
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science -
Technical Reports College of Engineering and Computer Science

11-18-2011

A new cohesion metric and restructuring technique for object A new cohesion metric and restructuring technique for object

oriented paradigm oriented paradigm

Mehmet Kaya
Syracuse University

Jim Fawcett
Syracuse University, jfawcett@twcny.rr.com

Follow this and additional works at: https://surface.syr.edu/eecs_techreports

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Kaya, Mehmet and Fawcett, Jim, "A new cohesion metric and restructuring technique for object oriented
paradigm" (2011). Electrical Engineering and Computer Science - Technical Reports. 73.
https://surface.syr.edu/eecs_techreports/73

This Report is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science - Technical Reports by
an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/eecs_techreports
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs_techreports?utm_source=surface.syr.edu%2Feecs_techreports%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs_techreports%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs_techreports/73?utm_source=surface.syr.edu%2Feecs_techreports%2F73&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

SYR-EECS-2011-11 November 18, 2011

A New Cohesion Metric and Restructuring Technique for Object Oriented
Paradigm

Mehmet Kaya

James W. Fawcett

mkaya@syr.edu
jfawcett@twcny.rr.com

ABSTRACT: When software systems grow large during maintenance, they may lose their quality and
become complex to be read, understood and maintained. Developing a software system usually requires
teams of developers working in concert to provide a finished product in a reasonable amount of time.
What that means is many people may read each component of the software system such as a class in
object oriented programming environment. We believe that a software component should be of good
quality for the readers of the code to find its intents clear and the code behavior obvious. When this is the
case it will be less costly to maintain the code and when its intent is clear, the code will be reusable,
which is one of the key features of object oriented programming. Several software quality metrics have
been proposed to measure overall or partial quality of software units such as classes or procedures.
Cohesion is one of the most widely used metrics to measure quality of a software unit in terms of the
relatedness of its components. This work presents a new cohesion metric based on program slicing and
graph theory for units using object oriented paradigm. We believe that one can make a judgment on
clarity of intent of the code using the metric we propose here. We aim to find out if a class is cohesive,
handling one specific operation. We identify all program statements which constitute the operations in the
same abstraction domain. When a class has more than one abstraction, this technique suggests a
restructuring for generating more cohesive units based on this new cohesion metric.

KEYWORDS: Object Oriented Cohesion Metric, Code Restructuring, Extract Class, Program Slicing, Graph

Theory

Syracuse University - Department of EECS,

4-206 CST, Syracuse, NY 13244

(P) 315.443.2652 (F) 315.443.2583

http://eecs.syr.edu

A New Cohesion Metric and Restructuring Technique

for Object Oriented Paradigm

Mehmet Kaya
Department of Computer Science and Electrical

Engineering

Syracuse University

Syracuse, NY, USA

mkaya@syr.edu

James W. Fawcett
Department of Computer Science and Electrical

Engineering

Syracuse University

Syracuse, NY, USA

jfawcett@twcny.rr.com

Abstract— When software systems grow large during

maintenance, they may lose their quality and become complex

to be read, understood and maintained. Developing a software

system usually requires teams of developers working in concert

to provide a finished product in a reasonable amount of time.

What that means is many people may read each component of

the software system such as a class in object oriented

programming environment. We believe that a software

component should be of good quality for the readers of the

code to find its intents clear and the code behavior obvious.

When this is the case it will be less costly to maintain the code

and when its intent is clear, the code will be reusable, which is

one of the key features of object oriented programming.

Several software quality metrics have been proposed to

measure overall or partial quality of software units such as

classes or procedures. Cohesion is one of the most widely used

metrics to measure quality of a software unit in terms of the

relatedness of its components. This work presents a new

cohesion metric based on program slicing and graph theory for

units using object oriented paradigm. We believe that one can

make a judgment on clarity of intent of the code using the

metric we propose here. We aim to find out if a class is

cohesive, handling one specific operation. We identify all

program statements which constitute the operations in the

same abstraction domain. When a class has more than one

abstraction, this technique suggests a restructuring for

generating more cohesive units based on this new cohesion

metric.

Keywords- Object Oriented Cohesion Metric; Code

Restructuring; Extract Class; Program Slicing; Graph Theory;

I. INTRODUCTION

Quality of a software unit is often measured with metrics
like cohesion and coupling. Software developers put a great
deal of effort into implementing high quality software units.
High quality software has to be cohesive, readable,
understandable, and reusable. Although these metrics can be
used to measure the quality of a fragment of source code, in
this work a unit refers to a class in an object oriented
programming environment. In general, while cohesion
metrics refer to the inter relatedness of a class’s components,
coupling measures the dependencies of a class with other
units in the whole system.

Software development is a continuing process which
requires maintenance after release of the software product.

During this maintenance phase, developers may need to add
some new functionality to the product or may need to change
some of the existing functionalities based on changing needs
of the users and transient working environments of the
product. During this phase, changes made on the source code
may reduce the quality of the software and make future
changes more costly. Restructuring techniques help source
code regain its quality after maintenance operations or
sometimes even before the first release of the product.

