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Every Polynomial-Time 1-DegreeCollapses i� P = PSPACE�Stephen A. FennerUniversity of Southern Maine Stuart A. KurtzUniversity of ChicagoJames S. RoyerSyracuse UniversityAugust 16, 1996

�A version of this paper is to be presented at the 1989 IEEE Foundations of ComputerScience Conference. 1



AbstractA set A is m-reducible (or Karp-reducible) to B i� there is apolynomial-time computable function f such that, for all x, x 2 A() f(x) 2 B. Two sets are:� 1-equivalent i� each is m-reducible to the other by one-one re-ductions;� p-invertible equivalent i� each is m-reducible to the other byone-one, polynomial-time invertible reductions; and� p-isomorphic i� there is an m-reduction from one set to the otherthat is one-one, onto, and polynomial-time invertible.In this paper we show the following characterization.Theorem The following are equivalent:(a) P = PSPACE.(b) Every two 1-equivalent sets are p-isomorphic.(c) Every two p-invertible equivalent sets are p-isomorphic.

2



1. OverviewIf A is m-reducible to B, we usually interpret this to mean that A is com-putationally no more di�cult than B, since a procedure for computing B iseasily converted into a procedure for computing A of comparable complex-ity. In fact, this interpretation is supported by much a weaker reduction: Apolynomial-time Turing reducible to B su�ces. Therefore the existence ofan m-reduction from A to B implies a stronger relationship between A andB than the conventional interpretation suggests. This possibility of gainingadditional information about the relationship between A and B gains in-terest from the frequency with which proofs of m-reducibility are obtained.Indeed, the reducibilities obtained in practice are usually stronger still: theyare almost always honest,1 usually length-increasing, and frequently one-one. We hope and expect to get additional useful information from thestrength of these reducibilities. For example, it is known that the classof m-complete sets for deterministic exponential-time are pairwise one-one,length-increasing equivalent [Ber77].In a seminal paper, Berman and Hartmanis [BH77] conjectured that them-complete sets for NP are pairwise p-isomorphic, that is, that the completem-degree2 of NP collapses to a p-isomorphism type. It is easy to prove thatthere are m-equivalent sets that fail to be 1-equivalent, let alone p-isomorphic.Thus, the speci�c location of the Berman-Hartmanis conjecture is critical.However, if one considers strengthenings of m-reducibility, e.g., 1-reducibilityand 1-honest-reducibility, then until a few years ago there were no knownexamples of degrees of these sorts of reducibilities that failed to collapse.The �rst important result in this area was Ko, Long, and Du's [KLD87]1Suppose f; h ::!! !. We say that f is h-honest if and only if, for all x, h(jf(x)j) �jxj, and we say that f is honest if and only if for some polynomial p, f is p-honest.2Reducibilities relate the hardness of sets. Hence, an equivalence class of sets withrespect to a reducibility relation consists of sets of the same \degree" of di�culty. Wethus de�ne a degree to be an equivalence class under a reducibility. So, we speak of m-degrees, 1-degrees, 1-honest-degrees and 1-li-degrees according to the reducibility intended.The term \degree" comes from Post's [Pos44]|the paper that founded modern recursiontheory. 3



theorem that every 1-li-degree collapses if and only if (as seems unlikely)P = UP. In this paper, we show that the statements that (a) every 1-degreecollapses and (b) every p-invertible degree collapses are both equivalent to(c) P = PSPACE. In retrospect, the most remarkable aspect of our resultsis the equivalence of (a) and (b) which we still �nd counterintuitive.1.1. Related WorkMyhill [Myh55] showedMyhill's Theorem Every two recursively 1-equivalent sets are recursivelyisomorphic.This deep and fundamental result implies that recursive 1-equivalence ismuch tighter than might initially be expected: if two sets are so similarthat they are recursively 1-equivalent, then they are recursively identical.There are a number of complexity theoretic version of Myhill's Theorem.Dowd [Dow82] has perhaps the strongest complexity theoretic, exact analogof Myhill's Theorem.Dowd's Theorem Every two strictly linear-space 1-equivalent3 sets arestrictly linear-space isomorphic.In the theory of polynomial-time reducibilities the closest known analogto Myhill's Theorem is due to Berman and Hartmanis.Theorem 1 ([BH77]). If two sets are m-equivalent as witnessed by reduc-tions that are (a) one-one, (b) length-increasing, and (c) p-invertible, thenthe sets are p-isomorphic.The hypothesis that the reductions be one-one is clearly necessary, how-ever, the length-increasing and the p-invertibility hypotheses seem quite3We say that a function f is strictly DSPACE(t) computable if and only if f is com-putable by a deterministic TM that runs within an O(t(n)) space bound on the work tapesand the input and output tapes. 4



strong, perhaps unnecessarily strong. An obvious question is whether ei-ther of these hypotheses can be weakened. Ko, Long, and Du showed thatunder the hypothesis that P 6= UP (i.e., one-way functions exist [Ber77][GS84] [GS88][Ko85]), the p-invertibility hypothesis is indeed necessary.Theorem 2 ([KLD87]). If P 6= UP, then there are 1-li equivalent4 setsthat fail to be p-isomorphic.5This is a remarkable result. 1-li equivalence is a very strong equivalence,but this theorem says that under the reasonable hypothesis of P 6= UP, 1-li degrees are distinct from p-isomorphism types. The theorem's P 6= UPhypothesis is tight. A simple argument showsProposition 3. If P = UP, then every two 1-li equivalent sets are p-isomor-phic.Thus, Theorem 2 and Proposition 3 yield the following striking charac-terization.Corollary 4. P = UP i� every two 1-li equivalent sets are p-isomorphic.One of the reasons this corollary is so striking is that it gives a com-plexity characterization of a degree-theoretic property. Thus, this corollaryessentially settles the question whether every 1-li degree collapses.1.2. Our ResultsWe establish analogs of both Theorem 2 and Proposition 3 for 1-reductionsand p-invertible reductions. We �rst consider our analogs of Theorem 2. WeshowTheorem 5. If P 6= PSPACE, then there are 1-equivalent sets that fail tobe honest m-equivalent.4That is, equivalent under one-one, length-increasing m-reductions.5Moreover, there are such sets that are 2-tt complete for the class of deterministicexponential-time decidable sets. 5



Theorem 6. If P 6= PSPACE, then there are p-invertible equivalent setsthat fail to be p-isomorphic.6Two sets that are p-invertible equivalent have exceedingly similar struc-ture. It is very surprising (at least to us) that under as weak a hypothesisas P 6= PSPACE, this very strong equivalence fails to imply p-isomorphism.Theorem 6 indicates that under the assumption that P 6= PSPACE, thelength-increasing hypothesis of Berman and Hartmanis's Theorem 1 is closeto tight. 7To establish an analog of Proposition 3, we �rst show a version of Dowd'sTheorem for strictly polynomial-space reductions.Theorem 7. Every two strictly polynomial-space 1-equivalent sets are strictlypolynomial-space isomorphic.Now, using Theorem 7 it is straightforward to showTheorem 8. If P = PSPACE, then every two 1-equivalent sets are p-iso-morphic.Therefore, by combining Theorems 5, 6, and 8 we obtain our main result:Theorem 9. The following are equivalent:(a) P = PSPACE.(b) Every two 1-equivalent sets are p-isomorphic.(c) Every two p-invertible equivalent sets are p-isomorphic.6For both Theorems 5 and 6 the witnessing sets can be constructed to be 2-tt completefor exponential-time.7Note that Theorem 6 does not rule out the possibility that \length-nondecreasing"can replace \length-increasing" in the hypothesis of Theorem 1. We suspect that under astronger condition than P 6= PSPACE , the length-increasing hypothesis of Theorem 1 isindeed necessary. 6



