Syracuse University

SURFACE

Electrical Engineering and Computer Science -

Technical Reports College of Engineering and Computer Science

5-1990

Monotone Logic Programming

Howard A. Blair
Syracuse University, School of Computer and Information Science, blair@top.cis.syr.edu

Allen Brown Jr.

V. S. Subrahmanian

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

b Part of the Computer Sciences Commons

Recommended Citation

Blair, Howard A.; Brown, Allen Jr.; and Subrahmanian, V. S., "Monotone Logic Programming" (1990).
Electrical Engineering and Computer Science - Technical Reports. 70.
https://surface.syr.edu/eecs_techreports/70

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/70?utm_source=surface.syr.edu%2Feecs_techreports%2F70&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SU-CIS-90-08

Monotone Logic Programming

H. Blair, A. L. Brown, Jr., and V.S. Subrahmanian

May 1990

School of Computer and Information Science
Syracuse University
Suite 4-116, Center for Science and Technology
Syracuse, New York 13244-4100

Monotone Logic Programming”*

Howard A. Blair!
Allen L. Brown, Jr.}
V. S. Subrahmanian$

Abstract

We propose a notion of an abstract logic. Based on this notion, we define abstract
logic programs to be sets of sentences of an abstract logic. When these abstract logics
possess certain logical properties (some properties considered are compactness, fini-
tariness, and monotone consequence relations) we show how to develop a fixed-point,
model-state-theoretic and proof theoretic semantics for such programs. The work of
Melvin Fitting on developing a generalized semantics for multivalued logic program-
ming is extended here to arbitrary abstract logics. We present examples to show how
our semantics is robust enough to be applicable to various non-classical logics like tem-
poral logic and multivalued logics, as well as to extensions of classical logic programming
such as disjunctive logic programming. We also show how some aspects of the declara-
tive semantics of distributed logic programming, particularly work of Ramanujam, can
be incorporated into our framework.

1 Introduction

When logic programming was initially introduced by Kowalski, programs were restricted to
be finite sets of definite clauses. The rationale behind this restriction was that a reasonably
simple and fast proof procedure existed for this fragment of classical logic.

While it has been proved that definite clause programs are computationally universal
(cf. Andreka and Nemeti [2] and Blair [7, 8]), definite clauses lack expressive power. Thus,
various researchers were led to investigate the semantics of various syntactic extensions of
definite clause programs. For example, clause bodies may be permitted to contain negated
atoms, clause heads may be allowed to contain disjunctions of atomic formulas, and so on.

A different kind of extension to classical definite clause logic programming occurs when
we allow logic programs to be sets of formulas in some non-classical logic. Such a formalism

*Address correspondence to V.S. Subrahmanian.

'School of Computer and Information Science, 4-116 Center for Science and Technology, Syracuse Uni-
versity, Syracuse, NY 13244-1240, U.S.A. Electronic Mail: blair@top.cis.syr.edu

!Systems Sciences Laboratory, Xerox Webster Research Center, 800 Phillips Road, Webster, NY 14580,
U.S.A. Electronic Mail: abrown.wbst@xerox.com

SDepartment of Computer Science, A. V. Williams Building, University of Maryland, College Park, MD
20742, U.S.A. Electronic Mail: vs@mimsy.umd.edu

has been found to be useful for incorporating quantitative deduction into logic program-
ming. Similarly, various non-classical logic programming languages have been introduced
for reasoning in the presence of temporal and modal phenomena, for reasoning with incon-
sistency, reasoning about beliefs, etc.

In those cases where the semantics of such extensions has been studied, it has been
found that these different extensions are semantically similar.

In this paper, we will consider an abstract logic to be an appropriately defined mathe-
matical structure. Programs will then turn out to be sets of objects in this structure. We
will then demonstrate how to associate with each program, an operator that maps sets of
formulas (which will be defined relative to the structure) to sets of formulas. Various rela-
tions between the fixed-points of this operator, and properties of the corresponding structure
will be established. A generalized resolution scheme is developed for these abstract logics,
and various soundness and /or completeness results are proved.

We will show how various logic programming formalisms existing in the current liter-
ature can be incorporated within our theoretical framework. Examples include: classical
logic programming, temporal logic programming, bilattice based logic programming, para-
consistent logic programming and quantitative logic programming.

2 Abstract Logics

Following a standard convention, given a set ¥ of symbols, we use the notation 1 to denote
the set of non-empty strings generated by this alphabet.

An abstract logic L consists of:

1. a non-empty set (possibly infinite) Ly of symbols

2. an infinite set Ly, of symbols called meta-variables such that (Lx N Ly,,) = 0 and
3. aset Lug C LY of objects called well-formed formulas (or wffs, for short)
4

.aset Ly C (Lx U Lmy)?t of objects called meta-terms satisfying the following two
conditions:

(a)
(Acwff) £mv) c ACmt

and

(b) if V is a meta-variable that occurs in some meta-term T € L,y;, then the string
obtained by replacing V in T by formula F is also a meta-term.

5. a set L;, of syntactic entities, called inference rules, of the form

Numerator
To

where Numerator is a subset of L and T is a meta-term. The cardinalioty of
Numerator is called the order of the inference rule, and T is called the denominator

of this inference rule.

Thus, a logic is a 5-tuple £ = (Lx, Lusfy Lmu, Lmt, Lir). L is said to be finitary iff each rule
in £;, has a numerator of finite order. Notice that there is no need for well-formed formulas
of logic £ to look like the familiar syntactic well-formed formulas of classical logic. Lyyy is
an arbitrary set which we may choose in any way we please. We may choose L5 to be,
say:

1. the set of wifs of classical logic or
the set of wifs of modal logic or

the set of wifs of auto-epistemic logic or

Ll

the definite clause fragment of classical logic, etc.

