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ABSTRACT  
Water that enters the drainage cavity of a rain screen wall assembly through deficiencies in 
the cladding will either be drained or retained by absorption or adhesion on the drainage 
surfaces. The objective of this study is to gain insight into the different factors that affect the 
quantity of water drained or retained in a drainage cavity. Drainage tests have been conducted 
for water flowing between two vertical polycarbonate plates with different gap widths to 
determine the effect on the drainage rate. Tests showed that even small cavities with a width 
of 1 mm can already drain more water than the amount that would enter the cavity during a 
rain event. Experiments were performed to determine the contact angle of water on a range of 
different sheathing materials such as asphalt saturated building paper, spun-bonded 
polyethylene wrap and cross-woven polyolefin wrap by the use of an optical goniometer. 
Drainage tests have been conducted for different combinations of these materials to quantify 
the effect of surface energy on the drainage rate. A larger contact angle results in a smaller 
quantity of water retained during the drainage test. These tests result in a retained portion of 
water and a drainage rate for different combinations of materials. The retained portion of 
water may be considered as a moisture load applied to the outer-most layer of the wall 
assembly’s back-up wall in hygrothermal simulations.  
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INTRODUCTION 
Rain screen wall systems or drained wall assemblies are commonly used to reduce the risk for 
moisture damage due to rain penetration behind the cladding. If openings or deficiencies are 
present in the cladding, raindrops may penetrate and enter the drainage cavity during a rain 
event. Most of the water that enters the drainage cavity will flow down along one of the 
drainage surfaces or between both as singular droplets, rivulets or multiple streams resulting 
in a film flow. Also some droplets may be retained in the cavity depending on the surface 
energy of the materials that define the drainage cavity, the gap width and the initial velocity 
and volume of the droplets entering the drainage cavity. Accurate knowledge of the retained 
portion of water is important given that in undertaking hygrothermal and durability analyses, 
it is considered to be the moisture load applied to the outer-most layer of the wall assembly’s 
back-up wall. According to the Swedish SP Certification Rules no. 021, the quantity of 
retained water in drained facades should be determined by tests and be applied as input for 
hygrothermal simulations according to EN 15026 (SP Certification, 2009; Künzel et al., 
2008).  
 
Several detailed studies have been completed on film flow dynamics both in the laboratory or 
by numerical and analytical modelling (Ambrosini et al., 2002). Experimental studies have 
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been undertaken to investigate the transition from falling film flow to rivulet flow (Martin et 
al., 2015), rivulet geometry (McCreery et al., 2007) and the transition from laminar to 
meandering flow on both a single surface (Le Grand-Piteira, 2006) and between two planes 
(Drenckhan, 2004). As well, the retention of droplets has been studied (ElSherbini and Jacobi, 
2006). Research on film flow dynamics has been conducted within the field of chemistry to 
improve applications such as heat exchangers, the field of geophysics to gain insight into the 
transport of contaminants in the Earth’s substructure (McCreery et al. 2007) or within the 
field of building engineering mainly focusing on water runoff on a building facade due to 
wind driven rain (Blocken and Carmeliet, 2012; Van Den Bossche et al., 2015). Research 
concerning water flow and retention of water in wall drainage cavities however is very 
limited. Straube and Smegal (2007) performed drainage tests to obtain a better understanding 
of the drainage capacity in wall cavities given that, as it was stated by Onysko et al. (2007), 
even when hydrophobic materials are applied not all injected water drains out from the cavity. 
Drainage tests of smooth non-absorptive materials showed that a drainage gap of 1 mm 
between two stiff acrylic sheets (23-25 g/m2) stored less water than a single acrylic sheet (65 
g/m2). Additionally, spray tests on a polyethylene sheet (35 g/m2) showed a smaller quantity 
of retained water compared to an acrylic sheet (65 g/m2) which is likely due to the increased 
hydrophobicity of the polyethylene as compared to the acrylic sheet. It was concluded that 
several wall assemblies even those having small gaps (< 1 mm) could drain more water than 
would ever enter the drainage cavity during a rain event as drainage rates exceeded 1 l/min.m. 
Given that wind driven rain loads on buildings seldom exceed 2 l/m².h, and infiltration rates 
are typically between 1% up to 10%, it can easily be assumed that the accumulated drainage 
rate, even for tall buildings, will never exceed 1 l/min/m. Blocken and Carmeliet (2006) 
performed an experimental study on different vertical surfaces (PVC, PMMA, PTFE, glass, 
glass with hydrophilic coating and glass with hydrophobic coating) to evaluate the impact of 
contact angle on the quantity of adhered water. Although it is often assumed that hydrophobic 
vertical surfaces promote drop run-off and therefore show less adhered water, no clear relation 
between the contact angle measurements and the quantity of adhesion water could be found.  
 