2. Technical DetailsWe say that f is honestly-invertible i� the function�x; n ( f�1(x); if f�1(x) is de�ned and of length � n;unde�ned; otherwise.is computable in time polynomial in n+ jxj. For example,�x ( 2n; if x is a power of 2 and x = 2n;2x+ 1; otherwise;is not p-invertible, but it is honestly-invertible. On the other hand, a one-wayfunction is neither p-invertible nor honestly-invertible.Let h'iii2N be an acceptable numbering of the partial recursive functions[Rog67] based on a coding of deterministic, multi-tape Turing machines. Bystandard results in the literature there is a functionT = �i; x; n 8><>:'i(x); if Turing machine i on input x haltswithin n steps;0; otherwisethat is computable in O((jij + jxj + n)2) time. (T is essentially Kleene's Tpredicate.) For each i, let e i = �x [T (j; x; (jxj+ 2)jkj), where i = hj; ki ].It follows that h e iii2N is an enumeration of the polynomial-time computablefunctions such that �i; x e i(x) is computable in 2O(jij+jxj) time.In this section we sketch the proofs of Theorems 5 and 7. One of theattractive features of these proofs this that they are naturally set in thecommon context of the Cantor-Bernstein Theorem.8 The constructions forMyhill's and Dowd's Theorems, Theorem 1, and Theorem 7. are all e�ectivevariants of the standard construction for Cantor-Bernstein. The proofs of Ko,Long, and Du's Theorem and our Theorems 5 and 6 establish that certainplausible e�ective forms of Cantor-Bernstein fail.Notation and Conventions9 In the following ! denotes the set of natu-ral numbers. We identify each number with its dyadic representation over8This theorem states that if there is a one-one map from set A to set B and a one-onemap from B to A, then there is a one-one correspondence between A and B.9For any unexplained notation or terminology in the following, see [KMR88].7



f0;1 g. Let h�; �i denote polynomial-time computable and invertible pairingfunction|the one in [Rog67] will do. Let !0 denote a disjoint copy of !.For each x 2 !, x0 denotes the corresponding element of !0. We assume theordering 0 < 00 < 1 < 10 < 2 < 20 < � � � on (! [ !0).Now, suppose that A � !, B � !0, f :! ! !0 recursively 1-reduces A toB, and g:!0 ! ! recursively 1-reduces B to A. We introduce the directedgraph G = (! [ !0; E), whereE = f (x; f(x)) : x 2 ! g [ f (x0; g(x0)) : x0 2 !0 g :G is clearly bipartite. Since f and g are functions, every vertex of G hasout-degree one. Since f and g are one-one, every vertex of G has in-degreeof at most one.The maximal connected components of G we call f; g-chains or simplychains when f and g are understood. A root of a chain C is a vertex in Cwith in-degree zero. Each chain C is a directed path and has one of fourpossible structures:a. a �nite cyclic path;b. a two-way in�nite path;c. an in�nite path with a root in !; ord. an in�nite path with a root in !0.We say that a function h:! ! !0 respects chains i� for all x, x and h(x)belong to the same chain. Since f and g recursively 1-reduce A to B and Bto A, respectively, it follows that for any h that respects chains we have that,for all x, x 2 A () h(x) 2 B. We say that a function h:! ! !0 crosses achain C i� for some x, an !-vertex of C, h(x) is not an !0-vertex of C.
8



3. IsomorphismsThe constructions for Theorem 7 and Dowd's Theorem are space-boundedversions of the construction for Myhill's Theorem. Below we sketch a proofof Myhill's Theorem followed by a proof of our Theorem 7. First we notethat for f and g as in the beginning of Section 2, the standard constructionfor the Cantor-Bernstein theorem de�nes� = �x ( g�1(x); if x's chain is !0 rooted;f(x); otherwise.(1)A simple argument shows that � is one-one and onto. Moreover, since �respects chains, we have for each x that x 2 A () �(x) 2 B. A problemwith this construction is that � may not be computable even though f andg are.In order to prove that various NP-complete sets are p-isomorphic, Bermanand Hartmanis [BH77] recycle the Cantor-Bernstein construction by �ndingconditions on f and g so that the function � de�ned in (1) is computableand invertible in polynomial time. They proved the following theorem.Theorem 1 If two sets are m-equivalent as witnessed by reductions thatare (a) one-one, (b) length-increasing, and (c) p-invertible, then the sets arep-isomorphic.Proof Suppose that f and g satisfy hypotheses (a), (b), and (c). Let � beas in (1). So, � is an isomorphism between A and B. Fix a z 2 (! [ !0).Since f and g are length increasing, we have that each chain is rooted andthat there are at most jzj many vertices preceding z in its chain and all ofthese vertices are of length less than jzj. Since f and g are p-invertible, itfollows that one can �nd the root of a vertex z's chain in polynomial (in jzj)time. Therefore, � is polynomial-time computable.Myhill [Myh55] showed that if f and g are recursive, then a recursivebijection � exists that respects chains, although now � is of necessity de�nedquite di�erently than in (1) above. Our proof of Theorem 7 is in the samevein, but in addition we must observe space bounds on the isomorphism weare building, and thus our construction is considerably more delicate.9



Theorem 10 ([Myh55]). Every two recursively 1-equivalent sets are recur-sively isomorphic.Proof Sketch The de�nition of � in (1) is based on a global analysis ofthe structure of chains. The construction for this theorem is more local incharacter. Given recursive f and g as above, we build in stages �̂, a recursiveisomorphism that respects chains. Initially, �̂ = ;. During stage 2x, if �̂(x)is not yet de�ned, then x's chain is traversed forward and �̂(x) is de�ned tobe the �rst !0-vertex encountered that is not yet in the range of �̂. Duringstage 2x+1, if �̂�1(x0) is not yet de�ned, then x0's chain is traversed forwardand �̂�1(x0) is de�ned to be the �rst !-vertex encountered that is not yetin the domain of �̂. A straightforward argument shows that �̂ is a recursiveisomorphism between A and B. Theorem 10Theorem 7 Every two strictly polynomial-space 1-equivalent sets are strictlypolynomial-space isomorphic.Proof Suppose f and g are 1{1 strictly polynomial-space computable func-tions. Below we describe the construction of e�, a strictly polynomial-spacecomputable isomorphism that respects f; g-chains. In the construction ofTheorem 10 above, although the root of a given f; g-chain is inaccessible ingeneral, one can traverse the chain forward an unlimited amount to �nd anunmatched vertex, obviating the need to search the chain backwards. In theconstruction below, our view of each f; g-chain is more myopic; at each stagewe can only see (and match vertices in) a portion of the chain residing belowa certain length bound. We cannot follow a chain forward inde�nitely, so wemust search backwards along the chain to ensure that each of its vertices getmatched with a vertex of roughly the same length.Let G be as in the beginning of Section 2. For each n, de�ne:!n = f x 2 ! : jxj � n g : !0n = fx0 2 !0 : jxj � n g :For each n, let Gn be the subgraph of G induced by (!n [!0n). The maximalconnected components of Gn we call n-chains. The successive vertices of a10



path in G alternate between being in ! and !0. Hence, a �nite path P in G(such as an n-chain) has one of the following three possible structures.Unbiased: The number of !-vertices in P is the same as the number of!0-vertices. In this case P is either cyclic or else has one of its ends in ! andthe other in !0.!-biased: The number of !-vertices in P is one more than the number of!0-vertices. In this case P 's root and tail vertices are in !.!0-biased: The number of !-vertices in P is one less than the number of!0-vertices. In this case P 's root and tail vertices are in !0.We say a partial function h:!n ! !0n respects n-chains if and only if, foreach x 2 domain(h), h(x) is in the same n-chain as x.Our construction of e� will be in stages. For each n, e�n:!n ! !0n will bethe part of e� de�ned as of the end of stage n. (e��1 = ;.) Each e�n will be ann-chain respecting, 1{1 partial map between !n and !0n. We call the elementsof (domain(e�n)[ range(e�n)) the vertices matched as of stage n. Note that inorder to be 1{1 and respect n-chains, it must be the case that biased n-chains(which have an odd number of elements) end up with at least one vertex thatis unmatched as of stage n. In our construction of the e�n, we will maintainthe following invariant, for each n:For each n-chain C, every vertex of C is matched as of stagen, except if C is !-biased (respectively, !0-biased) in which caseexactly one !-vertex (respectively, !0-vertex) is unmatched.(2)Note that the invariant implies that if C is a biased n-chain, then the verticesof C matched as of stage n form two unbiased paths (either of which could benull) on either side of C's unmatched vertex and if C is a unbiased n-chain,then all of the vertices of C are matched as of stage n and, hence, form anunbiased path.Assume e�n�1 is as required. We consider how to de�ne e�n on the !n-vertices of an n-chain C. First, let f z1; z2; : : : ; zk g be the set of length nvertices of C together with the vertices of C unmatched as of stage n � 1.(There may in fact be several vertices of C unmatched as of stage n�1, sinceC may contain several biased (n� 1)-chains.) Moreover, let z1, z2, : : :, zk be11