From here on, we assume that £ = (Lx, Lysf, Lmyy Lmt, Lir) is some arbitrary, but fixed,
abstract logic.

Definition 2.1 A meta-variable substitution is a function from L, to Lyss. If 0 is a
meta-variable substitution, then we extend o to a function o’ of type (Lm¢ — Lygs) as
follows:

1. T € Lyysg, then 6'(T)=T
2. ¥ T € Ly, then o'(T) = o(T).

3. Otherwise, ¢/(T’) is the well-formed formula obtained by replacing each meta-variable
V occurring in T by o(V'). (Note: Condition 2 in the definition of meta-terms ensures
that o(7T) is a meta-term, and also, of course, that aplication of a meta-variable
substitution to a meta-term eliminates all meta-variables.)

Given a metavariable-substitution o, the extension ¢’ of ¢ is unique, and therefore, we
will often abuse terminology and assume o can be applied to meta-terms. Thus, if T is a
meta-term, then we will use the notation o(T) to denote o'(T).

Definition 2.2 If Mffﬂ‘i is an inference rule of £, and o is a metavariable-substitution,

then 12D IF ﬁg.';m"“tor} is said to be an instance of the above inference rule of L.

If X is a set, we use the notation P(X) to denote the power set of X.

Definition 2.3 Suppose £ = (Lx,Luwsf, Ly, Lmt, Lir) is an abstract logic. For a set
X C Lug of wifs, a derivation from X is a finite or transfinite sequence

D= (Fo,Fl,...,Fa,...)

such that for each F, € D, either F, € D or there is an inference rule in £;, having an
instance of the form Mﬁ:“ﬂ where Numerator C {Fg|0< B < ~v}.

The binary relation I, between the power set P(Lys) of Ly and Ly is defined by: X + F
iff F occurs in a derivation from X.

When L is clear from context, we will abuse notation and simply write |- instead of ..

We will often abuse notation as follows: Given X,Y C L, 5y, we may write X I Y to denote
that X - ¢ forallpeY.

One may wish to think of I as a syntactic entailment relation. Note however that
there is no restriction limiting proofs to be finitary (or even effective). For logics in which
a property similar to the compactness theorem of classical logic holds, infinitary proofs
are not necessary. Our aim in allowing infinitary proofs is simply to increase the level of
generality of our framework.

Before we proceed to discuss logic programs written in abstract logics, we present a few
examples of abstract logics.

Example 2.1 Classical logic under the usual rules of inference (cf. Schoenfield [34]) is an
abstract logic.

Example 2.2 Let (Lx,Luff, Lmy, Lmi, Lir) be the logic whose well formed formulas are
definite clauses over some pre-determined alphabet of non-logical symbols (cf. Shoenfield
[34]), whose set L, of meta-variables is {I'y,T's,...}, whose set of meta-terms is (L, U
Lwsy) and which has the single inference rule:

Iy, Ty Ty
S

Then (Lx, Luwsfs Lmy, Lmt, Lir) is an abstract logic.

Remark 2.1 Let (Lx,Lysf, Ly, Lmit, Lir) be any logic. Then: + is monotone, i.e. if
X1nggﬁwffanXml-F,thenXgl—F. |

In general, - may not be continuous, i.e. there may be a sequence X; C X, C --- of
subsets of £,,s5 and a formula F such that ({J; X;) F F but there is no j such that X; - F.
To see this, let £ be any logic that does not possess the well known compactness property
[34].

3 Abstract Logic Programs

Definition 3.1 An abstract logic program (in logic (Ls, Lwsf, Lmv, Lmt, Lir)) is a finite
subset of Loy;.

Definition 3.2 A theory (in logic (Lx,Lwsf,LmvsLmt, Lir)) is any subset TH of L5y
satisfying the condition that if X C TH and X F, then F € TH.

In other words, we view an abstract logic program as the finite set of non-logical axioms of
a theory in an abstract logic.

All the definitions described thus far are fairly general. No restrictions imposed thus far
prevent us from considering logic programs to be arbitrary finite sets of first order formulas.
Or for that matter, nothing said so far prevents us from using full first order modal logic
(say first order S5) as a logic programming language. We will see below why we need to
impose the restriction that abstract logic programs are finite.

Definition 3.3 Suppose P is a set of wifs (w.r.t. logic (Lx,Lusf, Lmus Lmt, Lir)). We
associate an operator, denoted Tp, with P. Tp maps the power set, P(Lyss) of Lyss to
P(Luwss) and is defined as follows: F' € Tp(X) iff either F' € P or Yumgreter s an instance
of an inference rule of £ and Numerator C X.

Suppose we consider the case of classical logic programming without negation ([25]). In
this case, the logic £ is classical logic with the usual rules of inference, and P is always a
finite set of definite clauses. Suppose X = . Then Tp(X) turns out to be PUTAUT where
TAUT is the set of tautologies of classical logic. At this point, the only ground atoms in
Tp are those unit ground clauses in P; note that as X = (), the rule of instantiation was
not applied. However, Tp(Tp(0)) gives us all the ground atoms obtained after the first
application of the classical Tp operator (Lloyd [25]). In effect, our Tp operator simulates
the classical operator in two steps — the first step corresponding to modus ponens, and the
second to instantiation.

Note that Tp is defined when P is any set of wifs in the abstract logic (Ls, L s, Lmvs Lmt, Lir).
However, usually, we will assume that P is an abstract logic program, i.e. P is finite.

Proposition 3.1 Suppose P C Lyg (in logic £). Then: Tp is monotone. o

Given an abstract logic £ = (Ls, Luwss, Lmv, Lme, Lir), we will take the set P(L,ss) to be
a complete lattice when ordered by set inclusion.

