 �2 ) 12 : (12)The kth multicritical point is reached by tuning the couplings in the potential so thatP (z) � akzk�1 and cos �c2 ! 1. In this case the critical density of eigenvalues is given by�k(�) / sin2k z2 ; (13)which for � close to its critical value �c = 0 gives�k(�) � �2k : (14)Then we obtain a third order phase transition with F � (�c��)2+ 1k . We always normalizethe critical potential so that �c = 1. In this case the kth multicritical potential is given byV 0k(4Z2 � 2) = ck(1� Z2)k�1(1� 1Z2 ) 12+ ; (15)where Z = cos z2 and we expand the square root around z = 1 keeping only positivepowers of Z. In order to solve the model in the double scaling limit we use the method oforthogonal polynomials. A convenient basis is given by [22]c�n (z) = zn � z�n + imaxXi=1 ��n;n�i( zn�i � z�n+i) (16)4



where for U(2N+1) n is a non-negative integer and imax = n and for U(2N) n is a positivehalf-integer and imax = n� 12 . The polynomials c�n (z) are orthogonal with respect to theinner product hc�n ; c�mi = I dz2�iz expf�N� V (z + z�)g c�n (z)�c�m(z)= e��n ��;�n;m : (17)Then the partition function of the model is given by the product of the norms of theorthogonal polynomials ZUN =Yn e�+n e��n = � (+)N � (�)N : (18)The orthogonal basis of polynomials chosen is especially useful for constructing theoperator formalism of the theory. When acting on the basis of orthonormal functions��n (z) = e���n =2e� N2�V (z+)c�n (z) the operators z� = z� 1z and z@z give �nite term recursionrelationsz+ ��n (z) = Q(+)��nm ��m(z) =qR�n+1��n+1(z)� r�n ��n (z) +pR�n ��n�1(z) ;z� ��n (z) = Q(�)��nm ��m(z) =qQ�n+1��n+1(z)� q�nsQ�nR�n ��n (z)�qQ�n ��n�1(z) ;z@z��n (z) = P��nm ��m(z) == �N2� kXr=1(v�z )n;n+r��n+r(z) + �nsQ�nR�n � N2� (v�z )n;n���n (z)+ N2� kXr=1(v�z )n;n�r��n�r(z) ;
(19)

where R�n = e��n���n�1 , Q�n = e��n���n�1 , r�n = @��n@g1 , q�n = (Q�n+1�Q�n )+(R�n+1�R�n )r�n�r�n , and(v�z )n;n�r = H dz2�iz��n�r(z)� fz@zV (z+)g��n (z). Then the discrete string equation is givenby the relation [z@z; z�] = z�.3. The Double Scaling LimitIn the previous section we discussed the large N limit of UMM. It is possible to getnon trivial contributions to the scaling part of the free energy by carefully tuning the limits5



N !1 and �! �c, with t = (1� nN )N 2k2k+1 , y = (1� ��c )N 2k2k+1 held �xed. It was shownin [15] that the operators Q(�)nm and Pnm have a smooth continuum limit given byQ(+)nm ! 2 +N� 22k+1 Q+ ; Q(�)nm ! �2N� 12k+1 Q� ;Pnm ! N 12k+1 Pk ; (20)where Q� are given by Q� = � 0 @ + v@ � v 0 � ;Q+ = � (@ + v)(@ � v) 00 (@ � v)(@ + v)�= Q2� ; (21)and Pk by Pk = � 0 PkPyk 0 � : (22)Here @ � @@x and x = t + y. The scaling function v2 is proportional to the speci�cheat �@2 lnZ of the model. The operators Pk are di�erential operators of order 2k.The multicritical potentials Vm perturb the multicritical densities such that �k ! �k+~�m, where ~�m has the same scaling behaviour (14) and satis�es the normalization conditionR 2���c�c ~�m(�) d� = 0. Solutions for ~�m are given by ~�m(�) / dd� sin2m �(1� cos2 �2 ) 12+ andcorrespond to multicritical potentials~Vm / (1� Z2)k(1� 1Z ) 12+ (23)where Z = cos z2 . The scaling operators of the model are de�ned by < �2k+1 >=<tr ~Vk(U + Uy) >. Consider the expressions for the connected correlation functions [5]< trF(U) >= Tr(F̂(U)�N ) and < trF(U)trG(U) >= Tr(F̂(U)�N Ĝ(U)(1��N)), where tris the matrix trace and Tr is the trace over the states jn� >= ��n (z). �N is the projectionoperator �N = PNn=0;� jn� >< �nj and F̂(U) and Ĝ(U) are operators acting on thestates jn� >. Then we obtain< �2k+1 >= I dz+2�iz+ ~Vk(z+)Trf 1z+ �Q(+)�Ng : (24)Similarly the two point function < �2k+1�1 >= @ < �2k+1 > is given by< �2k+1�1 > = � I dz+2�iz+ ~Vk(z+)Trf�N 1z+ �Q(+) (1� �N )(z+ �Q(+))g/ I dz+2�iz+ (1� Z2)k(1� 1Z ) 12 fqR+N+1� 1z+ �Q(+) �++N N+1+qR�N+1� 1z+ �Q(+) ���N N+1g : (25)
6