in the (path) order in which they occur in C. (If C is cyclic, choose z1 to bethe lexigraphically least possible !-vertex from among the zi's. Note that inthis case there are an equal number of unmatched !- and !0-vertices in C asG is bipartite.) It follows from our discussion of the invariant that the set ofvertices of C that were matched as of stage n � 1 form a series of disjoint,unbiased subpaths of C. Hence, the elements of the sequence z1; z2; : : : ; zkmust alternate between being in ! and !0 and this sequence has the samebias (i.e., unbiased, or !-, or !0-biased) as C. So, for each x, an !n-vertex ofC, de�nee�n(x) = 8>>>><>>>>: e�n�1(x); if (i) x is matched as of stage n� 1;z2i�1; if (ii) x = z2i;z2i; if (iii) x = z2i�1 and 2i � k;unde�ned; (iv) otherwise.(3)Note that clause (ii) applies to the zi's of C if and only if C is !0-rooted,and clause (iii) applies otherwise. Thus, clauses (ii) and (iii) of equation (3)parallel (1). If C is unbiased, then k is even; hence, all of C's vertices arematched as of stage n. If C is !-biased (respectively, !0-biased), all of C'svertices are matched as of stage n except zk which is in ! (respectively, !0).It follows then that e�n is 1{1, respects n-chains, and satis�es the invariant(2).Suppose q is a monotone increasing polynomial such that both f and gare strictly DSPACE(q(n)) computable. Thus, for all z,q(jzj) � jzj; jf(z)j; jg(z)j; space used to compute f(z) and g(z):(4)Lemma 11. For each z 2 (! [ !0), z is matched as of stage q(jzj).Proof Let n = jzj and let C be z's n-chain. If C is cyclic, then, by theinvariant (2), z is matched as of stage n and we are done. So, suppose Cis acyclic. Let t be the tail of C and let bz be t's successor in G. Sincez is followed by bz, a length jbzj vertex, in z's jbzj-chain, it follows by theconstruction that z is matched as of stage jbzj. Now, by (4) we have that12



jbzj � q(jtj). Since jtj � jzj and since q is monotone increasing, we thus havejbzj � q(jtj) � q(jzj).Lemma 12. Both �n; x 2 !n e�n(x) and �n; y 2 !0n e��1n (y) are computablein O(n � q(n)) space.Proof Sketch To compute e�n(x) using (3), one needs to� compute e�n�1(x),� if it is de�ned, output the result,� if not, then x is one of the zi's for x's n-chain, in which case one needsto �nd: (a) the root (if any) of x's n-chain, (b) zk, and, if x's chainis !0-rooted, (c.i) the zi immediately preceeding x in the list of zi's,and if x's chain is not !0-rooted and x 6= zk, (c.ii) the zi immediatelyfollowing x. (If x's chain is not !0-rooted and x = zk, then e�n�1(x) isunde�ned.)All of this can be accomplished in the course of a constant number (inde-pendent of x) traversals of x's n-chain, making recursive calls to e�n�1 alongthe way to determine whether various z 2 (!n�1 [ !0n�1) were matched asof stage n � 1. Since f and g are 1{1 strictly polynomial-space computablefunctions, it is clear that traversing an n-chain can be done in O(q(n)) space.It is also clear that in using (3) to compute e�n(x), the depth of recursionsis no more than n. Thus, it follows that e�n(x) can be computed within therequired space bound. The argument for e��1n follows by symmetry.De�ne e� = [n2!e�n. Since each e�n extends e�n�1, e� is well de�ned. Sinceeach e�n is 1{1 and respects n-chains, e� is also 1{1 and respects chains. ByLemma 11, e� is total and onto. By (3) and Lemma 11 we also have that, forall x 2 !, je�(x)j � q(jxj) and jxj � q(je�(x)j). Finally, by Lemmas 11 and12, we have that e� and e��1 are both polynomial-space computable.Theorem 713



Theorem 13 (Dowd's Theorem). Every two strictly linear-space 1-equi-valent sets are strictly linear-space isomorphic.Proof Sketch Below we give a �ner analysis of the space complexity of theconstruction of the previous proof and conclude the present theorem as aconsequence of this analysis.In the proof of Lemma 12 we gave a sketch of how to compute e�n(x). Inthat sketch we used recursive calls to e�n�1 to determine whether a vertex in(!n�1 [!0n�1) was matched as of stage n�1. Below we show how to performthis test without the recursive calls.The vertex of a biased n-chain C that is unmatched as of stage n we callthe unmatched vertex of C. We give a purely graph theoretic characterizationof which vertex of a biased n-chain is its unmatched vertex.Lemma 14. Suppose that C is a biased n-chain, that t is C's tail, and thatn0 is the largest number � n such that either (i) jtj = n0 or else (ii) t's(n0 � 1)-chain is unbiased.Then, in case (i), t is the unmatched vertex of C, and, in case (ii), theunmatched vertex of C is the (length n0) predecessor of the root of t's (n0�1)-chain.Proof Let z be the vertex that the lemma claims is the unmatched vertex ofC. For n̂ = n0; : : : ; n, let Cn̂ denote z's n̂-chain. Note that for n̂ = n0; : : : ; n,Cn̂ must be biased because otherwise n0 would not be the largest number � nsuch that (i) or (ii) holds. Since z is of length n0 and followed by a unbiased(n0 � 1)-chain (which is null in case (i)) and since Cn0 is biased, it is clearthat z is the unmatched vertex of Cn0. By an easy induction we have that,for n̂ = n0 + 1; : : : ; n, z is the last vertex in Cn̂ which is unmatched as ofstage n̂� 1 and z is followed in Cn̂ by an unbiased (n̂� 1)-chain. Therefore,for n̂ = n0 + 1; : : : ; n, z is is the unmatched vertex of Cn̂.Using the characterization above, it is relatively simple to concoct a pro-cedure for testing the predictate�n; z 2 (!n [ !0n) [ z is matched as of stage n ]14



that runs in O(q(n)) space. Thus, in our sketch of how to compute e�n(x),we can replace all the recursive calls to e�n�1 used to test matching with thisO(q(n))-space procedure. So, exclusive of the cost of the recursive call tocompute e�n�1(x) under clause (i) of (3), it follows that the computation ofe�n(x) can be done within O(q(n))-space. However, the recursion to computee�n�1(x) is a tail recursion and so it does not require a stack to carry out.Therefore, it follows thatLemma 15. Both �n; x 2 !n e�n(x) and �n; y 2 !0n e��1n (x) are computablein O(q(n)) space.By Lemma 11 we have that e� = �x e�q(jxj)(x) and e��1 = �x e��1q(jxj)(x).Hence, by Lemma 15,Corollary 16. Both e� and e��1 are computable in O(q(q(jxj))) space.If f and g are 1{1 strictly linear-space computable functions, then we canchoose q to be a linear polynomial, and, hence, q � q is linear too. Therefore,by Corollary 16, the theorem follows. Theorem 13We return to the question of p-isomorphism by investigating conditions onthe 1-reductions that make 1-equivalent sets p-isomorphic. Unlike Bermanand Hartmanis's Theorem 1, which focuses on the reductions themselves, welook closer at the structure of the chains formed by the 1-reductions. Indoing so, we obtain results stronger than Theorem 1.We say that f and g have polynomial-time constructible n-chains if andonly if there is a procedure such that, given n and z 2 (!n [ !0n), constructsz's entire n-chain in time polynomial in n.Theorem 17. Suppose two sets are (polynomial-time) 1-equivalent as wit-nessed by reductions f and g which have polynomial-time constructible n-chains. Then, the two sets are p-isomorphic.On the surface this looks like a much stronger result than Theorem 1. Isisn't however. If f and g are such that there are no cyclic f; g-chains, then15



one can show that the hypotheses of Theorem 1 are equivalent to those ofTheorem 17. We can use the construction for Theorem 7 to obtain a strictlystronger result than Theorems 1 and 17. In order to state this result weintroduce the following terminology.We say that f and g's n-chains have polynomial-time uniform extremitiesif and only if there is a procedure which, given n and z 2 (!n [ !0n), runs intime polynomial in n and decides whether z's n-chain is acyclic, and if it is,determines the two extreme vertices of this n-chain.Theorem 18. Suppose A and B are (polynomial-time) m-equivalent as wit-nessed by reductions f and g that are(a) one-one,(b) honestly-invertible, and(c) their n-chains have polynomial-time uniform extremities.Then, A and B are p-isomorphic.To prove this, one merely checks that the theorem's hypotheses su�ce torun the construction of Theorem 7 in polynomial-time. This is straightfor-ward and we omit the details.Later we show that Theorem 18's hypotheses are strictly weaker thanthose of Theorems 1 and 17, see Proposition 27 below. Hypothesis (c) isstill pretty strong, however. It will be apparent from the proof of Theorem5 in the next section that there are one-to-one, polynomial-time computablef and g such that �nding just the tails of the corresponding n-chains isPSPACE-complete.
16



