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ABSTRACT 
 

A critical goal of many school and training interventions is to provide learners with the 

strategies and foundational knowledge that will allow them to tackle novel problems encountered 

under circumstances different than the learning situations. This is also quite often referred to as 

the ability to transfer learning. Theories of transfer posit that providing learners with ways to 

make connections between learning experiences and possible transfer tasks, accumulating 

domain and strategic and knowledge, and encouraging diverse abstractions of concepts might 

help promote transfer to new situations. Notably missing among these theories is the role various 

motivational tendencies play in helping promote transfer. This dissertation describes the 

development of a new theoretical model linking transfer, self-regulation, motivation, and prior 

knowledge. Based on extensive empirical and theoretical evidence, the model posits that 

motivation plays an indirect role in promoting transfer of learning exerting its effect through 

increased self-regulation. This effect, along with a strong direct effect exerted by prior 

knowledge, describes the major motivational mechanism by which transfer occurs. The theory 

also proposes an underlying latent variable structure that groups interest, self-efficacy, and goal 

orientation as major indicators that measure motivation. Similarly, domain and strategic 

knowledge are posited as dimensions that encompass prior knowledge. Self-regulated learning is 

made up of a motivational and cognitive component. The cognitive components model key 

processes of the cognitive architecture that explains the general learning process. An effort to 

validate this theory through structural equation modeling (SEM) is described. This includes 

comparisons to alternative models and discussions about methodological issues related to model 

fit. The dissertation also features in-depth discussions about the appropriateness of the proposed 



 
 

 
 

latent structure as well as a comprehensive exposition of the validity of estimated parameters 

under conditions where model fit is considered unacceptable. The dissertation concludes with a 

set of derived conclusions and recommendations that advance the theoretical model towards a 

more encompassing and rigorous methodology calling for the development of more sensitive and 

adaptive measurement instruments.  

 

Keywords: Transfer of Learning, Structural Equation Modeling, Motivation, Prior 

Knowledge, Self-Regulation, Mathematical Problem-Solving, Knowledge Transfer. 
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CHAPTER ONE: INTRODUCTION 

 Transfer, the deployment of content and strategic knowledge stored in long-term memory 

to solve never-before encountered problems that share structural and conceptual similarities with 

previous learning, has been a central focus of educational psychology for over a century. Despite 

this focus, the study of transfer of learning has produced unclear and conflicting results. In the 

midst of these results, a number of criticisms have emerged typically followed by frequent 

recommendations to shift the focus of transfer research. Some have gone as far as to question the 

viability of the transfer construct (Carraher & Schliemann, 2002), while others have questioned 

the epistemological and philosophical roots carried over from behavioral and cognitive 

psychology (Beach, 1999; Lave, 1988; Lobato, 2006). This criticism has been advanced by 

critiques of the methodologies (i.e. randomized experiments) typically employed to study 

transfer (Ellis, 2007; Lobato, 2006; Wagner, 2006), and the ways transfer of learning is 

operationalized and measured (Barnett & Ceci, 2005; Lave, 1988; Lobato, 2003; Schwartz, 

Bransford, & Sears, 2005).  

As a result, the focus of transfer research has shifted to include more realistic settings, to 

use multiple holistic assessments, to employ qualitative and naturalistic inquiries (Lave, 1988; 

Ellis, 2007; Tuomi-Grohn & Engestrom, 2003; Wagner, 2006), and to explore multiple 

explanatory mechanisms (Nokes, 2009). Despite these renewed approaches, the transfer 

literature continues to rely heavily on cognitive elements and processes, and is especially 

concerned with testing hypotheses that identify the effectiveness of various instructional 

treatments. Notably missing from the literature is a focus on the motivational factors that shape 

transfer. Furthermore, little is known about the underlying motivational mechanisms that 

describe and explain these processes. Given the impact of motivation on the learning process, it 
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is reasonable to expect motivational forces to have an impact on transfer. The purpose of this 

dissertation is to identify and validate a model that describes the role motivational constructs 

play in promoting transfer of learning.  

To frame the issue of transfer of learning in terms relevant to instructional design and the 

learning sciences, it is useful to state our assumptions about training and instruction. Nearly all 

interventions are designed with the purpose of promoting skills and knowledge that can be 

applied beyond training and instructional settings to new situations. The compulsory schooling 

system in the United States, for example, is built partly on the assumption that learners will be 

able to use what they learned in school to successfully transition to post-secondary education or a 

career. Corporations and governments spend billions of dollars each year providing training and 

professional development to their employees with the implied expectation of improved 

performance. The success or failure of these efforts varies depending on the design of the 

instructional program, the degree of difficulty of the domain, and the learning characteristics of 

the individuals involved. What is empirically clear, however, is that designing and teaching with 

these goals in mind has traditionally produced mixed results with no clear consensus that a 

particular mode of instruction, or the use of particular instructional strategies are more beneficial 

than others in promoting the application of prior learning to new situations (Carraher & 

Schliemann, 2002; Cox, 1997; Lave 1988; Lobato, 2006).  

 The transfer literature has been pragmatically focused on an approach that examines 

malleable cognitive and instructional factors that can be altered to produce or improve transfer. 

There is, for example, a large body of literature exploring the effectiveness of analogical 

instruction as a strategy to promote transfer (Bulgren, 2000; Gick & Holyoak, 1980, 1983 

Gentner, Loewenstein, & Thompson, 2003; Gentner & Kurtz, 2006; Nokes, 2009; Novick, 
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1988). Another body of literature addresses the generation of self-explanations by learners as a 

technique to promote transfer (Ainsworth & Loizou, 2003; Bielaczyc, Pirolli, & Brown, 1995; 

Chi, 1989; Chi et al., 1994; Hausmann & VanLehn, 2007; Renkl, 2002; van Merrienboer, 1997). 

In some cases, the transfer literature has sought to identify possible ways to develop general 

cognitive skills applicable across contexts through the exploration of metacognitive skills that 

may affect transfer of learning (Adey & Shayer, 1993; Berry, 1983; Georghiades, 2000; Halpern, 

1998; Osman, 2008; Veenman, Prins, & Elshout, 2002; Veenman, Van Hout-Wolters, & 

Afflerback, 2006).  

As these approaches have shown mixed results, some researchers have shifted their focus 

to provide multiple representations of the content covered as to improve the depth and quality of 

the structural connections made by learners (Ainsworth, 2006; Goldman, 2003; Kozma, 2003; 

van Der Meij & De Jong, 2006). These studies highlight the clear focus of testing for the effect 

of a treatment. However, not much time has been spent figuring out how these instructional 

interventions actually go about promoting (or failing to promote) transfer of learning. Moreover, 

a majority of these studies are largely concerned with identifying cognitive elements involved in 

transfer of learning, and thus fail to address the contextual components of transfer. Chief among 

these omitted components is the role of motivation in promoting transfer of learning. 

Problem Statement 

 The concern with motivation’s role on transfer of learning is by no means a novel one. In 

her astute analysis and critique of transfer research as a decontextualized, isolated, and culturally 

constructed activity that did not reflect the everyday practices of people, Lave (1988) 

acknowledged the critical—yet understated—role played by motivation in our study of transfer. 

It is worthwhile to include an entire paragraph in Lave’s critique for it not only points out the 
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missing link between motivation and transfer, but also offers a direct prescription to address 

motivation theory in the context of transfer of learning.  

A major factor missing from experimental investigations of problem solving and transfer 
is an account of what motivates people to recognize and undertake problems when not 
required to do so. The question need not arise when subjects have tacitly agreed to 
comply with an experimenter’s requests, problem solving is often not controlled by 
others, nor is it determined by some general eagerness or reluctance to solve problems. 
To analyze problem solving in everyday activity, in short, we shall need a theory of 
motivation. For whether to have a problem or not, and the specification of what 
constitutes the problem, are commonly choices made by problem solvers. And we shall 
need to inquire into questions of how problem-solving activity impels or gives meaning 
to what happens next (p. 42, emphasis added).  
 
Lave is hardly alone in pointing out this shortcoming of the transfer literature. Baldwin 

and Ford (1988) identified the need to “develop a research framework for conducting research on 

the effects of trainee characteristics on transfer” (p. 82). In arguing for consideration of the 

“spirit” of transfer, Haskell (2001) pointed out the long accepted belief that emotions, 

personality, and motivation are critical to learning and transfer. This belief, however, is often a 

forgotten implication not addressed in computational and cognitive models of transfer. This 

implies current accounts are incomplete representations of the transfer mechanism. For “it is the 

personal meaning that information holds for us that affects the way we encode, retrieve, and 

relate information” (Haskell, 2001, p. 121).  

 What seems missing, then, is a theoretical framework that spells out the motivational 

factors responsible for transfer, and further explicates how this system of variables affects the 

cognitive functions that facilitate storing, encoding, retrieval, and usage of prior learning. The 

purpose of this dissertation is to outline one such theoretical framework, and to provide empirical 

evidence supporting its validity in the domain of mathematical problem solving.   

Focus 
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 Specifying a theoretical model requires identification of relevant constructs, operational 

definition of those constructs, and their sub variables, and a hypothesis of the nature of the 

relationships among such constructs (Shoemaker, Tankard, & Lasorsa, 2004). Fortunately, the 

transfer literature has a rich tradition of empirical work providing an excellent starting point for 

theory building. What is needed is then is a cohesive model that unifies prior empirical work into 

a set verifiable and testable hypotheses. 

 

Figure 1. Theoretical model of motivation and transfer proposed in study. PK = Prior Knowledge, DK=Domain 
Knowledge, SK=Strategic Knowledge, MOT=Motivation, SE= Self-Efficacy, INT=Interest, GO=Goal-Orientation, 
SRL=Self-Regulated Learning, MOT = Motivational SRL, COG= Cognitive SRL, NT = Near Transfer, FT = Far 
Transfer. 
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The model is specified in figure 1. It settles upon two major predictor variables—

motivation and prior knowledge—that are posited to indirectly influence transfer through 

increased self-regulation. Self-regulation, in turn, is posited to directly influence transfer of 

learning. The model specifies prior knowledge as a direct predictor of transfer acting as a control 

to the alternative hypothesis that motivated learners are more likely to transfer because they have 

higher levels of prior knowledge. The selection of these variables and the hypotheses developed 

about the relationships among the entire system of variables are based on a review of the existing 

literature. These choices are also based on our current knowledge about learning. While learning 

and transfer are often operationalized in different ways, we can argue that initial learning is a 

requirement for transfer. Without initial, deep learning, future transfer of learning is impossible 

(Bransford, 2000). And while many different types of factors can be said to contribute to 

learning, a few authors have attempted to narrow down these variables to a smaller set of factors 

that might play a significant role in influencing transfer. Mayer (1998), for example, identified a 

set of variables responsible for the development of academic achievement. He concluded 

There are three primary ingredients that contribute to students' academic achievement that 
configure in different ways over the course of domain learning. They are domain 
knowledge, motivation (e.g., interest), and general strategic ability (p. 567). 

 
Mayer’s conclusion is consistent with other conceptualizations of transfer components (Baldwin 

& Ford, 1988; Bransford, 2002; Burke & Hutchins, 2007; f & Bergin, 2006). In the context of 

this model, domain knowledge is defined as prior knowledge while general strategic ability is 

broken down into a prior-knowledge component and a self-regulatory component. Motivation 

remains the same and is further operationalized to be consistent with the motivation and transfer 

literature. 
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Extensive evidence is presented in the next section to justify the inclusion and 

operationalization of the constructs and variables as included in the model. First, however, a 

formal definition of transfer is provided.  

Transfer of Learning. Transfer is defined as the deployment of content and strategic 

knowledge stored in long-term memory to solve never-before encountered problems that share 

structural and conceptual similarities with previous learning. Multiple conceptualizations of 

transfer exist in the literature. Differing definitions typically carry embedded implications about 

the underlying mechanisms responsible for transfer. Three different transfer perspectives are 

highlighted below. 

 Transfer is a result of shared common elements or features between the learning 

situation and the transfer situation where an old response, or piece of knowledge, 

is used in a new context. Originally, Thorndike conceived this view under the 

theory of cognitive elements (Cox, 1997; Lobato, 2006). Cognitive psychologists, 

however, used the language of symbolic connections and mental schema 

proposing a similar view under analogical encoding (Gick & Holyoak, 1980, 

1983; Gentner, Loewenstein, & Thompson; 2003).  

 Transfer is preparation for future learning (Bransford & Schwartz, 1999; 

Schwartz, Bransford, & Sears, 2005). Under this view, transfer does not take 

place in a sequestered problem-solving environment but is supported by 

environmental resources. This view takes into account what learners “transfer in” 

to a learning situation and seeks to examine how that learning impacts future 

learning opportunities.  
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 Transfer is an actor-oriented activity that is learner-centric (Ellis, 2007; Lobato, 

2003). Under this view, transfer is a generalization of learning that depends on 

connections made between prior learning activities and new learning situations. 

While this is similar to the common elements approach, it differs radically in its 

ex post facto, reflective assessment of the transfer process. Transfer situations are 

analyzed retrospectively to identify learning activities that might have been 

responsible for promoting those instances of transfer.  

 

These multiple interpretations showcase the lack of agreement in the transfer literature. 

While these different conceptualizations are useful tools to advance transfer theory, they force a 

researcher to adopt a singular view of transfer without the necessary depth of empirical evidence 

to validate and justify the adoption of such view. As such, this study takes a generic view of 

transfer most closely aligned with the classical transfer view. That focus is taken as most of the 

evidence reviewed to specify and justify the model is based on a similar transfer view. When at 

all possible, however, this study avoids imposing a particular view of transfer on learners instead 

choosing to observe and record the performance of learners with instruments already used in the 

classroom context where formal learning is taking place.  

A useful conceptualization of the transfer literature that is employed in this study is that 

of far and near transfer. Historically, this distinction has been given different names by different 

researchers. Gagne (1985) was among the first in describing different types of transfer. He 

outlined the difference between vertical and lateral transfer. Lateral transfer referred to learning 

that transfers across similar situations with a reasonably equivalent level of complexity. Vertical 

transfer, as viewed from the perspective of a skill hierarchy, involved using a lower level skill (or 
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skills) in combination to achieve a higher-level skill or behavior. Salomon and Perkins (1989) 

created a similar dichotomy distinguishing between low and high-road transfer where high-road 

transfer was characterized by a conscious attempt to formulate abstractions and make 

connections as compared to the more automatic and repetitious low-road transfer (p. 118).  

Most recently, Barnett and Ceci (2002) distinguished between far transfer—transferring 

to a dissimilar context—and near transfer—transferring to a similar context. These three 

approaches share many commonalities. For the purpose of this study, lateral, low road, and near 

transfer are merged under the umbrella of near transfer. Vertical, high road, and far transfer are 

merged under the umbrella of far transfer. The near transfer approaches are characterized by the 

use of prior learning within the same domain where difficulty levels remain relatively stable and 

learners are using what they have learned in a very similar context to what they experienced in 

the learning situation. An example might be a learner using the Pythagorean Theorem to solve a 

problem finding the shortest distance between two points. Far transfer, on the other hand, is 

characterized by using prior learning in completely unfamiliar contexts and using previously 

learned materials in different ways than originally learned. An example is a learner using that 

same Pythagorean Theorem to estimate the height of a building given the top of the building 

casts a shadow on the ground and the distance from the shadow to the building can be measured.  

Settling on a definition of transfer helps narrow down the possible factors that can 

influence it. Moreover, such clarification makes it easier to select evidence supporting the 

inclusion of the proposed elements of the model. The first candidate is motivation.  

 
Motivation. Motivation, in its various forms, has been shown to affect learning through 

multiple processes. An initial motivational mechanism has been shown to directly affect what 

learners attend to and thus play a large role in shaping the knowledge components learners are 
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capable of storing in long-term memory (Pintrich & DeGroot, 1990; Pintrich & Schunk, 2002). 

An alternative mechanism links motivation to persistence. Under this scenario, increased time-

on-task directly shapes learning and long-term retention (Larson, 2000; Vollmeyer & Rheinberg; 

2000; Wigfield, 1994). We know that learning is a complex process influenced not only by 

cognitive processes but also by social and instructional factors (Pintrich et al., 1986), and thus 

can reasonably infer that a similar relationship exists between motivation and transfer.  

But to explore this relationship, it is necessary to identify specific motivational indicators 

that as a whole represent the motivation construct. Pintrich (1988, 1989) outlined an expectancy-

value model of motivation consisting of three major components. The first component, the 

expectancy component, covers a learner’s belief about their ability to achieve and succeed. This 

component can be formally operationalized as self-efficacy, a person’s belief about their ability 

to control levels of functioning and achievement (Bandura, 1993). A second component of 

motivation outlined by Pintrich is the value component. This includes a learner’s goal orientation 

towards a task and their interest on performing that task. A third component concerns learners’ 

affective and emotional reactions towards a task. This could include emotions such as guilt, 

pride, or fear, but in school settings it is often manifested in classrooms as test anxiety (Pintrich 

& De Groot, 1990, p. 34). This three-component model has been validated extensively and used 

frequently in educational research (Duncan & McKeachie, 2005), and thus serves as the basis for 

operationalizing motivation in this study.  

The outlined model settles upon three motivational indicators: self-efficacy, goal-

orientation, and interest. These indicators cover the expectancy and value components outlined 

above while omitting the emotional/affective motivational components. This deliberate omission 

results from a lack of empirical evidence demonstrating a direct or indirect relationship between 
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emotional orientation and transfer. Additionally, test anxiety is a trait often associated with high-

stakes testing, which is not present in this study. Lastly, as it will be shown in the next section, 

motivation seems to exert its indirect influence on transfer through increased self-regulation. 

This mediating relationship seems consistent with the motivational literature (Dweck & Leggett, 

1988; Pintrich 1999). However, there seems to be little evidence that decreased test anxiety or 

negative emotions increase self-regulation. Of course, the presence of these factors is detrimental 

to learning and to self-regulated behaviors, but their absence does not necessarily imply 

increased self-regulation, retention, or transfer. As such, it makes little sense to include these 

types of variables as part of the model.  

Self-efficacy and Transfer. Bandura (1993) described self-efficacy as “people’s beliefs 

about their capabilities to exercise control over their own level of functioning and over events 

that affect their lives” (p. 118). Two forms of scholarly inquiry traditionally cover self-efficacy 

research. The first form seeks to evaluate the relationship between self-efficacy and performance 

by measuring levels of self-efficacy at some point during a study (or multiple points) and 

correlating results with measures of performance. In these cases, self-efficacy is not manipulated. 

There is strong evidence supporting a positive correlation between self-efficacy levels and 

transfer (Holladay & Quinones, 2003; Kozlowski et al, 2001).  

In an integrated review of the transfer literature, Burke and Hutchins (2008) highlight 

several lines of inquiry that support these findings (i.e. Harrison et al., 1997; Mathieu, Martineau, 

& Tannenbaum, 1993). 

 The second form of inquiry seeks to increase self-efficacy beliefs through targeted 

interventions. Many of these studies take the view that increased self-efficacy leads to increased 

transfer. An entire line of inquiry by Gist and her colleagues have found significant differences 
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due to self-efficacy interventions in the context of business negotiations (Gist, 1989; Gist, 

Stevens, & Bavetta, 1991; Stevens & Gist, 1997). Elsewhere, Eden and Aviram (1993) have 

explored the effects of self-efficacy training on speeding up reemployment finding positive 

significant results. Within the math domain, Pajares and Miller (1994), Pajares (1996), Hall and 

Vance (2010), Hoffman and Spatariu (2008), and Marsh et al. (1997) have shown a significant 

relationship between increased self-efficacy and increased problem-solving performance.  

 These significant findings, which converge to a similar conclusion through independent 

lines of inquiry, provide support for the initial hypothesis that self-efficacy is a strong predictor 

of transfer. Learners who believe in their ability to successfully navigate a task are more likely to 

excel at that task and at tasks that call upon the learners to use what they have learned in prior 

situations.  

Goal Orientation and Transfer. The goals set by learners when engaged with 

instruction have shown to affect academic achievement and transfer. The goal orientation 

literature has identified two broad classes of goals: performance and mastery (also known as 

learning) goals (Grant & Dweck, 2003; Kaplan and Maehr, 2007). Performance goals are 

typically set by a learner to validate their ability to perform a task or in some cases to avoid the 

appearance of inability to perform certain tasks. Mastery goals, on the other hand, are set by 

learners to strive towards mastering a particular skill or competency. They can also include a 

learner’s desire to master a particular skill or goal as a learning challenge. There is evidence 

linking both types of goal orientation to positive outcomes such as improved self-efficacy and 

self-regulation, academic achievement, and positive emotions (See Kaplan & Maehr’s review, 

2007).  
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However, a number of studies in the literature have associated performance goal 

orientation with decreased performance outcomes as they shift the learner’s attention away from 

the task, decrease effort, and are not effective in promoting self-regulated behaviors (Kozlowski 

et al., 2001; Newman & Schwager, 1995; Stevens & Gist, 1997). Furthermore, Brophy (2005) 

advices focusing away from performance goals because they are seldom generated by learners 

and often lead learners to adopt a performance-avoidance approach aimed at appearing 

competent to others. A normative view of performance leads students to set lower bars and focus 

simply on doing better than their peers.  

Given such evidence, it appears a focus on mastery goal is appropriate. There is a limited 

amount of evidence linking mastery goals to transfer of learning (Grant & Dweck, 2003; Fisher 

& Ford, 1998; Ford et al., 1998). Some of the strongest evidence is provided by Berevy-Mayer 

and Kaplan (2005) who explored the direct link between mastery goal orientation and transfer of 

problem-solving strategies in a logical task. They found subjects assigned to a mastery-goal 

orientation condition scored higher on a transfer task than those assigned to a performance-

orientation condition.  

Evidence for an indirect link between mastery goal orientation and transfer appears to be 

more prevalent. A number of studies have found strong correlations between mastery goal 

orientation and self-efficacy. In addition, there is strong evidence suggesting a link between 

mastery goals and self-regulation. This relationship is explored briefly in the section presenting 

evidence on the link to self-regulated learning, and explored in more depth in chapter 2.  

Interest. Interest as a psychological state manifests itself through attention to material 

and putting forth effort to engage in activities (Ainley, Hidi, & Berndorff, 2001). The interest 

literature has identified two main types of interest: individual and situational interest. Individual 
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interest is an internal personal disposition that remains constant throughout different tasks and 

situations. Situational interest, in contrast, is specific to a task and is a response to the features of 

a learning environment. It may or may not be sustained over time (Ainley et al., 2001; Hidi & 

Renninger, 2006; Krapp, Hidi, & Renninger, 1992; Schiefele, 1991). Engagement and attention 

to a task means a learner is more likely to persist until the task is successfully completed. 

Interested learners spend more time thinking about a task and as a result are able to process 

learning materials more deeply. Interest has been shown to positively impact cognitive 

performance, integration of information with prior knowledge, persistence and effort, and levels 

of learning, among other factors. The combination of these factors also confirms a positive 

impact on overall levels of learning (see Hidi & Renninger, 2006 and Schiefele, Krapp, & 

Winteler, 1992 for a summary of evidence linking interest to all these constructs).  

A link between interest and a set of variables associated with increased learning also 

suggests a link between interest and transfer of learning. Alexander and Murphy (1999) have 

used cluster analysis to create profiles of student performance on an analogical reasoning task. 

Both before and after instruction, the profiles with the highest levels of interest performed best 

on an analogical reasoning task. Mayer (1998) highlights the work of Anand and Ross (1987) 

and Ross et al., (1985) in providing evidence for the positive influence of personalized math 

instruction (as a proxy to improved interest) on mathematical transfer performance. Ku and 

Sullivan (2002) further validate these results showing positive transfer results for students 

receiving personalized math instruction.  

These examples provide clear evidence of the role interest plays on promoting transfer in 

math settings, but as Mayer (1998) puts it, “... researchers have not yet been able to clearly 

specify the mechanism by which interest affects what is learned, or even to clearly specify what 
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interest is” (p. 58). Much of the research on interest over the last few years has focused on 

clarifying and clearly operationalizing interest. Little attention, however, has been paid to the 

mechanisms responsible for explaining interest’s effect on transfer and increased performance. 

To begin to answer that question, we must first outline the mediating mechanism between 

interest and transfer. The next section, which highlights the effect of self-regulation on transfer 

and the evidence linking previously outlined motivational indicators, attempts to clarify that 

concern.  

Self-Regulated Learning, Motivation, and Transfer. A critical part of outlining a 

model of motivation of transfer is describing the causal mechanism by which motivation affects 

the cognitive transfer processes. This suggests that beyond having a direct effect on transfer, the 

motivational factors outlined above also exert their impact on transfer through a mediating 

mechanism.  

Self-regulated learning is a prime candidate for this role. Pintrich (1999) defines self-

regulation as “an active, constructive process whereby learners set goals for their learning and 

then attempt to monitor, regulate, and control their cognition, motivation, and behavior” (p. 453). 

Pintrich’s framework of self-regulated learning spans across the traditional areas of 

psychological functioning: cognition, motivation, and behavior (Snow, Corno, & Jackson, 1996). 

Context is added in to account for environmental factors such as classroom culture.  

Empirical evidence and theoretical conjecture support self-regulation as a mediating 

mechanism. On the theoretical front is the underlying assumption that self-regulated learning is a 

mediating factor in learning and achievement. Pintrich (2004) points this out while outlining the 

major assumptions of self-regulated learning: 

It is not just individuals’ cultural, demographic, or personality characteristics that 
influence achievement and learning directly, nor just the contextual characteristics of the 
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classroom environment that shape achievement, but the individuals’ self-regulation of 
their cognition, motivation, and behavior that mediate the relations between the person, 
context, and eventual achievement (p. 388). 
 
Individually, there is empirical and theoretical evidence linking the previously outlined 

components of motivation to self-regulated learning and transfer. Pintrich’s (2004) framework 

for assessing self-regulated learning, which is based on Zimmerman’s (2000, 2008) model of 

development for self-regulation, forms the theoretical basis used here.  

The first phase of self-regulated learning includes planning and activation activities. On 

the cognitive area of psychological functioning, these activities entail the setting of target goals 

closely linking goal orientation to self-regulated learning processes. Empirical evidence supports 

the claim that developing a mastery goal orientation enhances self-regulated learning (Ames & 

Archer, 1988; Elliot et al., 1999; Elliot & McGregor, 2001; Greene & Miller, 1996; Schraw et 

al., 1995; Dweck; 2003; Pintrich & De Groot, 1990; Wolters, 2004), and that this increases the 

possibility of transfer (Bereby-Meyer & Kaplan, 2005; Koslowski et al., 2001).  

On the motivational area of psychological functioning, self-regulated learning calls for 

efficacy judgments. This closely links self-efficacy to self-regulated learning. Empirically, the 

effects of self-efficacy on self-regulated learning are well documented (Bandura & Wood, 1989; 

Zimmerman, 2000; Zimmerman & Martinez-Pons, 1990). The evidence for the direct effect of 

self-efficacy on transfer is equally strong (Holladay & Quinones, 2003; Kozlowski et al., 2001; 

Harrison et al., 1997; Mathieu et al., 1993; Pajares & Miller, 1994; Hoffman & Spatariu, 2008).  

On both the motivation and context areas of psychological function, interest is well 

linked to self-regulated learning through processes of interest activation and the development of 

task perceptions. Empirically, there is also support for the notion that increased interest in a topic 

allows learners to develop deeper knowledge of a topic (Ainley, Hidi, & Berndorff, 2002; 
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Alexander & Murphy, 1999; Hidi, 2001; Krapp, 1999). These empirical findings are summarized 

in table 1.  

 Multiple sources of evidence point to self-regulation as a mediating factor between 

motivation and transfer. Empirical evidence shows a direct relationship between motivation and 

self-regulated learning as well as a direct relationship between self-regulated learning and 

transfer. 

 
 
Table 1.  Evidence supporting link between motivational constructs, self-regulated learning, and transfer. 

Motivational construct Description Sources linking 
construct to self-
regulated learning

Sources linking 
construct to transfer 

Goal Orientation The goals set by learners 
when engaged with 
instruction. 

Ames & Archer, 1988; 
Elliot et al., 1999; Elliot & 
McGregor, 2001; Greene 
& Miller, 1996; Schraw et 
al., 1995; Grant & Dweck, 
2003; Pintrich & De 
Groot, 1990; Wolters, 
2004. 

Berevy-Mayer and 
Kaplan, 2005; Dupeyrat & 
Marine, 2005; Fisher and 
Ford, 1998; Ford et al., 
1998. 

Interest A psychological state that 
manifests itself through 
attention to material and 
putting forth effort to 
engage in activities. 

Ainley et al., 2002; Hidi, 
1990; Sansone et al., 
1992; Schiefele et al., 
1992.  

Alexander and Murphy, 
1999; Anand and Ross, 
1987; Ross et al., 1985; 
Ku and Sullivan, 2002. 

Self-Efficacy The belief is one’s ability 
to perform the necessary 
steps to accomplish a 
desired goal or action. 

Bandura & Wood, 1989; 
Pintrich & De Groot 
1990; Zimmerman, 
Bandura, & Martinez-
Pons, 1992. 

Holladay and Quinones, 
2007; Kozlowski et al., 
2001; Harrison et al., 
1997; Mathieu et al., 
1993; Pajares and Miller, 
1994; Pajares, 1996; Hall 
and Vance, 2010; 
Hoffman and Spatariu, 
2008. 

 
 These findings establish not only a relationship among these constructs, but also suggest 

a temporal order that helps to specify the structural model presented here. Having established the 

viability of a model linking motivation to transfer through the mediating mechanism of increased 

self-regulation, the final step is to counter the alternative hypothesis that motivation is a factor 
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that affects transfer only because motivated learners are learners with high prior knowledge. This 

requires us to include prior knowledge as part of the model, and to present justification for its 

inclusion as the main predictor of transfer.  

Prior Knowledge and Transfer. Over the last three decades, prior knowledge has 

emerged as an enduring and critical construct in the study of learning. It is possible that no other 

construct has gathered such consistent empirical support in the education and psychology 

literature. Despite this success, the formalized study of prior knowledge as a factor in learning 

has been plagued by poorly operationalized definitions, an inability to separate different aspects 

of prior knowledge, and a tendency to merge and confound into different types of knowledge 

(Dochy, Moerkerke, & Martens, 1996).  