A. Basics of Program Slicing

Program slicing is one of the preferred techniques to
measure the cohesion level of software units. The concept of
program slicing was first proposed by Mark Weiser [9, 12,
and 13]. Weiser describes program slicing as the method of
automatically decomposing programs by analyzing their
relationships between statements based on data and control
flow. Given the criterion C=(s, V), where s is a program
statement and V is a subset of variables in a program P,
program slicing is the process of finding all the program
statements that affects value of a variable v in statement s.
Figure 2 shows the program slice on the example program
fragment P given in Figure 1, with respect to the criterion C=
(9, sum). Here the number 9 represents the statement in line
9 of program P, i.e. cout << sum;

1

2

3

4

5

6

7

8

9

10

int i;

int sum = 0;

int product = 1;

for(i = 0; i < N; ++i)

{

 sum = sum + i;

 product = product *i;

}

cout<< sum;

cout<< product;
Figure 1. Example Program Fragment P

Program slicing has been used in procedural
programming extensively since it was first proposed by
Weiser. An empirical study of some slice-based cohesion
metrics can be found in [5]. Slice based cohesion metrics
have been proposed for measuring cohesion level of a
procedure and used in various studies [1-13]. In [6], reviews
on slice-based cohesion measures for procedural paradigm
and object-oriented paradigm are discussed. Slice-based

cohesion measures for object oriented software discussed in
[6] is either an extension of functional cohesion measures
[11] or uses data member-method interactions for
measurement [18], and they are quite different than our
approach described in this paper. Some studies using
program slicing, suggest restructuring for procedures by
defining the low cohesive parts of them to be extracted from
the procedure. In [10], this technique is used to measure the
cohesiveness of each statement in a procedure and to identify
parts of the procedure that cause low cohesion for
restructuring purposes. In [22], cohesion level between
output variables of a function is determined and a graph
(pair-wise cohesion graph) is generated to visualize this
relationship. After removing all edges that represent a
cohesion below a given threshold level, they suggest
restructuring the function based on connected components in
the graph. Although the approach in [22] seems to be similar
to ours, we generate our graph in a completely different way
seeking semantic relationships between statements in object-
oriented programs and our graph represents semantic
relationships between data members of a class rather than
cohesion values between them. Moreover we suggest
extracting new reusable and cohesive classes rather than just
a number of functions based on the cohesion metric we
define for classes in object oriented software.

1

2

3

4

5

6

7

int i;

int sum = 0;

for(i = 0; i < N; ++i)

{

 sum = sum + i;

}

cout<< sum;
Figure 2. Slice of P with resp. to C=(9,sum)

In [2], the notion of data slices is defined and used for
measuring functional cohesion. For each output variable v,
the data slice is defined as the set of data tokens (i.e. variable
and constant definition and references). Therefore a change
made on any of the data tokens in data slice of v will affect
the value of output variable v at some point. Cohesion is
measured based on the percentage of data tokens that appear
in more than one data slice and the ones that appear in all the
data slices. In this version of slicing, data tokens are the basic
units rather than statements in the program.

B. Object-Oriented Cohesion Metrics and Restructuring

To our knowledge, there has not been any program
slicing based cohesion measure suggested for restructuring
classes into more cohesive abstractions while preserving
behavior of the whole system in object oriented
environments. In our approach for measuring cohesion we
use a graph representation of the slices found in a class for
conceptual evaluation and for restructuring the class into a
more cohesive form. This graph representation of program
slices will be of great help to see which parts of the class are
more related to each other at the statement level.

Although there has been very few slice based cohesion
metrics proposed for measuring the quality of classes in
object oriented paradigm, to our knowledge none has been
proposed for restructuring purposes. In [11], slice based data

cohesion measures for object oriented designs are defined as
a modification of slice based functional cohesion measures
defined by Bieman and Ott [2]. In [11], private and protected
member variables of a class are considered as the data tokens
and data slices are determined based on them. They do not
alter the definition of measuring cohesion and use exactly the
same measurement technique proposed by [2]. We believe
that, although this study is one of the very few that use
program slicing in object oriented paradigm, it does not
support restructuring a class into more cohesive form once
low cohesion level of the class is determined.

There are some other techniques used to indicate the
cohesion level of a class. The majority of them use
interactions between data members and methods of the class
such as data member usage or sharing of data members [14,
15, 16, 17, 18, and 19]. Some studies represent this method-
data member relationship with an undirected graph and
suggest that the number of connected components in the
graph indicates the cohesion level [17]. In [19] the
dependency relationship between data members is also
considered when evaluating the usage of a data member by a
method. Although we believe that using graph theory in this
manner is an important technique, none of these works
suggest any restructuring to improve the cohesion level of a
class once they quantitatively identified the low cohesion
level of the class at hand.

In this work our evaluation of cohesion is quite different
as we take executable statements and data members of a
class and the relationship between them as the entities from
which we construct our cohesion metrics. Therefore we
believe that the information we get from that captures the
semantic relationship of the data members more precisely
than other techniques which consider only usage of data
members in methods and method invocations.

Clustering Techniques is another preferred area of study
for cohesion measurement and restructuring in object
oriented paradigm. The basic idea in this technique is to
group entities in a system (these entities are usually data
members, methods and classes) based on the similarities
between them or the relationships that they preserve in order
to construct more cohesive groups [20].

Almost all applications of restructuring which use
clustering techniques have this idea of moving data members
or methods or some other entities that they define from one
component to another. We believe that this approach may not
be very useful for some cases as a method itself may not be
cohesive. Our approach on the other hand, will help to
generate classes with highly cohesive methods with the
selected statements as it focuses on statements, data
members, and semantic relationships between them, rather
than just usage of data members in other components. In
conclusion program slicing in this sense would be the most
appropriate technique for restructuring classes as this
technique reveals the actual relationship between
components of interest.