4. InequivalencesOur proofs of Theorems 5 and 6 follow the same general strategy as the proofof Ko, Long, and Du's Theorem 2. We �rst sketch a proof of Theorem 2, andthen sketch a proof of our Theorem 5 which builds on the ideas introduced inTheorem 2's proof. The proof of Theorem 6 is a modi�cation of our argumentfor Theorem 5.Theorem 2 Suppose that P 6= UP. Then there exist 1-li equivalent setswhich are incomparable with respect to p-invertible reductions. Moreover,there are such sets which are 2-tt complete for EXP.Proof Sketch Since we are assuming P 6= UP, by [KLD87, Proposition 2.1],there exists a length-increasing one-way function t. De�ne f :! ! !0 by thefollowing three equations.f(3x) = 6t(x) + 1: f(3x+ 1) = 6x + 4: f(3x + 2) = 6x+ 5:(5)Let g have the same de�nition as f except that we regard g as a functionfrom !0 to !. Clearly, f and g are one-one and length increasing. Note thatevery number of the form 3z in ![!0 is the root of its own f; g-chain. (Eachnumber of the form 6z + 2 is also the root of its own chain|a fact that willbe useful later on.) By a diagonal construction we shall produce sets A � !and B � !0 that satisfy:f :A�p1-liB and g:B�p1-liA,(6) A and B are 2-tt complete members of EXP, but(7) there is no p-invertible h such that h:A �pm B or h:B �pm A.(8)The diagonalization depends on the following key lemma.Lemma 19 (The Chain Crossing Lemma). Suppose h is a p-invertiblemap (either from ! to !0 or from !0 to !). Then, h crosses in�nitely manychains. In fact, there are in�nitely many z's such that 3z and h(3z) are indi�erent chains. 17



!0! --@@@@@R AAAAAU AAAAAU AAAAAU������ ������ ������ ������hf f f fg g g g3x 6t(x) + 1 h(3x)PPPPPPPPPPPPPPPq length p(j6t(x)+ 1j)Figure 1: h(3x) lands in Vy.Proof We handle the case of h:! ! !0. The !0 ! ! case follows bysymmetry.Since h is polynomial-time computable, there is a nondecreasing polyno-mial p such that, for all x, jh(x)j � p(jxj). For each y, let Vy be the set of!0-vertices of the chain of (6y + 1)0 that are of length � p(j6y + 1j). By ourde�nitions of f and g it follows that one can, given y, list all the elements ofVy in Poly(jyj) time. Now, by (5), if h(3x) is in the same chain as 3x, thenh(3x) is in Vt(x), see Figure 1. Thus, if the lemma were false, then for allsu�ciently large y, the following equation will hold:t�1(y) = ( h�1(z0)=3; if z0 2 Vy is such that t(h�1(z0)=3) = y;unde�ned; if there is no such z0 2 Vy.But, since one can list all the elements of Vy in Poly(jyj) time and since tand h�1 are polynomial-time computable, it would then follow that t is p-invertible|a contradiction. Lemma 19Returning to the proof of Theorem 2, the construction of A and B worksby \painting" chains. Each chain is painted either blue or green. A chainpainted blue has all of its !-elements in A and its !0-elements in B. A chainpainted green has all of its !-elements in A and its !0-elements in B. Sincethe chains form a partition of ! [ !0, painting all the chains will completelydetermine A and B, and ensure that they satisfy (6) above.Now, given an h:! ! !0 and an x such that x and h(x) are in di�erentcolored chains, we have that x 2 A () h(x) =2 B; and hence that h fails tom-reduce A to B. Using this last observation together with Lemma 19, onecan construct A and B satisfying (6) and (8) by a elementary, none�ective18



diagonalization: starting with all f; g-chains unpainted, paint chains oneby one, each time cancelling some p-invertible h by painting x's chain andh(x)'s chain opposite colors, for some x. Each such h gives us in�nitely manychances to cancel it, and there are only countably many such h, so we candiagonalize against them all. See the proof of Theorem 6.6.2 in [KMR90] formore details.To build an A and B satisfying (7) in addition to (6) and (8), a moredelicate construction is needed. We handle this construction by means ofa general technical lemma which is also used in the proofs of Theorems 5and 6 below. To state this lemma, we introduce the following terminology.Suppose C is an f; g-chain with root r. The ith successor of r is the vertexof C obtained by applying f and g a combined total of i times to r. Supposeh is a function from ! to !0 (or from !0 to !). Then we say h promptlycrosses C if and only if there exists a vertex x of C such that (a) x is the ithsuccessor of r for some i � jrj, (b) for each j � i, the jth successor of r haslength � jrj, and (c) h(x) is not in C. We now state the lemma, the proofof which appears in Appendix A.Lemma 20 (The Chain Painting Lemma). Suppose the following:1. f :! ! !0 and g:!0 ! ! are 1{1 and polynomial-time computable.2. r:! ! (! [!0) is 1{1, 2Poly(n)-time computable, and, for each x, r(x)is the root of an f; g-chain. For each x, let bCx denote r(x)'s chain.3. q is a polynomial such that, for all x and all z 2 bCx, jxj � q(jzj),4. s:! ! ! is polynomial-time computable, and for all x; y 2 !, s(y) ands(z) are in f; g-chains distinct from all the bCx's and from each other.For each y, let cDy denote s(y)'s chain.5. Given a z 2 (! [ !0) and x 2 !, deciding whether z is a vertex of bCxcan be done in Poly(jzj+ x)-time.6. Given a z 2 (! [ !0), deciding whether z is in one of the cDy 's, and, ifso, which y, all can be done in Poly(jzj)-time.19



Then, given all of the above, there exist sets A and B that satisfy:(a) f :A�p1 B and g:B�p1 A,(b) A and B are 2-tt complete for EXP, and(c) there is no polynomial-time computable h:! ! !0 (respectively,h:!0 ! !) which both promptly crosses in�nitely many bCx's and that �pm-reduces A to B (respectively, B to A).Despite the profusion of hypotheses in Lemma 20, they are very easily|almost trivially|satis�ed in every case that we apply the lemma. In thecontext of the proof of the present theorem:r = �x ( 3x=2; if x is even;(3(x� 1)=2)0; if x is odd;q = �n [n+1]; s = �x [6x+2]; and Lemma 19 asserts that every p-invertibleh promptly crosses in�nitely many bCx's. Therefore, the existence of an Aand B as required by the theorem follows from Lemma 20. Theorem 2We now apply the technique used in the proof above to 1-reductionswhich are not necessarily length-increasing. With the (most likely) weakerassumption that P 6= PSPACE, we obtain two di�erent inequivalences. Theone we give now involves honest m-reductions; the other, which we givebelow in Theorem 6, is about isomorphisms and uses the same idea with oneadditional twist.Theorem 5 Suppose that P 6= PSPACE. Then there exist 1-equivalent setsthat are incomparable with respect to honest m-reductions. Moreover, thereare such sets which are 2-tt complete for EXP.Proof Let L be an element of (PSPACE� P).This proof follows a plan roughly analogous to the argument for The-orem 2: we construct 1-1, polynomial-time computable functions f and g;prove that every honest polynomial-time computable function must promptlycross in�nitely many of a particular collection of f; g-chains; then, by an ap-plication of the Chain Painting Lemma, we produce the two sets required20