Proposition 3.2 Suppose P is any logic program in a finitary abstract logic £. Then Tp
is continuous and hence | is continuous. O

Note that in general, the above theorem does not hold for logic programs over arbitrary
logics. Finitariness is required. Blair and Subrahmanian [11] show that their Tp operator

5

for annotated logic programs is not always continuous. The annotated logic which serves
as such a counterexample uses an infinite valued complete lattice 7 which they construct,
together with, for each subset 7/ C 7', the inference rule

{A:plpeT}
Uper: P

As 7' may be infinite, it is easy to see that such a logic is not finitary.

Definition 3.4 Let (L, Lyff, Lmus Lmt, Lir) be an abstract logic and P an abstract logic
program. A set X, P C X C L,y is said to be a P-model-state of (Ls, Lof 5, Lmvy Lints Lir)
iff for every instance w of an inference rule R € L;, such that Numerator C X
GeX.

Proposition 3.3 Suppose P is an abstract logic program. X is a P-model-state of the
abstract logic (Lx, Lufss Lmvs Lmts Lir) iff Tp(X) C X. o

The above theorem establishes a one to one correspondence between P-model-states and
the pre-fixed-points of the Tp operator.

Definition 3.5 Suppose (Lx, Luwsfs Lmv, Lmi, Lir) is an abstract logic, P is a logic program
(w.rt. (Lx, Luwsfy Lmyy Lmity Lir)), and X C Lygs. X is said to be P-supported iff whenever
F € X, then either F' € P or there is an inference rule R € £;, having an instance of the
form ﬂ%;fm such that Numerator C X.

Proposition 3.4 Suppose (Lx,Lyfs, Ly, Lmt, Lir) is an abstract logic, and P is an ab-
stract logic program and X C L,yss. X is P-supported iff Tp(X) 2 X.

Proof. X is P-supported

iff (VF € Lygs) if F € X then either F € P or there is an inference rule in £ having an
instance of the form Numgreter gych that Numerator C X

iff (VF € Lyyy) if F € X then F € Tp(X)
iff X C Tp(X).)

Theorem 3.1 Suppose (Lx, Luff, Lmy, Lmt, Lir) is an abstract logic, and P is an abstract
logic program and X C Lyss. X is a P-supported model-state of (Lx, Lyf) Ly Linty Lir)
iff Tp(X) = X. O

Theorem 3.1 is an immediate consequence of Proposition 3.3 and 3.4. It establishes
a one-one correspondence between the fixed-points of the Tp operator and the supported
model-states of the program P. Given a logic £ = (Ls,Lyff, Lmvs Lmt, Lir), and an ab-
stract logic program P in £, we now define the iterations of the Tp operator.

6

Definition 3.6 (Transfinite Iteration of Tp operator) Let A be an ordinal. Define:

Tp10=0 Tp | 0= Luysy
Tp T A= Uyer Tr(TP 17) Tp L A= Nyx TP(TP 1 7)

Proposition 3.5 Suppose £ = (Lx,Luff, Lmv, Lmt, Lir) is an abstract logic. Further-
more, suppose P is a logic program (in logic £ = (Lx, Lwff, Lmvs Lmt, Lir)). Then: PHF
iff F € lfp(Tp). (Ifp(Tp) denotes the least fixed-point of the operator Tp).

Proof. We proceed in two parts.

I. Suppose P + F. Then there is a sequence Fy, Fy, F3,..., F, where a is some ordinal such
that F, = F and this sequence satisfies the conditions of Definition 2.3. We proceed by
transfinite induction on a. We show that F € I fp(Tp).

Base Case. (a = 0) Trivial.

Inductive Case. Let I' = {F., | v < a}. Then, by the induction hypothesis, I' C I fp(Tp).
By Definition 2.3, there is an inference rule of £ having an instance of the form

Numerator
F,

such Numerator C T C lfp(Tp). Hence, by definition of Tp, F € Tp(lfp(Tp)) = I fp(Tp).
Thus we have shown that if P + F, then F € I fp(Tp).

II. We now show the reverse implication, i.e if F' € Ifp(Tp), then P - F. As Tp is
monotone, and as P(Lyys) is a complete lattice under inclusion, it is easy to see that Tp
has a least fixed point and that this fixed-point is identical to Tp 1 v for some ordinal 7.
We proceed by induction on .

Base Case. (v = 0) Trivial.
Inductive Case. Suppose F € Tp | 7. There are two possibilities:

If 7 is a limit ordinal, then F € Jy<, Tp T % and therefore, there is some ordinal ¢ < v
such that F € Tp T ¢. Therefore, by the induction hypothesis, P - F.

If 4 is a successor ordinal, i.e. ¥ = (6 + 1) for some ordinal §, then there is an inference rule
of £ having an instance of the form

Numerator
F

where Numerator = {Ty,...,T¢,...} such that P\ T; for all T; € Numerator. Let A; be
the derivation sequence of T; from P. Then

Ap--+A¢--- F

is a derivation (possibly infinite) of F from P. Hence, P+ F.

7

Thus we have shown that if F' € Ifp(Tp) then P I F. This completes the proof. O

In general, Tp is not necessarily continuous, in particular because £ need not be finitary,
and therefore, @ may be greater than w.

Definition 3.7 Suppose £ = (L5, Lusfs Lmys Lmt, Lir) is an abstract logic and let X be a
subset of L, sf. X is said to be compact iff whenever X + F, it is the case that there is a
finite subset X’ of X such that X'+ F. (Ls,Lwff, Lmus Lmt, Lir) is said to be compact iff
each subset X C Lyfs in (Lx, Lwsf, Lmvs Lmes Lir) is compact.