C. Paper Organization

The rest of the paper is structured as follows. In section 2
we explain how we apply program slicing to object oriented
classes with some new definitions of dependencies between
statements. The section highlights the process of
determination of slicing criteria and program slices based on
the criteria. Section 3 introduces the Data-Slice-Graph
(DSG) and the cohesion metrics we develop for it. A
restructuring process based on the cohesion and DSG is
given in section 4. Section 5 provides an application of the
approach on a small explanatory source code. Concluding
remarks are provided in Section 6.

II. DETERMINATION OF SLICING CRITERIA AND

CONSTRUCTION OF PROGRAM SLICES

In this section we describe our slicing criteria and how
we approach the identification process of program slices
based on those criteria.

A. Slicing Criteria in a Class

The first step in our approach is to determine the slicing
criteria in the class. To identify slicing criteria and slices in a
class C, we have defined the following sets:

 DMC is the set of all private data members
defined in class C.

 STdxC is the set of all program statements which
use data member d in C where d Є DMC.

Therefore each element of the set STdxC represents a
slicing criterion for data member d. Furthermore, for each d1
in DMC, we have a corresponding set STd1xC representing the
slicing criteria for data member d1.

B. Dependency Relation between Statements

In this study we use control and data dependencies
between program statements to identify the slices in our
target class. Informally speaking, a slice is the combination
of backward and forward slices based on a criterion defined
in above section. While a backward slice is defined as all the
statements that the computation at the slicing criteria may
depend on, forward slice consists of all the statements
computation of which may be affected by the slicing criteria
[23].

In this study, we analyze the dependencies between
statements to construct the slices. Our primary focus is to
find program statements which constitute operations in the
same abstraction domain. For this reason we define a set of
conditions for the statements to be evaluated in this manner.
We say that two statements, S1 and S2, are dependent when
one of the following conditions is true:

1. Execution of statement S1 is controlled by
statement S2, or vice versa. An “if” control
statement or a “for” loop statement is a good
example for this case.

2. A variable defined in S1 is being used in S2

3. A variable, defined in statement S’ which uses a
variable defined in S1, is being used in S2.

4. A variable defined in statement S’ is being used
in both S1 and S2.

5. Invocation of a function f () which includes the
statement S1 is controlled by statement S2.

6. Execution of both S1 and S2 is controlled by the
statement S’.

7. A variable defined in S1 is passed to a function f
as an argument and the argument is being used
in statement S2 of function f.

1

2

3

4

5

6

7

8

9

10

int i;

int sum = 0;

int product = 1;

for(i = 0; i < N; ++i)

{

 sum = sum + i;

 product = product *i;

}

cout<< sum;

cout<< product;
Figure 3. Slice of P with resp. to C=(9, sum)

Our definition of dependency relationship takes both
direct and indirect dependencies into consideration and
generates slightly different slices than other program slicing
approaches do. After finding a specific slicing criterion, we
take all the statements, which we think are semantically
related to the criterion, into the slice rather than only the
statements which affect value of a specific variable in the
criterion. Figure 3 shows the slice we get from program
fragment given in Figure 1 with respect to the criterion C=
(9, sum) considering the dependency conditions stated above.
Notice that from Figure 3 one can infer that all the statements
are dependent in that program fragment with respect to the
given criteria. We believe that in the scope of class cohesion
and restructuring, considering all the dependency conditions
listed above will lead to more accurate results as we seek
semantic relationships between statements.

Figure 4 demonstrates the dependency conditions listed
above using some fragments of the source code of the
original version of Class1 given in appendix. In condition 1,
5 and 6 of the figure, let the statements at line numbers 129,
131, 132 and 19 be represented by S’, S1, S2 and S3
respectively. S’, S1 and S2 are dependent since execution of
S1 and S2 is controlled by S’ and moreover S’ and S3 are
also dependent as invocation of function ErrorInSize(),
which includes S3, depends on S’. In condition 2 and 3, let
the statements at line numbers 64, 65, 66 and 67 be
represented by S’, S1, S2 and S3 respectively. S’, S1, S2 and
S3 are dependent because of their variable usage. In
condition 4, let the statements at line numbers 111, 112 and
113 be represented by S’, S1 and S2 respectively. S’, S1 and
S2 are dependent because a variable defined in S’ is used in
both S1 and S2. In condition 7, let the statements at line
numbers 29 and 101 be represented by S1 and S2
respectively. S1 and S2 are dependent because a variable
defined in S1 is being passed to function
PushFunInvok(std::string str) as an argument and the
argument is being used in statement S2 of the function.

Condition 1, 5 and 6

16

17

18

19

20

21

void ErrorInSize()

{

 cout<<"Index out of range!\n";

 cout<<"The Array has "<<top

 <<" elements.\n";

}

129

130

131

132

133

134

135

136

137

138

139

 if (top > 0)

 {

 top--;

 int temp_int=stk[top];

 return temp_int;

 }

 else

 {

 ErrorInSize();

 return -1;

 }

Conditions 2 and 3

64

65

66

67

 int w=x2-x1;

 int h=y2-y1;

 int a=w*h;

 return a;

Condition 4

111

112

113

 string temp="Push invoked: ";

 temp+=t;

 PushFunInvok(temp);

Condition 7

29

30

31

 string temp="Class1 invoked: ";

 temp+=t;

 PushFunInvok(temp);

97

98

99

100

101

102

103

104

105

106

void PushFunInvok(std::string str)

{

 if (topInvok < 100)

 {

 funinvokes[topInvok]=str;

 topInvok++;

 }

 else

 ErrorInSizeFunInvok();

}
Figure 4. Dependencies between Statements

C. Determination of Program Slices

To identify slices for data members defined in a class C,
we have defined the following sets in addition to the sets
defined in section 2.A:

 SLstxC is the set of all program statements which
directly or indirectly depend on the statement st
based on the conditions listed in section 2.B. In
other words, SLstxC is the union of backward and
forward slices based on the criterion of
statement st.