by the theorem. In Theorem 2's proof, the f; g-chains encoded the graphof a one-way function t and that proof's chain crossing lemma was shownby proving that if one had a p-invertible h that crossed only �nitely manyf; g-chains, then from h one could construct an polynomial-time inverse of t,contradicting the assumption that t is one-way. In this proof the f; g-chainsencode computations of a Turing machine that decides the set L, and thisproof's chain crossing lemma is shown by proving that if one had an honestpolynomial-time computable h that crosses only �nitely many f; g-chains,then from h one could construct an polynomial-time decision procedure forL, contradicting the assumption that L 2 (PSPACE� P).To de�ne f and g and ensure that they are 1-1, we use Bennett's workon reversible Turing machines [Ben89]. Informally, a deterministic Turingmachine M is said to be reversible if and only if, at any point of a compu-tation, there is an unambiguous way of backing up the computation to itsprevious state. We formalize this notion as follows. Let M be a determin-istic Turing machine with k tapes (including an input and an output tape),states Q, alphabet �, start state q0, unique �nal state q1, allowable tapemoves L (left), R (right), and N (no movement), and transition function� :Q � �k ! Q � �k � fL;R;N gk. All halting computations of M end instate q1. Let ID be the set of instantaneous descriptions (i.d.'s) of M and,for each I 2 ID, let � (I) be the successor i.d. of M , if any, as determined by� . The initial i.d. of M for a given input has M in state q0, the input tapehead just to the left of the input, and all other tapes empty. Now, such anM is said to be reversible if and only if there is another transition function�:Q��k ! Q��k �fL;R;N gk such that, for each non-�nal i.d. I that isreachable by M from some initial i.d., we have that �(� (I)) = I. Reversiblemachines are crucial to our keeping the functions f and g 1-1. The followingproposition follows from Bennett's general results and roughly correspondsto the corollary on page 770 of [Ben89].Proposition 21. Suppose M is a multi-tape Turing machine that com-putes a function t:! ! ! and that runs in space S(n). Then, there thereis an O(S(n)2) space bounded, reversible Turing machine that computes21



�x hx; t(x)i.By the proposition, there is a reversible Turing machine that computes�x hx;L(x)i in polynomial-space. Let M be such a machine and let ID, �and � be as above. For each x, let initial (x) be the initial i.d. of M on inputx. De�ne cID = f I : �(� (I)) = I g :By this de�nition, every non-�nal i.d. which is reachable from some initiali.d. is in cID. Also, no �nal i.d. can be in cID since if I is �nal, then � (I)is unde�ned, and, hence, so is �(� (I)). Note that cID is polynomial-timedecidable, and that when �I � (I) is restricted to cID, the function is totaland one-one.Now we introduce some tools to help with encoding M -computations intof; g-chains. Let #: ID! ! be a one-one, onto function, and such that� the functions induced over ! by �I � (I), �I �(I), and initial arepolynomial-time computable and,� given i, one can in Poly(jij)-time decide if i corresponds to a �nal i.d.,and, if so, extract the result of this i.d.'s computation.Such a # is straightforward, if tedious, to de�ne. For all v, x, y, z 2 ! andall I 2 ID, de�ne start(x; y) = 3hx; yi:active(x; v; I) = 3hx; v;#(I)i+ 1:idle(x; v; z; I) = 3hx; v; z;#(I)i+ 2:Since h�; �i and # are one-one, so are start, active , and idle , and, since h�; �iand # are also onto, the ranges of start, active , and idle partition !. Finally,de�ne f :! ! !0 by the following set of equations.f(start(x; y)) = ( active(x; v; initial(x)); if y = 0v;start(x; y); if y =2 f0v : v 2 ! g.22



f(active(x; v; I)) = 8<: active(x; v; � (I)); if I 2 cID;idle(x; v; 0; I); otherwise.f(idle(x; v; z; I)) = idle(x; v; z + 1; I):Let g have the same de�nition as f except that we regard g as a functionfrom !0 to !. By our discussion of � , �, #, start , active , and idle it followsthat f and g are one-one and polynomial-time computable. For each x andv, let Cx;v denote the f; g-chain with root start(x;0v) 2 ! and let C 0x;v denotethe chain with root start(x;0v)0 2 !0.A Cx;v chain has the following structure. It begins with the root vertexstart(x;0v) followed by an exponential drop to active(x; v; initial(x)) 2 !0.Then f and g conspire to simulate M on input x|each Cx;v vertex of theform active(x; v; I) (where I is a non-�nal i.d. of M on input x) is fol-lowed in Cx;v by the vertex active (x; v; � (I)). When the chain reaches thevertex active(x; v; I�n) (where I�n is the �nal i.d. of M on input x), thenext vertex in Cx;v is idle(x; v; 0; I�n). Thereafter, each vertex of the formidle(x; v; z; I�n) is followed by the vertex idle(x; v; z + 1; I�n) ad in�nitum.Since M is polynomial-space bounded and since #, start , etc. are all poly-nomial-time computable, it follows that there is a monotone polynomial pLsuch that all the \active" vertices of Cx;v are of length strictly less thanpL(jxj+ jvj).The structure of an C 0x;v chain is analogous.Lemma 22 (The Chain Crossing Lemma). Suppose h is an honest,polynomial-time computable function (from ! to !0 or from !0 to !). Then,h crosses in�nitely many chains. In fact, there are in�nitely many x's andv's such that start(x;0v) and h(start(x;0v)) are in di�erent chains.Proof We handle the h:!! !0 case. The !0 ! ! case follows by symmetry.Let pL be as in the discussion preceding the lemma.Since h is honest, there exist k and x0 such that for all x > x0, jh(x)j >jxj1=k. Since start is monotone increasing in both arguments, we have that23



!0! --6?6?6?� � �f f fg g g f h ������������������������9 ������	the active part of Cx;v the idle part of Cx;vlength lengthpL(jxj+ jvj) jstart(x;0v)j1=k start(x;0v)Figure 2: h(start(x;0v)) lands in Cx;v.jstart(x;0v)j 2 
(jxj+ 2jvj). Thus, for each x and all su�ciently large v,pL(jxj+ jvj) � jstart(x;0v)j1=k:(9)Since start is increasing in both arguments, it easily follows that there is apolynomial p? such that, for all x, if v = p?(jxj), then (9) is satis�ed.Claim. Suppose x > x0, v = p?(jxj), and h(start(x;0v)) is in Cx;v. Then,for some z, h(start(x;0v)) = idle(x; v; z; I), where I is the �nal i.d. of M oninput x.Proof of Claim Since start is increasing in both arguments and since x >x0, by our choice of k and x0 it follows that jstart(x;0v)j1=k < jh(start(x;0v))j.By our choice of p?, it also follows that (9) holds for x and v. Thus, wehave the situation described by Figure 2. Now, since jh(start(x;0v))j >pL(jxj+ jvj), h(start(x;0v)) cannot be in the active part of Cx;v. Thus, sinceh(start(x;0v)) is in Cx;v, it must be in the idle part of Cx;v. Therefore, theclaim follows. ClaimSuppose by way of contradiction that the lemma is false. So, for allbut �nitely many x, h(start(x;0p?(jxj))) is in Cx;p?(jxj). Then by the claim,for all but �nitely many x, one can determine L(x) by: (i) computingh(start(x;0p?(jxj))), (ii) from this value extracting the �nal i.d. ofM on inputx, and (iii) from this i.d. determining L(x). All of this can be done in timePoly(jxj). Therefore, L is polynomial-time decidable. But this contradictsthe assumption that L 2 (PSPACE� P). Lemma 2224