Theorem 3.2 Suppose £ = (Lx,Lwffs Lmv, Lmt, Lir) is a finitary abstract logic and X
is a subset of L,ss. Then: Tx 1 w = Ifp(Tx) = {F | X F F}. Note here that X is an
arbitrary subset of L.y, and hence may not be finite.

Proof. Immediate consequence of Propositions 3.2 and 3.5. m]

This theorem makes us ask: “What kinds of logics are finitary ? Are most logics likely
to interest us finitary ?” Some examples of finitary logics are:

—
.

classical first order logic

most systems of modal logic (e.g. $4,S5, and K).

most systems of first order temporal logic (e.g. those described in [5, 21])
dynamic logic (cf. Harel [23])

A I

most systems of many-valued logics possessing a finite set of truth values

The fact that some of the above-mentioned logics have a highly undecidable validity
problem is irrelevant to the finitariness of the logics. Note that finitariness only says that
each inference rule of the logic £ contains a numerator of finite order. However, the collection
L;, of inference rules may itself be highly undecidable or of very high cardinality. Moreover,
the completeness theorems we will prove in Section 4 relate to the ezistence of proofs, and
not to whether they can be effectively found.

It is also instructive to give an idea of some logics that are not finitary. One example
is the system of infinite-valued annotated logics due to Subrahmanian [37]). These logics
use an infinitary inference rule that may be summed up as follows: “If A is an atom and
(#i)iea are truth values, then from the set of annotated atoms (A : y;)ic4, conclude A : p
where p = U;eapi.” Further details of this rule and its logical aspects may be found in [14].
Another well known logic that is not finitary is second order logic.

The results obtained thus far relate to the declarative semantics of logic programming
with different logics. Below, we demonstrate how a few examples of extensions and varia-
tions of the logic programming paradigm (currently existing in the literature) fit into our
framework for programming with abstract logics.

Example 3.1 (Classical Logic Programming) In order to model classical logic program-
ming as an instance of our scheme, we need to consider only the following rules of inference:
A,B~A
B
(Vz)Flz]

Ft]
where F[z] denotes a formula F' containing zero or more free occurrences of a variable

symbol z, and F[t] denotes the replacement of z in F by a term ¢.

Example 3.2 (Disjunctive Logic Programming) In this case, for each integer n > 0, we
need the following rule of inference:
A] \ B],...,An \Y Bn, N C ~ B]&"'&Bn
Ay v---VA,VC

With these rules of inference (this is basically hyper-resolution), together with the instan-
tiation rule for classical logic, it is now possible to model the declarative semantics of
disjunctive logic programming as described by Minker and Rajasekar [29].

Example 3.3 (Multivalued Logic Programming) Consider quantitative logic programs as
defined by Blair and Subrahmanian [9, 10]. Here, we may use the following rules of inference:

A:l

where L is the least element of the complete lattice being considered. In addition, for each
subset 7/ C 7, we need the rule:

{A:p|lpeT}
A:UpGT’”‘

The rule for modus ponens is also necessary:

A,B~A
B

Example 3.4 (Temporal Logic Programming) We consider the linear time temporal logic
programming language defined by Baudinet [5]. She augments classical logic with two new
operators, O (necessity) and () (the “next time” operator). Intuitvely, Op is true at time ¢
iff p is true at all times ¢ > t. Op is true at time t iff p is true at time (¢ + 1).

If Ais an atomic formula of classical logic, then (... k timesA where k > 0 is called a
———
nezxt-atom. An initial program clause is a sentence of the form

No— N1 &...& N;

where each N;, 0 < ¢ < k, is a next-atom. If C is an initial program clause, then OC is
a permanent program clause. A temporal logic program is a finite collection of initial and

permanent program clauses. It can easily be proved that any temporal logic program is
logically equivalent to a (possibly infinite) set of initial program clauses.

In this setting, the inference rules to be used are:
0¢
O
¢, Yp—¢
P

where the first inference rule is actually a scheme for an infinite set of inference rules
obtained by instantiating i to various different integers. In addition, we need the rule:

OLy)
O¢& O’

Baudinet’s [5] proof procedure for temporal logic programming provides an explanation for
why these proof systems are complete.

Example 3.5 (Distributed Logic Programming) If P, ..., P, are pure logic programs, then
the n-tuple P = (Py,...,P,) is called a distributed logic program. Each of {1,.:.,n} is
called a site. Program P; is said to be “the” program at site ;. Ramanujam [32] has devel-
oped an elegant model theoretic, fixed-point and proof theoretic semantics for distributed
logic programs of this sort. In our abstract logic framework, wffs may be considered to be
n-tuples (Fy,..., F,) where each F; is either a clause or a conjunction of ground atoms or
a special dummy symbol §. Thus, if we wish to say that p is true at site 2 and nothing else
is stated about the truth of formulas at other sites, then we assert the wif

44,0 8)-
N, e’

n tuple

For the sake of convenience, suppose n = 2. To say that p and ¢ are both true at site 2 and
7 is true at site 1, we have two options. We could assert the single tuple:

(r,p&q)
or we could assert two tuples,
(), (r,9)-
The inference rules for our logic consist of the following;:

0) (Ala"'7Ai—1,A‘ivAi+1,"'7An) » (AI""7A‘—1’(B — Ai)7Ai+1’---’An)
(A17"'7Ai—l7B,Ai+l7"'9A‘n)

Such a rule is in £;, for each ¢, 1 < 7 < n. Intuitively, this rule says that if some site, say
site j, knows that A is true, and B — A is a clause in site 7, then site : knows that B is
true. In particular, a site cannot know A if there is no clause in that site having A as a
ground instance of its head. In addition, for each pair of integers 1 < 7,5 < n, we have a
rule of the form:

(MP

(Al, . .,A,'..l,A,',A,'.H, .o .,A]‘_l,B — A,‘,A_H.l, .. .,An)

MP
(MP4) Ay, AL, ALA, A 1,B A, ., Ay

10

This rule captures the intuition that an atom A becomes true at site i iff there is a clause
in P; having a ground instance of the form

A« B &...& By

such that each B; is true in some site Pj, 1 < j < n. (Note that in rule (MP1) A is
assumed to be an atom. This assumption is made for the sake of simplicity; stating this
rule when A; is a conjunction of atoms is straightforward, though notationally cumbersome,
because the different atoms in A; are allowed to be true at different sites). In addition, for
each 1 < i < n, we have the rule

(A1,..,A ..., A, (By,...,B;,...,B,)
(A1,...,(A; &B,),...,B,)

Repeated application of this rule allows us to derive the following inference rule

(A1,...,Aj,...,A) , (By,...,Bj,...,By)
(A1 & By,... A, &B,)

This formulation is sufficient to capture the declarative semantics for distributed logic pro-
gramming proposed by Ramanujam [32]. The operator associated with programs written
in this abstract logic allows is to capture the exact same fixed-point theory described by
Ramanujam.

One of the crucial aspects of the distributed logic programming formalism of Ramanujam
[32] that we do not capture is synchronization. Ramanujam constructs an elegant proof
theoretic semantics in which synchronization operators are introduced. We do not know
how to mimic this behavior that forms an essential ingredient of his semantics.

We believe that these examples demonstrate that our framework holds some promise of
yielding, in the long run, a unifying treatment of classical and non-classical logic program-
ming semantics.

4 “Proof Theoretic Semantics”

Definition 4.1 Suppose £ = (L5, Luwfs, Lmv, Lme, Lir) is an abstract logic, F is a formula,
and G, W C L. We say formula H is a generalized resolvent of F and G iff there is an
inference rule in £;, having an instance of the form

Numerator

H

such that F € Numerator and Numerator — {F} C G. H is also called a unary resolvent
of W if Numerator CW.

Given F and G in L, sy, we denote the set of generalized resolvents of F' and G by
R(F,G). Suppose now that < is a reflexive ordering on L,,ss. We use the notation R<(F,G)
to denote the minimal elements, if any, of R(F,G). (Observe that minimal elements may
not exist. Also observe that in general, we may not interchange the arguments of R.)

11

Example 4.1 Suppose we are considering (classical) clausal logic, i.e. L5 is the set of
all clauses (including the empty clause) generated by some alphabet. Then the generalized
resolvent of two clauses is of the form (R V D) where R is the resolvent of the two clauses
we are considering and D is any disjunction (possibly empty). We may assume that L,
contains the inference rule:

CiVAVCy, D;V-AV D,
CivVD; VCa vV D2

where Cy,C2,Dq,D2 are all scheme variables. If we assume that clauses are ordered by
the subsumption orderingi (i.e. Cy < C; iff C; subsumes C;), then the minimal clauses are
just the ordinary resolvents (cf. Robinson [33]).

Consider the following two clauses C; = Dy V A3 V Dy and C; = By V nAy V B,
where Dy, Dy, Eq and E; are all disjunctions (possibly empty). Then in order to appply
the above inference rule, we need to find an instance of Cy; and Cj such that Ay and A,
yield the same literal (the inference rule above applies only in this case). But this is just
the same as unification. In particular, the above inference rule allows arbitrary unifiers to
be used in resolution, not just mgu’s.

Definition 4.2 Suppose X C P(Lyyys), and P is an abstract logic program. A sequence
R, F,,...,F, is called a generalized X -linear input deduction (GLI(X)-deduction, for
short) of F from P iff:

1. Fy € P or Fj is the denominator of an instance of a rule R in £;, such that the
numerator of R is empty, and

2. In the sequel, let a be any ordinal and let A be a limit ordinal.

() Faq1isageneralized resolvent of F, and someY € X whereY C {Fy, F,,..., F,}
OR

(b) Faq41 is a generalized resolvent of F, and {C} where C € P.

3. If A is a limit ordinal, then F) is a unary resolvent of Y where Y is some subset of
{F,|7< A}

The above definition is called “linear” because of the similarity with linear resolution in
classical theorem proving [26, 27]. Note, in particular, that just as in the case of linear
resolution, one parent in each non-unary resolvent must be the resolvent most recently
derived (i.e. in order to generate Fn,;, by non-unary resolution, F, must be one of the
parents).

Theorem 4.1 (Soundness) Suppose £ = (Lg, Lyff, Lmy, Lmt, Lir) is an abstract logic and
X C P(Lwss)- Then: GLI(X)-deduction is sound w.r.t. L, i.e. if there is a GLI(X)-
deduction of formula F' from program P (in the abstract logic £), then P |- F.

12

Proof. Let Fy, Fi, F,. .., Fy be a GLI(X)-deduction of F from P. We proceed by induc-
tion on a.

Base Case. (a = 0) Then F = Fy = F, is in P and hence, by Definition 2.3, it follows that
PR F.

Inductive Case. (o > 1) Let A = {F3 |8 < a}. By the induction hypothesis, P - Fj for all
B < a. There are two possibilities:

Case 1 (a is a limit ordinal). Then rule 3 in Definition 4.2 must have been used to obtain
F,. Hence, there is a rule in £;, having an instance of the form:

Numerator
F,

such that Numerator C A. By the induction hypothesis, P - A. As Numerator C A,
P + Numerator. Hence, as P - A and as F, is obtained by a unary resolvent of some
Y € X,and as Y C A, we know that P I Y. By definition of |-, it now follows that P - F,.