Fortunately, prior knowledge researchers have attempted to address these issues by 

creating frameworks that separate and operationalize the different components of prior 

knowledge. First, Dochy, Moerkerke, and Martens (1996) defined prior knowledge as “the whole 

of a person’s knowledge. As such, prior knowledge is dynamic in nature; available before a 

certain learning task; is structured; can exist in multiple states (i.e., declarative, procedural, and 

conditional knowledge); is both explicit and tacit in nature and contains conceptual and 

metacognitive knowledge components” (p. 5). Both Alexander and Judy (1988) and Dochy and 

Alexander (1995) settle upon a broad, two-dimension framework of prior knowledge that 

includes domain knowledge and strategic knowledge. Domain knowledge is defined as “the 

declarative, procedural, or conditional knowledge one possesses relative to a particular field of 

study (Alexander & Judy, 1988, p. 376). Separated from domain knowledge is strategic 

knowledge. This is knowledge of “goal-directed procedures that are planfully or intentionally 
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evoked either prior to, during, or after the performance of a task” (Alexander & Judy, 1988, p. 

376). These two components make up the relevant factors that may influence transfer of learning.  

 Evidence linking prior domain knowledge, strategic knowledge and transfer are extensive 

and can be found across different areas of research. The first research area is that of expertise 

development. Experts provide optimal examples for the study of transfer because expertise is 

often a result of being able to apply knowledge and strategies learned under one context to 

completely new situations. Alexander’s (2003) Model of Domain Learning (MDL), for example, 

posits that expertise is a result of the interrelation between domain knowledge, strategic 

knowledge, and interest. Similarly, Ericsson and Smith (1991) and Hatano and Oura (2003) 

identified domain knowledge and strategic knowledge as key requirements in the development of 

expertise. These findings are important in establishing problem-solving skills as domain specific 

and often correlated highly with in-depth domain knowledge.  

 A second area of research where the role domain and strategic knowledge in promoting 

transfer of learning is investigated is the study of educational outcomes and performance. Dochy, 

Moerkerke, and Martens (1996) reviewed the literature on the subject and found evidence 

pointing to prior knowledge as a significant covariate in post-test learning performance in 

intervention studies, and as a significant predictor in causal modeling correlational studies (p. 7-

8). Since then, a variety of studies have linked prior knowledge to positive learning outcomes 

and transfer (Ben-David & Zohar, 2009; Brand-Gruwel & Stadtler, 2011; Chang, 2010; Hailikari 

& Nevgi, 2010; Kilpatrick, Swafford, & Findell, 2001; Lee & Chen, 2009; Rittle-Johnson, Star, 

& Durkin, 2008; Schwartz, Bransford, & Sears, 2005; Star & Rittle-Johnson, 2007; Wong, 

Lawson, & Keeves, 2002). Table 2 outlines these studies and provides relevant information on 
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the research design employed, the type of prior knowledge explored, and the knowledge domain 

covered in the study.  

The third area where support for prior knowledge influencing transfer can be found is 

theoretical. The current and widely accepted view of the human cognitive architecture (Sweller, 

2008; Sweller & Van Merrienboer, 1998) outlines a human information processing system 

directed by three main processes: assimilation, processing, and use (Sweller, 2008, p. 370). In 

this process, assimilation is dependent upon stored long-term knowledge. This knowledge forms 

the basis by which all new knowledge is developed (Bartlett, 1995). Thus, prior knowledge is 

likely to be the most important determinant of new learning and so it stands to reason that it also 

has a big impact on a learner’s ability to transfer learning to newer circumstances. 

 

Table 2.  Evidence connecting prior knowledge and transfer. 

Article Research design Knowledge type Domain 

Star & Rittle-Johnson, 
2007 

Experimental Strategic Math 

Wong, Lawson, & 
Keeves, 2002 

Path Analysis Domain  Math 

Rittle-Johnson, Star, & 
Durkin, 2008 

Experimental Domain Math 

Lee & Chen, 2009 Experimental Domain Math  

Chang, 2010 Correlational Domain Science 

Brand-Gruwel & Stadtler, 
2010 

Correlational Both Information seeking /web 

Ben-David & Zohar, 2009 Experimental Strategic Scientific inquiry 

Kilpatrick, Swafford,& 
Findell, 2001 

Lit Review Both Math 

Schwartz et al., 2006 Experimental Both Data analysis 

Hailikari &Nevgi, 2010  Correlational Both Math 

 



21 
 

 

 The more knowledge available—both in terms of domain knowledge and strategies to 

appropriately use that knowledge—the higher the probability learners will properly select and 

use the appropriate knowledge needed to solve new problems.  

 There is also evidence suggesting prior knowledge influences self-regulated learning, 

which justifies the inclusion of not only a direct relationship between prior knowledge and 

transfer, but also an indirect one. In outlining the components of self-regulation, Boekaerts 

(1996, 1997) showed that self-regulated learners typically rely on domain-specific knowledge 

and cognitive strategies to enhance performance. This led her to develop a six-component model 

of self-regulated learning that included regulating strategies along cognitive, motivation, belief, 

and affective dimensions, in addition to the two dimensions of prior knowledge. Pintrich (1999) 

arrived at a similar conclusion by outlining the role of cognitive learning strategies (rehearsal, 

elaboration, and organizing strategies) that along with metacognitive strategies help students 

control their learning. Since then, empirical findings have further validated the role of prior 

knowledge on self-regulated learning (Greene et al., 2010; Moos & Acevedo, 2008; Moos & 

Acevedo, 2009; Muis, 2007; Pieschl, Stahl, & Bromme, 2008).  

 The evidence points to a clear system of relationships among prior knowledge, 

motivation, self-regulated learning, and transfer. More than a control in the relationship between 

motivation, self-regulation, and transfer, prior knowledge is a key component of the system of 

relationships that explain the transfer process. This evidence, and the rationale supporting such 

evidence, provides sufficient justification—empirically and theoretically—for outlining the 

proposed model. The main assumptions of the model, which were outlined and graphically 

presented in previous sections, are summarized below: 
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1. Motivation—composed of a learner’s goal orientation, learner’s self-efficacy, and 

learner’s interest—indirectly affects transfer of learning through self-regulated learning. 

2. Prior knowledge—composed of strategic and domain knowledge—affects transfer 

directly and indirectly through self-regulated learning. 

3. Self-regulated learning directly affects transfer of learning. 

4. Motivation and prior knowledge are significantly correlated. That is, motivated learners 

are typically learners with high prior knowledge. 

 Of course, the argument for the inclusion of these constructs is in itself not an argument 

to omit related constructs. As this study goes, the selection of these specific variables has been 

based on the quality of empirical and theoretical evidence justifying the posited relationships. 

These omitted variables are covered in more detail in the next chapter. 

 The next section argues that this proposed model can make a significant contribution to 

the transfer and motivation fields of research by concurrently investigating how motivational 

forces and prior knowledge interact with self-regulation to promote transfer of learning.  

Significance of the Study 

 The proposed study argues that empirical evidence suggests an extension to the scope of 

the study of transfer beyond cognitive elements to encompass a set of affective components 

hypothesized to influence transfer of learning. Whereas both the transfer and motivation 

literature have identified antecedents and outcomes related to each, as Pugh and Bergin (2006) 

point out, “…conspicuously lacking is an analysis of the relation between motivation and 

transfer” (p. 147). 

 The analysis of this relationship through empirical means is the main focus of this study. 

The lack of a unified theoretical framework, however, makes this endeavor somewhat difficult. 
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As such, a main point of interest in the study is in better understanding the mechanism by which 

motivation affects transfer. That understanding can provide a theoretical starting point for future 

work wishing to explore the effects of motivational techniques on learning transfer.  

 Beyond theoretical goals, a better understanding of the causal mechanisms of a 

phenomenon allows us to capture the complexity of such phenomena, and in turn create more 

targeted interventions to change it. If we understand the mechanism by which motivation affects 

transfer, we can design learning interventions that better address that process. Furthermore, we 

can derive a set of instructional principles that target motivational factors and mediating causes 

to improve transfer of learning. Replication of such work in different contexts, with different 

content, and under different learning circumstances may allow us to come up with a 

comprehensive set of instructional principles that can be effectively applied to a variety of 

instructional situations. This is, after all, a principal focus of instructional scientists. As 

Reigeluth (1983) reminds us: 

Instructional scientists are not just interested in knowing that one method variable has 
better results than any other under given conditions – we are not just interested in single 
strategy components and isolated principles of instruction. What instructional designers 
and teachers need to know is a what complete set of strategy components has better 
results (for desired outcomes) than any other set under given conditions: We are 
interested in complete models and theories of instruction (p. 21).   

 

As such, understanding the system of variables and the mechanisms that drive the processes of 

learning, which are targeted by our interventions, plays a major role in the eventual design of 

instruction.  

Research Questions 

The proposed model posits that motivation and prior knowledge have a direct effect on 

self-regulation. Self-regulation, in turn, affects, transfer of learning. Prior knowledge is also 
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posited to have a direct effect on transfer of learning as supported by prior empirical studies 

(Brown, 1990; Gick & Holyoak, 1983; Nokes 2009; Schwartz, Bransford, &Sears, 2005; Wong 

et ale, 2002). Motivation encompasses goal orientation, interest, and self-efficacy. Prior 

knowledge includes knowledge of the domain and knowledge of learning strategies. Self-

regulation is made up of both cognitive and motivational components that work together to 

influence deep-level processing associated with transfer. With regards to the transfer of learning 

phenomena, the following questions are addressed in this study: 

 

● R1: Does prior knowledge significantly increase transfer performance? What is the 

magnitude of the relationship? 

● R2: Does self-regulation significantly increase transfer performance? What is the 

magnitude of the relationship? 

● R3: Does self-regulation significantly mediate the relationship between prior knowledge 

and motivation? What is the magnitude of the relationship? 

● R4: Does self-regulation significantly mediate the relationship between prior knowledge 

and transfer of learning? What is the magnitude of the relationship? 

As this study employs SEM to model the relationships among construct, a number of questions 

about model fit must also be addressed (Bollen & Long, 1993): 

 R5:  Does the specified model reasonably fit the data according to fit standards (x2, CFI, 

RMSEA, AIC, etc.). 

 R6:  Which of the specified models (M1, M2, M3, M4, M5) best fit the data? 

 R7: What modifications, if any, are proposed to improve the model’s data fit?  

Limitations 
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 Although correlational studies examining the relationships between transfer of learning 

and the outlined constructs exist, there are no studies that simultaneously explore these 

relationships. The use of Structural Equation Modeling (SEM) as an analytical technique is 

appropriate for the types of inquiry investigating systems of variables and their relationships 

(Schumaker & Lomax, 2004).  

The use of this technique, however, brings about a series of limitations. MacCallum and 

Austin (2000) identify several of these limitations. Applicable to this study are limitations about 

generalizability of findings, concerns about confirmation bias, and difficulty establishing the 

temporal order of the variables posited in the model, which seriously limits causality inferences.   

 First, as an initial exploration into the motivational factors of transfer of learning, it is 

expected that future, iterative validation will take place and that subsequent research will be 

carried out under different contexts and with different populations. The present study, however, 

will have limited generalizability beyond college students. This is not a limitation of SEM, but 

rather a limitation of the sampling technique used here. The sample is this study can be 

considered a convenience sample as subjects have been selected from an available pool of 

volunteers (Krathwohl, 1998). This non-probability sampling technique limits the scope of the 

inferences to be made to other populations, and has the potential to affect internal validity if the 

sample suffers from extreme homogeneity. Care will be taken to minimize these threats. A more 

detailed discussion of sampling can be found in chapter 3.  

 A second issue is that of confirmation bias. Confirmation bias refers to a prejudice 

towards a model being evaluated without consideration for alternative models that might fit data 

to the same degree, or better, than the proposed model (MacCallum and Austin, 2000, p. 213). 

This limitation can be addressed by progressively fitting nested models (equivalent models with 
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different assumptions about correlations or direct and indirect effects) or by creating multiple a 

priori models. Given the time and resource limitations, these approaches might prove unfeasible, 

but a limited amount of model fitting consistent with SEM best practices is expected to take 

place. Specific techniques employed to minimize these concerns are discussed in chapter 3.  

 The third issue relevant to this is study is that of time. In correlational and observational 

studies such as this, there are issues establishing directional influences among variables and thus 

our ability to imply causation is restricted. How do we know, for example, that self-regulated 

learning strategies aren’t influencing motivational forces? The temporal order is important 

because it is likely to influence the statistical estimates generated by the analysis, but most 

importantly because if the hypothesized variable relationships are wrong, the whole model rests 

on faulty logic. Addressing this issue requires complex considerations.  

First, selection of the variables must rely on strong theoretical and empirical evidence 

that establishes the proposed temporal order. As shown before, the theoretical and empirical 

evidence clearly supports the temporal order proposed in this model.  

Second, a temporal order is a necessity to establish causation, but it is not by itself 

sufficient for causation claims. Shadish and Cook (1999) discuss the logic of causation and 

remind us that causation is a more a matter of logic than a matter of statistics. Beyond temporal 

precedence, this requires us to rule out alternative causes. Thus, the danger of omitted variables 

lurks, as a third variable might be responsible for the outlined effects.  

Once again, theory, empirical evidence, and common sense must be strongly considered 

in specifying the model. In the words of Shadish and Cook (1999), “design rules, not statistics”, 

and thus mechanisms to address these issues must be built into the design of the study. This 

chapter described the careful logic for selecting and specifying the model. The next chapter 
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discusses the evidence in more detail, and outlines the efforts to eliminate other plausible 

variables. Chapter 3 describes the methodological and design choices taken to minimize these 

inherent limitations.  

Summary 

 For more than one hundred years, the study of the conditions and strategies that promote 

transfer of learning has taken a central role in the psychology and education literature. Over the 

last twenty years, this central focus has merged with a nascent interest in exploring the role of 

personal and motivational beliefs. Yet, despite a wealth of evidence linking individual 

motivational and belief characteristics to self-regulated learning and transfer, there are only a 

handful of studies attempting to advance a theoretical integration of these areas through 

quantitative or qualitative validation. 

 This study lies at a critical intersection of these fields, and attempts to fill a gap in our 

theoretical understanding of the motivational mechanisms of transfer. To accomplish this, the 

proposed model seeks validation in predicting prior knowledge and motivation as mechanisms 

that influence transfer of learning through increased self-regulation. An expectancy-value model 

of motivation spells out three major indicator variables—goal orientation, interest, and self-

efficacy—that correlate closely with prior knowledge, both in terms of domain knowledge and 

strategic knowledge. These constructs are posited to directly and indirectly influence transfer of 

learning. A case has been made for the inclusion and operationalization of these variables as 

outlined in the proposed model. That case is extended, and further developed in the next chapter 

by summarizing the relevant literature, revisiting each argument and logical justification in 

detail, and proposing a research design and analytical methodology suited for validating the 

theoretical and empirical relationships outlined in this chapter.  
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CHAPTER 2: LITERATURE REVIEW 

The purpose of this dissertation is to identify and validate a model that describes the role of 

motivation on transfer. Chapter 1 described the nature of the problem and provided justification 

for the proposed study by outlining a gap in the transfer and motivational literature. In this 

chapter, this rationale is expanded and the distinct components of the motivational model of 

transfer are discussed in detail. 

It is no easy feat to summarize more than 100 years of theoretical and empirical work into a 

succinct and cohesive chapter. Light and Pillemer (1984) argue that the literature review is a 

necessary step in ensuring science is a cumulative endeavor that draws from prior work. Further, 

the authors argue that this process is not merely about selecting and synthesizing a narrow set of 

studies. Rather, the process is a systematic attempt to structure a research endeavor review while 

aggregating and integrating conflicting information. This review follows this sound advice by 

establishing clear criteria for selection and inclusion of literature in this review. Furthermore, this 

review addresses a set of issues that have been identified as weakening the existing evidence, and 

by extension limiting the scope of the foundational evidence that supports new empirical work.  

Light and Pillemer (1984) identified five critical issues to be addressed in any systematic 

literature review (p. 12). These are: 

1. Identifying a question the review is trying to answer. 

2. Determining whether the review is exploratory or built around specific, testable, 

hypotheses. 

3. Determining studies to be included. 
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4. Determining to which population the main findings can be generalized. 

5. Describing important differences in the ways the studies were done.  

The first three issues are addressed at a global level while issues four and five are addressed 

with regards to each study covered in this review.  

First is the issue of identifying a set of answerable research questions. Booth, Colomb, and 

Williams (2003) warn that plunging into a search without identifying a question and plausible 

answer is essentially the same as leaving the review up to chance. Instead, a logical chain must 

be followed from the identification of the problem to the formulation of questions to the 

validation of the plausibility of the answers hypothesized for those questions, and finally to the 

verification of those answers through data collection. That chain of reasoning is followed in this 

study. 

 Chapter 1 established a gap in the transfer literature, which has conspicuously ignored the 

role of motivation in promoting transfer of learning. From that gap followed a set of questions 

that laid the foundation for this chapter. These questions, and potential answers were supported 

with empirical and theoretical evidence. In this chapter, that evidence is further described and 

expanded upon, its limitations are highlighted, and its logical relationship to this study is 

established.   

From these questions, followed clear, testable hypotheses operationalized in the form of a 

theoretical model in need of validation. While there are some exploratory aspects—namely with 

regards to testing various models to determine best fit—these alternative models are specified a 



30 
 

 

priori. They follow, once again, from the empirical and theoretical evidence that drives the 

research questions posed.  

The final global issue is that of establishing inclusion criteria for the studies reviewed, and 

discussing the implications that criteria will have on the review and the study in general. Light 

and Pillemer (1984) suggest the easiest alternative is to include all available studies. This is a 

problematic strategy in a domain where an established tradition of empirical work exists. Sheer 

volume makes it difficult to cover all studies under a limitation of time and space, as is the case 

in this study. Given that limitation, a more feasible approach is followed in this study and thus 

the following criteria for inclusion are established: 

1. Include published and unpublished quantitative, qualitative, and mixed-methods 

studies. While acknowledging that most of the studies included in this review will be 

drawn from published work in journals and books, this study will also draw on 

unpublished dissertations and technical reports that exhibit sound methodology and 

either support or provide a departing point to the hypotheses posed in this study.  

2. Include all empirical work related to a topic. The focus of this study shall be on 

empirical work. That is, work that employs systematic data collection and analysis 

techniques. Work that reviews, summarizes, and amalgamates a body of work will 

be included when systematic procedures (i.e. meta-analysis procedures) for selection 

and analysis of studies are provided by the authors.   

3. Include only conceptual work when establishing theoretical foundations and 

frameworks. Conceptual/theoretical work provides a major starting point for this 

study because it is important to establish the theoretical foundation under which the 
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study operates. Beyond that, however, conceptual work will not be considered to 

support claims of significant relationships or effects of a variable upon another. This 

leads to the next point. 

4. Give preference to studies consistent with theoretical framework selected for this 

study. Construct operationalization requires selection of a theoretical framework 

(Creswell, 2003; Babbie, 2008). The rationale for the theoretical frameworks chosen 

is detailed in this chapter. Based on that rationale, studies are selected for theoretical 

congruence to facilitate operationalization and interpretation.  

5. Include all relevant literature domains beyond education and psychology. Many of 

the constructs included in this study have been covered in other fields. This review 

expands its scope, when appropriate, to include studies from multiple disciplines as 

to provide a wider, more comprehensive view of the relationships proposed.  

6. When possible, include only studies covering the domain of mathematical problem 

solving. Despite the concern for comprehensiveness, however, the study also seeks 

to establish depth in a particular content domain—that is mathematical problem 

solving. As such, the study attempts to include mostly studies covering this domain. 

It is speculated processes of transfer might be unique to the domain they concern 

(Bransford, 2000; Nokes, 2009). An exception to this rule arises when a study in a 

different content domain can offer supporting evidence for an overall process that is 

generalizable to multiple content domains (as it is the case with the relationship 

between prior knowledge and transfer of learning).  

7. Include studies covering all populations unless the processes described are unique 

to that population. Although this study relies on a sample of university students, 
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inclusion is justified when empirical evidence suggests the processes can be 

replicated across multiple populations.  

The criteria specified above forms the basis for study inclusion in this review. This systematic 

review begins with an overview of the transfer of learning.  

The Multiple Perspectives of Transfer of Learning 

Psychology, education, and their surrounding subsets have been concerned with transfer 

of learning since the very beginning. This concern has resulted in contentious findings and 

somewhat contradicting conceptualizations. As Haskell (2001) affirms, “…the term transfer 

appears nearly omnimeaningful, with no systematic taxonomical framework to guide its multiple 

definitions and uses” (p.78). To illustrate this point, historical definitions of transfer as they have 

evolved in the literature are highlighted below.  

 Transfer as identical elements: “The influence of improvement in one mental 

function upon the efficiency of other functions (I)” (Thorndike & Woodworth, 1901, 

from title). 

 Transfer as analogy: “The central idea is that an analogy is an assertion that a 

relational structure than normally applies in one domain can be applied in another 

domain” (Gentner, 1983, p. 156).  

 Transfer as socio-cultural activity: “The central idea is that ‘the same’ activity in 

different situations derives structuring from, and provides structuring resources for, 

other activities. This view specifically opposes assumptions either that activities and 
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settings are isolated and unrelated, or that some forms of knowledge are universally 

insert able into any situation” (Lave, 1988, p. 122).  

 Transfer of learning: “Stated most simply, in our work, we mean understanding; 

and understanding is indexed by the ability of learners to explain the resources 

(knowledge and processes) they are acquiring and to make flexible use of them. 

(Campione, Shapiro, & Brown, 1995, p. 39).  

 Transfer as consequential transitions: “Transfer involves the movement of a 

person, a transaction, or an object from one place and time to another in our daily 

lives” (Beach, 1999, p. 101). 

 Transfer as an actor (i.e. learner)-oriented activity:  “…Transfer as the personal 

creation of relations of similarity, or how the ‘actors’ see situations as similar” 

(Lobato, 2003, p.18). 

 Transfer in granular pieces: “Processes by which ideas once cued only in particular 

contexts can be actively and flexibly developed, combined, and coordinated such 

that they are more likely to be used in an increasingly wider span of situations” 

(Wagner, 2006, p. 6).  

At first glance, it would seem these definitions are quite similar. They all involve the 

application or usage, in some manner, of previous experiences (in most cases learning 

experiences) under a new context. A closer look, however, reveals deeply embedded 

psychological and methodological assumptions that have been the subject of disagreement since 

the early 20th century when Thorndike first began the tradition of transfer research in psychology 

(Baldwin & Ford, 1988; Detterman & Sternberg, 1993; Lobato, 2006). Thorndike’s definition, 
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for example, was situated within the behaviorist paradigm of psychology that acknowledged 

mental “function” but focused only on observable behavior.  

More than 80 years later, Gentner’s definition came in the midst of a cognitive revolution 

that sought to map out cognitive processes through formal definition of schematic mental 

structures. Subsequent definitions stressed flexibility in using knowledge but held on to the 

epistemological view that learners were “receivers” of knowledge rather than active participants 

in its construction (Lave, 1988; Lobato, 2006). Lave (1988) challenged this view in proposing 

transfer as malleable activity embedded in, and shaped by, personal dispositions, culture, and 

context. Lave’s reconceptualization spawned a series of critiques that saw an abandonment of 

experimental procedures to study transfer of learning and instead moved into observations of 

transfer is more realistic, situated settings (i.e. Beach, 1999; Ellis, 1997; Lobato, 2003; Tuomi-

Grohn & Engestrom, 2003; Wagner, 2006).   

Table 3. Classic vs. learner-oriented view of transfer (adapted from Lobato, 2003). 
Dimension Classical Transfer View Actor-Oriented View 

Definition The application of knowledge learned in one 
situation to a new situation. 

The personal construction of relations of 
similarity across activities, (i.e. seeing 
situations as the same). 

Perspective Observer’s (expert’s) perspective. Actor’s (learner’s) perspective. 
Research 
method 

Researchers look for improved performance 
between learning and transfer tasks. 

Researchers look for the influence of prior 
activity on current activity and how actors 
construe situations as similar.  

Research 
questions 

Was transfer obtained? What conditions 
facilitate transfer? 

What relations of similarity are created? How 
are they supported by the environment?  

Transfer tasks Paired learning and transfer tasks have 
structural features but differ by surface 
features.  

Researchers acknowledge that what experts 
consider a surface feature may be structural 
substantive for a learner.  

Location of 
invariance 

Transfer measures a psychological 
phenomenon. 

Transfer is distributed across mental, material, 
social, and cultural planes. 

Transfer 
processes 

Transfer occurs if two symbolic mental 
representations are identical or overlap, or if a 
mapping between them can be constructed. 

Multiple processes, such as attunement to 
affordances and constraints, assimilation, 
language use, and “focusing phenomena,” 
influence transfer.  

Metaphor Static application of knowledge.  Dynamic production of “sameness.” 
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This brief historical overview illustrates the evolving nature of the transfer phenomena. 

Moreover, it highlights the need for transparency and clarity from a researcher in specifying the 

theoretical underpinnings and assumptions they are adopting. This study adopts a traditional 

view of transfer. Table 3 provides a summary overview of those assumptions and a contrast to 

the actor-oriented view of transfer—a conceptualization resulting from Lave’s critique. 

Lobato’s overview of assumptions is a logical extrapolation of most of the transfer 

literature, which up to Lave’s critique had done little to acknowledge the role of culture, context, 

and individual dispositions on transfer. These studies—consciously or unconsciously—have 

replicated many of these assumptions without considering the problematic implication of their 

adoption.  

The current study operates under a traditional view of transfer while acknowledging, and 

in many ways integrating, the theoretical and practical contributions made by the authors that 

have offered alternative views of transfer. Lobato’s assumptions of the classical view of transfer 

as a rigid and uniform structure are rejected in favor of a more integrated approach. This 

integrated approach is an amalgamation of theoretical and empirical evidence. To be clear, the 

approach is described in terms of Lobato’s suggested categories and is provided in contrast to the 

rigid opposing views offered above. The approach is summarized on table 4. 

The formal outlining of these assumptions frames this study within the larger transfer 

literature. It frames the study as one departing from assumptions long considered to be lacking 

while still maintaining those aspects of the classical view of transfer that have pushed the 

literature forward for over a century. Two important departures differentiate this study from the 

majority of transfer studies found in the educational and psychology literature. First is the 
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inclusion of contextual variables—in this case motivational dispositions—into a framework that 

explores the role of those variables on transfer of learning. Second is the concurrent analysis of 

the impact of multiple variables upon transfer. Having established that frame of reference, this 

chapter turns to describing the factors that are known to influence transfer, including the role of 

motivation.  

Table 4. Assumptions about the transfer construct adopted in this study. 
Dimension View adopted in this study 

Definition The application of knowledge learned in one situation to a new situation. 

 
Perspective Observer’s (expert’s) perspective with the caveat that we don’t have a full view of what the learner 

knows. As such, the transfer task is designed to allow learners to access resources and other materials 
as to show what they have “transferred in” (Schwartz, Bransford, and Sears, 2003). 

 
Research 
method 

Researcher begins by defining a transfer task and working backwards to analyze the knowledge 
components necessary to accomplish that task. Researcher then uses advanced modeling techniques 
to validate hypothesized relationships among those components.  

 
Research 
questions 

Was transfer obtained? What conditions facilitate transfer? What relations of similarity are created? 
How do learner characteristics influence transfer?   

 
Transfer 
tasks 

Transfer tasks have structural features similar to what we assumed the learner knows. The task, 
however, is open enough to allow learners to showcase their knowledge in more than one way.  

 
Location 
of 
invariance 

Transfer measures a psychological phenomenon that is profoundly influenced by a learner’s 
disposition, intentions, emotions, etc. 

 
Transfer 
processes 

Multiple processes, such as attunement to affordances and constraints, assimilation, language use, 
and “focusing phenomena,” influence transfer. Moreover, motivational processes influence these 
cognitive processes significantly.  

 

 
Metaphor Dynamic assembly of multiple knowledge components that require regulatory processes for 

successful assembly.  
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Factors Influencing Transfer of Learning 

 The concern with transfer found in the early psychological literature did not necessarily 

lead to a formal explication of the factors known to influence transfer. Instead, the initial focus 

rested on experimental manipulation. This early experimental work helped outline the singular 

factors that influenced transfer. These efforts, however, were marked by a focus only on factors 

that were malleable and therefore appropriate for experimental manipulation. These factors, for 

most of the 20th century, took the form of a particular training or learning intervention designed 

to alter cognitive or behavioral structures. Little attention was paid to personal characteristics, as 

these were considered stable, and fairly difficult to manipulate via experimental intervention. 

Ellis (1965) was one of the first to formally outline transfer factors that went beyond the 

manipulation of a task or instructional intervention. He acknowledged that the extent to which a 

learner is able to master a new task “…depends to some degree upon individual learner 

characteristics” (p. 36). He posited these factors were mediational processes “to be regarded as 

mechanisms for producing transfer” (p. 36). Ellis’ list is limited referencing “past experiences of 

the learner and how those experiences are utilized in the present task” (p. 36). This vague 

statement must be unpacked based on the evidence presented by Ellis in the subsequent pages of 

the chapter. In the studies cited as evidence for this claim, Ellis is likely referencing prior domain 

knowledge. When describing how a learner goes about using that knowledge in the present 

transfer task, Ellis is referencing strategic knowledge as well as self-regulated behaviors that 

would allow a learner to monitor the state of their knowledge, select and implement strategies to 

solve the problem, and carry out that plan with minimal mistake.  
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Remarkably, without having the language and terminology of socio-cognitive 

psychology, Ellis had pinpointed the role motivational processes and prior knowledge play in 

promoting transfer. Ellis identified other factors influencing transfer. They’re included in table 5.  

  

Figure 2. A model of the transfer process from Baldwin and Ford, 1988, p. 65. 
 

More than twenty years after Ellis’ review of the transfer literature, a comprehensive look 

at transfer influences was provided by Baldwin and Ford (1988). The authors developed a 

framework concerned with outlining the overall forces responsible for promoting transfer of 

training. Their framework included a series of inputs, outputs, and conditions that as a whole 

described the transfer process. Once again, the results were similar in identifying learner 
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characteristics, characteristics of training/instruction, and environmental variables. Baldwin and 

Ford’s framework is displayed in figure 2. 

 Motivation and other learner characteristics are correctly identified as influencing both 

initial learning, and the “generalization and maintenance” required to be able to transfer. Despite 

this identification, much of the focus of the review is the training design aspect of the framework 

as the available evidence is most extensive in that area. As the authors point out: “There are 

fewer such studies, but they are more recent that those focusing on training-design 

characteristics” (p. 75). A complete list of the variables summarized by Baldwin and Ford are 

provided in table 5.  

 The latest review outlining what we know about the variables influencing transfer was 

provided by Bransford, Brown, and Cocking (2000). In this comprehensive treatise of learning, 

Bransford and his colleagues had the benefit of more recent research on transfer focusing on a 

transformed view that included motivation, metacognition, and contextual variables in addition 

to training design characteristics. They conclude: 

 Several critical features of learning affect people’s abilities to transfer what they have 
 learned. The amount and kind of initial learning is a key determinant of the development 
 of expertise and the ability to transfer knowledge. Students are motivated to spend the 
 time needed to learn complex subjects and to solve problems that they find interesting. 
 Opportunities to use knowledge to create products and benefits for others are particularly 
 motivating for students. (p. 77).  
 