 SLdxC is the union of all SLstxC where st Є STdxC
and d Є DMC.

SLdxC= ⋃

Therefore SLdxC is the slice in our class C which includes
all statements that directly or indirectly depend on at least
one of the statements which reference data member d in C.

III. DATA-SLICE-GRAPH AND A NEW COHESION METRIC

Class structure is the key unit of object oriented
programming. Therefore, developers aim to design classes
with high quality so that they can be reused, maintained, and
tested easily. To reduce maintenance cost, these key units are
expected to be simple, understandable, and readable as well.

Cohesion metrics have been studied extensively for the
purpose of evaluating the relatedness of the components of a
class. Different techniques have been used to quantify this
aspect of the quality for a class. Most of the cohesion metrics
are not proposed for restructuring classes to improve
cohesion; therefore they may not be so practical to be used as
a restructuring criterion. We believe that a cohesion metric
based on program slicing idea will give more accurate results
in object oriented environment as a restructuring criterion.

In object-oriented programming, a class generally is
designed to handle one certain operation (one abstraction).
To achieve this, most classes have some data members and
functions to handle some part of the operation based on the
clients’ requests using some of the data members defined in
the class. From this point we think that there is likely to be a
relationship between the data members which are used to
perform the intended operation of the class.

As software is exposed to changes during maintenance
phase of software development life cycle, the classes may be
altered in a way that they include some irrelevant
components to their intended operations and therefore they
no longer preserve their simplicity and reusability properties
by including more than one abstraction. Or a class may
initially be designed having more than one abstraction in it
because of complex requirements or some other reasons. If
the class has more than one abstraction, there must be a
group of data members involving in each abstraction domain.
In other words, if there is more than one independent group
of data members in the class definition, we can say that there
is more than one abstraction in the class and so it is not
cohesive.

In this study, we aim to formalize the idea described in
the paragraph above, and suggest a restructuring to partition
the class into two or more cohesive target classes. For doing
so, we generate data-slice-graphs (DSG) to visualize the
relationship between the data members.

In some other works which use the idea of graph theory
for measuring cohesion, they generate the graph based only
on whether a method uses the data member of interest or not.
A graph generated from this idea may not always reveal
actual semantic relationship between data members. A graph
generated from program slices, in our sense, will be of great
help to see the real relationship between data members;
hence we expect it will give more accurate results.

In DSG, each node represents a data member of the class
which may possibly need to be restructured. We have the
following definitions for DSG:

 DSG= (V, E) is a undirected graph such that V
is the finite set of data members representing
vertices in the graph and E is the finite set of
relationships between data members
representing edges in the graph.

 |V| is the number of data members of the class

 Let v1v2 represent an edge between two nodes
v1 and v2;

v1v2 Є E iff SLv1xC ∩ SLv2xC ≠Ø

The description of DSG indicates that two data members,
d1 and d2, are dependent if there is at least one program
statement in the class that affects at least one occurrence of
both data member d1 and data member d2 based on the
dependency conditions given in section 2.B. Therefore the
vertices, v1 and v2, representing data members d1 and d2
respectively, have an edge between them in DSG, i.e. v1v2 is
in E.

We define the cohesion level of the class as the number
of connected components, NC, in its DSG. The bigger NC
the less cohesive our class is. Each connected component in
DSG refers to one abstraction that the class holds.

IV. RESTRUCTURING THROUGH DSG

To propose restructuring for the class at hand, we use
DSG and the number of connected components (NC) in
DSG. Before discussing restructuring we shall explain what
various values of NC mean:

 NC = 0 means there is not any data members
defined in the class. That is a class that has no
state - a utility class may be an example for this.
Note that we do not apply this restructuring idea
on this type of classes as DSG does not reveal
any relationship for this kind of classes.

 NC = 1 occurs when the class has only one
abstraction and when it is most cohesive. We do
not restructure this kind of classes as this is the
best situation a class may be in.

 NC > 1 occurs when the class has more than one
abstraction. DSG reveals this by having more
than one connected component and each
connected component in this case represent one
different abstraction the class is designed to
handle. We restructure the code in this case and
generate one cohesive class out of each
connected component in DSG.

In DSG each connected component is a candidate to be
extracted as a new smaller yet more cohesive class. In the
example DSG given in Figure 5, C1 and C2 represent two
different abstractions and our approach suggests that they
should be extracted as new classes. Therefore data members
represented by v1-v5 together with their slices are to be one
class and data members represented by v6-v8 together with
their slices are to be another class.

Figure 5. Example DSG

Our approach proposes this restructuring by defining
independent sets of statements to be components of new
classes. We propose to generate a method in the class with
each consecutive set of statements in the slice of any data
member that construct the connected component of the class.
For example in Figure 5 data members v6, v7, and v8
construct the connected component for a new class C2 and
each consecutive set of statements in the slices of these data
members will be a method in C2.