Case 2 (o is a successor ordinal, i.e. @ = (y+1).) In this case, rule (2) in Definition 4.2
must have been used to derive F,.

If rule 2(a) of Definition 4.2 was used, then F, is a generalized resolvent of F., and Y for
someY € X and Y C {F,..., F,}. By the induction hypothesis, we know that:

PFY and

Pl F,.
It follows from Definition 2.3 that P+ F 4y = Fi.

If rule 2(b) of Definition 4.2 was used, then Fy, is a generalized resolvent of F., and {C} for
some C € P. Thus, P I C and, by the induction hypothesis, P - F,. Thus, P - F,. O

One would guess, quite correctly, that GLI(X)-deduction is not complete for arbitrary
X. We do not know of a necessary condition on X and/or (Lx,Luyfs, Lmuyy Lmt, Lir) for
GLI(X)-deduction to be complete, but we do know of a sufficient condition which appears
to encompass most existing extensions of logic programming.

Definition 4.3 Suppose (Lx, Luff, Lmu, Lmt, Lir) is an abstract logic and X C P(Lyysy).
X is said to possess the ground inclusion property for logic (Lz,Lyffy LmysLmty Lir) iff

whenever
Numerator

r

is an instance of an inference rule of £, then Numerator € X.

Intuitively, GLI(X)-deduction allows us to only use those instances of inference rules
whose numerators are in X. Thus, even though an inference rule R may be an instance
of a rule of £;; (and hence may be used in derivations), GLI(X)-deduction may exclude
(or block) the utilisation of rule R in a derivation. Thus, in general, GLI(X)-deduction is
unlikely to be complete. The ground inclusion property, in essence, says that no instance
of an inference rule of £;, may be excluded by X.

13

Theorem 4.2 (Completeness) Suppose £ = (Ls, Luy £ Lmvy Lmt, Lir) is an abstract logic
and X C P(Luys) possesses the ground inclusion property. Then: GLI(X)-deduction is
complete w.r.t. £, i.e. if P - F, then there is a GLI(X)-deduction of formula F from
program P.

Proof. The proof follows immediately from the fact that X possesses the ground inclusion
property, and hence does not block the use of any inference rule of £;;. (]

Note that the above theorem does not say anything about the length of a GLI-deduction. In
particular, the reader may recollect that GLI-deductions are allowed to be infinitary. The
above completeness theorem does not say anything about the existence of finitary proofs.

Theorem 4.3 (Finitary Completeness) Suppose £ = (Ls, Lwff, Lmuy Lmts L;r) is a finitary
abstract logic. Let X C P(L,ys) have the ground inclusion property. Then: finitary GLI-
deduction is complete w.r.t. £, i.e. if P I F, then there is a finitary GLI-deduction of
formula F' from program P.

Proof. The result follows immediately from Theorem 3.2. (]

We now revisit the various examples initially described in Section 2 and show how the
proof theory described here is applicable to those systems. This, we hope, will explicate
the utility of our framework in describing logic programming languages that differ from the
traditional definite clause framework in one of two ways:

1. by providing a syntactic variation and/or extension of the definite clause framework

2. by interpreting these programs over various kinds of non-classical logics

We develop below, a couple of examples that show how GLI(X) deduction relates to the
operational semantics of some existing logic programming languages.

Example 4.2 (Classical Logic Programming) Consider the example of classical logic (Ex-
ample 3.1). In classical logic programming, select X to be the set of all clauses expressible
using the non-logical symbols of our logic. Then the application of modus ponens yields the
unrestricted (cf. Lloyd [25]) SLD-resolution proof procedure which allows ancestry resolu-
tion. While this is not quite so powerful as SLD-resolution that forbids ancestry resolution,
this presents an overall view about how resolution systems generalize to non-classical logics.
The fact that ancestry resolution is not required for definite clauses depends crucially upon
the precise syntactic form of the formulas in the definite clause fragment of logic, rather
than on the model theoretic properties of first order logic itself (this observation is backed
by the fact that SLD-resolution is of course not complete for full first order logic). As X is
the set of all clauses in our language, and as any instance of the resolution rule contains only
clauses in the numerator, it follows that no rule is “blocked” by X. Recall that unrestricted
SLD-resolution is same as SLD-resolution except that arbitrary unifiers, rather than only
mgu’s, are allowed to participate in the refutation.

14

Example 4.3 (Multivalued Logic Programming) Consider multivalued logic programming
over hte complete lattice 7 of truth values using annotated logics (cf. Blair and Subrahma-
nian [9, 10]). Take X to be the set of all instances of annotated clauses expressible using
the non-logical symbols of our language. We have the following inference rules:

{ApulpeT}
A:llerns
In addition, for each up € T such that u < p, we have the inference rule (called “weaken-
ing”):

A:p

A:p
Furthermore, we have th familiar rule of modus ponens. Let us see how this relates to
the procedure of Blair and Subrahmanian [10]. They show that given any annotated logic
program P over T, there is a program CL(P) that can be effectively constructed from P
such that P and CL(P) are not only logically equivalent, but they also have the same Tp
operator. Suppose we now consider only those programs P such that P = CL(P) (such
programs are said to be closed, and by the previous sentence, it follows that there is no loss
of generlaity in making this assumption). The nice thing about such programs is that given
any annotated atom A : p, if CL(P) = A : p, then there is a single clause in P having a

ground instance of the form
A: p — Body

such that P = Body and p > p. Thus, to show that P = A : u, we may look at those
clauses in P whose head’s atomic part unifies with A and such that the annotation in the
head exzceeds p. However, the application of modus ponens requires that the annotations
match precisely. It is to facilitate this that we have the “weakening” rule described above.