Now let r enumerate all the roots of the Cx;i's and C 0x;i's, so that r(2hx; ii)is the root of Cx;i and r(2hx; ii+1) is the root of C 0x;i. We can choose q to be�n [n+ 1] since the smallest vertex on Cx;i is of length at least 3hx; ii. Alsolet s = �x start(x;1). It is straightforward to check that, for these choicesof r, q, and s, all the hypotheses of the Chain Painting Lemma are satis�ed.Therefore, by this lemma there exist sets A and B that are 1-equivalent, 2-ttcomplete for EXP, but which are not honest m-comparable. Theorem 5We now turn to the second of the two inequivalences|the �rst being The-orem 5. There, it was the case that (assuming P 6= PSPACE) a polynomial-time honest equivalence (not even 1{1) could not be substituted for an unre-stricted polynomial-time 1-equivalence. Here we show (on the same assump-tion) the more �ne-grained result that a p-isomorphism cannot be substitutedfor an honest 1-equivalence, even one where both of the 1-reductions are p-invertible. The only property the reductions of Theorem 1 have that is notrequired here is that of being length-increasing. Thus if P 6= PSPACE, thelength-increasing requirement of Theorem 1 is necessary.Theorem 6 Suppose that P 6= PSPACE. Then there exist p-invertibleequivalent sets that fail to be p-isomorphic. Moreover, there are such setswhich are 2-tt complete for EXP.Our proof of Theorem 6 will run along the same lines as that of Theo-rem 5. In particular, the f; g-chains we construct will look similar to thoseof Theorem 5, i.e., they will follow the computation of a polynomial-spacereversible Turing machine computing a language L =2 P, then percolate theresult when the computation is done, just as before. The di�erence lies inhow the chains begin. The reductions of Theorem 5 were of necessity dis-honest, evidenced by the root of each chain being exponentially larger thanits successor. Making this exponential drop drastic enough was all that wasnecessary to defeat the chain-respecting honest maps, by forcing any suchmap to take the root of the chain to the idle region, thus revealing the resultof the PSPACE computation. 25



We clearly cannot do the same thing here, since our reductions f andg must be p-invertible, and hence honest. Instead, we replace the initiallarge drop in the chain with a series of small drops, starting at the top (rootof the chain) and winding up at the start of the active region, where thechain then continues, simulating the machine's computation as before. Wecall this initial segment of the chain the ramp region. Given a potentialp-isomorphism h that respects chains, it is crucial to note that h and h�1naturally correspond to a perfect matching of ! vertices with !0 vertices.Our goal now is to force h to match some vertex in the ramp region (wecannot control which) with a vertex in the idle region, thus revealing theresult of the computation as in Theorem 5, and allowing us to compute L inpolynomial time. Some vertices in the ramp region are small enough so thath may match them with vertices in the active region|we call these rampvertices \unsafe". h may also match ramp vertices with other ramp vertices.To force h to match some ramp vertex with an idle vertex, we ensure thatthere are an unequal number of ! and !0 vertices among all the \safe" rampvertices not matched by h to unsafe ramp vertices. Such safe vertices areeither matched with each other (one in !, the other in !0) or to vertices inthe idle region, and thus at least one safe ramp vertex must be matched withan idle vertex. We can ensure the inequality in the numbers of such safevertices simply by deciding on which side (! or !0) to place the root of thechain|the start of the ramp.An added di�culty with the present proof is in selecting which maps h todiagonalize against. In Theorem 5, all we needed was to make the reductionssu�ciently dishonest to win against any honest reduction. Here, we canonly win against p-isomorphisms, so we view explicitly all possible pairs ofpolynomial-time functions, on the suspicion that any pair may represent ap-isomorphism and its inverse.Proof of Theorem 6 Let L be an element of (PSPACE�P). As we notedin the proof of Theorem 5 there is a reversible Turing machine, M , thatcomputes �x hx;L(x)i in polynomial space.26



Terminology: Suppose h:! ! !0 is a p-isomorphism. We say h matchesw with z when either h(w) = z or h(z) = w.Recall from x2 that h'iii2N is an acceptable numbering of the partialrecursive functions based on a coding of deterministic, multi-tape Turingmachines, and that the functionT = �i; x; n 8><>:'i(x); if Turing machine i on input xhalts within n steps;0; otherwiseis computable in O((jij+ jxj+ n)2) time. For each k, `, and x, de�ne k̀(x) = T (k; x; (jxj+ 2)j`j):= 8><>:'k(x); if Turing machine k on input x haltswithin (jxj+ 2)j`j steps;0; otherwise.It is easily seen that, for each polynomial time computable function h, thereis a k such that for all su�ciently large `, h =  k̀. By the time bound forT it also follows that �k; `; x  k̀(x) is computable in O( (jkj + 3jxj)2j`j ) �2O( (jkj+j`j+jxj)2 ) time.We turn now to de�ning the 1-reductions f and g.To encode M -computations into f; g-chains, we use essentially the sametools developed in the proof of Theorem 5. Let � , �, ID, cID, and # be as inthe previous proof. For all x, i, z, m 2 ! and all I 2 ID, de�ne:ramp(x; i;m) = 3hx; i;mi:active(x; i; I) = 3hx; i;#(I)i+ 1:idle(x; i; z; I) = 3hx; i; z;#(I)i+ 2:Since h�; �i and # are one-one, so are ramp, active , and idle , and, since h�; �iand # are also onto, the ranges of ramp, active , and idle partition !.The de�nitions of f and g that follow involve the 0; 1-valued functiond. De�ning d will be the chief concern of the next part of the proof. For27



the moment all that we need to know about d is that it is polynomial-timecomputable and, for all x and i,f y : d(x; i;0y) = 0 g is a nonempty, �nite initial segment of !:(10)Now, de�ne f :! ! !0 by the following set of equations.f(ramp(x; i;m)) =8>>>>><>>>>>: ramp(x; i;m); if m =2 0�;active(x; i; initial(x)); if m = 00;ramp(x; i;0y); if m = 0y+1 and d(x; i;m) = 0;ramp(x; i;m); if m = 0y+1 and d(x; i;m) 6= 0.f(active(x; i; I)) = 8<: active(x; i; � (I)); if I 2 cID;idle(x; i; 0; I); otherwise.f(idle(x; i; z; I)) = idle(x; i; z + 1; I):Let g have the same de�nition as f except that we regard g as a functionfrom !0 to !. From the discussion of � , �, G, # in the previous proof and thede�nitions of ramp, initial, active , idle , f , and g, it follows that f and g areone-one, polynomial-time computable, and p-invertible. For each x and i, letCx;i denote the chain with the !-vertex ramp(x; i;00). Our construction willmostly ignore the f; g-chains other than the Cx;i's.A Cx;i chain has the following structure, depicted in Figure 3. It beginswith a root vertex of the form ramp(x; i;0y) (in ! or !0) where y > 0 is largestsuch that d(x; i;0y) = 0. Then the chain \ramps" down from ramp(x; i;0y)to ramp(x; i;0y�1) and then to ramp(x; i;0y�2) and so on until it arrivesat ramp(x; i;00) 2 !. Note that by the de�nitions of f and g, each Cx;ivertex of the form ramp(x; i;0y) is in ! precisely when y is even. Alsonote that by the de�nition of ramp, as y decreases, so does the length oframp(x; i;0y). Returning to our tour of Cx;i, the vertex ramp(x; i;00) 2! is followed by the vertex active(x; i; initial(x)) 2 !0. Then, as in theprevious proof, f and g conspire to simulate M in input x|successive active28



!0! --ramp(x; i;00)??to theactive region������� ������� ������� ������� �������CCCCCCO CCCCCCO CCCCCCO CCCCCCO CCCCCCOf g f g ������� ������� ������� ������� �������CCCCCCO CCCCCCO CCCCCCO CCCCCCO CCCCCCO rroot 6? 6?� � �� � �unsafe vertices of Cx;i safe vertices of Cx;ilength (pL(jxj+ jij) + 2)j`j
Figure 3: Ramp portion of Cx;i.vertices encode successive states ofM 's computation and the idle vertices allencode the �nal state of this computation. As in the previous proof, thereis a monotone polynomial pL such that all the active vertices of Cx;i are oflength < pL(jxj + jij) and there are in�nitely many idle vertices of length� pL(jxj+ jij).In our construction the ramp vertices of the Cx;i's play the followingrole. Suppose for this paragraph that h:! ! !0 is a chain-respecting p-isomorphism. Fix x and �x an i such that i = hj; k; `i,  j̀ = h, and  k̀ = h�1.Since both h and h�1 are computable in �n (n+ 2)j`j time, both h and h�1must be �n (n+2)j`j-honest. Consider v, a ramp-vertex of Cx;i in either ! or!0 with jvj � (pL(jxj+ jij)+ 2)j`j. Since h and h�1 respect f; g-chains, by ourchoice of pL, h must match v with either a ramp or idle vertex of Cx;i. Ourintent is to arrange that if h is a chain-respecting p-isomorphism as above,then for some v in the ramp part of Cx;i, h matches v with an idle vertex ofCx;i. Our de�nition of d below will force the existence of such a v of length� (pL(jxj + jij) + 2)j`j. The vertex v is a \safe" vertex, as described in theproof outline above. Once we know such a v exists, we can compute L(x)as in Theorem 5 by �rst �nding v, then computing the idle vertex that v ismatched with via h. This vertex encodes the result of M 's computation oninput x, i.e., L(x). The function d will be such that for �xed i, this wholeprocess can be done in time polynomial in x, thus contradicting that L =2 P.Thus h cannot respect chains as we assumed.29