Table 5 summarizes and compares these variables to previously proposed models of 

transfer. The series of variables included in these reviews reflect the evolving nature of our 

understanding of the transfer phenomena. Motivation, prior knowledge, and self-regulated 

behaviors were included in reviews as early as the 1960s reflecting the view that these factors are 

important pieces of the processes that influence transfer. That recognition, however, has resulted 
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in few studies formally exploring the process by which motivation and prior knowledge affect 

transfer. That is the focus of this study. It is thus appropriate to now turn to motivation, its formal 

definition, and the evidence supporting its influence of transfer of learning.    

Table 5. A Comparison of Factors Influencing Transfer of Learning. 

Training/instructi
onal 

characteristics 

Ellis (1965) Baldwin and Ford (1988) Bransford, Brown, and Cocking (2000) 

 Time interval 
between tasks 

 Variety of previous 
tasks 

 Task difficulty 
 Task similarity 

 Principles of Learning 
 Sequencing 
 

 Understanding versus memorizing 
 Time to learn 
 Deliberate practice 
 Problem representations 
 Relationships between learning and 

transfer conditions 
 

Learner 
Characteristics 

 Prior experiences 
 Degree of original 

learning 
 Learning to learn 
 

 Ability 
 Personality 
 Motivation 
 

 Metacognition 
 Prior knowledge 
 Motivation 
 

Context 
Characteristics 

  Support 
 Opportunity to transfer 

 Context (i.e. where learner is being asked to 
transfer) 

 Cultural practices 
 

 
Motivation 

 As these reviews show, the concern with motivation as an influence force in promoting 

transfer of learning is by no means a novel one. As early as 1965, Ellis asserted: “To the extent 

that motivational variables influence learning, they are also likely to influence transfer” (p. 65). 

Ellis cites studies by Spence (1964) exploring the effect of anxiety on performance and transfer. 

Given the nascent nature of the motivation construct at the time, its recognition as an essential 

variable in the transfer process is remarkable.  

 Historically, motivation did not enter the language of psychology until the 1950s. 

Gollwitzer and Oettingen (2000) cite Atkinson’s work (1957) as first in exploring expectancy-
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value theories of motivation that shifted the view of human beings as reactive organisms that 

were compelled to act by external faces rather than internal dispositions. The new view assumed 

“…that people choose goals in a rational way, based on the comprehensive knowledge of the 

probability of goal attainment and the goals’ expected value” (p. 1011). These early concerns 

with motivation and transfer have carried over as researchers have continued to refine their 

understanding of the role of motivation on learning and transfer.  

 Self-Determination Theory. The selection and operationalization of a framework is 

complicated by the widespread number of theories addressing motivation, behavior, and 

performance. During the course of this literature review, two competing framework emerged as 

suitable candidates for the present study. One of the most prominent candidates referenced in the 

motivation literature was Deci and Ryan‘s (2000) Self-Determination Theory (SDT).  

 Unlike motivational theories such as Pintrich’s expectancy-value model, which focus on 

goal-directed behaviors consciously set by learners, Deci and Ryan affirm a differentiator of their 

theory is a focus on needs.   

Since the time of the shift toward cognitive theories, most motivation theorists remained 
unwilling to consider needs, focusing instead on goal-related efficacy. SDT has, in 
contrast, maintained that a full understanding not only of goal-directed behavior, but also 
of psychological development and well-being, cannot be achieved without addressing the 
needs that give goals their psychological potency and that influence which regulatory 
processes direct people’s goal pursuits (p. 228).  

Needs are “innate, organismic necessities rather than acquired motives” (p. 229). According to 

SDT, there are three basic psychological needs—autonomy, competence, and relatedness—that 

must be satisfied for human beings to function optimally. Autonomy is the “organismic desire to 

self-organize experience and behavior and to have activity be concordant with one’s integrated 
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sense of self” (p. 231). Competence is “a propensity to have an effect on the environment as well 

as to attain valued outcomes within it” (p. 231). Relatedness is a human and social need, a 

“desire to feel connected to others—to love and care, and to be loved and cared for” (p. 231). 

When these needs are not satisfied, SDT predicts significant psychological costs.  

 This focus on needs allows the authors to expand the scope of their motivational theory to 

all endeavors of human behavior. It has been used, for example, to explain behavior and 

performance in sports-related settings (Vansteenkiste & Deci, 2003; Gagne, Ryan, & Bargmann, 

2003), to propose solutions to promote health behavior changes (Ryan et al., 2008; Niemiec et 

al., 2010), to investigate perceptions of discrepancy between managers and employees in 

organizational settings (Kasser, Davey, & Ryan, 1992; Llard et al., 1993), and to suggest more 

targeted psychotherapeutic interventions (Ryan, Plant, & O’Malley, 1995; Zeldman, Ryan, & 

Fiscella, 2004).  

 In the realm of education, SDT has far reaching implications. It has been used to explain 

performance of undergraduate students in a variety of cultures and contexts (Filak & Sheldon, 

2003; Jang et al., 2009; Levesque et al., 2004; Niemiec et al., 2006), to predict academic 

performance with children (Grolnick, Ryan, & Deci, 1991; Patrick, Skinner, & Connell, 1993; 

Ryan, Stiller, & Lynch, 1994), and as an analytical tool to examine medical students’ 

motivations (Williams et al., 1994; Williams et al., 1996; Williams et al., 1997).  

 The breadth of the theory makes it well suited to explain a variety of human behaviors in 

a variety of contexts. This, however, does not mean that it is well suited to explain transfer. For 

one, the limited evidence supporting the effect of various motivational aspects on transfer has 

been mostly based on socio-cognitive and goal-oriented theories of motivation rather than need-
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driven theories such as SDT. Secondly, the mechanisms of transfer have been described under 

multiple perspectives as the definitions previously highlighted show. These mechanisms, 

however, have never been directly mapped to the SDT processes that spell out how intrinsic, 

extrinsic motivation and goals help human beings fulfill their basic needs. 

  For these reasons, namely a lack of theoretical and empirical foundation establishing 

SDT as a suitable theory to explain or predict transfer and its mediation processes, this 

motivational theory is not considered as the foundation for this study. For this same reason, 

many of the variables operationalized within SDT—namely volition and locus of control—are 

also omitted despite possible links to transfer. This is done for purposes of theoretical 

congruence but also because these variables are likely to be captured by the variables specified 

under the expectancy-value model of motivation employed in this study. 

 The Expectancy-Value Model. Having ruled out Self-Determination theory, this study 

relies on Pintrich’s (1988, 1989) expectancy-value model of motivation as a theoretical 

framework of motivation. The framework consists of three major components that have direct 

correspondence to the known transfer mechanisms. First, it should be acknowledged that a single 

mechanism is not responsible for promoting transfer. Instead, multiple mechanisms, and a 

combination of mechanisms can be employed to produce transfer (Nokes, 2009; Salomon & 

Perkins, 1989).  

 These variations are dependent on a number of design, individual, cultural, and 

conditional factors, but according to Salomon and Perkins (1989), they can be roughly classified 

within two separate mechanisms: a mechanism to predict low road, or near transfer, and a 

mechanism to predict high road, or far transfer. In chapter 1, a discussion of near transfer and its 
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equivalent conceptualizations led to the conclusion of near transfer as characterized by the use of 

prior learning within similar domains under difficulty levels that remained fairly close to the 

initial learning context. The near transfer mechanism is simply an extension of the overall 

learning mechanism specified in the information-processing model (Huitt, 2003).  

 Near transfer occurs when a new concept, fact, or procedure is learned and practiced in a 

variety of contexts allowing multiple schematic representations so that future retrieval and 

application is flexible. When a learner encounters a transfer task, they are able to transfer if the 

surface features (the face characteristics of the task as perceived by the learner) of the task 

resemble the features stored in long-term memory that were encountered in previous problems. 

This is an automatic process made possible by varied practice (Salomon & Perkins, 1989). This 

mechanism is similar to the analogical reasoning mechanism specified elsewhere in the literature 

as being an essential mechanism of transfer (Gick & Holyoak, 1980, 1983; Gentner, 

Loewenstein, & Thompson, 2003; Novick, 1988). Nokes (2009) showed the analogical reasoning 

mechanism to be most effective in explaining near transfer.   

 Far transfer, on the other hand, was characterized by the use and adoption of previously 

mastered knowledge components to newly encountered problems. Salomon and Perkins (1989) 

posited far transfer occurred as a result of three interwoven processes: abstraction, mindfulness, 

and mindful abstraction. Abstraction refers to a process, and also eventual outcome, where a 

learner engages a task/problem, and through a variety of information-processing techniques 

proceeds to create a generic representation of that problem so that it can be cross-referenced to 

existing knowledge components. This is followed by mindfulness, which is “the volitional, 

metacognitively guided employment of nonautomatic (‘controlled’) processes typical of ‘deeper 
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processing’, of great mental effort expenditure, and of the ‘conscious manipulation of the 

elements of one’s environment” (p. 125-126). 

  A combination of the two prior processes follows this to help learners make conscious 

choices about a suitable principle, strategy, or procedure to tackle the problem at hand. The point 

of the process is to sufficiently decontextualize knowledge components so that they are 

generically represented in schema. This allows future, flexible retrieval of these knowledge 

components to address a variety of newly encountered problems. Mindful abstraction is clearly a 

process requiring willful, intentional, and ideally self-regulatory effort to move from an 

abstraction to the selection and implementation of a proper strategy to solve a problem. This 

willful action implies motivational processes play a role in the efficiency and effectiveness of the 

transfer processes that require mindful action. This naturally leads to a question about how 

motivational processes map onto the mechanisms of near and far transfer.  

 Mayer (1998) examined the role of cognition and motivation on transfer. He described 

three theoretical and empirical approaches emphasizing the role of motivation—interest theory, 

self-efficacy theory, and attributional theory. These motivational processes are posited to 

influence transfer by affecting cognitive processing, much the same way Salomon and Perkinson 

(1989) describe it. Interest theory suggests if a learner is interested in a task, they will exert more 

effort promoting deeper learning and enhancing transfer (Ainley, Hidi, & Berndorff, 2002; 

Mayer 1998). Self-efficacy theory predicts that when learners judge themselves as capable of 

solving a problem, they set challenging goals for themselves and commit to achieving those 

goals. Bandura (1993) asserts: “There is a marked difference between possessing knowledge and 

skills and being able to use them well under taxing conditions” (p. 119).  
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 The evolving view of human performance as capability depending not just on knowledge 

but on managing regulatory processes that allow learners to use that knowledge makes self-

efficacy an influential motivational factor upon transfer of learning. Attribution theory predicts 

that when learners attribute academic success and failure to their own efforts, they’re more likely 

to succeed than when they attribute success or failure to innate ability (Weiner, 1985). These 

three components of motivation are consistent with other models of motivation (Pintrich 1988, 

1989; Dweck, 1986; Dweck & Leggett, 1988).   

 The first component, the expectancy component, covers a learner’s belief about his/her 

ability to achieve and succeed. This corresponds to Mayer’s self-efficacy dimension as well as 

the attribution component. A second component is the value component, which includes a 

learner’s goal orientation towards a task and their interest on performing that task. This is similar 

to Mayer’s notion of motivation as interest. A third component concerns learners’ affective and 

emotional reactions towards a task. This could include emotions such as guilt, pride, fear, but in 

school settings it is often manifested in classrooms as test anxiety (Pintrich & De Groot, 1990, p. 

34). This emotional and affective component has no match in Mayer’s model, in part because of 

the effect of anxiety on transfer has not been explored widely in the literature. For those reasons, 

and because in the context of a low-stakes task outside of the classroom, text anxiety and task 

anxiety seem less likely, this component is left out of the motivation model used in this study.  

 From these multiple theoretical frameworks emerges a conceptualization of motivation 

that includes three distinct components: self-efficacy, goal-orientation, and interest. Empirical 

support linking each of these components to transfer of learning is reviewed next, along with a 

description of the ways the variables are conceptualized and measured.  
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 Self-Efficacy. Self-efficacy has been defined as “people’s beliefs about their capabilities 

to exercise control over their own level of functioning and over events that affect their lives” (p. 

Bandura, 1993, 118). In what often becomes a self-fulfilling prophecy, learners with a strong 

belief about their abilities to complete a problem are more likely to perform better in problem 

solving tasks (Hall & Vance, 2010; Holladay & Quinones, 2003; Pajares & Miller, 1994; Pajares, 

1996; Hoffman & Spatariu, 2008; Marsh et al., 1997).  

 One of the first studies exploring the link between transfer and problem solving 

performance under social cognitive theory was conducted by Pajares and Miller (1994). The 

authors conducted a correlational study with 350 undergraduate students. In the study, the 

authors posited both a direct and indirect link between self-efficacy and mathematical 

performance as measured by a problem-solving task. The authors modeled this relationship with 

self-efficacy as a mediator variable between learner characteristics (gender, and prior knowledge 

conceptualized essentially as educational experience in math), and other belief variables (self-

concept and perceived usefulness). The initial model also included anxiety but the variable was 

removed in the final model as no significant relationships were found between it and the 

mediating and predictor variable. The final model is shown in figure 3.  

 Under this model, both self-efficacy and self-concept are found to be mediator variables, 

and both are found to directly predict performance. The strongest direct effects, however, are 

those of self-efficacy with standardized path coefficients of .545 compared to .163 for self-

concept. The learner characteristic variables, which are used here as control variables, account 

for similarly modest total effects with the exception of math high school experience which has a 

total effect of .375 on performance, although a large part of that effect is manifested through self-

efficacy. 
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Figure 3. Modeling the effects of self-efficacy on performance. Reproduced from Pajares and Miller, 1994. 
 

Overall, the study suggests that under this system of variables, self-efficacy is an 

important predictor of mathematical performance. It is a bit more difficult to interpret the fact 

that in the model self-efficacy indirectly influences math performance through self-concept. As 

operationalized in this study, self-concept refers to more generic perceptions of capability rather 

than context specific judgments of ability as in the case of self-efficacy.  

Given the nature of the study (non-experimental), it is difficult to establish a temporal 

order in this relationship beyond what should obviously be a strong correlation. What is clear is 

that this set of independent variables provide reasonable predictive power for math performance 

(R2 = .52), but leave open the possibility that there is much left to explain.  

 The previously described study established a framework for future studies concentrating 

on the role of self-efficacy and mathematical transfer. Subsequent studies focus on establishing 

antecedents of self-efficacy maintaining the meditational role of self-efficacy.  

 Holiday and Quinones (2003) explored a similar line of inquiry specifically concerned 

with transfer of learning. They measured both the intensity of self-efficacy as well its 
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‘generality’; a measure of the consistency of self-efficacy ratings across a number of tasks, 

which the authors suggest was more likely to accurately reflect the learner’s overall self-efficacy. 

They hypothesized that practice variability in training was likely to influence both aspects of 

self-efficacy, which in turn would influence both near and far transfer. Further, the authors 

isolated self-efficacy generality, as a main predictor of far transfer while self-efficacy level was a 

main predictor of near transfer. Their findings supported both the hypothesis that practice 

variability increased self-efficacy along both dimensions, and also that increased self-efficacy 

generality was a strong predictor of far transfer (p. 1099). Once again, self-efficacy was viewed 

as a meditational process without regard for the potential mechanisms existing between self-

efficacy and transfer.  

 Hoffman and Spatariu (2008) conducted a similar correlational study with 81 

undergraduate students enrolled in psychology course. The authors sought to determine the 

influence of metacognitive prompts on transfer positing self-efficacy as a mediating mechanism 

between the two. They fit a regression model with a number of controlling variables, including 

prior knowledge. Mathematical performance was assessed by a number of measures that 

included performance accuracy, difficulty level, time, and efficiency (accuracy/time). Their 

findings suggested both self-efficacy and metacognitive prompting affected performance 

accuracy and efficiency. No evidence was found suggesting prompting was more effective on 

learners with certain levels of self-efficacy. In this case, no tests of mediation were conducted 

despite the previous attempts to establish self-efficacy as a meditational mechanism of 

performance.  

 Hall and Vance (2010) continued this tradition of inquiry by creating an experiment to 

tease out the effects of self-explanations on problem-solving scores. A total of 138 students 
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enrolled in a large business course participated. Their findings suggested groups trained to self-

explain (n=68) influenced self-efficacy beliefs, which in turn influenced problem-solving scores. 

This inference was supported by the absence of this same relationship in the group that was not 

trained to self-explain (n=68).  

 These studies do quite a bit in establishing a model of self-efficacy processes that 

influence transfer. There is reasonable empirical and theoretical evidence to justify the stated 

relationships, but at a macro-level, these relationships appear to be missing key learning 

processes. There are multiple meditational processes that influence mathematical performance. 

When modeling these, the key is not necessarily to include them all, but to ensure the most 

influential ones are represented.  

The variables included in these studies pose granular hypotheses concerned with 

explaining the relationship between self-efficacy and mathematical performance. But in doing 

so, these authors have left out a major link between self-efficacy and performance. This link is 

established in the theoretical basis of self-efficacy, which is described as a capability influential 

in organizing and executing behaviors and actions necessary to attain certain performances 

(Bandura, 1986). This regulatory mechanism is the main mediator between self-efficacy and 

performance. Failure to include components of the mechanism has the potential to distort the 

strength and direction of the relationships posited in the model. This is the all-common omitted 

variable bias described in virtually every multivariate statistics textbook (see Baron & Kenny, 

1986; Clarke, 2005; Kim & Frees, 2006; Kline, 2010 for some examples). The lack of 

justification for the omission of these variables makes it even more problematic. 

 The inclusion of the self-regulatory mechanism in the present study is a direct response to 

this flaw in the literature. The present study departs from this current line of inquiry by choosing 
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to model a more generic process focusing on global motivational processes rather than micro 

processes related to self-efficacy. It improves upon previous studies by using SEM instead of 

path analysis, which allows us to more closely address issues of measurement error and construct 

validity and thus obtain more accurate estimates. Lastly, the present model relies on a theoretical 

framework specific to transfer of learning rather than just performance. As such, it leaves out 

variables such as self-concept that are present in the self-efficacy literature but are likely to be 

closely correlated and covered within measures of self-efficacy in more generic models.  

 Thus, this leads us to converge on self-efficacy as a strong predictor of transfer because it 

provides a monitoring and feedback mechanism that helps learners keep tabs on their potential 

ability. This is especially true when learners receive self-efficacy training, but it is also supported 

by lines of inquiry employing correlational techniques to establish a relationship between prior 

levels of self-efficacy and eventual transfer abilities (as in Marsh et al., 1997; Finney and 

Schraw, 2003; and multiple studies cited by Usher & Pajares, 2008). This further suggests a link 

between self-efficacy and the cognitive and motivational monitoring and feedback processes, 

which are encompassed under self-regulated learning.  

These significant findings found throughout separate lines of inquiry in self-efficacy 

research provide support for the initial hypothesis that self-efficacy is a strong predictor of 

transfer. Learners who believe in their ability to successfully navigate a task are more likely to 

excel at that task and at tasks that call upon the learners to use what they have learned in prior 

situations. Having established a strong link between this aspect of motivation and transfer, it is 

now time to turn our attention to the issue of goal orientation.  

Goal Orientation and Transfer. The goals set by learners when engaged with 

instruction have shown to affect academic achievement and transfer. As discussed in chapter 1, 
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the goal orientation literature has identified two broad classes of goals: performance and mastery 

(also known as learning) goals (Grant & Dweck, 2003; Kaplan & Maehr, 2007). There is 

evidence linking both types of goal orientation to positive outcomes such as improved self-

efficacy and self-regulation, academic achievement, and positive emotions (See Kaplan & 

Maehr’s review, 2007).  

However, a number of studies in the literature have associated performance goal 

orientation with decreased performance outcomes as they shift the learner’s attention away from 

the task, decrease effort, and are not effective in promoting self-regulated behaviors (Kozlowski 

et al., 2001; Newman & Schwager, 1995; Stevens & Gist, 1997). This, along with critiques that 

point out the possibility of performance goals leading learners to adopt a performance-avoidance 

approach marked by a focus on competition that can be detrimental to learning (Brophy, 2005), 

makes mastery goals a preferable candidate as a key predictor of transfer over performance 

goals. 

There exists some evidence that links mastery goals both directly and indirectly to 

transfer of learning (Berevy-Mayer & Kaplan, 2005; Dupeyrat & Marine, 2005; Fisher & Ford, 

1998; Ford et al., 1998).  

Ford and his colleagues (1998) conducted a correlational study with 98 undergraduate 

psychology students. They sought to examine how differences in goal orientation affected 

training and transfer performance. Guided by social cognitive theory, the authors posited self-

efficacy as a mediating mechanism to be influenced by goal orientation as well as the learning 

strategies applied by learners. The results, depicted graphically in figure 4, show mastery 

orientation indirectly influencing transfer performance through increased success in 

metacognitive strategies training and increased self-efficacy. Performance orientation is shown 
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to have a negative effect on transfer. These results are interesting in that they establish self-

efficacy, once again, as suitable mediating mechanism that influences transfer. A possible reason 

for this finding relates to the analytical technique employed. 

 

 

Figure 4. Modeling the effects of goal orientation on transfer. Reproduced from Ford et al., 1998. 
 

 The researchers employed a hierarchical regression technique with a predetermined order 

for family of variables based on their hypothesized strength of relationship with the dependent 

variable. This means inputting the variables from right to left as displayed in the model. This is a 

rudimentary latent causal modeling technique that exposes a researcher to misjudge effects if 

variables are entered in an incorrect order. The most telling part is revealed when the model is fit 

to predict transfer of learning.  

In this model, knowledge, training performance, and self-efficacy—the learning 

outcomes family of variables—account for more than 51% of the variance in the transfer 

variable. Adding the rest of the variables in the model adds less than 2% of the variance 
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explained. This doesn’t necessarily mean that these subsequent variables have little effect on 

transfer, but rather that the specified order of the variables makes it likely that variables entered 

first will account for large percentages of the variance (because there is quite a bit of variance to 

explain) while subsequent variables will account for very little as most of their effects are 

suppressed by close correlations among variables (and by virtue of a lot less unique variance left 

to explain) giving the impression these variables don’t matter as much (Keith, 2006). The 

researchers use these findings as evidence that self-efficacy is indeed a mediator variable. 

 An alternative explanation, however, emerges if we examine the zero-order correlations 

among variables—specifically between self-efficacy and mastery goal orientation. Self-efficacy 

is by far the highest variable correlated with mastery orientation (r = .71). This correlation makes 

it virtually certain that the two variables will continue to exhibit a strong relationship in a 

regression model regardless of the posited order and nature of their relationship. This diminishes 

the claim of a causal relationship between the two given the inability of the researchers to 

establish a temporal order for the relationship (neither was manipulated).  

Further evidence raising questions about the nature of this relationship is provided by 

Usher and Pajares (2008) who conducted a systematic review of the self-efficacy literature in an 

effort to identify the sources or antecedents of self-efficacy. Their efforts were consistent with 

Bandura’s theoretical conception that mastery experiences were, by far, the single biggest 

determinant of developing self-efficacy. Of the 28 studies reviewed, 27 found a significant 

relationship between mastery experience and self-efficacy (correlations ranged from r=. 29 to r = 

.67) (p. 772). Mastery experience, however, is not equivalent with a mastery-goal orientation. 

When a person experiences success performing a task, these mastery experiences act as feedback 

in letting a learner know they are capable of completing that task. Those experiences, thus, affect 



55 
 

 

self-efficacy. Goal orientation, on the other hand, refers to a present belief about future abilities. 

While a learner’s goal orientation is undoubtedly influenced by prior experiences, there is little 

evidence to suggest a learner’s goal orientation shapes their beliefs about their capabilities to 

solve a task.  

At most, the study establishes an indirect link between mastery-orientation and transfer, 

and a close relationship between mastery-orientation and self-efficacy. Both of these elements 

are incorporated in this study.  

A more direct link between mastery goal orientation and transfer was established by 

Berevy-Mayer and Kaplan (2005). The researchers designed an experiment with 60 children 

ranging from 7-11 years old. They wanted to test the hypothesis that providing motivational 

prompts about mastery goals would result in better transfer of problem-solving strategies than 

prompting about performance goals. After conducting two experiments, the researchers had 

evidence of a direct link between mastery goals and transfer as well as evidence of a negative 

effect on transfer from the performance goals group. A logit regression analysis, which assigns 

odds and probabilities as parameter estimates, revealed learners in the mastery condition were 

much more likely to transfer than those in the control group. Subjects in the mastery condition 

(n=30) had 160% better odds of successfully exhibiting transfer versus those in the control group 

(n=30) (logit odds 3.6 vs. 1.99). 

These findings were further replicated by Dupeyrat and Marine (2005) who sampled 76 

French adults returning to school to earn the equivalent of a GED. The authors created a model 

of achievement—as measured by a composite average of grades on four different courses 

(including math). That model is depicted graphically in figure 5.  
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In the initial model, the authors hypothesized that self-theories of intelligences were the 

source of a learner’s goal-orientation, which in turn predicted self-regulated behaviors that led to 

higher levels of achievement. Implicit theories of intelligence are marked by learners attributing 

success to pre-ordained abilities that cannot be changed (entity). Incremental theories of 

intelligence, on the other hand, have learners attributing success to experience and knowledge 

and thus imply an ability to manipulate it. 

Figure 5.Mastery goal model of achievement proposed by Dupeyrat and Marine, 2005. 

  
 After conducting a path analysis, the researchers arrived at a final model (figure 5) 

indirectly linking mastery goals orientation to achievement. This relationship is mediated by 

effort, which is consistent with the theoretical explanations of the effects of goal-orientation on 

achievement (Grant & Dweck, 2003). Mastery goal orientation was also found to be a predictor 

of the use of deep self-regulatory strategies although no link between deep strategies and 

performance was found. These relationships, however, are established in the absence of a 

transfer measure. As deep strategies have been previously associated with transfer of learning 

(Mayer, 1998), it is reasonable to suggest a mastery goal-orientation might exert its influence on 
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transfer through self-regulatory processes. That is precisely the argument made in this study. 

This argument is explored in more detail in the section describing evidence to support a 

mediating link between self-regulated learning and transfer.  

Interest.  Interest results from an interaction between a person and particular content 

(Hidi & Renninger, 2006). As a psychological state, interest manifests itself through attention to 

material and putting forth effort to engage in activities (Ainley, Hidi, & Berndorff, 2001). The 

interest literature identifies two main types of interest: individual and situational interest. 

Individual interest is an internal, personal disposition that remains constant throughout different 

tasks and situations. Situational interest, in contrast, is specific to a task and is a response to the 

features of a learning environment. It may or may not be sustained over time (Ainley et al., 2001; 

Hidi & Renninger, 2006; Krapp, Hidi, & Renninger, 1992; Schiefele, 1991). 

 Developing interest is considered to be a sequential four-step process beginning with the 

triggering of situational interest sparked by environmental features. This is supported and 

maintained externally through features of the environment. If this state is sustained for a long 

enough period of time, interest moves into maintained situational interest. This state results in 

focused attention and persistence. In order to maintain situational interest, a learner must engage 

in meaningful tasks or have personal involvement in the present learning context. Although this 

phase of interest development can be maintained through meaningful interactions, it is typically 

supported externally so learners are at risk of reverting to diminished interest (or no interest at 

all) if their interest is not maintained. Prolonged maintained situational interest leads to emerging 

individual interest.  

This type of interest marks the beginning of an enduring personal disposition that leads 

learners to seek repeated engagement in these activities. External reinforcement is initially 
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required to sustain individual interest so that it becomes well developed and relatively enduring. 

This phase is typically self-generated and is marked by a learner pursuing these interests on his 

or her own when given a choice. Well-developed individual interest is a desired state of 

psychological functioning as it has been linked to long-term creative endeavors, increased usage 

of deeper levels of strategies, and increased self-regulation (Hidi & Renninger, 2006). This 

theoretical hypothesis is supported by empirical evidence (Alexander & Murphy, 1998; Bates & 

Weist, 2004; Harp & Mayer, 1997; Ku & Sullivan, 2008).  

In fact, a meta-analysis by Schiefele and his colleagues (1992) estimated interest 

accounted for as much as 10% of the variance in explaining performance across all subjects with 

a test of moderation suggesting the effect is consistent across all subject areas. The interest 

development model, along with empirical evidence, suggests individual interest is likely to affect 

overall levels of learning, self-regulation, and transfer. In addition, interest has theoretical 

congruence with an expectancy-value model of motivation. This makes interest a strong 

candidate for inclusion in the present model.  

In comparison to goal orientation and self-efficacy, the mechanism by which interest 

affects transfer is not well understood. Mayer (1998) affirms: “unfortunately, researchers have 

not yet been able to clearly specify the mechanism by which interest affect what is learned, or 

even to clearly specify what interest is” (p. 58). Fortunately, Mayer’s latter concern has been the 

subject of much research over the last few years with Hidi and Renninger’s (2006) model of 

interest development as a major step in understanding the nature of interest and how it is 

developed. This has been continued by Linnenbrink et al. (2010) in efforts to provide construct 

validity evidence consistent with the interest model posited by previous interest researchers.  
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 The interest literature that concerns mathematical performance and problem-solving 

performance has typically chosen to operationalize interest by personalizing instruction as to 

increase interest, and in turn test a possible relationship with improved performance. This is a 

somewhat problematic conception as the theoretical model of interest development specifies a 

sequential, prolonged process to achieve well-developed personal interest. These interventions 

are likely to only trigger situational interest, and are not sufficient to support the development of 

more enduring individual interest. As such, experimental manipulation of interest establishes a 

link between situational interest and performance, but lacks the ability to establish the same link 

to personal interest. This leaves us in the sensitive position of having to use correlational studies 

to establish a possible causal link between personal interest and transfer. This is less than ideal 

but given the nascent and rapidly developing nature of our understanding of the interest 

construct, it is the only sensible choice.  

Fortunately, repeated studies converge on the same finding. Interest is indirectly linked to 

mathematical and problem-solving performance when instruction is personalized to trigger 

interest (Bates & Weist, 2004; Harp & Mayer, 1997; Ku & Sullivan, 2008). The next study 

reviewed is the exception to this rule choosing to establish a link to performance through 

correlational means.  

 Alexander and Murphy (1999) conducted a study with 329 undergraduate students in an 

educational psychology course. They sought to develop a profile of competency in analogical 

reasoning (a synonym for transfer) on a problem-solving task. Using cluster analysis, the authors 

were able to isolate variables that were most prevalent for those with the most success solving 

the given task. Learners were assessed on a variety of measures (domain knowledge, task 
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performance, and strategy use) once before instruction took place and then again 15 weeks later 

after participating in instruction.  