In the double scaling limit z+ = 2 cos� ! 2 � �2 where � = N� 12k+1 �, Q(+) ! 2 +N� 22k+1Q+, qR�N+1 ! 1 + 14N� 22k+1 (�v0 � v2) and jN� >! N 12k+1 jx� > and (25)becomes< �2k+1�1 > / I d�2�i� �2k+3�< +xj 1��2 � @2 + u1 jx+ > + < �xj 1��2 � @2 + u2 jx� >�/ I d�2�i� �2k+3�Xl Rl[u1]�2l+1 +Xl Rl[u2]�2l+1 �/ Rk[u1] + Rk[u2] : (26)Rk[u] are the Gel'fand-Dikii potentials de�ned through the recursion relation @ Rk+1[u] =�14@3 � 12 (@u + u@)�Rk[u] ; R0[u] = 12 , u1 = v2 + v0 and u2 = v2 � v0. Therefore <�2k+1�1�1 >/ @Rk[u1]+@Rk[u2] = �vD̂Rk[u2], where D̂ = @+2v. Using< �2k+1�1�1 >=@@t2k+1 < �1�1 >= 2v @v@t2k+1 we obtain@v@t2k+1 = �@D̂Rk[u] : (27)The string equation in the presence of �2k+1 is given by [13][P;Q�] = 1 ; (28)where P = �Pl�1(2l+ 1)t2l+1~Pl � x with ~Pl = Pl + x.4. Integrability and the Sato GrassmannianAs we already mentioned in the introduction, the analysis of the solutions of the stringequation in the Sato Grassmannian Gr depends crucially on the association of the mKdV� -functions �1 and �2 to points V1 and V2 in the big cell of the Sato Grassmannian Gr(0).The � -functions of the mKdV hierarchy are given by ui = �@2 log �i, i = 1; 2.The Sato Grassmannian is an in�nite generalization of the �nite dimensional Grass-mannians. The �nite dimensional Grassmannian Gr(k;N) consists of all k-dimensionallinear subspaces of CN . A point V 2 Gr(k;N) is described by a basis fvig with i = 1; : : : ; kand a basis of the orthogonal complement of V fwig with i = k+ 1; : : : ; N . In the in�nitedimensional case consider the space of formal Laurent seriesH = fXn anzn ; an = 0 for n� 0 g7



and its decomposition H = H+ �H� ;where H+ = fPn�0 anzn ; an = 0 for n � 0 g. Then the big cell of the Sato Grass-mannian Gr(0) consists of all subspaces V � H comparable to H+, in the sense that thenatural projection �+ : V ! H+ is an isomorphism. Then V admits a basis of the formf�i(z)gi�0 where �i(z) = zi + lower order terms.The spaces V1 and V2 are associated to � -functions �1 and �2 via the Pl�ucker embeddingand the fermion-boson equivalence in two dimensions. They correspond to solutions of themKdV hierarchy if and only if@@t2k+1 Vi(t) = z2k+1 Vi(t) and z2k Vi(t) � Vi(t) : (29)Computing the space of solutions to the string equation is equivalent to determining op-erators Q� and P such that (28) is true and Q� has the form (21). The problem isa generalization of the Burchnall-Chaundy-Krichever (BCK) theory for non-commutingoperators. One can compute this space explicitly [13]. The set of operators Q� and Pcorrespond to a space of pairs of points V1 and V2 in Gr(0), invariant under the mKdV
ow (29), where V1 and V2 must satisfy the conditionsz V1 � V2 z V2 � V1Ak V1 � V2 Ak V2 � V1 (30)for some Ak = ddz + kPi=0�iz2i.The Virasoro constraints are a simple consequence, and in fact equivalent to, (30).The algebra of a set of operators acting on the � -functions is simply the central extension ofthe algebra of the corresponding operators acting on the spaces V1 and V2. The operatorsln = z2n+1A correspond to operators Ln acting on the � -functions, which are the Virasorogenerators found long ago in [23,24]. Since operators leaving the spaces V1 and V2 invariantmust annihilate the corresponding � -function then as a simple consequence of z2n+1AVi �Vi it is easily concluded that the Ln's annihilate �1 and �2We conclude this presentation by mentioning that in [13] we solved for the space ofsolutions to (28). We found that the space of solutions to the string equation (28) is thetwo fold covering of the space of matrices �Pij(z)� with polynomial entries in z suchthat P01(z) and P10(z) are even polynomials having equal degree and leading terms and8



P00(z) and P11(z) are odd polynomials satisfying the conditions P00(z) + P11(z) = 0 anddegP00(z) < degP01(z).
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