We introduce the following function and sets to help de�ne d. For eachx and i, where i = hj; k; `i de�ne:bnd (x; i) = 2664 jvj : where v is the smallest number ofthe form ramp(x; i;02y) such thatjvj � �pL(jxj+ jij) + 2�j`j 3775 :Vx;i = ( v 2 ! : v is a ramp vertex of Cx;iwith jvj � bnd (x; i) ) :V 0x;i = ( v0 2 !0 : v0 is a ramp vertex of Cx;iwith jv0j � bnd (x; i) ) :Wx;i = 8>><>>: v 2 ! : v is a ramp vertex of Cx;iwith  j̀(v) 2 V 0x;i andjvj < bnd (x; i)j � j j̀(v)j 9>>=>>; :W 0x;i = 8><>: v0 2 !0 : v0 is a ramp vertex of Cx;iwith  k̀(v) 2 Vx;i andjvj < bnd (x; i)j � j k̀(v0)j 9>=>; :The vertices in Vx;i[V 0x;i are the safe vertices, depicted in Figure 3. The restof the ramp vertices are unsafe. Thus Wx;i (respectively W 0x;i) comprisesthose unsafe ramp vertices which are mapped to safe ramp vertices via  j̀(respectively  k̀). The sets Wx;i and W 0x;i are clearly �nite and, given that(10) holds, so are Vx;i and V 0x;i. Our de�nition of d below will guaranteethat Vx;i and V 0x;i will be nonempty. Also note that, for each x and i, wherei = hj; k; `i, we have that(pL(jxj+ jij) + 2)j`j � bnd(x; i)(11)and the least ramp vertex of Cx;i which is of length � bnd (x; i) is an !-vertex.This last property of bnd helps to simplify the de�nition of d and the proofof Lemma 24 below. 30



Lemma 23. Suppose h is a p-isomorphism and suppose that i = hj; k; `i issuch that h =  j̀ and h�1 =  k̀. Then, for all x, ifkVx;ik � kV 0x;ik 6= kW 0x;ik � kWx;ik;(12)then there is a v 2 (Vx;i[V 0x;i) that is matched by h with either an idle vertexof Cx;i or a vertex outside of Cx;i.Proof Fix x and suppose that h matches each v 2 (Vx;i [V 0x;i) with a vertexin Cx;i. We show that h matches some v 2 (Vx;i [ V 0x;i) with an idle vertex ofCx;i.From the de�nitions of bnd , Vx;i, and V 0x;i and from (11), we have thatjmin(Vx;i [V 0x;i)j � bnd(x; i) � (pL(jxj+ jij)+ 2)j`j. Since both h and h�1 are�n (n+ 2)j`j-honest, h cannot match a member of Vx;i [ V 0x;i with a numberof length less than pL(jxj+ jij). Hence, by our choice of pL, we have that hcannot match any element of Vx;i [ V 0x;i with any active vertex of Cx;i. Byassumption, h matches each v 2 (Vx;i[V 0x;i) with some vertex in Cx;i. Hence,it follows that both h(Vx;i) and h�1(V 0x;i) are contained in the ramp and idleparts of Cx;i.By the de�nitions of Wx;i and W 0x;i,h(Wx;i) = n v 2 V 0x;i : h�1(v) is a ramp vertex =2 Vx;i o :h�1(W 0x;i) = n v 2 Vx;i : h(v) is a ramp vertex =2 V 0x;i o :Hence, since h and h�1 are one-one, it follows thatVx;i � h�1(W 0x;i) = ( v 2 Vx;i : h(v) 2 (V 0x;i � h(Wx;i)) or h(v) isan idle vertex of Cx;i ) :V 0x;i � h(Wx;i) = ( v0 2 V 0x;i : h�1(v0) 2 (Vx;i � h�1(W 0x;i)) orh�1(v0) is an idle vertex of Cx;i ) :Figure 4 shows the situation that may typically occur in the ramp region.Now suppose h matches every v 2 (Vx;i [ V 0x;i) with a ramp vertex. Thenit must be the case that h provides a 1{1 correspondence between Vx;i �h�1(W 0x;i) and V 0x;i � h(Wx;i), and thuskVx;i � h�1(W 0x;i)k = kV 0x;i � h(Wx;i)k;(13) 31



!0! --ramp(x; i;00)??to theactive region������� ������� ������� ������� �������CCCCCCO CCCCCCO CCCCCCO CCCCCCO CCCCCCOf g f g ������� ������� ������� ������� �������CCCCCCO CCCCCCO CCCCCCO CCCCCCO CCCCCCO rroot� � �length (pL(jxj+ jij) + 2)j`jHHHHHHY HHHHHHj����3����+ ������*�������h h h����Wx;i�� ��W 0x;iFigure 4: Root is chosen to yield one more unmatched safe !0-vertex.Since h�1(W 0x;i) � Vx;i and h(Wx;i) � V 0x;i, we have that kVx;i�h�1(W 0x;i)k =kVx;ik�kh�1(W 0x;i)k and kV 0x;i�h(Wx;i)k = kV 0x;ik�kh(Wx;i)k. Also, we havekWx;ik = kh(Wx;i)k and kW 0x;ik = kh�1(W 0x;i)k, since h and h�1 are one-one.Therefore, by some trivial algebra, (13) is seen to violate (12), and so h mustmatch some v 2 (Vx;i [ V 0x;i) with an idle vertex of Cx;i. Lemma 23For each x and i, the job of d is to compute and compare kWx;ik andkW 0x;ik and then arrange (through d's use in the de�nitions of f and g) forkVx;ik and kV 0x;ik to be such that (12) is satis�ed. Owing to the way bnd (x; i)was de�ned, the lowest ramp vertex of Cx;i of length � bnd (x; i) is in !, andthus the left hand side of (12),kVx;ik � kV 0x;ik = ( 1; if the root of Cx;i is an !-vertex;0; otherwise.(14)Thus we only need to make d so that the highest ramp vertex (root) of Cx;iis in ! i� kWx;ik = kW 0x;ik.In de�ning d we have to worry about the time cost of determining kWx;ikand kW 0x;ik which will not be Poly(jxj+ jij). To help in bounding this cost,de�net = �x; i h 2 � bnd (x; i) � (3 � bnd (x; i) + jjj+ jkj)2j`j; where i = hj; k; `i i :Since the number of ramp vertices of Cx;i of length < bnd (x; i) is no morethan bnd (x; i) and since �k; `; y  k̀(y) is computable in O( (jkj + 3jyj)2j`j )32



time, it follows that one can test whether kWx;ik = kW 0x;ik in O(t(x; i)) time.The factor of 2 in the de�nition of tmakes t(x; i) even for all arguments. Thiswill help simplify the de�nition of d and the proof of Lemma 24 below. Bystandard results we have that there is a monotone polynomial p? such thatone can compute t(x; i) within p?(t(x; i)) time. Using this last observationone can, given i, x, and y, compare y and t(x; i) in Poly(y+ jxj+ jij) time by:running the computation of t(x; i) for p?(y) steps and, if the computationhalts within p?(y) steps, doing the comparison, and if the computation failsto halt within y steps, then one knows that y < t(x; i).Finally, de�ne, for each x, i, and m,d(x; i;m) = 8>><>>: 0; if m = 0y and either (i) y < t(x; i) or(ii) y = t(x; i) and kWx;ik = kW 0x;ik;1; otherwise.By the remarks of the previous paragraph, we have that d is polynomial-timecomputable. Also, since t is total, it follows that (10) holds.Lemma 24. For all x and i, kVx;ik � kV 0x;ik 6= kW 0x;ik � kWx;ik.Proof Fix x and i. Recall that the ramp vertices of Cx;i in ! are preciselythose vertices of Cx;i of the form ramp(x; i;0y) where y is even. Also recallthat by the de�nition of t, t(x; i) is even. Thus:kWx;ik = kW 0x;ik=) f y : d(x; i;0y) = 0 g = f y : y � t(x; i) g(by de�nition of d)=) the highest ramp vertex of Cx;i is in !(by de�nitions of f & g and since t(x; i) is even).kWx;ik 6= kW 0x;ik=) f y : d(x; i;0y) = 0 g = f y : y � t(x; i)� 1 g(by de�nition of d)=) the highest ramp vertex of Cx;i is in !0(by de�nitions of f & g and since t(x; i) is even).33