Before instruction took place, the “learning oriented” cluster emerged as a cluster 

characterized by an average level of domain knowledge and a high level of personal interest. 

This group scored highest in the analogical reasoning task closely followed by the “strong-

knowledge” cluster composed of those learners with the highest amount of domain knowledge. 

Low interest, low domain knowledge subjects were placed in the “low-profile” cluster. They 

performed worse along all measures of performance and strategy use. After instruction took 

place, the subjects were assessed. Once again, the “learning-oriented” group emerged as the top-

performing group in the analogical task. They were also a close second to a newly formed 

cluster—the “effortful-processor” cluster in strategy use. This group was characterized by low 

levels of domain knowledge and very high levels of interest and strategic effort. On the 

analogical reasoning task, his group performed only slightly worse (M = 43.28) than the strong 

knowledge group (M = 45.46) and the top performing learning oriented group (M = 45.49). 

These very similar results along the performance task for the three profiles suggest learners are 

able to compensate for a lack of domain knowledge by having high interest. Those with strong 

knowledge, despite having low interest, still perform at relatively comparable levels, but it seems 

interest allows learners with lower levels of domain knowledge to use strategies and exert efforts 

to equalize performance. As the authors summarize about the “learning-oriented” cluster: 

 They used fewer strategies than did students in the Effortful-Processor group yet they 
 documented significantly more strategies than the other two clusters nonetheless. They 
 also tended to rely heavily on deep processing over surface-level strategies in their 
 studying (p. 442). 
 
And about the “effortful processors” cluster: 
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 Perhaps these effortful processors learned to compensate for their limited domain 
 knowledge by working more effortfully and more strategically. It is also possible that this 
 group of students is simply less skilled at taking declarative knowledge measures, such as 
 the domain knowledge task in this study (p. 442).  
 
This study makes a convincing argument that a strong correlation is present between transfer of 

learning and interest. Before examining the presence of a mediating mechanism between 

motivation and transfer, the attention now turns to the other major predictor of transfer—prior 

knowledge.  

Prior Knowledge 

 Since the 1980s, the focus on understanding the mechanisms of expertise has become one 

of psychology’s major focuses (Farrington-Darby & Wilson, 2006). In their seminal paper on 

expertise and problem-solving performance, Chi, Glaser, and Rees (1982) conclude:  

As a result of prior experience in various knowledge domains relevant to 
school, the representations required for solving school problems are more 
enriched and contribute to the ease and efficiency with which learning 
problems are solved (p. 71). 

 
They were not the first to point out the effect of prior knowledge on problem-solving 

performance and transfer. In a comprehensive review of the transfer literature, Baldwin and Ford 

(1988) pointed to earlier studies assessing the role of prior knowledge on transfer (Downs, 1970; 

Gordon, 1955; Gordon & Cohen, 1973; Gordon & Kleinman, 1976). As a theoretical 

consideration, the early cognitive models of information processing (i.e. Miller, 1956) posited 

learning as an activity dependent on the integration of newly learned materials with prior 

knowledge.  

 The focus on prior knowledge carried over to subsequent, more specific theories of 

transfer. Under analogical encoding, for example, Gick and Holyoak (1980) proposed that 

transfer occurs as learners are able to respond to a problem by matching features of the problem 
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to previously encoded sets of matching solutions. By matching the features of a problem, 

learners arrive at a solution they can use to solve the new problem. This is a mechanism entirely 

dependent on previously stored and encoded knowledge. A similar manipulation of prior 

knowledge occurs in two more widely used mechanisms of transfer—knowledge compilation 

and constrain violation (Nokes, 2009).  

To ascertain the relative impact of prior knowledge on transfer one can look at virtually any 

study of transfer, which by default include a measure of prior knowledge. For example, Wong, 

Lawson, and Keeves (2002) set out test the effects of self-explanation training on performance 

with 43 9th grade students enrolled in a math class. They conducted an experimental study to test 

whether a less-directed approach to self-explanation training was more effective than a guided 

approach. 

 

Figure 6. A validated model of transfer. Reproduced From Wong, Lawson, and Keeves, 2002. 
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But rather than focusing on finding main or interactive effects for the self-explanation 

treatment, the authors sought to model both the impact and role of self-explanation on 

performance, as measured by a transfer task. Figure 6 depicts the best-fit model determined by 

the researchers. Initially, the theoretical model was fully specified, which meant that it assumed 

direct and indirect relationships between all variables. An exploratory path analysis was then 

used to weed out significant relationships, which led the researchers to arrive at the final model 

that’s presented here. This model established a relatively modest relationship between prior 

knowledge and performance (standardized path coefficient = 0.13) and an equally modest 

indirect relationship mediated by knowledge generation—a measure of the number of strategies 

learners employed during the problem-solving task.  

These modest findings are in sharp contrast to other studies that have found prior domain 

knowledge to be the single greatest predictor of transfer (Ericsson & Smith, 1991; Hatano & 

Oura, 2003). Alexander and Murphy (1999) have developed a model of domain learning (MDL) 

that suggests a learner’s ability to transfer moves them through a process of domain knowledge 

mastery beginning with acclimation with the material, proficiency using that material, and 

proficiency/expertise (p. 565). Their line of research (see for example, Alexander & Judy, 1988; 

Alexander, Kulikowich, & Jetton, 1995; Murphy & Alexander, 2002) has zeroed on 

characteristics of proficient, expert problem solvers: 

For the few who achieve proficiency, there is a tremendous breadth and depth of subject-
matter knowledge. Another hallmark of proficiency is knowledge creation. In essence, 
proficient individuals contribute new knowledge to their field, transforming that domain in 
some fashion. Also, experts have a powerful and abiding interest in the domain and identify 
strongly with the community of practice. In addition, because these experts are pushing the 
boundaries of their domain and are engaged in problem formulation, they show an increased 
employment of general cognitive and metacognitive strategies over competent learners 
(Alexander & Murphy, 1999, p. 566).  
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The significant mediating relationship among prior knowledge, knowledge generation, and 

transfer that Wong and his colleagues (2002) found seems to be spelled out here and explains the 

lack of a larger direct effect linking prior knowledge to transfer in their study. Further, 

Alexander’s and Murphy’s findings cover many of the variables included in the present model, 

and highlight not only the role of prior knowledge, but posit an intersection of these variables to 

create optimal conditions for transfer. They identify interest, suggesting the role of motivational 

variables, and cognitive and metacognitive strategies as essential pieces of problem-solving 

expertise. Lastly, they identify the role of prior knowledge in the form of strategic knowledge 

about cognitive and metacognitive strategies.  

 Dochy, Moerkerke, and Martens (1996) define the nature of prior knowledge as fluid, 

flexible, organizable, and available in multiple forms. This leads to a distinction about domain 

knowledge—knowledge about subject matter content— and strategic knowledge—knowledge 

about how to use available content knowledge. Both Alexander and Judy (1988) and Dochy and 

Alexander (1995) have clarified this distinction settling on a dichotomous model of prior 

knowledge that contains both domain and strategic knowledge.  

There is ample evidence across a variety of domains linking both types of prior 

knowledge to transfer in both correlational and experimental studies (Ben-David & Zohar, 2009; 

Brand-Gruwel & Stadtler, 2010; Chang, 2010; Hailikari, Nevgi, & Lindblom-Ylanne, 2007; 

Kilpatrick, Swafford, & Findell, 2001; Lee & Chen, 2009; Rittle-Johnson, Star, & Durkin, 2008; 

Schwartz, Bransford, & Sears, 2005; Star & Rittle-Johnson, 2007). These are in addition to 

findings of Dochy, Moerkerke, and Martens (2006), who found significant positive direct and 

indirect effects in 118 out of 129 studies including prior knowledge as a predictor of 
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performance As it was done in chapter 1, the most recent studies lending support to both a direct 

and indirect effect of prior knowledge on transfer are showcased in table 6.  

As with motivation, the relationship between prior knowledge and transfer seems to be 

mediated by at least one variable. Based on the literature, this study posits that mechanism to be 

self-regulated learning. While the process of another variable—namely knowledge generation—

was also touched upon, it is argued that modeling the granular cognitive architecture processes 

that lead to transfer is beyond the scope of a study focused on modeling global motivational 

mechanisms. 

Table 6. Summary of Recent Research Linking Prior Knowledge to Transfer. 

Authors Research design Knowledge type Domain 

Star & Rittle-Johnson, 
2007 

Experimental Strategic Math 

Rittle-Johnson, Star, & 
Durkin, 2008 

Experimental Domain Math 

Lee & Chen, 2009 Experimental Domain Math  

Chang, 2010 Correlational Domain Science 

Brand-Gruwel & Stadtler, 
2010 

Correlational Both Information seeking /web 

Ben-David & Zohar, 2009 Experimental Strategic Scientific inquiry 

Kilpatrick, Swafford & 
Findell, 2001 

Lit Review Both Math 

Schwartz et al., 2006 Experimental Both Data analysis 

Hailikari, Nevgi, & 
Lindblom-Ylanne, 2007 

Experimental Both Math 

 

The next section carves out the argument that self-regulation is an appropriate mediator 

for these global processes and provides evidence linking effort and deep processing to prior 
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knowledge and motivation thus establishing a link among motivation, prior knowledge, self-

regulated learning, and transfer. 

Self-Regulated Learning 

 Self-regulated learning (SRL) encompasses “proactive processes that students use to 

acquire academic skill, such as setting goals, selecting and deploying strategies, and self-

monitoring one’s effectiveness” (Zimmerman, 2008, p. 166). Further reading reveals evidence 

linking self-regulation and prior knowledge. In her research agenda linking self-regulation and 

prior knowledge, Boekaerts (1992, 1996, 1997) showed highly self-regulated learners relied on 

four particular aspects of prior knowledge: Domain specific knowledge and skills, cognitive 

strategies, metacognitive knowledge, and metamotivational knowledge and skills (Boekaerts, 

1996, p. 101). Winne (2001) arrived at a similar conclusion using an “information processing 

approach” to self-regulation. Under this model, the process of self-regulation is made up of four 

distinct phases. Under the first phase, a learner constructs his or her own view of a task of 

problem. In order to do so, they must rely on experiences and prior knowledge retrieved from 

long-term memory. Studies using the information processing approach have been successful in 

finding a link between prior knowledge and self-regulation (Azevedo, Cromley, and Seibert, 

2002; Azevedo & Cromley, 2004; Moos & Azevedo, 2008). 

 In a fairly recent study, Moos and Azevedo (2009) sought to extend the scope of their 

work and to test the possible mediation effects of monitoring processes on the relationship 

between prior knowledge, self-efficacy, and learning outcomes. Using think-aloud protocols, and 

mental model artifacts collected from twenty-one subjects, the researchers ran a set of regression 

analyses meant to test their mediation hypotheses. They found significant evidence of monitoring 
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processes mediating the relationship between self-efficacy, prior knowledge, and learning 

outcomes.  

 Unfortunately, the authors employed separate regression analysis to test mediation effects 

from each variable. This has the important shortcoming of modeling each effect in isolation with 

the presence of the other variables instead of modeling the partial effects of each variable. As 

such, parameter estimates and tests of significance are highly unreliable, especially given the 

well-document close relationship between prior knowledge and self-efficacy (Bandura & Wood, 

1989; Hoffman & Spatariu, 2008; Pajares & Miller, 1994; Usher & Pajares, 2008). Greene et al. 

(2010) addressed part of these deficiencies by using Structural Equation Modeling (SEM) to test 

a similar relationship between self-theories of intelligence, prior knowledge, and performance. 

They found evidence of a moderating relationship suggesting the effect of prior knowledge on 

performance was different depending on the level of self-regulation.  

 

Figure 7. SRL and prior knowledge SEM Model. Reproduced From Greene et al., 2010. 
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 While their study employed rigorous analytical techniques, it lacks theoretical 

congruence. The model, shown in figure 7, fails to include many of the antecedents of self-

regulation that are related to performance such as those highlighted in this study—interest, goal-

orientation, and self-efficacy. These motivational forces have been consistently shown to affect 

performance, and have been posited to affect self-regulation as well.  

 In the next section, it will be shown that there is ample evidence to suggest the 

motivation positively influences self-regulated learning. That, along with the evidence presented 

in the previous sections, showcases a model that presents a much more viable alternative to 

explaining the main motivational predictors, and mediating mechanisms affecting transfer of 

learning. 

 Self-Regulation and Motivation. The evidence establishing a link between self-

regulated learning and motivation typically takes the form of experimental studies that 

manipulate environmental and design features to increase self-regulated behaviors. Through 

these manipulations, researchers hypothesize an increase in self-regulation that promotes 

transfer. There is evidence, for example, that suggests the use of conceptual scaffolding improves 

learning and positively affects the mental models that promote transfer (Azevedo & Cromley, 

2004; Azevedo et al., 2005; Moos & Azevedo, 2008).   
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Figure 8. Phases of Self-Regulated Learning. Reproduced from Zimmerman, 2008. 
 

In mathematical problem solving, a frequent line of inquiry centers on instructing 

learners to use self-regulated strategies. These have shown similar success (Fuchs et al., 2003; 

Perels, Gurtler, & Schmitz; 2005; Pape & Wang, 2003). There have also been efforts to correlate 

real-world performance with levels of self-regulation (Enos, Kehrhahn, & Bell, 2003; Kehr et al., 

1999), which have resulted in similarly positive results. These studies pose an inherent question 

about how increased self-regulation leads to improved odds of transfer. To answer that question, 

it is important to describe the developmental phases of self-regulation. Figure 8 portrays this 

cyclical process.  

Although cyclical, the development of self-regulated behaviors begin in a forethought 

phase that has learners engaging in key self-regulatory processes such as goal setting, and relying 

on self-beliefs to motivate themselves to self-regulate (Zimmerman, 2008, p. 178). These beliefs, 

along with planning strategies, carry the learner towards a performance phase where control and 

monitoring behaviors are used to assess problems, and design and carry out solutions. This is 

followed by a self-reflection phase where learners are able to assess current states, areas of 
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improvement/decline, and appraise their capabilities in light of the recent experience. This is, for 

example, where mastery feedback would occur to improve self-efficacy, or a key area where a 

learner might move from having sustained situational interest to emerging personal interest. 

These steps are fairly consistent with the mechanisms specified in the current model and provide 

further support for the identification of self-regulation as the key process between motivation and 

transfer. Furthermore, they support the intertwined view of self-regulation as a process 

encompassing both cognitive and motivational components (Boekaerts, 1996).  

On the cognitive front, prior knowledge (both domain and strategic) drives a learner to 

represent and accurately select appropriate cognitive strategies (Boakaerts, 1996, 1997, 2005; 

Boekaerts & Corno, 2005; Winne, 2005; Zimmerman, 1995). These cognitive self-regulatory 

strategies “refer to the cognitive processes and behavior that are especially geared toward 

accomplishing self-set (or adopted) goals, and toward regulating one’s activities in order to 

accomplish these goals” (Boakaerts, 1996, p. 107). These encompass domain-specific knowledge 

and skills, cognitive strategies, and cognitive self-regulatory strategies (often referred to as 

metacognitive skills). The motivational side of self-regulation is marked by a process where the 

goals set by learners in the cognitive side are “instigated and sustained” (Schunk & Zimmerman, 

1994, p. 304). 

Motivational regulation is concerned with “other aspects of behavior such as inclination, 

sensitivity, choice, level and time of involvement, and effort expenditure” (Boekaerts, 1996, p. 

107). Zimmerman’s model merges both aspects of functioning and clearly separates the 

cognitive aspects (task analysis, self-control, and self-observation) from the motivational aspects 

(self-motivation beliefs, self-reaction, and self-judgment).  
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Pintrich (2004) used this model to develop an assessment framework for self-regulated 

learning derived from the distinctions between cognitive and motivational areas of functioning. 

For that reason, Pintrich’s framework is used in this study. This is the same framework used to 

develop the instrument that will measure self-regulation in this study. Chapter 3 provides more 

details about instrumentation. 

Having described the theoretical components of self-regulation, which lends support to 

argument that it is a key mechanism in promoting transfer of learning, it is now time to turn to 

the empirical evidence establishing a link between self-regulation and the other components 

outlined in the model.  

 Self-Efficacy and Self-Regulation. An individual’s judgment about their ability to 

accomplish a task or solve a problem profoundly influences their ability to do so. Under social 

cognitive theory, Bandura (1993) asked us to change our conception of ability from “…a fixed 

attribute residing in one’s behavioral repertoire” to “a generative capability in which cognitive, 

social, motivational, and behavioral skills must be organized and effectively orchestrated to serve 

numerous purposes” (p. 118). Once again, we see an intermediary focus on executive controls 

that help learners make sense of the resources they have available to them. Efficacy beliefs allow 

learners to make judgments “against the immediate and distal results of their actions, and to 

remember which factors they had tested and how they had worked. It requires a strong sense of 

efficacy to remain task oriented in the face of pressing situational demands and failures that have 

social repercussions” (Bandura, 1993, p. 120).  

 Bandura’s own line of organizational research confirms the impact of self-efficacy on 

performance and transfer through self-regulatory mechanisms (p. 123, see also Jourden, 
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Bandura, & Banfield, 1991, and Bandura & Jourden, 1991). This work has been replicated in 

different domains (Bandura & Wood, 1989; Pintrich & De Groot 1990; Zimmerman, Bandura, & 

Martinez-Pons, 1992).  

 Bandura and Wood (1989) extended their research on complex decision-making by 

conducting an experiment where they had subjects manage a simulated organization. A total of 

24 subjects participated in the study. Participants were graduate students enrolled in a 

management graduate course. This complex performance task can be considered, by its nature, a 

far transfer task. Subjects were assigned to one of two experimental conditions. In one condition, 

learners were given instructions and feedback indicating the source of decision making either 

rested on an innate ability or in acquirable skills. The researchers then modeled the causal order 

of the measured variables using path analysis (see figure 9).  

 The repetition of variables is meant to indicate the repeated measures taken as well as the 

cyclical nature of the effect of self-efficacy on performance where mastery feedback after 

successful performance leads to improved self-efficacy. The model found evidence for both a 

direct and indirect effect of self-efficacy on performance. The indirect link went through analytic 

strategies, which can be considered a subset of self-regulatory cognitive strategies. Interestingly, 

the model also found evidence of the cyclical nature of self-efficacy as performance eventually 

predicted the second wave of self-efficacy validating the hypothesis that success on a task 

increases self-efficacy causing subsequent improvements in performance. Also of interest, is the 

finding that self-efficacy acted as a mediating mechanism for prior performance (a control 

variable that captured various aspects of past performance) but did not mediate the effect of 

personal goals, as it had been posited in the some of the studies cited under mastery goals. The 
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study further validates the meditational link of self-regulation between self-efficacy and 

performance.  

 

Figure 9. Model of complex decision making and transfer. Reproduced from Bandura and Wood (1989). 
 

These findings were replicated in an academic environment with middle school students 

in a science environment. Pintrich and DeGroot (1990) conducted a survey (using the MSLQ 

instrument, which is partly used in this study) to model motivation’s effect on performance using 

a model of motivation similar to the one used in this study and operationalized through three 

variables—intrinsic value, self-efficacy, and test anxiety, along with variables of self-regulated 

learning (strategy use and self-regulation). They surveyed 173 7th grade students. Various sets of 

analysis suggested cognitive strategy and self-regulation as having a suppressor effect (as the 

performance measures had negative partial correlations when these variables were included). The 

final model settled on self-efficacy and self-regulation as significant predictors of performance. 

Once again, the findings support the hypothesis that self-regulation mediates the relationship 

between self-efficacy and performance. 

These results, however, are tempered by the relative weaknesses of simple multiple 

regression as a technique to model causal relationships. One obvious problem is the use of 

multiple variables to indicate a single construct (self-regulation strategies and cognitive 

strategies representing self-regulated behaviors). The high correlation between these variables (r 
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= .83) affects the parameter estimates as multicollinearity helps produce large standard errors 

that impact appropriate estimation of parameters and can severely disturb the nature of the 

relationships among predictor variables and the outcome variable (Keith, 2006). A more suitable 

approach is that provided by SEM where highly correlated variables can be used as indicator 

variables of a single construct, especially given theoretical and empirical justification to do so. 

This is one of the ways in which the current study improves upon the existing literature.  

 Similar results were reported by Zimmerman and Bandura (1994). Using a path analysis 

technique, the researchers once again found evidence for direct and indirect effects of self-

efficacy on performance. This time, the variable mediating the relationship was found to be the 

goal setting component of self-regulation.  

 The theoretical and empirical evidence establishes both a direct and indirect link between 

self-regulation and performance with self-regulation consistently showing up as a mediator 

variable. A similar relationship has been found concerning goal orientation, self-regulation, and 

transfer.  

 Mastery Goal Orientation and Self-Regulation. The relationship between mastery 

goals, self-regulation, and transfer has not been systematically explored. There is, however, 

individual evidence that establishes a relationship between a mastery goal orientation and self-

regulation. In turn, we have already reviewed the evidence suggesting a link between both 

mastery orientation and transfer, and self-regulation and transfer.  As such, it appears reasonable 

to infer the presence of self-regulation as a mediator variable.  

 Mastery goals are known to affect the amount of effort and persistence learners put 

towards a task. In addition, there is evidence suggesting that learners who employ a mastery-goal 



75 
 

 

orientation tend to make use of more self-regulatory strategies. This has been studied in depth in 

undergraduate students (Ames & Archer, 1988; Elliot et al., 1999; Elliot & McGregor, 2001; 

Greene & Miller, 1996; Schraw et al., 1995). The reasoning behind this link is much like the 

reasoning made for self-efficacy as a predictor of self-regulation. A mastery goal orientation 

leads to effort and persistence and this requires self-regulatory processes to motivate, monitor, 

and execute these tasks. This is where the cognitive and motivational components of self-

regulation play their role.   

 An example highlighting this relationship was provided by Wolters (2004). The 

researcher surveyed 525 junior high school students from several math classes, and asked 

subjects to self-report on a variety of aspects including mastery orientation and mastery structure 

(the perceived emphasis on mastery goals from the classroom as a whole). Through a series of 

hierarchical regression models, the research sought to establish the effects of different 

orientations on self-regulation and performance while controlling for known predictors. The 

results are shown in table 7.  

Table 7. Hierarchical Regression Results Reproduced from Wolters (2004). 
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 Beginning in step 2, we can see that goal orientation and efficacy variables account for 

14% of the variance on cognitive strategies, 16% of the variance on metacognitive strategies, and 

18% of the variance on course grade above the variance explained by the control variables. The 

control variables explained very little of the variance with regards to the self-regulatory 

strategies included (1% and 2% respectively), but explained quite a bit of the variance on course 

grade (22%). This is most likely due to the effect of prior standardized achievement, a measure 

of prior knowledge, on course grades.  

 This the same explanation provided by Wolters (p. 244). The contribution of a mastery 

orientation can be attributed as the single highest indicator of metacognitive and cognitive 

strategies use as exhibited by the strength of its standardized regression coefficient ( = .47 in 

both instances). While study design and analysis did not seek to analyze a mediating relationship 

between goal orientation and performance (as measured by grade), the study does provide 

support for a strong link between mastery orientation and self-regulation, even in the presence of 

other goal orientation variables and previously known predictors of performance. The same 

study, however, found no significant relationship between mastery orientation and course grade 

providing somewhat contradicting evidence about the link between mastery orientation and 

problem-solving performance.  

 There are two possible explanations. First, course grade does not capture the 

mathematical problem-solving efficiencies of learning. While it is a proxy variable for 

mathematical performance, it does not necessarily imply mastery of mathematical concepts—

especially in the case of a standardized test that is most often associated with measures of recall 

and procedural knowledge. Secondly, as it has been argued in previous studies reviewed in this 



77 
 

 

chapter, multicollinearity could be an issue distorting parameter estimates. In this case, high 

correlations between mastery orientation and self-efficacy (r = .66) point to a possible parameter 

distortion that can obscure the nature of the relationship, especially given the relatively small 

effect of goal-orientation when compared to the contribution of other variables. This suggests a 

need to employ—both in terms of design and analysis—more sophisticated methods as well as 

more careful specification of causal relationships to more accurately estimate the relative 

contributions of each of these variables on performance. These lessons, as well as the lessons 

derived from other studies, drive many of the methodological and analytical choices made in the 

present study. A similar pattern of significant findings, amidst questionable design and analytical 

choices, can be found in the relationship between interest and self-regulation. 

 Interest and Self-Regulation. Interest is considered an affective state triggered by 

particular features of the environment. Even the activation of personal interest is a response to a 

particular stimuli, be it a task, or situation. Ainley (2006) describes the process after interest is 

activated: “Triggering interest activates a system that generates positive feelings, focuses 

attention on the object that has triggered interest, and in the absence of strong competing motives 

will prompt cognitive activity” (p. 402). Sansone and Smith (2000) have shown that interest can 

lead individuals to regulate their behaviors to perform tasks they do not want to do over time (see 

also Sansone et al., 1992).  

 This has been a topic of some debate. Hidi (1990) has systematically analyzed the 

literature that suggested interest text and materials were easier to process and thus actually 

reduced processing levels and strategy use. Citing the work of Anderson and his colleagues as a 

classic example (Anderson, 1982; Reynolds & Anderson, 1982; Reynolds, Standiford, & 
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Anderson, 1979), Hidi shows that these lines of inquiry have concluded interesting materials are 

better recalled. She explains that this is likely due to “extra attention selectively allocated to them 

(the interesting materials) in proportion to their importance” (p. 560). This selective allocation is 

likely describing self-regulatory processes that influence learning. 

 Other researchers have arrived at similar results. Ainley and her colleagues (2002), for 

example, set out to model some of the mediating mechanisms between interest and learning 

using a study that exposed subjects to four different types of explanatory texts. They measured 

both individual and topical interest and were able to ascertain a mediating relationship between 

individual interest, affect, persistence, and learning. Results from the scientific text condition are 

presented in figure 10. Persistence, in this case, is used to indicate the frequency of deep level 

processing strategies associated with self-regulated learning. As the authors put it: “Hence, 

persistence as used in this study was an index of students’ engagement with the texts” (p. 558). 

 In fact, four different models generated by the authors (one per different text condition) 

all agreed that individual interest influenced affect, which influenced persistence, and ultimately 

led to improved learning. This is consistent with the theoretical basis of interest that posits 

interest influences learning by affecting the amount of effort and the learner’s persistence in 

completing a task (Hidi & Renninger, 2006). These samples highlight both the presence of a 

mediating mechanism between personal interest and learning, and the suitability of self-

regulation as such mechanism.  
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Figure 10. Path Diagram adapted From Ainley et al. (2002). Diagram shows mediating variables between interest 
and learning (IL = individual interest, TI = Topic Interest, A = affect, P = persistence, TS = test score, Science = 
prior domain knowledge). 
 

 Unlike the goal-orientation and self-efficacy literature, attempts to model the mediating 

mechanisms in the interest literature have been relatively rarer. This is likely due to the nascent 

understanding of the interest antecedents as well as to the relatively new theoretical advances 

that have spelled out the process by which interest is developed. The current study uses the most 

recent theoretical development in interest theory and attempts to model self-regulation as a 

mediational mechanism. The role of self-efficacy, mastery goal-orientation, and interest on 

transfer and self-regulation clearly established leads to an effort to simultaneously model the 

causal direction and order of these relationships in an effort to bridge the gap between motivation 

and transfer.  

Summary 

 Much has been suggested in this chapter with regards to the relationship between 

motivation, prior knowledge, and transfer. A comprehensive review of the literature has shown a 
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link between motivation and transfer. At a micro level, the operationalization of motivation as a 

three-variable construct has been justified along with evidence to link each of the three indicator 

variables to self-regulation and transfer. The current study has been established the presence of a 

variable that mediates the relationship between motivation, prior knowledge, and transfer. It has 

settled upon self-regulated learning, which manifests itself in the efficient use of strategies that 

help learners set goals, focus attention, and monitor their current knowledge structure, as a 

suitable candidate to fill that role.  

 Furthermore, the literature review has highlighted the lack of studies modeling these 

variables together as a system of variables. In those cases where an attempt has been made, study 

design flaws and the usage of substandard analytical techniques have hindered these efforts.   
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Figure 11. Graphical representation of the transfer model developed for this study. PK = Prior Knowledge, 
DK=Domain Knowledge, SK=Strategic Knowledge, MOT=Motivation, SE= Self-Efficacy, INT=Interest, 
GO=Goal-Orientation, SRL=Self-Regulated Learning, MOT = Motivational SRL, COG= Cognitive SRL, NT = 
Near Transfer, FT = Far Transfer. 

 

 This study departs from all those studies while using their findings as the empirical basis 

to construct a socio-cognitive model of transfer. This transfer model posits that prior knowledge 

directly affects transfer while indirectly, along with motivation, exerting its impact upon transfer 

through increased self-regulation. These relationships are once again displayed graphically in 
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figure 11. The important details about study design, analytical technique, as well as other 

methodological choices and their rationale, are included in the next chapter.  
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CHAPTER 3: METHODOLOGY 

Introduction 

 This study tests a model that describes the causal mechanisms by which motivation and 

prior knowledge work to promote transfer of learning. As it has been posited in prior chapters, 

motivation and prior knowledge exert their influence on transfer through increased self-

regulation.  

The main goal of this study is to validate the proposed model in the context of a 

mathematical task. Within this main goal, three major sub-goals are included. First, this study 

seeks to validate the direction of the relationships among the specified variables. This includes 

validating a measurement model consistent with theoretical specifications as well as providing 

support for a mediating relationship among prior knowledge, motivation, self-regulation, and 

transfer of learning. A second sub-goal is to identify the magnitude (effect sizes) of the 

relationships among the outlined variables and transfer of learning. This includes identifying 

direct, indirect, and total effects.  

Third, this study seeks to systematically compare a series of competing models to identify 

the model that best adheres to the sampled data. To accomplish these goals, the study employs a 

structural equation modeling (SEM) technique. SEM is a technique from the family of General 

Linear Models that includes regression analysis, path analysis, and other similar techniques that 

are well suited to test systems of linear relationships among variables (Keith, 2006; Kline, 2010). 

The technique makes use of latent variables (LVs) to specify multiple indicators for a 

single construct. This allows us to separate the model into a measurement model where each 

construct consists of multiple indicators. This provides a stronger, less error-ridden 

representation of the construct. The structural model then describes the relationships among the 
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latent constructs specifying magnitude and significance using the validated measurement model. 

This modeling approach is preferred over single indicator analysis (i.e. path analysis) as 

measurement error is likely to be reduced by combining multiple indicators to form a single 

construct (Kline, 2010).  

A more detailed explanation of these concepts, including the advantages over other 

analytical techniques is provided at the end of this chapter. The rest of the chapter includes 

information about research design, sampling techniques, and data sources. It also includes 

detailed information about data collection procedures that will be used to maintain the integrity 

of the study. Before covering these aspects, the study research questions are outlined again. 