To gain a better understanding of the parameters that affect drainage and retention in wall 
assemblies, an experimental research program was carried out. The objective of this research 
program was to evaluate the impact of the drainage cavity width and the surface 
characteristics of the drainage surfaces on the amount of water that is retained within the 
cavity. This program and the results derived from the work are described in detail in this 
paper.  
 
METHODS  
Drainage tests were conducted for water flowing down between two parallel vertical 
polycarbonate (PC) plates (609.6 x 609.6 mm). Gap widths of 0.99 mm, 1.96 mm, 3.12 mm 
and 4.84 mm (± 0.01 mm) were defined by use of spacers inserted between the PC plates at 
both vertical edges. A copper tube was installed on top of the test setup and aligned with the 
position of the rear PC plate. The tube contained 16 evenly spaced openings of 0.5 mm 
diameter located every 12.7 mm along its length; this arrangement provided an evenly 
distributed water deposition rate across the drainage cavity. A gutter located beneath the PC 
plates collected the drained water. To introduce a water flow, a peristaltic pump (Stenner 
Pumps 85 pump series) was connected to the copper water deposition tube by means of a 
flexible plastic tube. An average flow rate of 0.769 ± 0.002 l/min.m was applied during 3 
cycles of 10 minutes and water deposition was evenly distributed over 16 openings in the 
copper tube. Both the mass of water that flowed through the pump and the mass of drained 
water were weighed with an accuracy of 0.1 g. By subtracting the mass drained from that 
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deposited, the mass of retained water in the cavity could be calculated for each setup. Before 
each experiment, the pump was turned on for a few minutes in order to reach a steady state for 
the water content of all tubes both before and after the experiment.  

 
Figure 1: Test setup 
 
Additionally, the drainage capacity of different commonly used sheathing membranes was 
evaluated. The sheathing membranes were taped onto the PC plate at the back of the test setup 
with a cavity width of 1.96 mm by means of two vertical strips of double-sided tape (350 mm 
o.c.). The same procedure as described above was applied to obtain the drainage 
characteristics of the sheathing membranes. To evaluate the impact of the surface 
characteristics of the plates or the sheathing membrane on the retention of water in the cavity, 
the contact angle of a distilled water drop on the different sheathing membranes was measured 
by means of a goniometer (Ramé Hart model 100-00-115). The optical sessile-drop method 
was applied to determine the static, advancing and receding contact angle. The reported values 
are the average of 8 contact angle measurements of different locations on the sample; these 
are in Table 1.  
 
RESULTS  
As water drops flow down, they leave behind smaller droplets, i.e. trace droplets. The impact 
of gap width on the volume of these trace droplets is evaluated by introducing water flow in 
between two PC sheets with different gap widths. During the test, the amount of water added 
to the drainage gap and the drained amount was measured and the retained portion is 
calculated. Results for the different gap widths and a single sheet are shown in Figure 2a).  