In this study, we aim to come up with a technique to
generate new cohesive and reusable classes from an existing
less cohesive class. Although our approach fully defines all
the statements related to one specific abstraction,
restructuring the initial class to achieve our goal may require
some simple analysis on the slices defined by our technique.
In most cases extracting statements in the slices as methods
into the new class is straightforward. Yet, there might be a
few edge cases to handle for preventing any undesirable
results. For example, we do not want to have any
dependency from the classes we generate to the original class
as this will affect the reusability of the classes by having a
mutual dependency with the original class. This scenario is
possible if a slice is including a function call. We have
defined the following cases regarding possible problems with
function calls during restructuring:

 Case 1: Function call in a control block

Definition: Our technique always guarantees that the
function definition and the function call in this case are in the
same slice. The 5th dependency condition listed in section
2.B assures this. Code fragment given for this condition in
Figure 4 demonstrates this case. In that example code,
statements at lines 18, 19, 20 and 137 are always guaranteed
to be in the same slice.

 Action: We suggest changing that function call in the
control block with a function call to the corresponding
function created in the new class. That will eliminate a call-
back to the original class. In other words, during
restructuring of the code fragment given in Figure 4,
statements at line numbers 19, 20 and 21 will be moved into
a new class as a function and statements at line numbers
between 129 and 139 will be moved to the same class as
another function. Let f1 and f2 represent these two functions
respectively. We can assure this as all of the statements
above will always reside in the same slice. Therefore we
replace the function call ErrorInSize(); in function f2 with a
function call to function f1.

v2 v1

v3 v4 v5

v6 v7

v8

C1
C2

 Case 2: Function call without an argument

Definition: Our technique always guarantees that the
function call in this case will not reside in any of the slices
defined by our technique as there is not any data being used
in this function call.

Action: We do not need to do anything special for this
case. This case does not cause any call back to the original
class.

 Case 3: Function call with an argument

Definition: Our technique does not guarantee that all of
the statements in the definition of the function will always be
in the same slice as function call, although we think that this
is a case unlikely to happen. Yet, at least some parts of the
function will be in the same slice with the function call, but
the action in case 1 would not solve this problem in this case.
The 7th dependency condition listed in section 2.B is related
to this case and code fragment given for this condition in
Figure 4 demonstrates it. In that code fragment function call
at line number 31 passes an argument to the function
PushFunInvok(std::string str) and statement at line 101 uses
that argument. When we analyze this function we will see
that all the statements in its definition are fully dependent
with respect to the criterion C= (101, str) based on our
dependency conditions. This makes the case to be just like
case 1 and action in case 1 will handle any possible call
backs for our example program.

Action: One should verify if the definition of the function
consists of statements which are fully dependent based on
some previously defined criteria or based on criterion of the
statement which uses the argument passed to the function. If
the function definition consists of fully dependent statements
then this case is same as case 1. Otherwise this function call
should be removed from the slice and the argument in the
function call should be replaced with a return value from the
function created in the new class corresponding to this
consecutive set of statements where the function call resides.

Considering all of these cases will eliminate any possible
undesirable dependencies that might arise from call-backs to
the original class.

V. CASE STUDY

We now present an example for demonstration of this
new cohesion and restructuring approach. We have our initial
class as shown in appendix with the name of Class1. This
class has 9 private data members and is not very well
designed. Figure 6 shows all the properties of the class based
on our approach for data members stk and top. Note that in
the figure all the numbers given as an element of a set are the
line numbers of the statements in the program. Sets for other
data members of the class and their pair wise comparisons
can be found in [21].

DMClass1 = {stk, top, funinvokes, topInvok,

 rawtime, x1, y1, x2, y2}

stk

STstkxClass1 ={116, 132}

SL116xClass1 ={114, 116, 117, 120, 18, 19}

SL132xClass1 ={129, 131, 132, 133, 137, 138, 18, 19}

SLstkxClass1 = SL116xClass1 U SL132xClass1

SLstkxClass1 ={114,116,117,120,18,19,129,

 131,132,133,137,138}

top

STtopxClass1 ={19,32,87,114,116,117,129,

 131,132,148}

SL19xClass1 ={19}

SL32xClass1 ={32}

SL87xClass1 ={87}

SL114xClass1 ={114,116,117,120,18,19}

SL116xClass1 ={114,116,117,120,18,19}

SL117xClass1 ={114,116,117,120,18,19}

SL129xClass1 ={129,131,132,133,137,18,19,138}

SL131xClass1 ={129,131,132,133,137,18,19,138}

SL132xClass1 ={129,131,132,133,137,18,19,138}

SL148xClass1 ={148}

SLtopxClass1 = ⋃

 = {19,32,87,114,116,117,120,18,

 129,131,132,133,137,138,148}

Figure 6. Example Calculations for Class1

In Figure 6, the set STstkxClass1 is the set of all statements

that use data member stk of Class1. This set represents the
slicing criteria for that data member. In this case there are
two statements which use data member stk in Class1, and
they are the statements at line number 116 and 132. The sets

SL116xClass1 and SL132xClass1 represent the slices based on the

criterion of the statement at line number 116 and the criterion
of the statement at line number 132 respectively. And finally

the set SLstkxClass1 represent the slice of data member stk

including all the statements that is dependent on at least one
occurrence of that data member.

After finding all the properties for each data member of
the class as shown in Figure 6, now we are ready to construct
DSG for the class. Figure 7 shows the process of
constructing the graph.

Number of vertices

|V|=#of private data members=9

Edges

Let v1 and v2 represent data members stk and top

respectively.

SLstkxClass1 ∩ SLtopxClass1={114,116,117,120,18,19,129,

 131,132,133,137,138}

SLstkxClass1 ∩ SLtopxClass1 ≠ Ø

Therefore;

v1v2 Є E
Figure 7. Construction Process of DSG

We have analyzed the codes for the given example class
in appendix and generated the table shown in Figure 8 that
demonstrates the pair-wise comparisons of the slices for each
data member of the class.