Research Questions 

● R1: Does prior knowledge significantly increase transfer performance? What is the 

magnitude of the relationship? 

● R2: Does self-regulation significantly increase transfer performance? What is the 

magnitude of the relationship? 

● R3: Does self-regulation significantly mediate the relationship between prior knowledge 

and motivation? What is the magnitude of the relationship? 

● R4: Does self-regulation significantly mediate the relationship between prior knowledge 

and transfer of learning? What is the magnitude of the relationship? 

 R5:  Does the specified model reasonably fit the data according to fit standards (x2, CFI, 

RMSEA, AIC, etc.). 

 R6:  Which of the specified models (M1, M2, M3, M4, M5) best fit the data? 

 R7: What modifications, if any, are proposed to improve the model’s data fit? 
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Additional research questions need to be addressed to account for changes in the administration 

procedures that led to having two distinct samples. Chapter 4 details these changes.  

 R8: Is the proposed measurement model consistent across the two samples of subjects? 

 R9: Is the proposed structural model consistent across the two samples of subjects? 

Research Design 

 The proposed study employs a survey design that uses primarily a correlational, 

descriptive, and explanatory approach. In this case, the term survey is used to denote a study 

design approach rather than a data collection procedure. This definition is consistent with 

methodological definitions of an empirical investigation that attempts to provide a quantitative or 

qualitative description of a process common to a population by studying a sample of that 

population (Babbie, 1990; Creswell, 2003). This study employs a cross-sectional design with the 

purpose of correlating measures of prior knowledge, motivation, and self-regulated learning with 

transfer of learning. A number of considerations have gone into selecting this type of research 

design. They include: 

 Social science methodologists (Babbie, 1990; 2008; Creswell, 2003; Krathwohl, 1998) 

agree that correlational survey designs are a viable method for causal modeling.  

 SEM methodologists (Kline, 2010; MacCallum & Austin, 2000; Schumaker & Lomax, 

2004) point out survey design as the preferred method of causal modeling using SEM 

over experimental and other observational designs. They do not imply this is an optimal 

method but rather that in terms of frequency of used, it is the most common method 

employed by researchers in the social sciences. 

 And while it has been established in prior chapters that formal quantitative modeling of 

the processes by which transfer of learning takes place has been largely neglected in the 
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educational research and psychology field, there is precedence for the use of the survey 

as a research design to explore motivational, cognitive, and other processes of transfer. 

This is especially true in studies employing the basic forms of regression techniques, 

which often rely on surveying as its choice of research design. Regression analysis 

provides the foundation for the more advanced techniques of path analysis and SEM and 

it is found throughout the literature in an attempt to employ basic modeling of single 

motivational variables and performance.  

Since the purpose of this study is to provide a more comprehensive modeling approach, 

the relevant focus here is on studies employing the more advanced techniques of path analysis 

and SEM. A sample of the most relevant studies covering similar variables to the ones explored 

in this study is summarized on table 8. These studies were covered in detail in chapter 2 but are 

once again summarized here to provide evidence that the approach chosen for this study is 

consistent with the literature on the subject. These considerations along with the feasibility a 

survey design provides in obtaining large-enough sample sizes, collecting data from 

heterogeneous sources, and flexibility in administering instruments, summarize the decision to 

employ a survey methodology.  

Data were collected through a series of instruments to be completed in an online 

environment. The instruments measuring prior knowledge and transfer of learning were 

administered in paper-and-pencil as this is the typical form often used for mathematical tasks and 

it allows the subjects to use paper to record their process and perform calculations without the 

difficulty of learning a complex new tool. More information about the instruments employed in 

the study is provided in the next section.   
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Table 8. Advanced Modeling Studies Employing Survey Research Designs. 
Study Constructs modeled Research design 

&analytical technique 

Pajares & Miller, 1994 Self-Efficacy, Self-Concept, and Mathematical 
Performance. 

Survey Design / Path 
Analysis 

Gonzalez-Pienda et al., 2002 Academic Aptitudes, Causal Attribution, Self-
Concept, and Academic Achievement. 

Survey Design / SEM 

Marsh et al., 1997 Academic Self-Concept and Academic 
Achievement. 

Survey Design / SEM 

Ainley, Hidi, & Berndorff, 2002 Interest, Prior Knowledge, and Performance. Survey Design / SEM 

Dupeyrat & Marine, 2005 Goal Orientation, Cognitive Engagement, 
Achievement. 

Survey Design / Path 
Analysis 

Egan et al., 2004 Learning culture, Job satisfaction, and Motivation 
to Transfer. 

Survey Design / SEM 

Noe, 2000 Personality, Self-Efficacy, Cognitive Ability, 
Motivation, Learning Outcomes, Transfer, and 
Performance. 

Survey Design / Path 
Analysis 

Yamkovenko & Holton, 2010 Learning dispositions, goal orientation, intent to 
transfer 

Survey Design / SEM 

  

Data Collection Instruments 

 The creation of instruments to generate data is based on a number of considerations. 

Babbie (1990, 2007) describes three possible approaches to creating data collection 

instrumentation. The choices involve using original instruments as created, adapting instruments 

from existing ones, or creating instruments from scratch. There are inherent advantages and 

disadvantages associated with each approach. Creating new instruments, for example, allows 

researchers to specify items and scales directly matching variables of interest. As a downside, 

new instruments must be piloted and validated prior to use. This study primarily uses existing 

instruments, either using them in their original form or adapting them to fit within the current 
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domain of interest. Only in cases where no instruments exist, or where the literature asserts that it 

is more appropriate to create task-specific instruments, are instruments created from scratch. 

 The advantage of using these existing instruments is that they have known psychometric 

properties, which allow us to have a better idea of the appropriateness of their use in the context 

of similar studies. In addition, existing instruments standardize research in these areas by 

replicating work using similar instruments. The downside is that the instruments might not fit 

exactly within the context of the present study, but it can be argued that adapting these 

instruments to fit within the content area and selecting instruments consistent with the theoretical 

frameworks employed in the study, address these issues.  

 The approach taken in this section is to look at each indicator variable separately and 

describe the items measuring such variables. Psychometric properties, when available, are 

provided. For those instruments created from scratch, justification and a description of the 

instrument creating procedures are provided.   

Motivation Instrument. The motivation instrument measures three indicator variables: 

goal orientation, interest, and self-efficacy. Over the years, motivation has been operationalized 

in a multitude of ways depending on theoretical framework and research preferences. The 

selection of these instruments is based on theoretical congruence, validated empirical results, and 

frequency of use in research linking the constructs.  

 To measure goal orientation, six items from Elliot’s and Church’s (1997) goal orientation 

scale were selected. These items use a seven-point likert scale. This instrument was selected for a 

number of reasons. First, the scale was first developed and validated for use with undergraduate 

university students taking a psychology class. This is a close match to the population of interest 

in this study. Second, the authors operationalized the goal orientation construct as a hierarchical 
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construct made up of three factors and then selected particular items from the mastery goals 

scale. This is the same theoretical construct outlined in chapter 1 and is consistent with 

instruments used in other empirical work linking goal orientation to self-regulation and transfer. 

Third, the study was piloted and validated providing evidence of strong psychometric properties. 

A factor analysis confirmed the hypothesized latent structure. Additionally, evidence for 

predictive validity was obtained by regressing the variable on achievement. Internal consistency 

for the items as measured by Cronbach’s Alpha was strong ( = .89). 

 To measure interest, 10 items from a recently validated instrument are used 

(Linnenbrink-Garcia et al., 2010).  These 10 items use a 5-point likert scale. Selection of these 

items is based once again on considerations of theoretical congruence and the availability of 

validated results. These items were designed to tap into “both the feeling and value students 

associated with math” (Linnenbrink-Garcia et al., 2010, p. 659). Internal consistency for this 

scale was strong (= .90). Predictive validity validation showed a moderate correlation (r = .22) 

with final course grades.  

 To measure self-efficacy, a scale consisting of 8 items using a 10-point likert scale was 

developed specifically for this study. A number of studies have already developed self-efficacy 

scales. However, on the guidance of self-efficacy research, it was deemed more appropriate to 

develop these items from scratch. Bandura (2006) affirms: 

There is no all-purpose measure of perceived self-efficacy. The "one-measure-fits-all" 
approach usually has limited explanatory and predictive value because most of the items 
in an all-purpose measure may have little or no relevance to the selected domain of 
functioning. Moreover, in an effort to serve all purposes, items in a global measure are 
usually cast in a general, decontextualized form leaving much ambiguity about exactly 
what is being measured and the level of task and situational demands that must be 
managed. Scales of perceived self-efficacy must be tailored to the particular domains of 
functioning that are the object of interest (p. 307).  
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The development of a self-efficacy scale for this study seeks to contextualize the 

instrument in the domain and type of performance that is demanded of learners to solve the 

transfer task. It relies on Bandura’s (2006) guidelines for developing effective self-efficacy 

measurements. No validation studies exist given the instrument has been developed from scratch. 

Psychometric properties are currently unavailable but will be reported with regards to this study.  

 To summarize, three separate scales consisting of twenty-four items measure the 

motivation latent. These items are consistent with the socio-cognitive motivational model 

outlined by Pintrich (1999) and described in chapter 1 and 2.  

Prior Knowledge Instrument. Prior knowledge is operationalized in this study as a 

latent variable made up two indicator variables capturing prior knowledge of strategies and prior 

knowledge of content.  

 To measure prior content knowledge, a four-item performance task was developed. 

Creation of the instrument began with a cognitive task analysis (Jonassen, Tessmer, & Hannum, 

1999) of the transfer task. When used as part of an instructional needs assessment, a task analysis 

reveals foundational knowledge that needs to be mastered as part of the learning experience. As 

such it is an appropriate technique to uncover the individual foundational knowledge blocks 

learners must possess in order to successfully complete a task. The following foundational skills 

were found to be necessary for successfully completing the transfer task: 

1. Basic computational skills with whole numbers and decimals (adding, subtracting, 

multiplying, dividing). 

2. Calculating and using percentages. 

3. Finding numerical patterns. 

4. Creating table of values/lists of values based on an equation. 
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5. Representing situations in multiple formats (table of values, graphs, equations). 

6. Translating situations from words to equations.  

7. Solving multi-step equations 

8. Knowledge of exponential growth and decay 

9. Ability to read a word problem and derive a solution.  

 

An instrument was developed to cover these major areas. Rather than presenting each 

skill separately, the skills were embedded within simple word problems. This, in itself, was a 

performance measure to ensure learners were able to translate information from a word problem 

into mathematically meaningful formats (foundational skill #9 outlined above) and that they 

could make a plan to derive a solution. The procedure to validate this instrument is outlined after 

describing the prior strategic knowledge instruments.  

 To measure prior strategic knowledge, a 14-item instrument has been developed. These 

14 items are a mixture of likert-scale type items, yes/no items, and open response items. The 

development of this instrument was necessitated to match the content area and task. Polya’s 

problem-solving framework was used as guidance to create the instrument (Polya & Conway, 

2004). Polya’s problem-solving process is the most widely used and taught framework in 

mathematics since it was first published in 1942 (Schoenfeld, 1992). The four stages: 1) 

Understanding the problem, 2) Devising a plan, 3) Carrying out the plan, and 4) Looking back 

the solution, were used as guidance to develop a set of items concerned with the use of these 

strategies. Guidance from instruments used in the literature for other subject areas was further 

used to develop an instrument consistent with instruments used in prior empirical work. These 

include the MSQL critical thinking scale (Pintrich et al., 1991), D’Zurilla and Nezu’s Social 
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Problem Solving Inventory (SPSI) rational thinking scale (1982), and an instrument by 

Antonietti, Ignazi, and Perego (2000) used to measure the use of strategies in computational 

problem-solving. Psychometric properties of the instrument for the current study will be 

described in the next chapter.  

 Given the development of a new instrument, validation is necessary to ensure construct 

and content validity. Haynes, Richard, and Kubany (1995) argue that content validity provides 

evidence for construct validity as it provides us with information about the degree to which 

elements in the assessment are relevant and represented of the targeted construct (p. 3). 

Furthermore, the authors remind us that validity is a conditional property of an instrument and as 

such, it must evaluated within the context of a particular study, its content area, and its 

population of interest. This is a particularly relevant point to this study, and this construct, as it 

depends heavily on the transfer task that learners are being asked to solve rather than a generic 

domain of knowledge. A four-step process to provide evidence of content validity is outlined by 

the authors. That process is followed here: 

1. Carefully define domain and faces of the construct. 

2. Subject all elements of an assessment to content validation. 

3. Use population and expert sampling. 

4. Use multiple judges of content validity.  

Development of this instrument followed the process closely. First, to define the domain 

of the construct, a literature review of the strategic prior knowledge construct was conducted. 

Upon settling on a operationalized definition and theoretical background (outlined in chapter 1 

and 2) that suggested closely looking at the structure of the task requiring prior knowledge, a 

cognitive task analysis was performed to discover the foundational knowledge structures of the 
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task. The next three steps can be encompassed within the process of expert and subject validation 

that took place. This follows the suggestions and techniques outlined by Haynes and his 

colleagues.  

A panel of five experts in mathematics education reviewed all items of the instrument as 

suggested. These experts were all secondary mathematics teachers who hold—at the very least—

a master’s degree in math education or mathematics. Each member of the panel has five or more 

years of experience teaching mathematics at the secondary level. The panel was asked to review 

the instrument holistically in the context of the transfer task as to uncover any inconsistencies or 

deficiencies in content coverage. Furthermore, they were asked to review each item (consisting 

of a problem) for wording, coverage, and feasibility based on the given transfer task. The panel 

was also been asked to rate relevance, specificity, representativeness, and clarity for this 

instrument on a five-point scale.  

Lastly, the panel was asked to provide any qualitative feedback (suggestions for addition 

or removal of items, etc…) that they felt would improve the instrument. Based on the feedback 

from this panel, slight changes were made to the wording of some of the questions.  No other 

substantive changes were suggested by the panel. Following the changes, the instrument was 

piloted with a small sample of potential subjects (N = 10). These subjects were graduate and 

undergraduate students. They were asked to provide holistic and qualitative feedback, and also to 

rate the instrument along the dimensions of relevance, specificity, representativeness, and clarity. 

While these students had no substantive suggestions to improve the instrument, they did make 

recommendations for the order of the administration of the entire set of instruments used in the 

study. These suggestions were consistent across the participants and thus were implemented into 

the administration of the study.  
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The validation procedure employed here is consistent with established practices in the 

psychological literature for these types of assessment. Strong adherence to these practices 

provides evidence of construct validity for the prior knowledge construct.  

Self-Regulated Learning Instrument. To measure self-regulated learning, the Critical 

Thinking ( = .80) and Metacognitive Self-Regulation ( = .79) scales from the Motivated 

Strategies for Learning Questionnaire (MSLQ) are used (Pintrich et al., 1993). These scales 

consist of 17 items measured on a 7-point likert scale. This instrument is chosen to measure self-

regulation as it directly encompasses the two self-regulation dimensions outlined in the 

theoretical portion of the model.  

 On the motivational front, the critical thinking scale “refers to the degree to which 

students report applying previous knowledge to new situations in order to solve problems, reach 

decisions, or make critical evaluations with respect to standards of excellence” (Pintrich et al., 

1991, p. 22). These items encompass the motivational area of psychological function calling for 

efficacy judgments. The metacognitive self-regulation scale covers the cognitive area of 

psychological functioning outlined as the second component of self-regulated learning. This 

scale covers the general cognitive processes. These refer to “… the awareness, knowledge, and 

control of cognition…the three general processes that make up metacognitive self-regulatory 

activities: planning, monitoring, and regulating” (Pintrich et al, 1991, p.23).   

 Overall, the MSLQ is an 81 item self-report inventory developed to measure college 

students’ motivational and learning strategies orientations (Pintrich et al., 1991). The instrument 

has been used widely in motivational research over the years. A recent count covering a five-year 

span from 2000 to 2005 had the instrument used in over 50 empirical studies (Duncan & 

McKeachie, 2005). Initial validation took 3 years using a sample of over 1000 college students 
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from a multitude of academic backgrounds (Pintrich et al., 1993). The instrument developers 

used factor analysis to establish evidence of dimensionality and provide evidence of construct 

validity. They also provided evidence of predictive validity with educational achievement. 

Internal consistency measures on the scales used in the current study ranged from  = .52 (help 

seeking) to =.80 (critical thinking). The authors point out that establishing traditional reliability 

measures in the instrument is difficult as the instrument attempts to tap into constructs heavily 

dependent on context, which affect stability and variability in the instrument (Duncan & 

McKeachie, 2005). The factor structure has been further validated in other studies in the context 

of different populations (Hamilton & Akhter, 2009; Wilson, 2006), and even different languages 

(Huang, 2008; Lee, Zhang, & Yin, 2010). 

 The MSLQ is a practical, flexible, and suitable instrument to measure self-regulated 

learning. It is appropriate for the current study as it has been widely used on prior empirical work 

and is directly connected to the theoretical basis used in the study. It is important to point out that 

Pintrich (2004) considers the MSLQ a close, but incomplete, way to measure the dimensions 

outlined in this theoretical framework. Theoretical advancements since the development of 

instrument more than twenty years ago necessitate an updated instrument. This warning by 

Pintrich is heeded as a limitation, but currently no updated instruments have been developed to 

directly match Pintrich’s framework. As such, the MSLQ instrument represents the most 

feasible—albeit imperfect—way to effectively measure self-regulated learning.   

Transfer of Learning Task. It has been a long established tradition in the empirical 

literature to measure transfer of learning on a performance task. From the earliest transfer studies 

(Thorndike & Woodworth, 1901) to modern approaches (Nokes, 2009), this has been the 

approach employed. It makes sense, given the nature of the transfer phenomena as one based on 
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performance. This study continues that tradition. As transfer of learning is context-dependent 

(Lobato, 2006), there are no standardized instruments used to measure it. Studies typically settle 

upon a domain of knowledge where they wish to explore transfer and a select a novel task 

requiring subjects to draw upon prior knowledge or to extend on a topic they have been exposed 

to during an intervention. That is the same approach followed in this study.  

 First, this study investigates transfer of learning in the domain of math. Specifically, this 

is done in the context of algebraic reasoning involving linear and exponential relationships. The 

selection of this domain and specific topic is based on particular interest in modeling 

motivational processes in the context of such topic, the researcher’s content expertise, and 

considerations for the selected research design. Given the nature of the transfer task, and the 

population of interest, there was a need to select a domain that was accessible to a majority of 

subjects.  

The National Council of Teachers of Mathematics (NCTM) is a global organization that 

provides guidance to educational entities in setting math curricula and selecting competencies 

that drive instruction. NCTM standards are used, in addition to state standards, to drive textbook 

and activity creations for mathematics instruction in the United States and many other countries 

in the world. Their algebra standards consist of a broad framework encouraging learners to 1. 

Understand patterns; 2. Represent and analyze mathematical situations using algebraic symbols; 

3. Use mathematical models to represent and understand quantitative relationships; and 4. 

Analyze change in various contexts (NCTM, 2010). The transfer tasks developed for this study 

have been operationalized to cover those four competencies under the logic that college students 

are likely to have been exposed to mathematics curriculum covering these competencies in the 

span of their formal education. This is important as subjects participating in the study are solving 
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the task in a context outside of an academic class or setting. The transfer task, thus, needs to be a 

task consisting of foundational components learners have experienced in the past. This is the best 

way to maximize the chance learners will be able to at least attempt to solve the posed problem.  

 To measure near transfer, three open-ended problems were selected. These problems are 

drawn from the New York State Integrated Math Regents examination administered during 

January and June, 2009. They are part of the algebra strand and map onto the NCTM standards 

previously described. These problems—as well as the rubrics for scoring them—have been 

extensively analyzed, calibrated, and scaled using advanced testing techniques (Pearson, 2008a, 

2008b). Although no appropriate psychometric statistics are provided at the individual item level, 

the parcel of items containing the items used in this instrument had better than average reliability 

( = .80). Such validation established evidence for construct validity using item-response 

analysis and content validation by test creators, educators, and expert panels. The test was 

repeatedly field-tested and validated with diverse populations. The rubric calls for a maximum of 

7 points to be assigned based on the given answers.  

 To measure far transfer, an extensive task was adapted from the NCTM lesson-plan 

repository. Once again, the problem was chosen to closely match the algebra standards/strands 

that were selected within the math domain. This instrument contains five overall items centered 

on a singular problem. The scoring rubric calls for a range of scores between 0 and 14. Given the 

nature of the task, no validation studies have been conducted on it and no psychometric 

properties have been collected. To the researcher’s knowledge, the task has never been used in 

empirical research before.  
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Table 9. Summary of Instruments and Sources of Validation. 

Construct / Variable Instrument Sources of Validation 

Motivation    

Goal Orientation Six items adapted from Elliot and 
Church, 1997. 

Elliot & Church, 1997, 1999; 
Elliot, McGregor, & Gable, 
2001. 

Interest Eight items adapted from 
Linnenbrink-Garcia et al., 2010. 

Linnenbrink-Garcia et al., 2010.  

Self-Efficacy Eight newly developed items 
modeled after Pajares and Miller, 
2004, and Noe, 2000.  

Bandura’s (2006) guidelines.  

Prior Knowledge   

Content Knowledge Four item performance task based 
on cognitive task analysis of 
transfer task.  

Expert panel validation. 

Strategic Knowledge Fourteen-item instrument 
developed using Polya’s problem-
solving framework as guidance.  

Expert panel validation. 

Self-Regulation   

Motivational Motivated Strategies for Learning 
Questionnaire (MSLQ) Critical 
Thinking Scale (5 items) (Pintrich 
et al., 1991). 

Pintrich et al., 1993; Duncan & 
McKeachie, 2005; Used in over 
50 research studies since its 
creation. 

Cognitive  MSLQ Metacognitive Self-
Regulation Scale (12 items) 
(Pintrich et al., 1991). 

Pintrich et al., 1993; Duncan & 
McKeachie, 2005; Used in over 
50 research studies since its 
creation. 

Transfer   

Near Transfer Three open-ended performance 
tasks taken from the NY state 
integrated math regents exam. 

Pearson (2008a, 2008b);expert 
panel validation. 

Far Transfer Performance task with five sub-
items derived from NCTM lesson 
plan.  

Expert panel validation. 
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Although every effort was made to obtain a task that had been previously used, the 

domain of knowledge selected and the nature of the task made this an impossible endeavor. To 

measure transfer in this context, a task was required that allowed subjects to expand knowledge 

of basic concepts and procedures to a completely new situation. This necessitated development 

of the instrument from scratch. Steps, however, must be taken to ensure proper coverage of the 

domain was achieved. In this case, the same procedure employed to validate the prior knowledge 

instrument was used to provide evidence of content validity for this instrument. The same panel 

of content experts reviewed the task to ensure it sufficiently and appropriate covered the domain 

and specific topic selected. The panel of experts suggested minor changes to the language 

employed in the instrument but did not propose significant changes to the instrument.   

To summarize, near and far transfer are measured through a performance task consisting 

of eight total items. These scores will range from 0-7 in the near transfer instrument and 0-14 in 

the far transfer instrument. Table 9 provides a complete summary of the instruments used in this 

study. 

Population of Interest and Sample 

 The target population for this study was the student population at Syracuse University for 

the 2009-10 and 2010-2011 academic years. This population consists of approximately 20,336 

undergraduate students and 5,682 graduate and law students (Syracuse University Office of 

Institutional Research & Assessment, 2010). The sampling frame for this population included all 

members of the Syracuse University Facebook and Twitter social networking sites, and 

individual students targeted through flyers posted in all academic campus buildings, class 

announcements, and departmental e-mail announcements.  
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These various ways to access participants likely overlap and thus it is very likely not all 

members of the student populations were reached. It is expected, however, that the multiple 

advertisement avenues made it more likely to have a heterogeneous sample rather than a sample 

clustered around particular departments, schools, or ability traits within the university. The 

advertisements (Appendix A) invited potential subjects to participate in the study. Potential 

participants were directed to attend a session where they were to complete a set of surveys 

followed by a transfer task. In exchange for their time, participants were entered into a raffle to 

win an iPad tablet (entered separately). Multiple sessions were held with the purpose of reaching 

a sample size adequate for the proposed study.  

 A number of authors have provided ways to estimate appropriate sample sizes for studies 

employing a structural equation model approach (Kline, 2010; Schumacker & Lomax, 2004). 

Kline (2010) discusses the issue of “large enough” sample size in SEM. The determination of 

sample size is based on a number of considerations, but an approach described by Kline and 

supported elsewhere in the literature (Bentler & Chou, 1987; Costello & Osborne, 2005; Mueller, 

1996; Schumacker & Lomax, 2004) is to consider the number of parameters to be estimated and 

to try to maintain at least a 10:1, or optimally a 20:1 ratio of subjects to parameters estimated. In 

the case of this study, nine parameters are in need of estimation. As such, a minimum sample 

size of 90 subjects was determined to be sufficiently large. Attempts to obtain a larger sample 

size to get closer to the 20:1 optimal ratio of subjects to parameters were made.  

Unfortunately, despite repeated advertisement campaigns, volunteers were scarce and 

even reaching the minimum sample size was a challenge that required an eight month extension 

to the data collection timeframe.  
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 No exclusion criteria were applied to select the sample. Any student enrolled at Syracuse 

University either as a graduate or an undergraduate student was invited to participate. There were 

no restrictions about prior mathematical knowledge or current mathematical expertise as 

variability along those dimensions was desired. As subjects self-selected into the study, the 

sampling technique employed can be considered non-probability. Babbie (1990) refers to this 

sampling technique as “reliance on available subjects” (p. 183).  

A non-probability sample indicates that members of the population of interest do not all 

share the same probability of being selected into the study (Babbie, 1990; Creswell, 2009; 

Krathwohl, 1998). This might seem counter-intuitive given there exists no exclusion criteria and 

any subject can choose to opt-in, but the point is that that with self-selection subjects themselves 

choose whether to participate in the study using criteria unknown to the researcher. Therefore, a 

random sample cannot be guaranteed or expected.  

This raises a long-standing concern in the social sciences about whether subjects who 

self-select into a study accurately reflect the traits of interest of the entire population. This has 

been specially a concern in psychology studies that employ undergraduate courses to conduct 

research (Rosenthal & Rosnow, 2009). In such cases, it has been shown that those who volunteer 

to participate in study have certain traits that can bias the sample. Heckman (1979, 1985, 1990) 

showed that samples chosen without random sampling procedures could not be trusted to 

accurately replicate its population of interest, as the distribution of the sample did not accurately 

match that of the population.  

This can have far reaching implications in the analysis of data. Changed population 

distribution parameters can bias statistical tests of significance. They also make it very difficult 

to generalize back to the larger population. Given the severe limitations of non-probability 
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sampling, it might be suggested that a random approach is required even at the expense of 

sample size. For the purposes of this study, however, a case can be made that even though some 

limitations will still apply, the use of self-selected subjects in a non-random sampling technique 

is not likely to affect the distributions along variables of importance. Rosenthal and Rosnow 

(2009) reviewed extensive findings in the psychology literature regarding typical characteristics 

of human volunteer subjects.  

Based on the available evidence, they settled on twelve characteristics that warrant some 

level of confidence when working with volunteer subjects. These characteristics are summarized 

in table 10 along with the authors’ judgment regarding the level of confidence that should be 

attributed to each based on the available evidence.  

Table 10. Volunteer Traits Adapted from Rosenthal and Rosnow (2009), p. 77-78. 
Statements about volunteers warranting most 
confidence 

Statements about volunteers warranting some 
confidence 

1. Better educated 7. More sociable 

2. Higher occupational status 8. More arousal-seeking 

2a.  But often from lower status background 9. More unconventional 

3. In higher need of approval 10. Most often firstborn 

4. Score higher on tests of intelligence 11. Younger  

5. Less authoritarian 12. Female when task is standard 

6. Better adjusted 12a. Male when task is threatening 

 

 It is not difficult to see that many of these traits could have a severe impact on a host of 

studies—whether in psychology or education. It is, however, difficult to make a case for any of 

these factors playing a role in influencing transfer of learning or severely impacting any of the 

other variables in the model. One concern is whether any of these traits could be reasonably 
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expected to be a common cause or antecedent of any of the variables included in the model. With 

the exception of number 4 (score higher on tests of intelligence), this does not appear to be a 

reasonable inference. Given the concerns raised by this sampling technique, however, a number 

of steps were taken to maximize the likelihood that the sample chosen closely matched the 

population of interest.  

First, the consideration that volunteers often score higher on tests of intelligence can bias 

the measures of prior knowledge and transfer and thus severely influence the ability of the 

analysis to generalize to learners with lower prior knowledge. This issue can be addressed by 

targeting subjects across campus from a variety of disciplines and backgrounds. As it has been 

shown in the literature review, prior knowledge (in terms of both content and strategies) is by far 

the most influential predictor of transfer.  

This is a somewhat easier task in a university environment where subjects have already 

further self-selected into choices of academic majors and disciplines. Getting subjects from 

different disciplines seems, by far, the most efficient way to ensure the sample is as 

heterogeneous as the population. As such, subjects from a wide variety of disciplines were 

targeted by making class electronic announcements via department email lists and posting flyers 

and advertisements in all academic buildings throughout campus.  

Second, It is likely that interest in the transfer task played a major role in whether a subject 

chose to participate in the study or not. To avoid a potential sample bias, the study and task 

description provided in the recruitment materials made only vague references to the completion 

of a performance task but it made no mention of the content covered or the specific nature of the 

task. Subjects were only exposed to this information upon agreeing to the study and attending the 

data collection session. 
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Even with these procedures in place, the limitations of a non-random sampling technique are 

acknowledged. Namely, the inability to generalize to populations beyond those specified is a 

major concern in this study. The measures taken to address sampling issues, however, present a 

strong case that the drawn sample will accurately represent the population of interest. This is, of 

course, a preliminary assertion that is further evaluated in the next chapter as the properties of 

data are described.  

Subject Recruitment. Recruitment of subjects began early during spring semester in the 

2010-2011 academic year. A series of flyers, e-mail announcements, and other advertisements 

were made through publicly available social networking sites, social lists, and physical postings 

placed in posting boards throughout the academic campus buildings that allow such 

advertisements. In exchange for their time, participants were offered a chance to win an iPad 

tablet device. The procedure for subject recruitment was as follows: 

First, the flyers and advertisements directed participants to sign-up for the study through 

e-mail, phone, a web link, or in person. Participants were given the choice to sign up for a 

particular section that suited their availability. Additional sessions were scheduled to 

accommodate volunteers that had time and availability constraints.  