 
  
 
 
These measurements show that a steady-state is achieved after less than 100 seconds for all 
gap widths. Small peaks are visible which represent the droplets injected to the cavity from 
discharge of the copper tube. For gaps of 3 and 5 mm a larger variation is visible due to a 
smaller relative impact of forces due to surface tension compared to gaps of 1 and 2 mm 

Figure 2: Drainage tests on PC a) Retention during test, b) Retention during test and after 
drainage has finished per m2 

a) b) 
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which causes larger deviation of the flow of drops after collision with other drops along their 
downward path. As a results, a larger wetted area is achieved for larger gap widths, i.e. the 
wetted area of the test setup with a 5 mm gap is 11.51% larger compared to the 1 mm gap. 
Figure 2b) shows the average amount of water retained per m2 during the test including 
droplets adhered to the plate and drops flowing downwards. The error bars represent the 
minimum and maximum values. Additionally shown in Figure 2b) is the amount of water 
retained per m2 after drainage has finished, i.e. the number of water droplets adhered to the PC 
plates. The latter was based on pictures captured after the test, assuming that the volume of 
the trace droplet is half a sphere (Blocken and Carmeliet, 2006). The amount of trace droplets 
and the average base area was measured at different locations of the test setup as it was 
observed that values at the top of the setup differed from values at the bottom. The error bars 
show the standard deviation of the retained amount of water based on three different 
experiments for each gap width. The graph illustrates that for an increasing gap width, an 
increasing amount of water was retained in the gap both during flow and after drainage. The 
retained volume during the test for a gap width of 2 mm was similar to the retained volume in 
a gap of 1 mm. However, it should be noted that this value also includes the capillary retained 
portion at the bottom of the test setup which was significantly larger for the 1 mm gap (3.3 g) 
compared to the 2 mm gap (< 1 g). The increasing amount of retained water for an increasing 
gap width was mainly due to an increasing amount of drops per m2. The average drop base 
area ranged from 1.155 ± 0.045 mm2 for a 2 mm gap to 1.300 ± 0.108 mm2 for a 5 mm gap. 
Only the average base area of the trace droplets of the 1 mm gap was significantly smaller, i.e. 
0.563 ± 0.044 mm2. The vertical spacing between the drops ranged from 3 – 5 mm. It was 
visually observed that most of the drops adhered only to one of the plates. Only some drops 
were retained between both plates for the 1 mm gap.  
 
The same measurements were conducted for test setups with a 2 mm gap and a sheathing 
membrane adhered to the back plate of the setup thus permitting evaluating the importance of 
membrane contact angle and surface roughness on retained water.  
 
Table 1. Contact angles distilled water on sheathing membranes 

No. Sample Description θC, static θC, advancing θC, receding 
0 Polycarbonate 79.1 ± 1.5 83.3 ± 1.5 48.7 ± 1.5 
1 Cross-woven polyolefin wrap 77.7 ± 5.8 85.1 ± 4.0 50.8 ± 4.7 
2 Spun-bonded polyethylene, grooved 84.2 ± 4.0 88.4 ± 1.8 57.3 ± 3.6 
3 Spun-bonded polyethylene, continuous 90.4 ± 2.1 96.5 ± 3.3 73.1 ± 2.7 
4 Asphalt saturated Kraft building paper 105.4 ± 6.4 111.3 ± 2.1 74.9 ± 2.1 

 

 
 
 
Figure 3: Drainage tests on sheathing membranes a) Water retained during test, b) Water 
retained during test and after drainage had finished per m2 