Figure 8 shows the intersections of slices of pairs of data

members of Class1 given in appendix. “Ø” means that the

intersection of the slices is the empty set for the two data

members and ∩ means that there are some elements in the

intersection of the slices. From this table, we generated the
DSG in Figure 9.

∩

st
k

to
p

fu
n

in
v
o

k
es

to
p

In
v
o

k

ra
w

ti
m

e

x
1

y
1

x
2

y
2

stk ∩ ∩ Ø Ø Ø Ø Ø Ø Ø

top ∩ ∩ Ø Ø Ø Ø Ø Ø Ø

funinvokes Ø Ø ∩ ∩ ∩ Ø Ø Ø Ø

topInvok Ø Ø ∩ ∩ ∩ Ø Ø Ø Ø

rawtime Ø Ø ∩ ∩ ∩ Ø Ø Ø Ø

x1 Ø Ø Ø Ø Ø ∩ ∩ ∩ ∩

y1 Ø Ø Ø Ø Ø ∩ ∩ ∩ ∩

x2 Ø Ø Ø Ø Ø ∩ ∩ ∩ ∩

y2 Ø Ø Ø Ø Ø ∩ ∩ ∩ ∩
Figure 8. Intersections of the Slices for Class1.

In Figure 9, we represent the relationship between data
members shown in Figure 8 with an undirected graph
representing the corresponding DSG for our class. Each
connected component in the DSG in Figure 9 is shown with
a different line style. In this case our corresponding DSG has
three connected components. That means that the class we
have analyzed has three abstractions in it and it is not
cohesive and thus it should be restructured.

Figure 9. DSG of Class1

Our restructuring approach suggests creating a new class
for each one of the connected component, found in DSG. In
this case we suggest extracting three classes. The first class
will include data members of funinvokes, rawtime, topInvok
and their corresponding slices. The second class will include
data members of top and stk and their corresponding slices.
And lastly the third class will include x1, x2, y1, y2 and their
corresponding slices.

After extracting the suggested classes, the initial class
will also be modified as it will invoke the proper functions of

the new classes in the places where statements were
removed. Therefore, since our approach does not suggest
altering the public interface of the original class, this
restructuring will not affect clients’ code at all. The original
and restructured versions of the example class Class1 and the
new classes that we extracted from original class are shown
in the appendix. Because of the limitation on the number of
pages of this paper we show the detailed process of
restructuring in [21].

VI. CONCLUSION

In this study we have proposed a new cohesion metrics
and an extract class restructuring technique for classes in
object oriented environments using program slicing and
graph theory. Our approach is different from other related
works in a way that we try to find statements that constitutes
the same abstraction in a class rather than regrouping
existing components of a system. A tool support is needed
for this approach to be applied to large software system and
that remains as a future work of our study.

REFERENCES

[1] M. Harman, S. Danicic, B. Sivagurunathan, B. Jones, and Y.
Sivagurunathan. “Cohesion metrics,” In Proceedings of the 8th
International Quality Week, San Francisco CA, May 1995.

[2] J. M. Bieman, and L. M. Ott, “Measuring functional cohesion,” IEEE
Trans. Softw. Eng., vol. 20, no. 8, pp. 644–657, Aug 1994.

[3] S. Karstu, “An examination of the behavior of slice based cohesion
measures,” Master’s thesis, Department of Computer Science,
Michigan Technological University, 1994.

[4] H. D. Longworth, “Slice based program metrics,” Master’s thesis,
Michigan Technological University, 1985.

[5] T. Meyers, and D. W. Binkley, “Slice-based cohesion metrics and
software intervention,” In 11th IEEE Working Conference on Reverse
Engineering (WCRE 2004), pp. 256–265, 8-12 Nov 2004

[6] L. M. Ott, and J. M. Bieman, “Program slices as an abstraction for
cohesion measurement,” Information and Software Technology, vol.
40, no. 11/12, pp. 691–700, 1998.

[7] L. M. Ott, and J. J. Thuss, “The relationship between slices and
module cohesion,” In Proceedings of the 11th ACM conference on
Software Engineering, pp.198–204, 1989.

[8] L. M. Ott, and J. J. Thuss, “Slice based metrics for estimating
cohesion,” In Proceedings of the IEEE-CS International Software
Metrics Symposium, pp. 71–81, 21-22 May 1993.

[9] M. Weiser, “Program slices: formal, psychological, and practical
investigations of an automatic program abstraction method,” PhD
thesis, University of Michigan, Ann Arbor, 1979.

[10] J. Krinke, “Statement-Level Cohesion Metrics and their
Visualization,” Seventh IEEE Int. Working conference on Source
Code Analysis and Manipulation, pp. 37-48, Sept. 30 2007-Oct. 1
2007

[11] B. Gupta, “A critique of cohesion measures in the object oriented
paradigm,” Master’s thesis, Department of Computer Science,
Michigan Technological University, 1997.

[12] M. Weiser, “Program Slicing,” IEEE Transactions on Software
Engineering, vol. 10, no. 4, pp. 352-357, July 1984

[13] M. Weiser, “Program Slicing,” Proceedings of the 5th International
Conference on Software Engineering, pp. 439-449, 1981

[14] S. R. Chidamber, and C. F. Kemerer, “Towards a Metrics Suite for
Object-Oriented Design,” Object-Oriented Programming Systems,
Languages and Applications (OOPSLA), Special Issue of SIGPLAN
Notices, Vol. 26, No. 10, pp. 197-211, October 1991.