Subjects were contacted after sign up and given a location and instructions for the 

attending the appropriate session. A subject ID was generated for each participant. This ID was 

included in all data collection instruments and used throughout the study to track the subject 

responses. No identifying information was associated with the ID thus making it impossible to 

determine the identity of the subject.  
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A total of 10 sessions were conducted. Sessions took approximately 90 minutes. Upon 

arriving subjects were asked to complete a consent form and received verbal instructions about 

the study. Learners were asked to complete the instruments in the following order: 

a. Prior domain knowledge instrument. 

b. Near and far transfer performance tasks. 

c. Prior strategic knowledge instrument. 

d. Motivation instrument. 

e. Self-regulation instrument. 

Upon completion, subjects were given an opportunity to enter into a raffle to win an iPad 

tablet device. 

Data Collection 

 Data collection began in early spring semester after IRB approval was obtained (appendix 

E). A number of preparatory tasks were completed in preparation for data collection activities. 

These tasks included: 1) Assembling and preparing data-collection instruments; 2) Administering 

the instruments; and 3) Storing data. 

Assembling and Preparing Data-Collection Instruments. A number of instruments 

have been highlighted as containing appropriate sub-scales to measure the constructs and 

indicators specified in the model. Two separate instruments were assembled based on those sub-

scales and instrumentation. The first instrument contained items measuring prior content 

knowledge, near transfer, and far transfer. This instrument was followed by items measuring 

prior strategic knowledge, motivational indicators, and finished with the set of items used to 

measure self-regulated learning.  
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Instrument Administration. Participants that volunteered for the study were invited to 

attend a session in the IDD&E multimedia lab located in room 302 in the School of Education. 

This room is a computer lab consisting of individual workstations. Subjects were seated at a 

workstation with a computer where they first completed the prior knowledge, near transfer, and 

far transfer paper instrument. Upon completing these instruments, participants proceeded to 

complete the online surveys containing the strategic knowledge, motivation, and self-regulation 

items. Subjects were allowed to use any resources they deem appropriate as the nature of the 

problem permits it. They were given unlimited time to complete the task, although no 

participants exceeded ninety minutes.  

 A number of authors (Babbie, 1990, 2008; Creswell, 2009; Fraenkel & Wallen, 1993; 

Krathwohl, 1998) have pointed to the importance of consistent data collection procedures when 

collecting data. This is, of course, essential in experimental studies where manipulation across 

subjects of a particular group must be identical. In survey studies, this is also a critical 

consideration as the lack of consistency protocols may mean unintentional manipulation of the 

conditions for some subjects but not for others thus introducing bias into the study. This study 

followed a set of protocols during data collection in order to minimize the chance of this 

happening. The instructions provided to the subjects upon entering the lab were identical for all 

subjects. These are included in Appendix B. The researcher read these individually to all 

subjects. In those instances where graduate assistants other than the researcher administered the 

task, they were trained to use the study protocols and were given instructions about answering 

questions regarding the task.  

Storing Data. The survey was hosted in the Survey Monkey website 

(http://www.surveymonkey.com). This survey administration service allows subjects to submit 
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surveys and stores the raw data making it only accessible to the survey administrator that has the 

password. The service features redundant data storage and frequent backups to ensure data 

integrity. In addition, monthly copies of the raw data were stored in the researcher’s computer. 

This computer is backed up daily to an online service and monthly to an external hard drive. For 

the paper instruments, data were score and stored in an Excel spreadsheet after all problem-sets 

were completed. All data were stored in the researcher’s computer. All instruments were 

identified by a unique ID assigned to each participant. No personal or identifying information 

linking the ID to a participant’s identity was collected.  

Analytical Methods. The data collected fits within a theoretical model that has been 

specified and defined in chapters 1 and 2. This model is presented again in figure 11 for the 

convenience of the reader. To analyze the collected data and validate the outlined model, a 

structural equation modeling (SEM) analytical technique is employed. SEM is by no means a 

new technique with many tracing its roots to Sewell Wright’s early path analysis in genetics 

(1918), Haavelmo’s early econometrics models (1944), and continued in sociology by the work 

of Duncan, Simon, and Blalock in the 1960s (Matsueda, 2000).  

The social sciences have seen an explosion of studies using SEM. By their estimation, 

MacCallum and Austin (2000) found over 500 examples of published applications of SEM in 16 

psychology journals over a span of four years. This number is likely to have increased over the 

last few years as advances in factor analysis, SEM methodologies, and software capable of 

performing SEM analysis have become more straightforward and inclusive of different types of 

variables and measurement types (Kline, 2010).  

Despite this increase popularity, SEM techniques are still relatively rare in comparison to 

quantitative studies employing regression or ANOVA approaches. It is important for the reader 
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to have a common understanding of the technique used in the study. As such, the next few 

paragraphs attempt to present some background about the underlying logic of structural equation 

modeling. SEM is an extension of the linear regression families derived from the general linear 

model. This family of techniques includes simple and multiple regression techniques, ANOVA 

techniques, as well as more advanced techniques such as path analysis, discriminant analysis, 

and other similar techniques.  

The main differentiating feature between SEM and other analytical techniques is its 

reliance on latent variables (LVs). A latent variable represents a hypothetical construct that can’t 

be directly measured and instead must be represented through a series of indicator variables that 

together encompass the dimensions of the LV. These hypothetical constructs are common 

occurrences in psychology and education. 

Take as example intelligence. We cannot directly measure a person’s intelligence but we 

can approximate it through a series of indicators such as IQ, task performance, and a number of 

other variables. In SEM, these indicators are joined to create a latent variable encompassing the 

dimensions of the construct. In multiple regression or similar techniques, a variable like 

intelligence would be treated as consisting of a single measure or a composite of multiple 

measures (MacCallum & Austin, 2000).  

This is important as a single measure implies perfect measurement accuracy, but as we 

know, perfection in measurement is an impossible achievement (Bollen & Lennox, 1991). Thus, 

the best we can do is to attempt to model the measurement error along with hypothesized 

relationships. We can accomplish this by obtaining multiple ‘samples’ of a measure and then 

attempting to analyze the strength and consistency of that measure. 
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Figure 11. Theoretical model of transfer and motivation proposed for validation in this study.PK = Prior 
Knowledge, DK=Domain Knowledge, SK=Strategic Knowledge, MOT=Motivation, SE= Self-Efficacy, 
INT=Interest, GO=Goal-Orientation, SRL=Self-Regulated Learning, MOT = Motivational SRL, COG= Cognitive 
SRL, NT = Near Transfer, FT = Far Transfer. 
 
 In the case of SEM, this is done through factor analysis. This is our measurement model. 

We can then complement the measurement model, and more importantly consider the extent of 

estimated measurement error, to fit a structural model that spells out the direction and path of 

causal relationships. This allows us to model hypothesized causal structures while also 

accounting for measurement error and the latent structure of a construct.  

This double-sided approach has a definitive advantage over more primitive regression 

and linear modeling techniques. As it has already been mentioned, measurement error is 
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accounted for in the measurement model thus our analysis produces more accurate standard 

errors, and thus more accurate estimated parameters. Secondly, the factor analysis validation that 

is required to conduct an SEM allows gathering of evidence about construct and content validity. 

The validation of an underlying construct’s factor structure can detect mispecified constructs 

with insufficient coverage or mistaken factor structures (Tomarken & Wallen, 2005). Third, 

multiple indicators are preferable to a single indicator as this decreases the likelihood of 

influencing outliers and narrow definitions.  Lastly, the use of latent constructs reflects the reality 

of psychological traits that are inaccessible directly but can be modeled or represented through a 

careful combination of indicator variables. For these reasons, and for the feasibility and prior 

efforts to validate theoretical models using SEM (MacCallum & Austin, 2000), this technique 

has been chosen as the most effective and methodologically rigorous available to validate the 

proposed model.  

To validate the proposed SEM model, a set of considerations must be taken into account. 

This study follows Kline’s (2010) recommendations. The following six steps will be followed to 

validate the model. 

1. Specify the model. 

2. Operationalize constructs. 

3. Estimate the model. 

4. Evaluate model fit (If poor, skip to step 5). 

a. Interpret parameter estimates. 

5. Consider equivalent or near-equivalent models. 

a. Respecify the model (If necessary). 

6. Report the results. 
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Model Specification is the basis of any SEM study. This step begins by taking a set of 

formal hypotheses and turning them into a formal model to be validated. This requires using all 

available theory, empirical research, and available information to select variables and 

hypothesize a set of relationships among these variables (Schumacker & Lomax, 2004). This is a 

critical step as mispecified models can severely bias parameter estimates and thus distort the 

nature of the real-world relationships that are being modeled (Schumaker & Lomax, 2004, p. 58). 

Thus, it is essential that any model be grounded on solid theoretical and empirical grounds. 

Chapter 1 and chapter 2 in this study detail efforts to thoroughly and systematically create a 

model based on our most current knowledge of motivation and transfer. 

Part of this step requires us to evaluate model specifications by identifying the model. 

This means assessing whether the theoretical model specified can be mathematically estimated. 

The underlying foundation of SEM is a set of mathematical equations that must be solved to 

arrive at estimated parameters. As with any system of equations, there must be enough 

information (i.e. number of simultaneous equations) to solve the number of unknown variables 

presented. This allows for three distinct possibilities: 1) the model can be just identified; 2) The 

model can be under identified; and 3) The model can be over identified. The example equations 

below can be used to better illustrate this point.  

x + y = 14 

y + z = 6 

This set of equations requires us to estimate three separate parameters (x, y, z). But in this 

case, not enough information is provided to facilitate that estimation. There are multiple values 

that can possibly satisfy the equations (x = 10, y = 4, z =2; x = 8, y = 6, z = 0, etc…). This is an 

example of what an under-specified model implies. There is simply not enough information to 
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conduct a unique estimation of desired parameters. Parameters can be calculated but they won’t 

be unique. That is not very useful. Suppose now, however, that we added an additional equation 

to this system as followed: 

x + y = 14 

y + z = 6 

x + z = 12 

The addition of a new relationship allows us to calculate unique estimates for the 

estimated parameters. Solving these equations, we obtain: x = 10, y = 4, z = 2. In this case, we 

have just enough information to estimate these parameters. This is the case of just-estimated 

model. Lastly, if in addition to the equation, we were given x = 10 or provided with another 

equation using the same variables, we would say the model is over-identified. That is, we have 

more information than it is necessary to estimate the desired parameters. In the case of an SEM 

model, the available information is in the form of correlations and covariances among the 

variables in the model. This information is used to solve the complex underlying equations 

driving the model (Bollen, 1989). An SEM requires us to have, at the very least, a just identified 

model.  

The next step is to operationalize constructs. An earlier part of this chapter was dedicated 

to describing the instruments used to measure each construct. That was the final part of construct 

specification. In Chapters 1 and 2, the logic and evidence for the selection and grouping of 

variables under each construct was covered. Typically, little guidance is provided on selecting 

indicators for constructs other than to use sound theoretical and empirical evidence for this 

selection.  
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Little, Lindenberger, and Nesselroad (1999); however, take this discussion further by 

developing a heuristic model that relies primarily on two dimensions to consider when selecting 

indicators. The first dimension is the centroid distance, which refers to the correlation between 

constructs. If constructs are closely correlated, it is likely that indicators will overlap between 

constructs and make the true correlations between construct more difficult to recover. The 

authors suggest that a confirmatory approach with constructs defined a priori and validated 

through confirmatory factor analysis can effectively address this issue and uncover true 

correlations. This is the approach taken in this study.  

The second dimension is the number of indicators to include under each construct. 

Classical test theory indicates that the more indicators selected the better coverage of the 

construct to be achieved (Crocker & Algina, 1986). This however, must be balanced with issues 

of practicality and parsimony. A number of authors have suggested a rule of thumb where each 

construct must be represented by at least three indicators (Bollen, 1989; Kline, 2005; O’Brien, 

1994; Schumaker & Lomax, 2005). That guidance is followed in this study as supported by 

theory and empirical work. In the cases where only two indicators are used (as in prior 

knowledge and transfer of learning), those indicators themselves are made up of a combination 

of multiple items and combined to create better coverage of the indicator.  

A final issue with regards to construct and indicator selection is the depth at which 

indicators are selected and constructs are modeled (Bagozzi & Edwards, 1998). In the case of 

this study, many of the indicators selected can themselves be considered latent constructs that 

can be represented by a factor structure of multiple indicators. Goal orientation, for example, has 

often been operationalized as a three-factor latent construct (Elliot & Church, 2006; Vandewalle, 

1997). A researcher has a choice to represent indicators at the most relevant level to answer the 
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research questions posed in the study. However, consistency must be ensured so that indicators 

are represented at the same level throughout. The choice has been made in this study to model 

constructs and indicators at the most global level. This choice is driven by the research questions 

informing the study, and by the empirical and theoretical evidence that specifies relationships 

occurring among indicators at the scale levels where the indicators are defined.                

Model Estimation follows. This step involves determining the value of unknown parameters 

and disturbances (error terms) associated with the latent variables in the model. To estimate the 

model, SPSS and AMOS were used. Successful model estimation also validates prior model 

identification as it indicates whether or not enough information was available for the software to 

estimate all required parameters.  

After a model is estimated, it is necessary to evaluate the model to ensure it consistently 

fits the study data. For the overall model, this is done via a chi-square (Χ2) test and variety of fit-

indices. This is typically followed by a more detailed assessment of fit comparing differences 

between the observed and generated covariance matrices (Anderson & Gerbing, 1988; Kline, 

2005).  

The testing of model fit is followed by interpretation of the estimated parameters in light 

of the research questions and stated hypothesis. The final step in estimating the model is 

comparing the model to any available alternative models. MacCallum and Austin (2000) warn 

that even when model fit is achieved there is a danger of confirmation bias. That is, the fact that 

data adequately fit a single model does not mean alternate, competing models fit data just as well 

or even better. To remedy this, Anderson and Gerbing (1988) suggest a two-step approach. The 

first step is to estimate a series of five nested models. Next, the researcher obtains a likelihood 

ratio chi-square value for each model. Strength of model fit can then be assessed by comparing 
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chi-square differences and using fit indexes to determine best-fitting models. In this study, the 

five models generated are: 

M1: A saturated structural model (Anderson & Gerbing, 1988, p. 418) in which all paths 

are estimated. This model posits that all constructs are directly related to other constructs. 

M2: A null structural sub model in which all paths of the model are set to 0. This model 

posits that no relationships exist among the constructs.  

M3: A substantive model of interest. This is the model specified in figure 1 and formally 

defined in chapters 1 and 2.  

M4: A model representing the most likely alternative to M3. This model posits a direct 

relationship between motivation and transfer in addition to all other relationships 

specified in M3.  

M5: A model representing the most likely alternative to M4. This model posits only 

indirect relationships to transfer of learning with prior knowledge being only indirectly 

related to transfer. 

These five models form the basis for model testing in the study. Comparison of these 

alternative models addresses issues of bias confirmation and provides strong evidence of model 

validation following established SEM procedures.  

The final step is to report the results. Procedures for reporting results consistent with the 

SEM literature will be followed. Information reported will include: 

1. Descriptive statistics (Mean, SD, variances, zero-order correlations, frequency 

distribution, etc.). 

2. Data diagnostics information (Tests of normality, kurtosis, skewness, collinearility, etc.).  

For the specific model specified, the following will be reported: 
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3. Factors loadings for the measurement model 

4. Correlations among latent variables for the structural model 

5. Goodness of fit indices (Χ2, CFI, RMSEA, AIC, etc…) for the structural model 

6. Path coefficients, including significance, for all structural models tested 

The procedures outlined above describe the analytical procedures to be followed in this study.  

Summary 

The purpose of this study is to outline a model that describes the causal mechanisms by 

which motivation and prior knowledge work to promote transfer of learning. As it has been 

posited in prior chapters, motivation and prior knowledge exert their influence on transfer 

through increased self-regulation. The main goal of this study is to validate the proposed model 

using SEM techniques. The selection of SEM to validate this model has been made on the basis 

of the appropriateness of the technique for this type of studies, its increased use in the social 

sciences, and its superior methodological advantage over less advanced techniques such as 

regression and analysis of variance.  

These first three chapters have established a sound theoretical framework from which a 

testable model has been derived. A set of testable hypotheses, covered early in the chapter by 

outlining research questions, has been generated. This study has made the argument that the 

conspicuously lacking absence of systematic inquiry into the motivation mechanisms that 

influence transfer is a severe limitation of the transfer and motivation literature.  

Chapter 1 clearly defined that problem and offered a solution based on theoretical and 

empirical work. Chapter 2 provided a systematic and comprehensive review of the current state 

of the literature providing evidence for the hypothesized relationships while also showing points 

of departure where the present study seeks to improve on prior empirical work. In this chapter, a 
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detailed outline of the design consideration, data collection and analytical procedures has taken 

place. The logical chain of reasoning that follows within, and through, each chapter provides a 

credible and rational argument to conduct the proposed study.  The next chapters discuss the 

findings of the study and the implications for future research. 
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CHAPTER 4: RESULTS 

The first three chapters established a theoretical and empirical base that led to a testable 

model of transfer. This model accounted for the motivational mechanisms previously omitted 

and proposed a methodological and analytical approach well suited to answer the set of research 

questions posed. The next two chapters conclude this dissertation by reporting the results of the 

study, summarizing what was learned, and providing insight into future work that may extend, 

and improve, the limited scope of the current study.  

Procedure 

A total of 99 subjects are included in this analysis. Data were collected over a span of ten 

months beginning in March 2011 and concluding in January 2012. Participants were part of two 

separate data collection efforts.  During the first batch of data collection, which occurred from 

March 2011 to May 2011, a total of 44 subjects completed the problem set and survey 

instruments that were part of the study. These subjects were recruited through the posting of 

fliers around the campus, e-mail solicitations sent through department e-mail lists, and 

advertisements made during classes and various on-campus events as described in chapter 3.  

The second data collection batch occurred from October 2011 to January 2012. After 

consulting with the dissertation committee, it was decided that in order to increase the number of 

possible subjects participating in the study, it would be wise to convert all instruments to the 

online format and to allow participants to be part of the study from anywhere they could access 

an online survey; although the population universe remained the same, Syracuse University 

students. The researcher petitioned the IRB board for an amendment to the data collection 

procedures. The approved amendment can be found in Appendix F. Subjects were once again 

targeted through fliers around campus, advertisements through departmental email lists, and 
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social networking sites (Twitter and Facebook). Fifty-five subjects participated during this part 

of the data collection process. The entire process was automated through the Survey Monkey 

website with no intervention from the researcher and no direct contact with the subjects other 

than to provide clarification about the study. 

Data Cleanup and Preparation 

Following the recommendation of Kline (2010) a minimum acceptable sample size of 90 

subjects was established. This was based on a rule of thumb in the SEM literature that suggests, 

at a minimum, a ratio of 10 subjects per indicator variable. An optimal ratio of 20 subjects per 

indicator was originally proposed. However, due to difficulties acquiring subjects that caused the 

data-collection stage to be extended for over six additional months, it was decided a sample size 

of 99 was adequate. 

After the data collection window closed, data were downloaded from the Survey Monkey 

servers. Such data typically contain a number of extraneous fields not necessary for the analysis. 

These included IP addresses to identify the machine where the surveys were completed as well 

as unique record IDs to identify each set of surveys. These fields, along with any fields not 

included in the calculation of variables in the analysis were removed. An original file with raw 

data was preserved.  

Descriptive Statistics 

Means, standard deviations, and zero-order correlations for the indicators used in this 

study are presented in Table 11. Since normality is a major assumption of maximum likelihood 
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estimation techniques used in SEM, exploratory analyses were performed to test normality in the 

included observed indicators.  

Table 11. Means, Standard Deviations, and Zero-order Correlations among Observed Indicators 

 Mean STD DK SK NT FT GO INT SE MOTSRL COGSRL 

DK 14.52 2.72 1         

SK 40.25 6.98 .180 1        

NT 5.88 2.14 .423** 99 1       

FT 10.71 5.76 .535** .267** .644** 1      

GO 33.90 5.10 .100 .120 -.028 .183 1     

INT 37.41 10.37 .177 .287** .121 .209* .443** 1    

SE 604.65 132.52 .538** .386** .530** .840** .223* .313** 1   

MOTSRL 60.36 9.33 .432** .457** .783** .552** .231* .341** .581** 1  

COGSRL 25.96 5.33 .255*

* 

.552** .635** .469** .075 .191 .423** .779** 1 

Note. N=99. The following abbreviations are used: DK = domain knowledge, SK= strategic knowledge, 

NT= near transfer, FT= far transfer, GO= goal orientation, INT= interest, SE= self-efficacy, MOTSRL = 

motivational SRL, COGSRL = cognitive SRL. 

** Correlation is significant at the .001 level. * Correlation is significant at the .005 level 
 

Figure 12 displays graphs for each indicator, overlaid with theoretical normal 

distributions. The graphs point to domain knowledge (DK) and near transfer (NT) as indicators 

with possible non-normal distribution.  Skewness and Kurtosis values, displayed on table 12, 

confirm this diagnosis. Typically, when faced with a non-normal distribution, a researcher has 

the choice to transform the variable in an attempt to obtain a more normal distribution. In the 

case of domain knowledge, this might be problematic. The distribution of the variable actually 

shows a clustering of the responses around the higher levels of prior domain knowledge so 

kurtosis is not an issue, only skewness. Transforming the variable might actually obscure what is 

an important limitation of the variable—namely its supposed inability to differentiate between 

subjects with high and low levels of prior domain knowledge. Because of this, the choice was 

made to not transform the variable and instead deal with the consequence of univariate non-
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normality.  Arbuckle (1997) suggests that non-severe departures from normality are often 

harmless if no definitive inferences about the population parameters are being made.   

Table 12. Skewness and Kurtosis Statistics for Observed Variables. 

 Skewness  Kurtosis 

Domain Knowledge -1.150 .634

Strategic Knowledge .329 -.314

Near Transfer -1.913 2.340

Far Transfer -.302 -1.269

Goal Orientation -.224 -.324

Interest -.014 -.569

Self-Efficacy -.244 -.857

Motivational SRL -.593 .079

Cognitive SRL -.867 .525
 

As for the near transfer indicator, symptoms of kurtosis and skewness can be detected. It 

appears that the shape of the distribution can be partially attributed to the limited range of the 

variable (0 to 7).  

Table 13. Cronbach’s Alpha Statistics for Included Scales. 

 

Scale Cronbach’s Alpha (α) Number of Items 

Strategic Knowledge .57 13 

Goal Orientation .69 6 

Interest .83 8 

Self Efficacy .76 8 

Motivational SRL .73 12 

Cognitive SRL .48 5 

Domain Knowledge .498 7 

Near Transfer .829 3 

Far Transfer .858 5 

Figure 12. Frequency histograms with theoretical normal distributions for nine observed indicators. 
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Furthermore, the three items in the problem set that yield this score show a distinct 

pattern of response where subjects either successfully completed all three problems or were 

unable to successfully complete any problems at all. Given this pattern, the range of responses, 

and the theoretical range of the item, transforming the variable makes little sense. Given no other 

choice, this variable is treated as continuous although its practical range makes it more suitable 

to be treated as a categorical variable. 
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The Problem of Multiple Samples 

As it was discussed in the procedures section, data were collected in two distinct samples. 

Although these samples were drawn from the same sampling universe (Syracuse University 

students), there is danger in assuming that these samples are perfectly drawn from the population 

and thus contain equivalent distribution of values. As this is a matter of empirical reality, steps 

were taken to ensure the equivalence of the samples. First, descriptive statistics were computed 

individually for each sample in order to compare across all observed variables. 

Table 14. Means and standard deviations comparing two samples. 

 

 As table 14 shows, the differences between the two samples are negligible. A more 

important test, however, is to see is correlations among observed variables differ by sample. This 

is a useful test as SEM analysis relies on covariances among indicators and latent variables, 

rather than means, to estimate path coefficients. Table 15 displays the zero-order correlations for 

the nine observed indicators, broken down by sample. A glance at the table reveals more 

complex differences. Rather than try to settle on a magnitude that is significant enough, the table 

highlights bivariate correlations that were significant under one sample but non-significant under 

SAMPLE DK SK NT FT GO INT SE MOTSRL COGSRL

Fall 2001 Mean 14.18 39.24 6.07 10.58 34.13 38.13 607.11 60.33 25.87

ST DEV 2.80 6.52 1.96 5.73 5.62 10.78 129.56 8.85 5.18

Spring 2011 Mean 14.81 41.09 5.72 10.81 33.70 36.81 602.60 60.39 26.04

ST DEV 2.66 7.29 2.29 5.83 4.67 10.07 136.12 9.78 5.51

Total Mean 14.52 40.25 5.88 10.71 33.90 37.41 604.65 60.36 25.96

ST DEV 2.72 6.98 2.14 5.75 5.10 10.37 132.52 9.33 5.33
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another. As it can be seen, the relationships among the variables differ on several places. This 

indicates that there are differences between the samples and it raises the question of how 

significant those differences are.  

Luckily, SEM provides a standard methodology for comparing measurement and 

structural differences when there are concerns about the homogeneity of multiple samples. As 

this analysis begins the testing of a set of hypotheses, the originally posed research questions are 

reviewed and discussed individually in the following sections. For the sake of methodological 

correctness, questions of multi-group equivalence and data fit are addressed first.  

Table 15. Zero-order Correlations for Multiple Samples. 

 

SAMPLE  DK SK NT FT GO INT SE MOTSRL COGSRL 

Spring 

2011 

DK 1   

SK .240 1   

NT .562** .341* 1   

FT .600** .366** .679** 1   

GO .029 .148 -.068 .203 1   

INT .165 .410** .105 .190 .487** 1   

SE .603** .486** .596** .865** .270* .337* 1  

MOTSRL .506** .513** .843** .616** .283* .331* .662** 1 

COGSRL .344* .582** .697** .545** .135 .198 .532** .811** 1

Fall 2011 DK 1   

SK .075 1   

NT .275 .148 1   

FT .463** .131 .606** 1   

GO .180 .106 .009 .166 1   

INT .208 .161 .134 .236 .400** 1   

SE .473** .257 .436** .809** .176 .285 1  

MOTSRL .347* .384** .698** .467** .178 .358* .469** 1 

COGSRL .147 .516** .554** .370* .014 .186 .277 .735** 1
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Research Questions 

R8: Is the proposed measurement model consistent across the two samples of subjects? 

Multi-group SEM analysis (Dolan, 2000; Kline 2010; Marsh, 1994) provides a rigorous 

methodology to test for measurement invariance across samples. In plain terms, measurement 

invariance tests validate the hypothesis that factor loadings of indicators on particular latent 

variables do not significantly differ across groups (Muthen, 1994; Muthen & Asparouhov; 2011; 

Preacher, Zyphur, & Zhang, 2010).  

A multi-group SEM of the hypothesized model was conducted using SPSS AMOS19. 

The first step in performing the analysis is to constrain the factor loadings to be equal across 

groups thus setting up a testable hypothesis. Table 16 displays the results of the various chi 

square tests performed to establish measurement invariance. The chi-square test labeled 

“measurement weights” indicates no significant differences exist on the factor loadings (weights) 

of the indicator variables across the two samples χ2 (5, N=99) = 1.73, p > 05.  

Table 16. Tests of Measurement Invariance across Samples 

Model DF Chi Square P 
Measurement weights 5 1.733 .885 
Measurement 
intercepts 

14 12.971 .529 

Measurement 
residuals 

27 28.723 .374 

 

As recommended by Cheung and Rensvuld (1999) further tests were performed to 

establish “strong” measurement invariance across the samples. The chi square test labeled 

“measurement intercepts” tests whether the starting points for both groups (their means) are 

equivalent across the indicators. Once again, the results are not significant χ2 (14, N=99) = 

12.97, p >.05.The chi-square test labeled “measurement residuals” tests the hypothesis that the 
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error terms of the indicators on the latent variables are not significantly different across groups. 

Once again, the results show no significant differences χ2 (27, N=99) = 28.72, p >.05. 

Together, these tests show the measurement model is consistent across samples and 

suggests further testing to see if the case applies to the structural model as well.  

R9: Is the proposed structural model consistent across the two samples of subjects? The 

same logic used to test the measurement model was extended to the structural model.  Chi square 

tests result for this analysis are displayed on Table 17.  The chi square test labeled “structural 

weights” constrains the path estimates in the model to be equivalent across the two samples. The 

test shows no significant differences between the two groups χ2 (18, N=99) = 19.359, p > .05. 

The same test was applied to the covariances in the structural model (in this case a single 

covariance between the prior knowledge and motivation latent variables), and the results once 

again indicate no significant differences between the two samples χ2 (1, N=99) = 1.088, p > .05. 

Table 17. Comparison of Structural Weights and Covariances across Groups. 

Model DF Chi Square P 

Structural weights 18 19.359 .370 

Structural covariances 1 1.088 .297 

 Based on the results of the analysis, it is reasonable to conclude that no significant 

differences exist between the two samples on either the measurement or structural part of the 

model. Given this conclusion, it is a justifiable decision to combine the samples and treat them as 

a singular sample. This entire sample is used to answer the remaining research questions. Figure 

13 displays the hypothetical model to be tested initially.  

 Before proceeding to answer substantive content questions, it is important to diagnose 

model fit in keeping with standard SEM practices (Kline, 2010). Therefore, research questions 

surrounding these issues are addressed first. 
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R5:  Does the specified model reasonably fit the data according to fit standards (X2, CFI, 

RMSEA, AIC, etc.)? To answer questions of model fit, SEM methodologists rely mainly on two 

pieces of information. The first is the omnibus chi-square model test that compares whether the 

sample covariance matrix differs significantly from the population’s (Barrett, 2007). The 

omnibus chi square test for the specified model shows significant differences χ2 (23, N=99) = 

185.116, p <.05. This points to major sources of data misfit but closer investigation is required. 

 

Figure 13. Theoretical SEM Model Validated in this Study. 
 



128 
 

 

Some researchers have pointed out chi-square tests are particular sensitive to sample-size, 

correlation sizes, and even small deviations from the data and are thus not always helpful for 

evaluating model fit (Bollen & Long, 1993; Marsh et al., 1988). In such cases, fit indices may 

provide more useful information. By nearly all standards of model fit, the hypothesized model is 

diagnosed to fit the data poorly. Table 18 lists these indices.  

The results show severe deviations from the hypothesized model and the data collected. 

Of course, this is not particularly useful information as the indices fail to pinpoint exactly where 

the source of misfit is located. Such information can provide theoretically valuable information 

that may be useful in subsequent studies. The first step in obtaining this information is to explore 

whether reasonable alternate hypothesized models better fit the data. 

Table 18 - Chi Square and fit indices for hypothesized SEM model. 
 