Likewise, it is easy to demonstrate that the temporal programs and disjunctive programs
described in Section 3 of this paper can also be incorporated into this framework.

5 Discussion

Various kinds of logic programs based on nonclassical logics have been developed. There
are now, in particular, quantitative logic programs [39], annotated logic programs [9], three-
valued (and n-valued) general logic programs [15], and fuzzy logic programming languages,
e.g. PROLOG-ELF [24] and the FPROLOG language of Martin, Baldwin and Pilsworth
[28]. The investigations of the quantitative, annotated and fuzzy logic programming lan-
guages are motivated, at least in part, by the need for a rigorous semantics for treating
uncertainty in deductive databases.

If we look at logic programs of any of the kinds just mentioned for which a definition of
model has been previously provided we see that the structural characteristics of the class of
models of each of these programs are similar. For example, programs without negation have
least models in the setting of classical two-valued semantics with respect to any admissible
interpretation of their function symbols; in particular they have least Herbrand models.

15

Similarly, general programs (with negation allowed) have least models with respect to any
interpretation of their function symbols in the three-valued semantics. To get even more
removed from the classical two-valued setting, consider the quantitative programs of van
Emden [39]. Here the underlying truth values are taken to be the interval of real numbers
from 0 to 1. As in the ordinary two-valued case we may view programs as operators from
interpretations to interpretations and attempt to characterize the models of the programs in
terms of their images under these operators. Van Emden sets up the semantics of the rules
being considered (which may be described as definite clauses with “attenuation” factors)
so that an interpretation I of the program is a model of it iff I is a pre-fixed point of the
operator Tp corresponding to the program P. (I is a pre-fized point of Tp if Tp(I) < I1.)
Then, by methods that of course specifically depend on the definition of Tp, Tp is shown
to be continuous. Once this is done, it can be seen that the class of pre-fixed points of Tp
(and fixed points) has many of the same structural properties that it has in the qualitative
classical two-valued case.

Guessarian [22] recalls various fixed point theorems in ordered structures and surveys via
examples, applications of these theorems in semantics and proof theory, logic programming,
and deductive databases. Our aim in this paper has been to expand upon such treatments of
logic programming as Guessarian’s and show that such theorems are applicable to describing
the semantics of logic programs. This semantics is very similar across all of the non-classical
logic programming notions that we are examining. In each case we have shown that the
semantics that have been provided by the authors of these languages can be obtained by,
first, specifying the set of underlying truth values that the logic is intended to have, and
second, by defining for each program in the language an operator mapping sets of formulas
to sets of formulas. This, we think, illuminates the underlying reasons that unify the similar
properties that one sees in the semantics associated with programs of various kinds based
upon nonclassical logics.

6 Conclusions

The main aim of this paper has been to present a single uniform framework for studying
the semantics of logic programming based on different logics, as well as logic programming
with different extensions of classical paradigm. In this paper, we studied only those logics
that have a monotone consequence operator. We provided a concept of an abstract logic,
and define abstract logic programs in terms of abstract logics. We then derived various
results relating fixed-points of operators associated with programs with model-states of the
programs. We showed how various systems for paraconsistent logic programming, quantita-
tive logic programming, temporal logic programming, disjunctive logic programming, and
distributed logic programming etc. may be captured in our framework. To our knowledge,
such a unifying semantical framework for non-classical logic programming and extensions
of logic programming had not previously been formulated.

16

References

[1] M. Abadi and Z. Manna. (1987) Temporal Logic Programming, Proc. 4th IEEE Symp.
on Logic Programming, pps 4-16, Computer Society Press.

[2] H. Andreka and I. Nemeti. (1978) The Generalized Completeness of Horn Predicate
Logic as a Programming Language, Acta Cybernetica, 4, pp. 3-10.

[3] K. R. Apt, H. A. Blair and A. Walker. (1988) Towards a Theory of Declarative Knowl-
edge, in: Foundations of Deductive Databases and Logic Programming, (ed. Jack
Minker), Morgan-Kauffman.

[4] P. Balbiani, L. Farinas del Cerro and A. Herzig. (1988) Declarative Semantics for
Modal Logic Programs, Rapport Interne No. 292, Languages et Systemes Informatiques,
Universite Paul Sabatier, Toulouse Cedex, France.

[5] M. Baudinet. (1989) Temporal Logic Programming is Complete and Ezpressive, Proc.
POPL-89.

[6] N.D. Belnap. (1977) A Useful Four-Valued Logic, in: Modern Uses of Many-Valued
Logic, (eds. G. Epstein and J.M. Dunn), D. Reidel, pps. 8-37.

[7] H. A. Blair. (1982) The Recursion Theoretic Complezity of the Semantics of Predicate
Logic as a Programming Language, Information and Control, 54, 1/2, pps 25-47.

(8] H.A. Blair. (1986) Decidability in the Herbrand Base, in: Proc. of the Workshop on
Foundations of Logic Programming and Deductive Databases, (ed. Jack Minker), Col-
lege Park, MD.

[9] H. A. Blair and V.S. Subrahmanian. (1987) Paraconsistent Logic Programming, Proc.
7th Conference on Foundations of Software Technology and Theoretical Computer
Science, Lecture Notes in Computer Science, Vol. 287, pps 340-360, Springer Verlag.
Extended version in: Theoretical Computer Science, Vol. 68, pps 135-154.

[10] H. A. Blair and V. S. Subrahmanian. (1988) Strong Completeness Results for Paracon-
sistent Logic Programming, submitted.

(11] H. A. Blair and V. S. Subrahmanian. (1988) Paraconsistent Foundations for Logic
Programming, to appear in: Journal of Non-Classical Logic.