[15] S. R. Chidamber, and C. F. Kemerer, “A Metrics suite for object
Oriented Design,” IEEE Transactions on Software Engineering, Vol.
20, No. 6, pp. 476-493, June 1994.

x2
x1

rawtime

topInvok

stk

top y1

y2

funinvokes

[16] W. Li, and S. Henry, “Object oriented metrics that predict
maintainability,” Journal of Systems and Software, vol. 23, no. 2, pp.
111-122, February 1993.

[17] M. Hitz, and B. Montazeri, “Measuring coupling and cohesion in
object oriented systems,” Proceedings of the Int. Symposium on
Applied Corporate Computing, October 1995.

[18] J. M. Bieman and B.-K. Kang, “Cohesion and Reuse in an Object-
Oriented System,” Proc. Symp. Software Reusability, pp. 259-262,
1995.

[19] H. S. Chae, Y. R. Kwon, and D. H. Bae, “Improving Cohesion
Metrics for Classes by Considering Dependent Instance Variables,”
IEEE Transaction on Software Engineering, vol. 30, no. 11, pp. 826-
832, November 2004,

[20] G. Şerban, I-G. Czibula, “Restructuring Software Systems Using
Clustering,” 22nd Int. Symp. on Computer and Information Sciences
(ISCIS), pp. 1-6, 7-9 Nov 2007

[21] All the example codes and detailed restructuring process is posted on
“http://www.ecs.syr.edu/faculty/fawcett/handouts/research/kaya/files/
appendix.pdf”

[22] A. Lakhotia, and J.-C. Deprez, “Restructuring Functions with Low
Cohesion,” Proc. Sixth Working Conf. Reverse Eng. (WCRE), pp.
36-46, 6-8 Oct 1999.

[23] S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing using
dependence graphs,” ACM Trans. Programming Lang. and Syst.
(TOPLAS),vol. 12, no. 1, pp. 26-60, Jan. 1990

APPENDIX

Original Class - Class1
1

2

3
4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19
20

21

22

23

24

25

26
27

28

29

30

31

32

33

34
35

36

37

38

39

40

41
42

43

44

45

class Class1

{

private:
 int stk[100];

 int top;

 string funinvokes[100];

 int topInvok;

 time_t rawtime;

 int x1, y1, x2, y2;

 void ErrorInSizeFunInvok()

 {
 cout<<"Index out of range!\n";

 cout<<"The Array has "<<topInvok

 <<" elements.\n";

 }

 void ErrorInSize()

 {

 cout<<"Index out of range!\n";

 cout<<"The Array has "<<top
 <<" elements.\n";

 }

public:

 Class1(int left=0,int up=0,

 int right=0,int bottom=0)

 {

 topInvok=0;
 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Class1 invoked: ";

 temp+=t;

 PushFunInvok(temp);

 top=0;

 x1=left;

 y1=up;
 x2=right;

 y2=bottom;

 }

 ~Class1() {}

 int Height()

 {

 time (&rawtime);
 string t=string(ctime(&rawtime));

 string temp="Height invoked: ";

 temp+=t;

 PushFunInvok(temp);

46

47

48

49

50

51
52

53

54

55

56

57

58
59

60

61

62

63

64

65

66
67

68

69

70

71

72

73
74

75

76

77

78

79

80

81
82

83

84

85

86

87

88

89
90

91

92

93

94

95

96
97

98

99

100

101

102

103

104
105

106

107

108

109

110

111

112
113

114

115

116

117

118

119
120

121

122

 return (y2-y1);

 }

 int Width()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));
 string temp="Width invoked: ";

 temp+=t;

 PushFunInvok(temp);

 return (x2-x1);

 }

 int Area()

 {
 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Area invoked: ";

 temp+=t;

 PushFunInvok(temp);

 int w=x2-x1;

 int h=y2-y1;

 int a=w*h;
 return a;

 }

 int Perimeter()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Perimeter invoked:";
 temp+=t;

 PushFunInvok(temp);

 int w=x2-x1;

 int h=y2-y1;

 return 2*w+2*h;

 }

 void Clear()

 {
 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Clear invoked: ";

 temp+=t;

 PushFunInvok(temp);

 top=0;

 }

 void printAllInvoks()
 {

 for(int i=0; i<topInvok; i++)

 {

 string temp=funinvokes[i];

 cout<<temp;

 }

 }
 void PushFunInvok(std::string str)

 {

 if (topInvok < 100)

 {

 funinvokes[topInvok]=str;

 topInvok++;

 }

 else
 ErrorInSizeFunInvok();

 }

 void Push(int i)

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Push invoked: ";

 temp+=t;
 PushFunInvok(temp);

 if (top < 100)

 {

 stk[top]=i;

 top++;

 }

 else
 ErrorInSize();

 }

 int Pop()

123

124

125

126

127

128
129

130

131

132

133

134

135
136

137

138

139

140

141

142

143
144

145

146

147

148

149

150

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Pop invoked: ";

 temp+=t;

 PushFunInvok(temp);
 if (top > 0)

 {

 top--;

 int temp_int=stk[top];

 return temp_int;

 }

 else
 {

 ErrorInSize();

 return -1;

 }

 }

 int Size()

 {

 time (&rawtime);
 string t=string(ctime(&rawtime));

 string temp="Size invoked: ";

 temp+=t;

 PushFunInvok(temp);

 return top;

 }

};

Restructured Version of Original Class - Class1

1

2

3

4
5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20
21

22

23

24

25

26

27
28

29

30

31

32

33

34

35
36

37

38

39

40

41

42
43

44

45

46

47

class Class1

{

 private:

 New1* n1;
 New2* n2;

 New3* n3;

 void ErrorInSizeFunInvok()

 {

 n2->fun2_1();

 }

 void ErrorInSize()

 {
 n1->fun1_1();

 }

 public:

 Class1(int left=0,int up=0,

 int right=0,int bottom=0)

 {

 n1=new New1();

 n2=new New2();
 n3=new New3(left,up,right,bottom);

 }

 ~Class1() {}

 int Height()

 {

 n2->fun2_2();

 return n3->fun3_1();
 }

 int Width()

 {

 n2->fun2_3();

 return n3->fun3_2();

 }

 int Area()

 {
 n2->fun2_4();

 return n3->fun3_3();

 }

 int Perimeter()

 {

 n2->fun2_5();

 return n3->fun3_4();
 }

 void Clear()

 {

 n2->fun2_6();

 n1->fun1_2();

48

49

50

51

52

53
54

55

56

57

58

59

60
61

62

63

64

65

66

67

68
69

70

71

72

 }

 void printAllInvoks()

 {

 n2->fun2_7();

 }

 void PushFunInvok(std::string str)
 {

 n2->fun2_8(str);

 }

 void Push(int i)

 {

 n2->fun2_9();

 n1->fun1_3(i);
 }

 int Pop()

 {

 n2->fun2_10();

 return n1->fun1_4();

 }

 int Size()

 {
 n2->fun2_11();

 return n1->fun1_5();

 }

};

Extracted Class 1

1

2

3

4

5
6

7

8

9

10

11

12

13
14

15

16

17

18

19

20
21

22

23

24

25

26

27

28
29

30

31

32

33

34

35

36
37

38

39

40

41

42

43
44

45

46

47

48

49

class New1

{

 private:

 int stk[100];

 int top;
 public:

 New1()

 {

 top=0;

 }

 void fun1_1()

 {

 cout<<"Index out of range!\n";
 cout<<"The Array has "<<top

 <<" elements.\n";

 }

 void fun1_2()

 {

 top=0;

 }
 void fun1_3(int i)

 {

 if (top < 100)

 {

 stk[top]=i;

 top++;

 }

 else
 fun1_1();

 }

 int fun1_4()

 {

 if (top > 0)

 {

 top--;

 int temp_int=stk[top];
 return temp_int;

 }

 else

 {

 fun1_1();

 return -1;

 }
 }

 int fun1_5()

 {

 return top;

 }

};

Extracted Class 2

1

2

3

4

5

6
7

8

9

10

11

12

13
14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29
30

31

32

33

34

35

36
37

38

39

40

41

42

43

44
45

46

47

48

49

50

51

52
53

54

55

56

57

58

59
60

61

62

63

64

65

66

67
68

69

70

71

72

73

74

75
76

class New2

{

 private:

 string funinvokes[100];

 int topInvok;

 time_t rawtime;
 public:

 New2()

 {

 topInvok=0;

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Class1 invoked: ";
 temp+=t;

 fun2_8(temp);

 }

 void fun2_1()

 {

 cout<<"Index out of range!\n";

 cout<<"The Array has "<<topInvok

 <<" elements.\n";
 }

 void fun2_2()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Height invoked: ";

 temp+=t;

 fun2_8(temp);
 }

 void fun2_3()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Width invoked: ";

 temp+=t;
 fun2_8(temp);

 }

 void fun2_4()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Area invoked: ";

 temp+=t;
 fun2_8(temp);

 }

 void fun2_5()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Perimeter invoked:";

 temp+=t;
 fun2_8(temp);

 }

 void fun2_6()

 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Clear invoked: ";
 temp+=t;

 fun2_8(temp);

 }

 void fun2_7()

 {

 for(int i=0; i<topInvok; i++)

 {

 string temp=funinvokes[i];
 cout<<temp;

 }

 }

 void fun2_8(string str)

 {

 if (topInvok < 100)

 {

 funinvokes[topInvok]=str;
 topInvok++;

77

78

79

80

81

82
83

84

85

86

87

88

89
90

91

92

93

94

95

96

97
98

99

100

101

102

103

104
105

 }

 else

 fun2_1();

 }

 void fun2_9()

 {
 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Push invoked: ";

 temp+=t;

 fun2_8(temp);

 }

 void fun2_10()
 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Pop invoked: ";

 temp+=t;

 fun2_8(temp);

 }

 void fun2_11()
 {

 time (&rawtime);

 string t=string(ctime(&rawtime));

 string temp="Size invoked: ";

 temp+=t;

 fun2_8(temp);

 }
};

Extracted Class 3

1
2

3

4

5

6

7

8

9
10

11

12

13

14

15

16
17

18

19

20

21

22

23

24
25

26

27

28

29

30

31

32
33

34

35

class New3
{

 private:

 int x1, y1, x2, y2;

 public:

 New3(int left,int up,

 int right,int bottom)

 {

 x1=left;
 y1=up;

 x2=right;

 y2=bottom;

 }

 int fun3_1()

 {

 return (y2-y1);
 }

 int fun3_2()

 {

 return (x2-x1);

 }

 int fun3_3()

 {

 int w=x2-x1;
 int h=y2-y1;

 int a=w*h;

 return a;

 }

 int fun3_4()

 {

 int w=x2-x1;

 int h=y2-y1;
 return 2*w+2*h;

 }

};

	A new cohesion metric and restructuring technique for object oriented paradigm
	Recommended Citation

	TR 2011 11 title page Kaya rev.
	TechnicalReport_MehmetKaya (2)