Fit Index 
 

Value for Current Model 
 

  Acceptable Threshold 
Chi-Square 

 
185.16, P < .05 Non-significant (P >.05) (Barrett, 2007; 

Kline 2010) 

RMSEA .27 (90% CI .23 to .31) <= .08 indicates good fit (Browne & 
Cudeck, 1993) 

TLI .49 >=.90 (Schumacher & Lomax, 1996) 
GFI .76 >=.90 (Schumacher & Lomax, 1996) 

 

 R6:  Which of the specified models (M1, M2, M3, M4, M5) best fit the data? 

Alternative hypothesized models were previously described in chapter 3. To recap these models 

are as followed: 

M1: A saturated structural model (Anderson & Gerbing, 1988, p. 418) in which all paths 

are estimated.  

M2: A null structural sub model in which all paths of the model are set to 0.   

M3: A substantive model of interest. The model formally defined in chapters two and 

three. 
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M4: An alternative model that posits a direct relationship between motivation and 

transfer. 

M5: A model that posits only indirect relationships to transfer of learning with prior 

knowledge being only indirectly related to transfer. 

By default, M1 and M2 are used as baselines of fit to compare the substantive model of 

interest. So in practicality, a null model will fit the poorest as no relationships are posited among 

variables and indicators. The saturated model presents an exactly opposite scenario as it will fit 

the data perfectly by hypothesizing all possible relationships. A hypothesized model will fit 

somewhere in between. That leaves comparisons among M3, M4, and M5 as the only practical 

comparisons to be made. 

 The basis for comparing the models rests not only on comparing indices of absolute fit 

but also using additional relative fit indices (AIC, CFI) that provide a more structured basis for 

comparison among models (Bollen & Long, 1993; Tanaka, 1993). The results for models M3, 

M4, and M5 are listed on Table 18. Additional indices included are the comparative fit index 

(CFI) and Akaike’s information criterion (AIC). 

Table 19. Comparing Fit Indices across Models. 

Model Chi-Square /DF / P RMSEA TLI GFI 
CFI (higher is 

better) 

AIC (lower is 

better) 

M3 
185.16 .27 .49 .758 

.672 229.115 

M4 162.88 / 22 / <.05 .256 .534 .781 .715 208.883 

M5 190.23 / 24/ <.05 .266 .496 .748 .664 232.234 
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The fit indices provide a similar picture for all three models compared. They fit poorly 

given the data. M4, which posits a direct relationship between motivation and transfer, in 

addition to the other hypothesized relationships, fits best according to comparative indexes such 

as CFI and AIC. This is not surprising given one less degree of freedom needs to be calculated 

and thus the model is closest to the saturated model. The AIC index, however, which accounts 

for the number of parameters calculated, still shows M4 to be the best fitting model (for the AIC 

index, a lower value is better). 

 The evidence modestly suggests that among the models M4 is the best fitting model. 

This is, however, in light of overall poor fit. SEM researchers have cautioned interpreting results 

given a poor fitting model. Many have recommended that when encountering fit issues, the best 

approach is to investigate the source of misfit through multiple avenues. This should not, 

however, turn into a mathematical fishing expedition to lower or heighten a particular index. 

Rather, such information may provide substantive theoretical modifications that can be 

empirically validated against a different sample in future research (Barrett 2007; Hayduk, 2007; 

Kline, 2010; McIntosh, 2007; Mulaik, 2007). That groundwork is followed here in an attempt to 

better understand the sources of data misfit and to provide a set of suggestions that may inform 

future work. 

 Before the procedures employed to diagnose sources of misfit are discussed, however, 

full results are reported for the remaining research questions. It is important to remind the reader; 

however, that such results must be interpreted in light of the poor fitting models and so must be 

interpreted with severe caution. The chi-square test and fit indices for the model indicate that the 

hypothesized sets of relationships might not be accurate or stable despite the magnitude and 
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direction of the calculated effects. Once again, caution is warranted in interpreting any of the 

following results as strongly validating any of the hypothesized relationships that were originally 

proposed. For reporting purposes, the originally hypothesized model—M3—is used. 

For the reader wishing to review all the results in a more unified format, standardized 

direct, indirect, and total effects along with significance levels are displayed on table 20. The 

path diagram including standardized estimates is displayed on figure 14.  

Table 20. Standardized Direct, Indirect, and Total effects. 
  

Direct 
 

Indirect 
 

Total 
   SRL TRA   SRL TRA   SRL TRA 
PK   -.03 .22*    -.02*   -.03* .19 
MOT   .75* .00    .58*   .75* .58* 
SRL    .73*    .00    .78* 

* p < .05 established through bootstrapping estimation 
 

 

R1: Does prior knowledge significantly increase transfer performance? What is the 

magnitude of the relationship? As prior empirical evidence established, prior knowledge is 

considered one of the main predictors of transfer. The model hypothesized both a direct and 

indirect relationship between prior knowledge and transfer. The direct effects show a modest 

effect of prior knowledge on transfer (β = .22, p <.05) that is not statistically significant. For 

every standard deviation increase on prior knowledge, there is nearly a one fifth of standard 

deviation increase on transfer scores. This is a strong effect. Given that prior knowledge is likely 

to be normally distributed, we can assume that students who are two standard deviations above 

the mean on prior knowledge (the top 5% of the population) would see an increase of .44 

standard deviations on a transfer score given average motivation. In such context, the magnitude 

of the effect is consistent with the literature demonstrating a stronger effect between prior 

knowledge and transfer. 
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R2: Does self-regulation significantly increase transfer performance? What is the 

magnitude of the relationship? In all models tested, SRL exerts a direct effect and acts the 

mechanism that mediates transfer. SRL shows a strong total effect (β = .78, p >.05) on transfer. 

This is by far the largest effect, which is not surprising given the role the central mediator role 

SRL is posited to play in the hypothesized model.  

R3: Does self-regulation significantly mediate the relationship between prior 

knowledge and motivation? What is the magnitude of the relationship? Chapter one and two 

established the viability of motivation as an indirect predictor of transfer. It was shown that often 

motivational variables exerted their influence on transfer and other measures of problem-solving 

through a mediating variable. In this case it was posited that self-regulated learning (SRL) might 

play such a role. Model M3, the hypothesized model, shows a strong indirect effect between 

motivation and transfer (β = .58, p > .05). 

A change of a standard deviation in the motivation score yields a .58 standard deviation 

increase in the transfer score. So we would expect a highly motivated student (two standard 

deviations above the mean) with average domain knowledge to have increases in self-regulation 

behaviors and in turn have a transfer score 1.16 standard deviations above the mean. This is a 

profoundly strong effect that suggests motivation compensates for lower levels of prior 

knowledge. While these might appear to be encouraging results to support the stated hypothesis, 

caution is warranted because of the model’s poor data fit. 

An alternate model, M4, performed marginally better in tests of comparative fit. Such 

model posited a direct relationship between motivation and transfer, along with a mediated 

relationship through SRL. Under this model, the total effect of motivation was even larger, 

(β=.75, .62 direct, .13 indirect). These results are shown to demonstrate that the estimates are 
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unstable under the current circumstances. It is entirely possible than in an untested model 

(perhaps one including a third exogenous latent or a model with a different measurement 

structure) motivation’s influence could turn out to be much weak, or even non-significant. 

 
Figure 14. Standardized Estimates for Model M3. R2 for endogenous variables are SRL = .53, Transfer = .81. 
PK = Prior Knowledge, DK=Domain Knowledge, SK=Strategic Knowledge, MOT=Motivation, SE= Self-Efficacy, 
INT=Interest, GO=Goal-Orientation, SRL=Self-Regulated Learning, MOT = Motivational SRL, COG= Cognitive 
SRL, NT = Near Transfer, FT = Far Transfer. 
 

R4: Does self-regulation significantly mediate the relationship between prior 

knowledge and transfer of learning? What is the magnitude of the relationship? The final 

substantive question turns to the issue of mediation. There is an established tradition first 
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articulated by Baron and Kenny (1986) to test for mediation in regression-based models. This 

same procedure can be extended to SEM. In conceptual terms, establishing mediation requires a 

four-step process. First, it must be established that the predictor (in this case prior knowledge) 

and the outcome variable are significantly correlated. Correlation between the predictor and the 

mediator must be established next. This must be followed by showing that the mediator affects 

the predictor variable. When these three conditions are established, one can proceed to establish 

complete mediation by showing that the effect of the predictor on the outcome variable 

completely suppresses the effect of the mediator variable on the outcome variable. 

 So if we can show that in the presence of prior knowledge, the effect of SRL on transfer 

is non-existent, we’ll be able to establish full mediation. Figure 14 shows that this is not the case 

as SRL still has a direct effect on transfer. This is expected however, as full mediation is rare. 

Partial mediation is a much more common outcome. Establishing partial mediation means 

merely showing that the effect of SRL on transfer is diminished when prior knowledge is 

included as a predictor. This is equivalent to a significant indirect effect of prior knowledge on 

transfer. Statistical packages such as AMOS and SPSS, unfortunately, do not calculate standard 

errors and significance levels for indirect effects. One must turn to bootstrapping to estimate 

standard errors and confidence intervals that essentially perform a mediation test.  

Bootstrapping is a statistical technique that allows the estimation of robust estimation. It 

is particularly useful in cases where no formulas to estimate a particular statistic are implemented 

as it is the case with the standard error of indirect effects in AMOS. Bootstrapping relies on 

drawing multiple samples from the data and using the deviations from each sample to estimate 
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standard errors (Arbuckle, 2010). In this case, the bootstrapping procedure was set to draw 2000 

samples. 

The results indicate the indirect effect is not significant, p > .05, 90% CI [-.62, .23]. 

Under this particular model, SRL appears to have a direct effect on transfer but does not appear 

to mediate the relationship between prior knowledge and transfer as suggested by the literature.   

 The answers to these substantive questions are reported here for the sake of completeness 

but due to limitations of model fit, these estimates cannot be considered stable or reliable. In 

2007, a special issue of the journal Personality and Individual Differences was dedicated to the 

subject of model fit in SEMs. There was significant disagreement among the various contributors 

about the absolute utility of the chi-square test vs. other fit indices. What was a clear conclusion 

however, was that in light of data misfit, the best course of action was to attempt to diagnose the 

underlying sources of misfit, to report that information, and to use that information to build 

better models (Hayduk et al., 2007; McIntosh, 2007; Mulaik, 2007). That is the course of action 

followed here. 

Diagnosing Sources of Model Misfit (R7) 

Before examining possible sources of misfit, it helps to understand the reasons why the 

chi-square test and fit indices would report poor fit. The omnibus chi-square test of model fit 

tests the hypothesis that the residual covariance matrix implied by the tested model is zero 

(Bollen, 1989; Kline, 2010). A significant chi-square test indicates error exists in the residual 

covariance matrix and thus point to less than perfect cohesion between the specified model and 

the theoretically derived covariance matrix. Mulaik (2007) finds the notion of perfect data fit 

tested by the hypothesis to be overly optimistic. Using this logic, he advocates the use of other fit 
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indices as they’re much more able to measure degrees of misfit rather than an absolute 

benchmark.  

Of course when both the chi-square test and fit indices converge on poor fit, as it is the 

case here, the evidence stacks up pointing to clear issues with the model. Bollen (1987) and 

McIntosh (2007) point to several factors that play a role in poor fit. Multivariate normality is one 

such factor as highly skewed distributions affect the estimation of parameters and covariance and 

residual matrices that assume normal distributions. In this case, non-normality might be an issue, 

especially on the near transfer indicator. To test this assumption, the near transfer indicator was 

transformed using a logarithmic transformation (log (near transfer)). Despite the transformation, 

fit indices did not improve.  

Table 21. Complete list of generated modification indices 
 
Proposed Modification   

M.I. 
Par 

Change 
1. SK_SCORE <--- MOT 7.648 .507
2. SK_SCORE <--- SRL 13.356 .283
3. SK_SCORE <--- TRANSFER 5.677 .417
4. SK_SCORE <--- INT_SCORE 5.942 .162
5. SK_SCORE <--- SE_SCORE 6.411 .013
6. SK_SCORE <--- COGSRL_SCORE 24.162 .634
7. SK_SCORE <--- MOTSRL_SCORE 12.564 .261
8. INT_SCORE <--- GO_SCORE 12.992 .691
9. GO_SCORE <--- INT_SCORE 11.666 .164
10. GO_SCORE <--- NT_SCORE 4.409 -.488
11. SE_SCORE <--- FT_SCORE 27.541 8.865
12. COGSRL_SCORE <--- SK_SCORE 9.913 .153
13. MOTSRL_SCORE <--- INT_SCORE 5.496 .105
14. MOTSRL_SCORE <--- GO_SCORE 6.463 .232
15. MOTSRL_SCORE <--- FT_SCORE 4.834 -.178
16. NT_SCORE <--- INT_SCORE 6.325 -.031
17. NT_SCORE <--- GO_SCORE 13.268 -.091
18. FT_SCORE <--- MOT 13.120 .412
19. FT_SCORE <--- PK 6.548 .460
20. FT_SCORE <--- SE_SCORE 30.906 .018
21. FT_SCORE <--- DK_SCORE 5.097 .353
22. DK_SCORE <--- SK_SCORE 4.253 -.065
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Having partially ruled out multivariate normality as an issue, it is likely that 

misspecification errors exist. Diagnosing these issues can be tricky. Luckily, most SEM 

packages now provide modification indexes that simulate significant changes to the chi-square 

test if certain modifications are made to the model. For the sake of completeness, the entire set of 

modification indices is provided on table 21.  

To orient the reader, the first column presents the proposed modification. In this case, the 

modifications are all related to paths and factor-indicator relationships. The second column 

(labeled M.I) indicates the magnitude of the change on the chi-square test that would result from 

making the change. The third column gives an indication of how a parameter might change based 

on the modification.  

As an example, the first suggestion is to create a path between the motivation latent and 

the strategic knowledge indicator. This is akin to loading strategic knowledge as an indicator of 

motivation. This would drop the chi-square statistic by about 7.6 point thus theoretically 

improving fit. While modification indexes are useful, SEM researchers caution abusing them for 

the sake of improving fit. Modification indexes are theory-agnostic and concerned only with 

reducing the covariance matrix residuals in order to improve fit. As a result, any modification 

must be evaluated from a theoretical and logical point of view first.  

With that approach in mind, we can examine the indices with the potential to influence 

the chi-square statistic most and determine whether they present a feasible modification to the 

model. The first two areas of focus are modification indexes 11 and 20. Both of these deal with 

the far transfer and self-efficacy indicators. Index 20, which would reduce the chi-square statistic 

by almost 31 points, suggests that far transfer should be established as a predictor of self-
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efficacy. This is not necessarily consistent with the transfer and self-efficacy literature but 

potentially makes sense from the perspective of transfer and self-efficacy having a recursive 

relationship where successful transfer increases self-efficacy and increased self-efficacy leads to 

successful transfer.  

The more important suggestion however, is that of a different measurement model that 

might possibly include far transfer and self-efficacy as individual latent variables. This is much 

more unlikely to be the case, although given the limited range of the near transfer indicator; it 

might explain its incongruence with the far transfer indicator. The next two items of interest deal 

with the strategic knowledge indicator. Index 6 suggests that strategic knowledge should be a 

predictor of cognitive self-regulation. This is actually quite a reasonable hypothesis that was 

demonstrated to be viable in the literature review. Again; however, this requires a different 

measurement model. This is exactly the point of index 2, which suggests loading strategic 

knowledge under the motivational latent variable rather than prior knowledge latent. This is not a 

far-fetched modification given that self-regulated learning involves a strategic knowledge 

component covered under cognitive self-regulation. 

 There is overlap between these items in that they both tap into knowledge of certain 

cognitive strategies. Given the similarity, it is not surprising that strategic knowledge would also 

load well under the motivation latent. This once again showcases the tendency of the 

modification indices to point to alternative measurement models that will produce better data fit. 

Given this tendency and the existence of several alternative measurement models, it is likely that 

the source of misfit lies therein. This makes it imperative to explore the measurement model in 

more detail in an attempt to uncover possible misspecifications. 
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 An exploratory factor analysis was conducted to look further into the measurement 

model. The Scree test (Cattell, 1966) was used to graphically determine the number of optimal 

factors underlying the data. The test yielded a three-factor model consistent with the theoretical 

model under validation. Next, a three-factor solution was generated. The solution was rotated 

using a Varimax rotation (Kaiser, 1958; Cureton, 1975). The purpose of the rotation is to 

simplify the factor structure and thus facilitate interpretation (Abdi, 2003; Cattell, 1978). Table 

22 lists the rotated solution.  

Table 22. Three-Factor Solution with Varimax Rotation. 

According to this factor analysis, self-efficacy and domain knowledge load strongly on 

one factor. Strategic knowledge, cognitive SRL, and motivational SRL load strongly on another, 

and goal-orientation and interest load strongly on a third factor. Figure 15 shows this model 

graphically. Of course, there is no reason to suggest self-efficacy and domain knowledge share a 

dimension that makes them part of the same latent variable, but the factor analysis provides 

evidence of yet another measurement model. This is a concerning trend that raises doubts about 

the validity of the measurement model.  

 

 
Component 

1 2 3 

SELF-EFFICACY .797   

DOMAIN KNOWLEDGE .760   

STRATEGIC KNOWLEDGE  .833  

COGNITIVE SRL .424 .782  

MOTIVATIONAL SRL .573 .669  

GOAL ORIENTATION   .861

INTEREST   .789

Note: Extraction Method: Principal Component Analysis.  Rotation Method: Varimax with Kaiser 

Normalization. Loadings below .40 are excluded. 
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Figure 15.Alternative measurement model suggested by factor analysis.PK = Prior Knowledge, DK=Domain 
Knowledge, SK=Strategic Knowledge, MOT=Motivation, SE= Self-Efficacy, INT=Interest, GO=Goal-Orientation, 
SRL=Self-Regulated Learning, MOT = Motivational SRL, COG= Cognitive SRL, NT = Near Transfer, FT = Far 
Transfer. 

But these findings are a step removed from showing that changing the measurement model 

guarantees fit improvements. In fact, as table 23 shows, when the model is ran as suggested by 

the exploratory factor analysis, the chi-square test is still significant and the other fit indices are 

fairly similar.  
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Table 23. Fit Indices for Alternative measurement model. 

Model 
Chi-Square /DF / 

P 
RMSEA TLI GFI CFI AIC 

ALTERNATIVE 170.55 / 23 / <.05 .26 .496 .80 .70 214.55 

There are many other possible theory-agnostic combinations that could be attempted, and 

there are no guarantees that it would get us closer to deriving a model that is both theoretically 

valid and statistically robust. As it stands, discussions of data fit have shifted us from substantive 

questions that are the main focus of this study. While it is important to use the best and most 

rigorous tools available to answer these questions, there are diminishing returns in departing so 

far from theory and into a mathematical exercise of optimization. While these diagnostic 

techniques have been useful in helping identify possible areas of concern and sources of 

misspecification, it is time to get back to the literature and theory in order to summarize what 

was learned and to prescribe a course of action that will benefit future research efforts.  
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CHAPTER 5: DISCUSSION 

 A central and enduring goal of education has been to provide learners with the 

foundational and strategic knowledge to use what they have learned in different contexts and 

circumstances. Despite this focus, more than 100 years of research in educational psychology 

and education have failed to establish a set of consistently verifiable instructional strategies and 

practices to improve transfer across a multitude of disciplines. This dissertation has argued that a 

particular deficiency in the literature is a weak understanding of the causal mechanisms that lead 

to transfer. Moreover, it has been argued that the omission of motivation as a key variable in the 

process has missed an important aspect of the transfer process. Using this argument, a theoretical 

model of transfer containing various motivational variables was put forth. A structural equation 

modeling (SEM) analytical framework was proposed to validate the model as it provided a 

rigorous and appropriate analytical technique. 

 To summarize, the model posited an expectancy-value model of motivation with self-

efficacy, interest, and goal-orientation as indicator variables. The motivation construct was 

thought to indirectly influence transfer through increased self-regulation activity. The model 

controlled for prior content and strategic knowledge, key predictors of transfer, according to 

prior theoretical and empirical findings. Findings from the study were presented in chapter 4 

along with a general discussion of SEM methodological issues regarding data fit and model 

diagnostics. This chapter discusses the implications of these findings and concludes with a 

discussion of the implications for future research.  

Review of Findings 
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 Two major sets of questions were posed during this dissertation. The first set was 

comprised of substantive questions about the relationships among motivation, prior knowledge, 

self-regulation, and transfer of learning. The second set was methodological, by nature, and dealt 

with the degree to which the proposed model was a match for the data collected. These questions 

also proposed a set of alternative models that were used as a comparison basis. This was 

necessary to rule out the existence of reasonable alternative models that would better explain the 

transfer mechanism based on the sampled data.  

 Few modeling studies exist describing the mechanism by which transfer of learning 

occurs. And only a few cases that take this approach pay close attention to the motivational 

variables known to affect transfer. Wong, Lawson, and Keeves (2002), as an example, 

concentrated on belief and self-management (analogous to self-efficacy and self-regulation) in 

addition to cognitive mechanisms of transfer. Pajares and Miller (1994) looked at self-efficacy 

and self-concept as predictors of mathematical performance. Ford et al. (1998) explored goal-

orientation tendencies as predictors of training performance when mediated by certain 

instructional interventions. This study builds on that work but insists that a larger set of 

motivational variables are responsible for promoting transfer. Furthermore, it proposes that these 

variables are dimensionally situated in such a manner than they can be encompassed by larger 

constructs such as motivation, prior knowledge, and self-regulated learning. More explicitly, that 

relationship is said to be an indirect one where motivation exerts its effect on transfer through 

self-regulation.  

 Testing these hypotheses in the context of a structural equation modeling (SEM) 

intertwines content and methodology in a unique manner. As it was discussed in the previous 
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chapter, the parameter estimates necessary to answer these questions are directly influenced by 

the fit of the SEM model. Poor fit often implies unstable parameters with magnitude and 

significance in danger of becoming unreliable. As such, the discussion of these results is framed 

within these caveats.  

 Motivation, Self-Regulation, and Transfer of Learning. The path estimates show a 

moderate indirect relationship between motivation and transfer. A slightly stronger relationship 

was found between motivation and self-regulated learning. As it was discussed in the previous 

chapter, bootstrapped estimates provide one way to circumvent the unreliability of estimates 

exhibiting poor fit and allow for the estimation of confidence intervals and significance tests. 

Using this approach, it can be seen that both the relationship between motivation and self-

regulation (p <.05, 95% CI [.36, 1.68]) and the indirect effect of motivation on transfer (p < .05, 

95% CI [.28, 1.23] are statistically significant. Furthermore, the wide confidence intervals 

indicate large standard errors, which once again to point to less than stable parameter estimates. 

This can be taken as evidence that motivation—operationalized as a three-factor latent construct 

–significantly affects transfer. 

 This evidence is confounded by the fact that both goal-orientation and interest load 

weakly on the motivation factor. This suggests that perhaps self-efficacy forms a unique factor 

different from motivation. This is a reasonable conjecture as the literature reviewed often pointed 

to self-efficacy as an individual predictor of transfer—albeit in the absence of any latent 

modeling approaches. Moreover, the notion that this would affect the direct and indirect effects 

estimates is reasonable but speculative. There is no definitive evidence to suggest this is the case 

and attempts at modeling latent variables in this manner resulted in no improvement in fit or 
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significant changes in the parameter estimates in question. If we set aside model fit, motivation is 

found to be a strong predictor of transfer. This effect is indirect and is exerted solely through 

self-regulation.  

This suggests that as a learner’ levels of motivation increase we can expect increased 

self-regulated behaviors such as more error checking, questioning materials, and focusing on 

critical parts of the problem being solved even for learners with average levels of prior 

knowledge. This in turn increases performance on transfer problems so motivation is effectively 

able to compensate for lower levels of prior knowledge.  

 Prior Knowledge, Self-Regulation, and Transfer. Motivation’s effect on transfer and 

self-regulated learning appears to be moderate. Similarly, the literature has been consistent in 

showing prior knowledge as a strong predictor of transfer. That is a much more dubious 

conclusion to reach from this study. In this case, the bootstrapped estimates show non-significant 

effects between prior knowledge and transfer (p > .05, 95% CI [-.05, .48]).  The size of the effect 

ranges from very small to moderate. Again, large standard errors yield rather large confidence 

intervals. The same can be said of the relationship between prior knowledge and self-regulated 

learning (p > .05, 95% CI [-.92, .45], which yields a rather large confidence interval. Once again, 

these findings are confounded by weak factor loadings, which in this case point to measurement 

issues in the strategic knowledge variable. 

 Measurement issues creep up again but the conclusion that prior knowledge—as 

operationalized—does not directly or indirectly influence transfer of learning is warranted by the 

analysis of this data sample. This is a puzzling finding given the overwhelming evidence 

suggesting otherwise. Rather than dismissing a well-established theoretical tradition, it makes 



146 
 

 

sense to temper these findings within a larger discussion about the role of SEM and the meaning 

and implications of model fit information.  

 The Model Fit Question. The question of why model fit matters and why it tempers the 

findings previously discussed was addressed in detail in chapter 4. The implication of poor 

model fit is that it taints all other results. Bootstrapped estimates help alleviate this matter 

somewhat but when they produce very wide confidence intervals, they leave much open to 

interpretation and speculation. That is the heart of the issue and why every hypotheses test and 

discussion of parameter estimates has been followed closely by a discussion of data fit. The 

issue, however, remains somewhat abstract and mathematical and so it is useful to present a 

concrete example to showcase the points that have been made.  

Figure 16 displays an alternative model derived through trial-and-error and the use of the 

modification indexes. This is, by far, the best fitting model (GFI = .92, RMSEA = .10, AIC = 

92.01, CFI = .96) based on the fit indices and chi-square statistic. The model, purposely, keeps 

the same structural model (that is, the original relationships among latent variables are 

maintained) but changes the measurement model and adds correlations between error terms. 

Through these means, fit is improved significantly.  

Theoretically, however, the model makes little sense. Correlating errors indicates there 

are systematic reasons to believe the error terms vary together such as is the case when 

answering a set of questions incorrectly leads to answering another set incorrectly as well. That’s 

not the case with the items correlated here. The structural model makes little sense as well. Self-

Efficacy is part of the transfer construct, and strategic knowledge and near transfer are parts of 

the self-regulation construct. Despite a lack of theory, this model produces more stable estimates. 
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Most importantly, the hypotheses tests established earlier have different answers under this 

model.  Both prior knowledge and motivation have significant effects on transfer (both directly 

and indirectly) and they yield moderate estimates (total standardized effects of .58 and .16 for 

prior knowledge and motivation respectively). Furthermore, self-regulation is shown to be a 

significant mediator of transfer as hypothesized.  

Of course, this model should only be used for illustrative purposes. Theory trumps 

mathematical optimization techniques in all cases. Using modification indices and a trial-and-

error approach, one could modify the model ad infinitum to reach any desired level of data fit. 

But that’s not the purpose of SEM.  

As Anderson and Gerbing (1988) warn:  

We recognize that most often some respecification of the measurement model will be 
required. It must be stressed, however, that respecification decisions should not be 
based on statistical considerations alone but rather in conjunction with theory and content 
considerations. Consideration of theory and content both greatly reduces the number of 
alternate models to investigate and reduces the possibility of taking advantage of 
sampling error to attain goodness (p. 416). 

Ultimately SEM is a theory testing tool. The absolute rejection or adoption of a finding 

must be considered in the context of prior empirical and theoretical work. And like all other 

empirical research, it must be replicated under alternative assumptions and conditions. The 

alternate model presented here merely adds to the evidence that the source of misfit lays most 

likely within the measurement model.  

Whether it is a matter of items, scales or specified dimensions, the evidence clearly points 

to a flawed latent structure possibly lacking unidimensionality on various constructs. This must 

also raise questions about the nature of the relationships proposed. But the rejection of the model 
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is not particular interesting, useful, or beneficial to the literature. Having reached this conclusion, 

the important contribution is in summarize the lessons learned while providing a set of 

prescriptive steps to improve, and further the state of transfer and motivation theory.  

 

 

Figure 16. An example of an alternate model developed through trial-and-error and modification indices.PK = Prior 
Knowledge, DK=Domain Knowledge, SK=Strategic Knowledge, MOT=Motivation, SE= Self-Efficacy, 
INT=Interest, GO=Goal-Orientation, SRL=Self-Regulated Learning, MOT = Motivational SRL, COG= Cognitive 
SRL, NT = Near Transfer, FT = Far Transfer. 

The Question of Statistical Power. A question left unexplored thus far is that of 

statistical power. A smaller sample size might turn out to be too homogeneous because the 
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sampling frame does not capture the true variability of the population. Conversely, the sample 

could also turn out to be too heterogonous because extreme values in the population would affect 

smaller samples more severely. Saris, Satorra, and van der Veld (2010) showed that low power 

in SEM makes it more difficult to detect smaller differences thus potentially reducing data fit. In 

earlier discussions about power, rules of thumb have been suggested to determine power. One of 

those rules of thumb, namely a 1:10 ratio of indicators to subjects, was used in this study to 

establish sufficient statistical power.  

Recently, SEM methodologists have suggested a more rigorous approach to establish 

power. This approach relies on simulated results based on effect sizes, number of indicators, and 

a number of other nuanced factors germane to the hypothesized model (Muthen & Muthen, 

2002; Thoemmes, MacKinnon, & Reiser; 2010).   There are a number of algorithms that can 

estimate retrospective power based on a given sample size. Preacher and Coffman (2006), for 

example, provide a calculator that is helpful in determining power based on desired fit indices 

values. In this study’s case, the calculator suggests a sample size of 212 to achieve statistical 

power of .90 (meaning differences will be detected 90 out of 100 times) to detect acceptable fit 

index values in the RMSEA index. A sample size of 165 yields power of approximately .80. 

With the current sample size of 99, the power estimate is around .57. These numbers suggest a 

case of low statistical power. It has been shown in some cases, however, that a large sample size 

is not always necessary to obtain good statistical power (Browne et al., 2002). In fact, it has been 

shown in this study that merely manipulating error variances and the measurement model can 

product results where the RMSEA fit index falls to a barely acceptable level of .10.  
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Hayduk (2007) suggests that the ability to reject a particular model or theory can be taken 

as evidence of sufficient statistical power. Barrett (2007), on the other hand, suggests that we 

ignore any SEM results with a sample size smaller than 250. The answer likely lies somewhere 

in between these two extreme points of view. In this study, there is evidence to suggest low 

power through a number of tests and benchmarks. Without employing the most rigorous power 

estimation techniques, the probability of that being the case only increase. But as it is often the 

case, gold standards are not always employed. A majority of SEM studies report estimation of 

statistical power using benchmarks rather than the simulation approaches to compute appropriate 

power (Barrett, 2007; Muthen & Muthen, 2002).  This is not meant to defend the use of inferior 

methodological choices but rather to illustrate that any research study is an exercise in trade-offs 

to balance rigor, content, and available resources.  