a) b) 
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Figure 3a) shows the retained amount of water in the cavity as a function of time for the 
different sheathing membranes tested. For all sheathing membranes a steady-state is reached 
as for the PC plates with small peaks. However, a larger variation about the average value is 
apparent due to the surface roughness which causes deviation of the flow of drops and a 
difference in wetted area (woven pattern of sample 1, grooves of sample 2, ink on sample 3, 
bulging of sample 4). Sample 4 shows the largest wetted area (0.323 m2) with an increase of 
12.5% compared to the setup with two PC plates. The building paper, due to water absorption, 
bulges that in turn causes locally reduced thickness of the gap width. As a result, drops will 
not flow in a straight downward path but will follow the path of smallest resistance in between 
the bulged areas. Sample 1 on the other hand shows the smallest wetted area (0.248 m2) which 
is 7.8% smaller than the wetted area of the PC. Due to the vertical threads of the sheathing 
membrane, the deviation of drops from their downward path is significantly less compared to 
drops flowing down, e.g. over sample 4 that were affected by the bulged areas on their way 
down. By comparing the average retention during the test for the different sheathing 
membranes (Figure 3b), it can be stated that the quantity of retained water decreased for 
increasing contact angle. The error bars of the measurements during flow represent the 
minimum and maximum values. After drainage had finished this trend was less apparent. The 
largest amount of retained water was measured for sample 2 and 4. The surface of sample 2 
contained grooves resulting in locally reduced thickness of the gap width (< 1 mm) which 
caused capillary retention at the top portion of the grooves. Locally reduced gap width is also 
observed for sample 4 due to bulging of the building paper resulting in a larger amount of 
retention. The larger contact angle of sample 3 (θC, static 90.4 ± 2.1) compared to polycarbonate 
(θC, static 79.1 ± 1.5), results in a smaller drop base area as well as fewer drops per mm2. In 
contrast, sample 1 had a contact angle similar to polycarbonate but the number of drops per 
mm2 was larger. This is also apparent when the vertical spacing between the drops is 
compared (PC: 4.27 ± 0.29 mm; S1: 3.41 ± 0.32 mm). This is caused by the woven pattern of 
the sheathing membrane resulting in trace droplets every other thread.  
 
DISCUSSIONS AND CONCLUSIONS 
Drainage tests performed on two polycarbonate plates with different gap widths, showed that 
smaller quantities of water are retained in the cavity for gap widths of 2 mm and 1 mm 
compared to the retained quantity on a single sheet or in a gap of 3 and 5 mm. This confirms 
the results found by Straube and Smegal (2007) who stated that a drainage gap of 1 mm 
between two acrylic sheets stored less water than a single acrylic sheet. Further analysis 
should reveal whether this can also be stated for gaps smaller than 1 mm as more water drops 
will presumably be retained between both plates as a result of larger quantities of capillary 
retained water. The average base area and consequently the trace drop diameter differed over 
the area of the setup. This is in contrast with the observations of Blocken and Carmeliet 
(2006) who stated that the base diameter was fixed. This is probably due to a different method 
of adding water to the test setup, i.e. spraying of water onto the vertical sheet or water drops 
flowing downwards only from the top of the setup. De Vogelaere and Pacco (2012) developed 
a numerical model at Ghent University to simulate runoff patterns on building facades. By use 
of a micro model, a simulation was conducted of the cumulated runoff volume on a PMMA 
surface over time. The shape of the resulting graph is very similar to the graphs obtained from 
the experiments in this paper including a steady-state with small peaks achieved after less than 
100 seconds. Further analysis should be carried out to confirm the results of the simulation 
model.  
 
Drainage test were also performed for different sheathing membranes. These tests showed that 
the quantity of water in the gap between the polycarbonate plate and the sheathing membrane 
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during water flow depends on the contact angle of the sheathing membrane. After drainage 
has finished, this is however less apparent. As stated by Blocken and Carmeliet (2006) not all 
retained water is present in the gap as single drops, but also some portion is retained in 
between the PC plate and the membrane due to locally reduced thickness of the gap. Future 
research should include a broader range of contact angles and smooth surfaces as it was 
observed that the presence of grooves and threads affects the quantity of retained water and 
the size of the wetted area.  
 
Overall, measurements showed that less than 0.5 % of water added over the course of the test 
(+/- 4.8 l) was retained in between the plates or on a single sheet both during water flow and 
after drainage has finished. Future research will focus on the development of a drainage model 
to predict the drainage capacity required for a drainage gap in function of the applied 
materials and gap width necessary to prevent the build-up of hydrostatic pressure which may 
cause water to penetrate further into the wall assembly.  
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