[12] L. Farinas del Cerro. (1986) Molog: A System That Eztends Prolog with Modal Logic,
New Generation Computing.

[13] N.C.A. da Costa. (1974) On the Theory of Inconsistent Formal Systems, Notre Dame
J. of Formal Logic, 15, pps 497-510.

[14] N. C. A. da Costa, V. S. Subrahmanian and C. Vago. (1989) The Paraconsistent Logics
PT, to appear in: Zeitschrift fur Mathematische Logik und Grundlagen der Mathe-
matik, Vol 37, 1991.

17

[15] M.C. Fitting. (1985) A Kripke-Kleene Semantics for Logic Programming, Journal of
Logic Programming, 4, pps 295-312.

[16] M. C. Fitting. (1986) Partial Models and Logic Programming, Theoretical Computer
Science, 48, pps 229-255.

[17] M. C. Fitting. (1987) Bilattices and the Theory of Truth, to appear in: J. of Philosoph-
ical Logic.

[18] M. C. Fitting. (1987) Enumeration Operators and Modular Logic Programming, Journal
of Logic Programming, 4, pps 11-21.

[19] M. C. Fitting. (1988) Logic Programming on a Topological Bilattice, Fundamenta In-
formatica, 11, pps 209-218.

[20] M. C. Fitting. (1988) Bilattices and the Semantics of Logic Programming, to appear
in: Journal of Logic Programming.

[21] D. M. Gabbay. (1987) Modal and Temporal Logic Programming, in: Temporal Logic in
Computer Science, (ed. A. Galton), Academic Press.

[22] 1. Guessarian. (1987) Some Fizpoint Techniques in Algebraic Structures and Applica-
tions to Computer Science, Fundamenta Informaticae, 10, 1987, pp. 387-414.

[23] D. Harel. (1979) First Order Dynamic Logic, Lecture Notes in Computer Science, Vol.
68, Springer Verlag.

[24] M. Ishizuka and N. Kanai. (1985) PROLOG-ELF Incorporating Fuzzy Logic, New
Generation Computing, 3, pps 479-486.

[25] J.W. Lloyd. (1984) Foundations of Logic Programming, Springer-Verlag.

[26] D. W. Loveland. (1970) A Linear Format for Resolution, Proc. IRIA Symp. on Auto-
matic Demonstration, Lecture Notes in Mathematics, Springer, pps 147-162.

[27) D. W. Loveland. (1972) A Unifying View of some Linear Herbrand Procedures, JACM,
19, pps 366-384.

[28] T.P. Martin, J. F. Baldwin and B. W. Pilsworth. (1987) The Implementation of FPRO-
LOG - A Fuzzy Prolog Interpreter, Fuzzy Sets and Systems, 23, pps 119-129.

[29] J. Minker and A. Rajasekar. (1988) A Fizpoint Semantics for Non-Horn Logic Pro-
grams, to appear in: Journal of Logic Programming.

[30] L. Naish. (1986) Negation and Quantifiers in NU-Prolog, in: Proc. 3rd International
Conference on Logic Programming, Lecture Notes in Computer Science, Vol. 225, (ed.
E. Shapiro), Springer-Verlag, pps 624-634.

[31] R. Ramanujam and R. K. Shyamsundar. (1984) Process Specification of Logic Programs,
Proc. 4th FST/TCS Conference, Springer LNCS Vol. 181, pp 31-43.

18

[32] R. Ramanujam. (1989) Semantics of Distributed Logic Programs, Theoretical Computer
Science, Vol. 68, pp 203 - 220.

[33] J. A. Robinson. (1965) A Machine Oriented Logic Based on the Resolution Principle,
Journal of the ACM, 12, pps 23-41.

[34] J. Schoenfield. (1967) Mathematical Logic, Addison-Wesley.

[35] E. Shapiro. (1983) Logic Programs with Uncertainties: A Tool for Implementing Ezpert
Systems, Proc. IJCAI ’83, pps 529-532, William Kauffman.

[36] V. S. Subrahmanian. (1988) Query Processing in Quantitative Logic Programming,
Proc. 9th International Conference on Automated Deduction, (eds. E. Lusk and
R.Overbeek), Lecture Notes in Computer Science Vol. 310, pps 81-100, Springer Ver-
lag.

[37) V. S. Subrahmanian. (1988) Intuitive Semantics for Quantitative Rule Sets, Proc.
5th International Conference/Symposium on Logic Programming, (eds. K.Bowen and
R.Kowalski), MIT Press, Aug. 1988.

[38] V. S. Subrahmanian. (1988) Mechanical Proof Procedures for Many Valued Lattice
Based Logic Programming, to appear in: J. of Non-Classical Logic.

[39] M.H. Van Emden. (1986) Quantitative Deduction and its Fizpoint Theory, Journal of
Logic Programming, 4, 1, pps 37-53.

19

	Monotone Logic Programming
	Recommended Citation

	SU-CIS-90-08_001c
	SU-CIS-90-08_002c
	SU-CIS-90-08_003c
	SU-CIS-90-08_004c
	SU-CIS-90-08_005c
	SU-CIS-90-08_006c
	SU-CIS-90-08_007c
	SU-CIS-90-08_008c
	SU-CIS-90-08_009c
	SU-CIS-90-08_010c
	SU-CIS-90-08_011c
	SU-CIS-90-08_012c
	SU-CIS-90-08_013c
	SU-CIS-90-08_014c
	SU-CIS-90-08_015c
	SU-CIS-90-08_016c
	SU-CIS-90-08_017c
	SU-CIS-90-08_018c
	SU-CIS-90-08_019c
	SU-CIS-90-08_020c