In this study, the decisions made around statistical power were made in the context of 

available resources (time, budget) and available subjects. While all efforts were made to extend 

data collection until a large number of subjects were reached, such efforts proved difficult, in 

part due to the relatively extended time commitment without compensation that the study 

required. As such, when a reasonable number of subjects were recruited, data collection activities 

ceased. While this is not an ideal approach, it is the approach taken in this study given the scope 

of the dissertation. 

As has been the pattern through most of this study, a call is made to exercise caution. A 

single study with ambiguous results is not sufficient to fully reject or embrace a theory. It is a 

piece of evidence to add to a larger dossier used to make educated determinations. Based on this 

study, the theoretical model proposed is rejected. More importantly, however, the present study 
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presents a number of implications for future research efforts attempting to model the effects of 

motivation on transfer. These are discussed in the next section. 

Implications and Discussion 

 It is somewhat unfortunate that the discussion of the results has taken a turn into detailed 

methodological issues over issues of substantive theory. This detour was necessary, however, as 

the quality and range of inferences to be made depends heavily on the rigor and accurateness of 

the methodology and the design of the research as a whole. But it is not particularly useful to 

reject a theoretical model and close the chapter. The real value lies in returning to the literature to 

provide well-grounded recommendations.  

 Research Design. An initial lesson and implication to be derived from this study centers 

around the overall research design. Originally, the study proposed contained provisions to 

investigate the transfer phenomena and its motivational processes in the context of an existing 

course. This proposal had the advantage of being able to use course assessments to measure both 

domain knowledge and transfer with minor modifications preserving the conditions under which 

transfer typically occurs.  

By being related to the material in the class, these instruments would have high content 

validity while also mirroring the types of assessment that learners typically face. Rather than 

creating artificial tasks and instruments, the study would be situated in the context of a real 

academic scenario with more realistic variability across variables of interest.   

Unfortunately, the logistics for a study of this type proved impossible. Efforts to recruit a 

class large enough to support such a study were unsuccessful. Concerns about instructional time 

being taken away from students eventually overwrote research benefits. This led to settling for a 
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more artificial study and to the selection of an arbitrary topic that was thought to be accessible to 

the population of interest and of interest to the research.  

While this choice was necessary, it posed difficulties in narrowing the scope of the 

subject and developing instruments that were valid—content wise—but also detailed and 

complex enough to be accessible to a large population while differentiating clearly between 

novices and experts. This also meant that subjects only spent a relative small of amount of time 

with the task. Generally, after spending thirty to forty-five minutes on a task, learners were asked 

about motivational traits that are often developed over time and prolonged exposure to a topic, 

such as is the case in an academic course. This might have led to less content-valid, insensitive 

measures that did not capture the true abilities and perceptions of the subjects sampled. 

Measuring these variables in the context of an academic class would have likely provided a more 

accurate picture and would have described the transfer process in its more natural setting.  

 Thus the first logical suggestion for future research is to observe the transfer mechanism 

under a more natural context. A more realistic setting would provide a closer and more accurate 

representation of the motivational and cognitive processes that are at play when learners transfer 

learning to a novel situation. Additionally, it would allow for the use of instruments that should 

already have content-coverage and construct validity in the domain of the course.  

Omitted Variables and Parsimony. Moving beyond research design, a realistic 

possibility explaining the rejection of the model is that there is an omitted construct (or a set of 

constructs) that explain transfer. Statistically, this would explain the large error residuals that 

cause the chi-square test to be significant. Unexplained variance automatically becomes error 

variance in any linear model. Transfer researchers have suggested several possibilities for 

cognitive constructs separate from motivational constructs. Nokes (2009), for example, outlined 
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three separate cognitive mechanisms by which varying levels of transfer may occur. Wong et al. 

(2002) outlined knowledge access and knowledge generations as mediating mechanisms of 

transfer. Butterfield and Nelson (1989) extended Piaget’s conceptions of assimilation and 

accommodation from the learning mechanism to the transfer mechanism. It is difficult to argue 

that there is no overlap among the mechanisms outlining general learning and those outlining 

transfer. If one assumes transfer to be a specialized subset of learning then by definition a subset 

of the learning mechanisms (with perhaps some additions) define the transfer process. The 

omission of the cognitive constructs from this study was a conscious trade-off for parsimony as it 

was believed that the cognitive self-regulation dimension would account for a large part of the 

cognitive transfer mechanisms.  

As it turns out, the cognitive mechanisms might encompass a dimension of their own and 

ought to be modeled individually and separately from the motivational mechanism. This would 

also suggest that some of these cognitive mechanisms may play mediator roles severely altering 

the relational and latent structure of the transfer model proposed. Without data to test these 

hypotheses, however, this is simply a proposal to test an alternative model of transfer that 

includes these cognitive mechanisms. These cognitive mechanisms should be included in future 

studies along with the motivational mechanisms posed here, to at the very least, rule out the 

possibility of omitted variables.  

 Deficient Existing Instruments. An elegant theory is simple and parsimonious despite 

its complexity. But when we drill down to the details, good theories are characterized by good 

measurement instruments. Every effort was made in this study to locate existing, validated 

instruments that captured the indicators being modeled. Despite these efforts, this was a complex 
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task as previous examples of modeling multiple indicators measured by disjoint instruments were 

virtually non-existent. In this study, four separate existing instruments were deployed while 

transfer, domain knowledge, strategic knowledge, and self-efficacy instruments were developed 

from scratch. And while the existing instruments were previously validated with evidence 

pointing to high reliability and construct validity, it is important to point out these validation 

efforts took place in a homogenous measurement concerned with singular dimensions rather than 

an entire system of variables.  

It would be one thing if there were a motivation instrument already encompassing self-

efficacy, goal-orientation, and interest, but instead the challenge was to use three separate 

instruments, created by different researchers, to serve as indicators for a single latent construct. 

In retrospect, this may be the source of some of the issues captured by poor data fit. Table 24 

compares the psychometrics properties of the instruments used with this sample to the values 

obtained in previous validations.  

Table 24. Comparison of Internal Consistency Estimates. 

Scale Cronbach’s Alpha (α) from this 

sample 

Cronbach’s Alpha (α) in Previous 

Validations 

Goal Orientation .69 .89 

Interest .83 .90 

Motivational SRL .73 .79 

Cognitive SRL .48 .80 

Strategic Knowledge .57 New instrument 

Self Efficacy .76 New instrument 

Domain Knowledge .50 New instrument 

Near Transfer .83 New instrument  

Far Transfer .86 New instrument 
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The cognitive self-regulation scale does not fare well in terms of internal consistency. 

This means that the individual items aren’t well correlated with one another. Duncan & 

McKeachie (2005) warned about the instability of reliability coefficients when validating these 

scales due to the sensitivity to context. In their own validation study, which had 1000 subjects, 

they had reliability estimates as low as .50 so this might be a case where the context of the 

present study is not particularly suitable for this scale.  

Recent developments in the measurement of self-regulated learning suggest that self-

monitoring and self-control behaviors associated with self-regulated learning are dynamically 

allocated by individuals without definitive patterns. This suggests learners might be unable to 

accurately recall these behaviors retrospectively as they are typically asked to do in a survey. 

Greene et al. (2010) overcame this suggestion by using talk-aloud protocols to tap into self-

regulated behaviors in real-time. Moos and Azevedo (2008) had proposed and employed a 

similar measurement strategy. Despite the added complexity and increased resources necessary 

to collect, code, and properly analyze talk-aloud data, it is recommended that this approach be 

employed in future studies departing from the well-established practice of using surveys to 

measure internal, and often subconscious, regulatory processes. 

 The Strategic Knowledge Instrument. A second implication that jumps out from 

closely reviewing the instruments employed is the poor internal consistency of the prior 

knowledge indicator scales. Both domain and content knowledge fall below the acceptable .75 

value used as a standard of internal consistency. Upon further review, the conception of the 

strategic knowledge scale and items leaves a lot to be desired.  The instrument measuring 
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strategic knowledge consists of 13 items (see appendix H) asking about the use of particular 

strategies germane to the transfer task. It uses a 1-5 likert scale corresponding to these choices: 

1 = I wasn't aware of this strategy.  
2 = I knew about the strategy but chose not to use it for this problem. 
3 = I tried to use the strategy but was unable to use it in this problem.  
4 = I used the strategy. 
5 = I used the strategy AND it helped me solve the problem.  

 Conceptually, it makes sense to measure strategic knowledge this way, but an issue arises 

because more points are awarded for using a strategy unsuccessfully as opposed to just being 

aware of a strategy and potentially being able to use it correctly. 

 It is not unreasonable to assume that high-performing learners would rely only on a 

single or a handful of strategies to solve the problems. The most elegant solution to the transfer 

task was to develop a generic algebraic solution that modeled the change in the fish population. 

Realistically, learners employing this strategy would have no need to use any other strategy and 

thus would score lower on the strategic knowledge component even if they were aware of all the 

other strategies listed. Lower performing subjects might have used multiple strategies, albeit with 

no success, but end up scoring much higher on the strategic knowledge component. This is not 

consistent with the hypothesized relationship between strategic knowledge, and transfer. 

 A secondary concern is that of retroactively recalling strategies used rather than doing so 

at the moment when the strategies are being applied. Based on these issues and given the prior 

recommendation, it is suggested that talk-aloud protocols be used in future studies. This method, 

along with an observation component that independently codes the use of strategies by subjects 

as it is happening, can be used to effectively assess the knowledge and use of specific content 

strategies. This approach was proposed long ago by Ericsson and Simon (1993, 1998) as a 
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protocol to study expertise, and it has been followed and endorsed by a number of other 

researchers (Chi & Bassok, 1989; Ericsson & Simon, 1993; Higgins, 1997; Ke, 2008; Lovett, 

1994; Pape& Wang, 2003).  

The Domain Knowledge Limitations. The prior knowledge construct also relies on domain 

knowledge. The internal consistency estimate for domain knowledge shows the same 

inconsistency found in the strategic knowledge indicator. In the case of domain knowledge, the 

items were selected after a careful task analysis of the transfer items. Furthermore, they were 

revised after consultation with a panel of content experts. Despite these efforts, there appear to 

be a number of problems with the domain knowledge instrument.  Figure 17 shows this 

insensitivity. Seventy-five percent of the responses for this variable are above 14 points (74 out 

of 99 responses) and 32% (31 of the 99 subjects) obtained the maximum score.  

This seems problematic for a variable with a possible theoretical range between 0 and 18 

and an assumed normal distribution. This indicates that either the sample of subjects is skewed 

towards high performers—suggesting a non-normal distribution that violates the assumptions of 

SEM—or that the instrument is unable to differentiate properly between high and low 

performers. Since scores on the far transfer task are much more normally distributed, it is 

reasonable to infer that the issue lies in sensitivity of the domain knowledge instrument rather 

than in the sample selecting only high performing subjects. 

Given the population for the study as university students and given that the instrument 

was selected from a set of questions in the NY State Regents exams designed for 9th and 10th 

grade students, it seems the selected questions were not sufficiently challenging for the 

population being studied. This selection of items was made purposefully to provide items that 

were accessible to participants having varying levels of mathematical expertise. Clearly, 
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however, these seemed to have issues differentiating between the true high performers and the 

average or lower than average participants sampled for the study.  

 

 
Figure 17. Domain knowledge frequency distribution. 
 
 Future research would benefit from the use of a different instrument to assess domain 

knowledge. Part of the challenge in identifying a strong domain knowledge instrument is the 

context-dependency of the instrument. Generic instruments do not work because they might not 

necessarily tap into the concepts and principles derived from the transfer task. But the clear 

lesson here is that care must be taken to balance the difficulty level of the content items used to 

differentiate between high and low-performing subjects. A suggestion when using subject-
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specific tasks for a population of university students is to tap into college entry and remediation 

exams designed specifically for college students. Also, using a larger set of items, and selecting 

more difficult items to help differentiate better at the highest levels, would help make the scale 

more sensitive of the levels of prior knowledge that are predictive of transfer. Ideally, such an 

instrument would be validated with a small sample first, tested for its ability to differentiate 

among varying levels of mathematical expertise through item analysis and item-response theory 

(IRT) analysis, and then modified for accessibility and maximum sensitivity.  

 Statistical Power. Along with this recommendation, the issue of statistical power should 

not be ignored and so it is recommended that future research using SEM as a theory-validation 

tool should employ a more throughout power analysis approach. This is facilitated by the effect-

size ranges estimated by the current study, which can be used to create power simulations that 

give a rough estimation of the sample size needed to detect statistically significant differences. 

Overall, the recommendation is to follow the advice of Muthen and Muthen (2002) and 

Thoemmes and his colleagues (2010) to simulate the ability of a model to differentiate between 

good and bad fit given a range of acceptable values on a given index through simulations. This 

approach would be much more stringent in providing an acceptable sample size range.  

Conclusion 

 Why does transfer matter? Why do we need to understand the processes that cause it? 

The study of transfer of learning has a rich history of theoretical and empirical work. Being a 

central question of psychological and education research, among other fields, transfer has 

occupied the minds and efforts of researchers for over a century. The centrality of transfer is 

evident when we consider the ultimate goals of education at all levels. President Obama 

highlighted this focus on a recent speech to a group of young students: 
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You’ll need the knowledge and problem-solving skills you learn in science and math to 
cure diseases like cancer and AIDS, and to develop new energy technologies and protect 
our environment. You’ll need the insights and critical thinking skills you gain in history 
and social studies to fight poverty and homelessness, crime and discrimination, and make 
our nation more fair and more free. You’ll need the creativity and ingenuity you develop 
in all your classes to build new companies that will create new jobs and boost our 
economy (Obama, 2009).  

The president’s vision represents the optimal case for transfer; the extension of 

foundational concepts and skills into meaningful problem-solving approaches that address issues 

of health, poverty, and social justice. Promoting this is, of course, not just a matter of developing 

theory or singular instructional interventions. Rather, it is a systematic effort to promote these 

developments across diverse programs and populations of learners. But these efforts are likely to 

begin with more effective approaches at the micro levels of instructional interventions. They are 

more likely to take place by promoting transfer across singular interventions and scaling up to 

more diverse groups and programs.  

And at this level, substantive theory is needed to develop interventions that address 

underlying processes rather than symptomatic surface features. If we can show that increased 

interest and self-efficacy are the key to indirectly altering self-regulated behaviors, which in turn 

increase transfer performance then we would know that we must provide sound instructional 

strategies and design opportunities for students to engage their interest, build their confidence, 

and set proper goals for their learning. Of course, these are practices teachers and curriculum 

designers already follow based on instincts but learning scientists cannot follow instinct alone. A 

robust theory of transfer, validated under multiple setting would be the first step in providing 

guidance for instructional scientists to derive and test combinations of instructional strategies and 

tools to help curriculum designers and teachers create meaningful activities that support and 

promote successful transfer practices.  
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 But that reality is still some steps away and much more work remains to be done. Future 

empirical work must use better and more sensitive instrumentation to measure the motivational 

and psychological processes that underline the executive mechanisms that help us take seemingly 

disjointed information and assemble it into meaningful and robust problem-solving approaches. 

That work also needs to model, in unison, cognitive and motivational mechanisms to answer 

questions about the intertwined nature of  these mediating processes and the distinctive (or 

perhaps converging)processes that predict their positive effect on transfer.  

Finally, the strength of this work should be based on observations derived in natural 

settings under circumstances that replicate the type of conditions that learners will be exposed to 

when they are called upon to transfer. This might mean observing how transfer and motivation 

are intertwined when engaging in a novel work task or how highly motivated students deploy 

limited prior knowledge to solve a problem in a course assessment. Despite the inconclusive 

answers, this study provides a starting point in asking questions that have not often been asked in 

previous inquiries of transfer. As with the beginning of any theoretical endeavor, mistakes may 

occur along the way and miscalculations might lead to faulty assumptions that will need to be 

rectified. This dissertation is full of those miscalculations, but such lessons should pave the way 

towards a more robust transfer theory. As with any theoretical endeavor, revision and validation 

are needed. The recommendations outlined here should make for strong and improved research 

efforts that will bring us closer to a viable theory of motivation and transfer.  
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Appendix A: Subject Recruitment Flyer 

VOLUNTEERS WANTED FOR A RESEARCH STUDY  
 

What’s your motivation to transfer learning?  
For my dissertation research, I need your help to answer the question of 
how things such as your goal orientation, interest, self‐efficacy and prior 
knowledge influence your ability to transfer what you have learned in 
the past to a completely new problem.  
To motivate YOU, I’m offering a chance to win an iPad. So why not help 
out a fellow student?  
 
Who can participate in the study? 
Any undergraduate or graduate student can participate. Students from 
all majors are welcome to participate.  

 
What do I have to do? 

 Complete a problem‐solving task. 
 Take a survey regarding some basic motivational traits. 
 The whole thing should take no more than 90 minutes, but we do encourage a 

relaxed problem‐solving environment so you can take as long as you like.  
What is in it for me? 

 A chance to win a 1st generation iPad (Wifi, 16 GB).  
 An opportunity to learn more about research, get to know a little more about your 

motivational tendencies, and help out a fellow student.  
Risks? 
There are no known medical or psychological risks associated with the study. 
 
Okay, I’m in, how do I sign up?  
 

Email: sutransfersresearch@gmail.com 
Phone / Text : (315) 256‐0149 
Web: http://bit.ly/idstudy 
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Appendix B: Administration Protocol Script 

 
SAY:  Thank you so much for agreeing to participate in this study. Please have a seat.  
 
At this point, the subject can be directed to an open workstation.  
 
SAY:   Today you’ll be completing a few surveys on the computer and completing a 
problem‐solving task on paper. You have as much time as you want to complete these 
instruments but we don’t anticipate it will take more than 90 minutes. After you complete 
all the instruments, please help yourself to some pizza and refreshments next door. It is 
okay if you need to leave the room for any reason. Just please let me know if you intend to 
come back so that I can hold the workstation for you.  
 
SAY:  First, let me assign you an ID. This ID is not tied to your name or any personal 
information. It is just a way for us to keep track of all the surveys.  
 
Assign the next available ID to the participant. 
 
SAY: Great. You will need to enter that ID in all the instruments you complete today. The 
first thing you’ll fill out is a consent form.  
 
Present the paper consent form to participants and have them complete it before proceeding. 
If participant refuses to complete the form, thank them for their time and inform them their 
participation in the study is completed.  
 
SAY: Thank you. Do you have any questions or concerns about the study?  
 
Wait a few seconds. If there any questions about the study please direct the students to speak 
to the faculty supervisor or student researcher. 
 
SAY: Thank you. First, you’ll be completing a short math problem set on paper. This will be 
followed by three surveys on the computer. Please let me know when you finish all the 
surveys and I’ll provide you with the last problem, a short mathematical task. Do you have 
any questions I can answer? 
 
Answer any questions regarding the study. Please refrain from answering any questions 
directly related to the mathematical domain of the task or the nature of the task to be 
completed.  
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Administration Protocol Script: Continued 
 

SAY: Great, when you complete everything, you’re free to help yourself to pizza and 
refreshments next door. There is a short form by the exit and a box where you can enter 
your name and contact information for a chance to win an iPod touch. You can, of course, 
choose not to participate in the raffle. We’ll be selecting two winners at random.  
 
Wait a few seconds 
 
SAY: If you don’t have any questions or concerns, I will leave you to it. Thanks again and 
please get my attention if you need clarification on anything.  
 
Please provide no clarification on any of the survey items or the mathematical task. Instead 
answer, “please read the question again and answer what you consider the best answer.” If 
the question is about the task, ask the subject to read the task again and to express any 
confusion about the task on the problem set.  
 

1. Direct participants to first complete the “Prior Content Knowledge” paper instrument.  

2. Once they have completed these instruments, direct participants to complete the three surveys 
online.  

3. Once participants have completed the three surveys, direct them to complete the “Transfer” 
instrument on paper.  

4. Collect all materials and scrap paper. Thank participants for participating and remind them 
they can sign up for a raffle and help themselves to pizza and refreshments.  
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Appendix C: Request for Faculty Support to Advertise Study 

 
 

SYRACUSE UNIVERSITY 
 

INSTRUCTIONAL DESIGN, DEVELOPMENT AND EVALUATION 

Dear <Instructor/Faculty Member>,  

My name is John A. Gonzalez and I am a doctoral candidate in the Instructional Design, 
Development, and Evaluation program in the school of education. I have a small request, which 
I’m hoping won’t take much of your time.  

I am interested in learning more about how motivational processes influence a learner’s ability to 
solve novel mathematical problems. My research consists of completing a set of surveys along 
with two short problem-solving tasks. The study is to take place in the Instructional Design, 
Development, and Evaluation multimedia lab located in Room 302 in the School of Education 
(Huntington Hall). It should take, in total, no longer than 90 minutes to complete all parts of the 
study.  

In short, I was hoping you’d be kind enough to pass on this message to your students in hopes of 
enlisting their participation. As an incentive to participate, an iPad will be raffled off. Those 
wishing to participate can sign up directly at the following website 
(http://www.signupgenius.com/go/syracuse) or by e-mailing SUTransferResearch@gmail.com.  

There are no known physical or psychological risks associated with participating in this study. 
IRB approval has been obtained (IRB # 11-050). If you have any questions about the research, 
please contact me – John A. Gonzalez (jagonz01@syr.edu, 315-560-7841) or my faculty 
supervisor - Dr. Tiffany A. Koszalka (takoszal@syr.edu, 315-443-5263). Alternatively, the 
Syracuse University Institutional Review Board can be reached at 315-443-3013. 

Many thanks for your time and consideration of my request, 

John 

John A. Gonzalez  
Jagonz01@syr.edu | 315.560.7841 
Doctoral Candidate | Instructional Design, Development, and Evaluation  
School of Education | Syracuse University 
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Appendix D: Informed Consent Form 

 

MECHANISMS OF TRANSFER: MODELING MOTIVATIONAL AND SELF-REGULATORY 
PROCESSSES THAT PROMOTE TRANSFER OF LEARNING 

My name is John A. Gonzalez and I am a doctoral candidate at Syracuse University. I am 
inviting you to participate in a research study. Involvement in the study is voluntary, so you may 
choose to participate or not. This sheet will explain the study to you and please feel free to ask 
questions about the research if you have any. I will be happy to explain anything in detail if you 
wish.  

I am interested in learning more about how motivational processes influence your ability to use 
things you have learned in the past under new circumstances, especially in the context of math-
related problems. You will be asked to complete a set of surveys along with two short problem-
solving tasks related to algebraic equations. This will take approximately 90 minutes of your 
time. All information will be kept anonymous. I will assign an ID number to your responses but 
will have no way of tying them back to your identity. Information such as your name, or any 
other identifying information about you, will NOT be collected during this study.  

The benefit of this research is that you will be helping us to understand how motivation affects 
people’s ability to use previously learned materials in new problems. This information should 
help us develop better instructional materials and learning environments to maximize application 
of knowledge—in addition to improving our theoretical understanding of these mechanisms.  
There are no known benefits to you by taking part in this research.  

There are no known physical or psychological risks associated with you taking part in this study. 
You might be uncomfortable if you have anxiety related to math or other types of problem-
solving assessments. These risks will be minimized by providing a relaxed, non-judgmental 
environment. If you do not want to take part, you have the right to refuse to take part, without 
penalty. If you decide to take part and later no longer wish to continue, you have the right to 
withdraw from the study at any time, without penalty.  

If you have any questions, concerns, complaints about the research, contact Dr. Tiffany A. 
Koszalka (faculty supervisor) at takoszal@syr.edu or 315-443-5263 or John A. Gonzalez 
(student researcher) at jagonz01@syr.edu or 315-560-7841. If you have any questions about your 
rights as a research participant, you have questions, concerns, or complaints that you wish to 
address to someone other than the investigator, if you cannot reach the investigator contact the 
Syracuse University Institutional Review Board at 315-443-3013.  
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All of my questions have been answered, I am over the age of 18 and I wish to participate in 
this research study. I have received a copy of this consent form.  

Appendix D: Continued 

_________________________________________    _________________________ 
Signature of participant                                                                          Date  

_________________________________________     
Printed name of participant                                                                        

_________________________________________    _________________________ 
Signature of researcher                                                        Date  

_________________________________________     
John A. Gonzalez                   
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Appendix E: IRB Approval 
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Appendix F: IRB Modifications Approval 
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Appendix G: Domain Knowledge Instrument 
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Appendix G: Continued 
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Appendix H: Strategic Knowledge Instrument 
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Appendix I: Self-Efficacy Instrument 
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Appendix J: Goal Orientation Instrument 
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Appendix K: Interest Instrument 
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Appendix L: Self-Regulation Instrument 

 
 

 

Appendix M: Near Transfer Instrument 
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Appendix N: Far Transfer Instrument 
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Appendix N: Continued 
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Appendix O: Prior Knowledge Grading Rubric 

 
Problem 1 
Score Criteria 
3 The participant answers $1088.88  

 
OR  
 
An answer between $1088 and $1089 is obtained (to account for 
rounding error).  
 
It’s NOT necessary that work be shown.  
 

2 Appropriate work is shown, but one computational error is made. 
1 Appropriate work is shown, but two or more computation errors are 

made. 
 
OR  
 
 
Appropriate work is shown, but one conceptual error is made.  

0 A zero response is completely incorrect, irrelevant, or incoherent. 
 

 
Problem 2 
Score Criteria 
4 The participant answers Y = -3x +4. 

 
3 Appropriate work is shown, but one conceptual error is made resulting in 

an equation that does not match the table of values.  
1 Appropriate work is shown, but two or more computation errors are made 

result in an equation that does not match the table of values. 
 
OR  
 
 
Appropriate work is shown, but one conceptual error is made resulting in 
an equation that does match the table of values. 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
 

 
Problem 3A 
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Score Criteria 
2 The participant correctly completes the table with the values -9, -3, 3, and 

4 respectively.  
 

1 The table is partially completed with 1 or more incorrect responses.  
0 A zero response is completely incorrect, irrelevant, or incoherent. 

 
Problem 3B 
Score Criteria 
2 The participant correctly graphs the linear equation Y = 2x - 3  

 
1 A partially correct graph is produced which contains one of the following 

mistakes:  
1. The x‐intercept is incorrectly specified and graphed. 
2. The y‐intercept is incorrectly specified and graphed. 
3. The slope is incorrectly specified or graphed (either graphed as a 

negative slow or a different slope all together). 
0 More than 1 of the errors outline above are present in the response 

 
OR 
 
The response completely incorrect, irrelevant, or incoherent. 
 

Problem 3C 
Score Criteria 
3 All correct answers are specified (2, -3, and 1.5) 

 
2 Two correct answers are specified. 
1 One correct answer is specified. 
0 No correct answers are specified 
 
Maximum Possible Score: 14 
Minimum Possible Score: 0 
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Appendix P: Near Transfer Grading Rubric 

 
Problem 4 
Score Criteria 
3 A response of 5264.32 (or a similar number, accounting for rounding 

error) is provided.  
2 Appropriate work is shown, but one computational error is 

Made. 
1 Appropriate work is shown, but two or more computational errors are 

made. 
0 A zero response is completely incorrect, irrelevant, or incoherent. 
 
Problem 5A 
Score Criteria 
2 A response of d = 6.25h or an equivalent equation is provided.  
1 Appropriate work is shown, but one computational error is made. Or 

Appropriate work is shown, but one conceptual error is made. or 
 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
Problem 5B 
Score Criteria 
2 A response of$250 is provided.  
1 Appropriate work is shown, but one computational error is made. Or 

Appropriate work is shown, but one conceptual error is made.  

0 A zero response is completely incorrect, irrelevant, or incoherent. 
 
Maximum Possible Score: 7 
Minimum Possible Score: 0 
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Appendix Q: Far Transfer Grading Rubric 

 
Problem 6A 
Score Criteria 
2 A conjecture is stated an appropriate rational is provided to support the 

conjecture. Note that this doesn’t necessarily need to be a correct 
conjecture but the supporting evidence provided must be based on 
reasonable logic.  

1 The correct conjecture is provided (level off), but no rationale is 
provided.  
 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
Problem 6B 
Score Criteria 
4 A response between 1214 and 1215 (to account for rounding) is 

provided.   
3 Appropriate work is shown, but one computational error is made that 

results in an incorrect answer.  
 

2 Appropriate work is shown, but one conceptual error is made that 
results in an incorrect answer.  
 

1 Appropriate work is shown, but two or more computational errors are 
made that results in an incorrect answer.  
 
OR  
 
Appropriate work is shown, but two or more conceptual errors are 
made that results in an incorrect answer.  
 
OR  
 
Appropriate work is show, but at least one conceptual AND one 
computational error are made that result in an incorrect answer.  
 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
Problem 6C 
Score Criteria 
4 A response of 1000 (within round error) is provided.  
3 Appropriate work is shown, but one computational error is made that 

results in an incorrect answer.  
 

2 Appropriate work is shown, but one conceptual error is made that 
results in an incorrect answer.  
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1 Appropriate work is shown, but two or more computational errors are 

made that results in an incorrect answer.  
 
OR  
 
Appropriate work is shown, but two or more conceptual errors are 
made that results in an incorrect answer.  
 
OR  
 
Appropriate work is show, but at least one conceptual AND one 
computational error are made that result in an incorrect answer.  
 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
Problem 6D 
Score Criteria 
5 A response of yes is provided, and a year between 25 and 30 is given 

as the year when this first happens. 
 
AND  
 
The response includes reference to a generalized algebraic expression 
that participant derived to answer the question.  

4 A response of yes is provided, and a year between 25 and 30 is given 
as the year when this first happens.  

3 Appropriate work is shown, but one computational error is made that 
results in an incorrect answer.  
 

2 Appropriate work is shown, but one conceptual error is made that 
results in an incorrect answer.  
 

1 Appropriate work is shown, but two or more computational errors are 
made that results in an incorrect answer.  
 
OR  
 
Appropriate work is shown, but two or more conceptual errors are 
made that results in an incorrect answer.  
 
OR  
 
Appropriate work is shown, but at least one conceptual AND one 
computational error are made that result in an incorrect answer.  
 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
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Problem 6E 
Score Criteria 
4 Choice II is selected and a number is provided that keeps the 

population of bass between 1500 and 3500. Many answers are 
possible.    

3 Choice II is selected and an incorrect number is provided although a 
clear rationale for providing that argument is given. This might be due 
to a computational problem.  
 

2 Choice II is selected although an incorrect number is providing to 
maintain population. This error is due to a conceptual error.  
 
OR  
 
Choice II is selected and no rational is provided.  
 

1 Either choice I and III are provided and an appropriate rationale is 
given to support the answer – although such rationale might contain 
conceptual or computation errors.  
 

0 A zero response is completely incorrect, irrelevant, or incoherent. 
 
MINIMUM POSSIBLE SCORE  0 
 
 
MAXIMUM POSSIBLE SCORE  19 
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