Therefore, by (14) we have:the highest ramp vertex of Cx;i is in ! =) kVx;ik = 1 + kV 0x;ik:the highest ramp vertex of Cx;i is in !0 =) kVx;ik = kV 0x;ik:Therefore, we obtain kWx;ik = kW 0x;ik () kVx;ik 6= kV 0x;ik which impliesthat kVx;ik � kV 0x;ik 6= kW 0x;ik � kWx;ik. Lemma 24Lemma 25 (The Chain Crossing Lemma). Suppose h:! ! !0 is ap-isomorphism. Then, h crosses in�nitely many chains. In fact, for eachi = hk; j; `i such that h =  k̀ and h�1 =  j̀, there are in�nitely many x'ssuch that for some for some z in the ramp part of Cx;i, h matches z with avertex not in Cx;i.Proof Fix an i such that i = hk; j; `i, h =  k̀, and h�1 =  j̀. We �rst noteClaim. Given x, one can enumerate all the ramp vertices of Cx;i in timePoly(jxj).The claim follows from the observations that (i) �x ramp(x; i;00) ispolynomial-time computable, (ii) f and g are both p-invertible, (iii) by thede�nition of ramp, there is at most one number of the form ramp(x; i;0y)at any given length, and (iv) by the de�nitions of bnd and t, there is apolynomial pi such that, for each x, t(x; i) � pi(x).Now, suppose by way of contradiction that the lemma is false and hrespects chains almost everywhere. Then, by Lemmas 23 and 24, for all but�nitely many x, h matches some v 2 (Vx;i [ V 0x;i) with an idle vertex of Cx;i.So, for all but �nitely x, to determine L(x) one can:1. Find the smallest ramp vertex of Cx;i that hmatches with an idle vertexof Cx;i. Let idle(x; i; z; I) be this idle vertex.2. From idle(x; i; z; I) extract I, the �nal i.d. of M on input x, and fromI determine L(x) 34



By the claim and the fact that both h and h�1 are polynomial-time com-putable, one can carry out step 1 above in time Poly(jxj). Thus, it followsas in the proof of the previous theorem that one can also carry out step 2 intime Poly(jxj). Therefore, we have that, given x, one can determine L(x) intime Poly(jxj) which contradicts the assumption that L =2 P.Finally, let r enumerate all the roots of the Cx;i's and C 0x;i's, so thatr(2hx; ii) is the root of Cx;i and r(2hx; ii+ 1) is the root of C 0x;i, as in Theo-rem 5. We can choose q again to be �n [n+ 1] since the smallest vertex onCx;i is of length at least 3hx; i; 0i. Let s = �x ramp(x; 0;1). It is straightfor-ward to check that for these choices of r, q, and s, all the hypotheses of theChain Painting Lemma are satis�ed. Therefore, by this lemma there existsets A and B that are p-invertible 1-equivalent, 2-tt complete for EXP, butwhich are not p-isomorphic. Theorem 6Theorem 26. There are polynomial-space 1-equivalent sets which are notpolynomial-space isomorphic.Proof Sketch We again follow the plan of the previous proofs: we construct1{1 polynomial-space computable functions f and g; prove that every honestpolynomial-time computable function must promptly cross in�nitely manyof a particular collection of f; g-chains; then, by chain painting, we producethe two sets required by the theorem. Our de�nition of f and g uses a setR 2 PSPACE described in the next paragraph. For the moment all we needto know about R is that, for each length, there is exactly one element of Rof that length. Here is our de�nition of f :! ! !0. For each x 2 !, de�nef(x) = 8>><>>: 02n; if x = 0n, where n is odd or a power of 2;02n+1; if x 2 R and jxj = 2n2 + 2 for some n > 1;x; otherwise.Let g have the same de�nition as f except that we regard g as a functionfrom !0 to !. From our assumptions on R, it is straightforward to verify that35



f and g are 1{1 and polynomial-space computable. Given any �xed y, letn = 2y + 1. The functions f and g give rise to the following f; g-chain Cy:x0 g7! 0n f7! 02n g7! 022n f7! � � �where x0 2 !0 is both the root of the chain and the unique !0-vertex of length2y2 + 2 := 2(logn)2 such that x0 2 R. The successor to x0 in Cy|the element0n|we call the trough of Cy.Suppose h:! ! !0 is a polynomial-space isomorphism that respects f; g-chains. For all su�ciently large y, h must match the trough with the rootof Cy, for otherwise, h must match either the root or the trough to a super-exponentially large vertex. We can de�ne R to diagonalize explicitly againstall such trough-root mappings. Such a diagonalization can be accomplished,since there is a function, computable in space polynomial in 2(logn)2 (thesize of the root), which is universal over all functions computable in spacepolynomial in n (the size of the trough). We omit the details of how R isde�ned.Thus by explicit diagonalization, any such h must cross in�nitely manychains. By the remarks following the proof of Lemma 19, we can de�ne thetwo desired sets.Proposition 27. There are sets A and B which are m-equivalent as wit-nessed by polynomial-time computable functions f and g such that(i) f and g are one-one,(ii) f and g are p-invertible,(iii) f; g-chains are acyclic and the n-chains have polynomial-time uni-form extremities,but A and B are not 1-li-equivalent.Proof Sketch For each y 2 !, let y+ denote y+1. De�ne f :! ! !0 by thetwo following equations.f(y1) = y11:f(y0) = ( y+0; if jyj = jy+j;y01; otherwise.36



Let g have the same de�nition as f except that we regard g as a functionfrom !0 to !. Clearly, f and g satisfy (i), (ii), and (iii): each chain has root0n for some n, followed by 2n�1�1 vertices of length n ending at 1n�10, thensucceeded by 1n�101, 1n�1011, etc. The only exceptions are the two chainsconsisting entirely of verticies in 1�.Now, suppose that h:! ! !0 is 1{1 and length-increasing. If h respectsf; g-chains, then, from simple cardinality considerations, for all n, h mustmap some vertex of length n to one of length at least 2n�1, hence, h cannot bepolynomial-time. Thus any such polynomial-time computable h must crossin�nitely many f; g-chains. So, we are done by the remarks following theproof of Lemma 19.
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Appendix. The Proof of the Chain Painting LemmaRecall that, for an f; g-chain C with root r and an h:! ! !0 or !0 ! !, wesay that h promptly crosses C if and only if there is an x 2 C such that(a) h(x) =2 C,(b) x is no more than the jrjth successor of r, and(c) all successors of r up through x have length � jrj.Recall from x2 the de�nition of h e iii2!, our standard enumeration of thepolynomial-time computable functions. To handle maps both from ! to !0and from !0 to ! on the same footing, we de�ne, for all i: 2i = e i; regarded as a map ! ! !0; 2i+1 = e i; regarded as a map !0 ! !.Recall that �i; x e i(x) is computable in 2Poly(log(jij+jxj)) time.Lemma 28 (The Chain Painting Lemma). Suppose the following:1. f :! ! !0 and g:!0 ! ! are 1{1 and polynomial-time computable.2. r:! ! (! [!0) is 1{1, 2Poly(n)-time computable, and, for each x, r(x)is the root of an f; g-chain. For each x, let Cx denote r(x)'s chain.3. q is a polynomial such that, for all x and all z 2 Cx, jxj � q(jzj),4. s:! ! ! is polynomial-time computable, and for all x; y 2 !, s(y) ands(z) are in f; g-chains distinct from all the Cx's and from each other.For each y, let Dy denote s(y)'s chain.5. Given a z 2 (! [ !0) and x 2 !, deciding whether z is a vertex of Cxcan be done in Poly(jzj+ x)-time.6. Given a z 2 (! [ !0), deciding whether z is in one of the Dy 's, and, ifso, which y, all can be done in Poly(jzj)-time.Then, given all of the above, there exist sets A and B that satisfy:(a) f :A�p1 B and g:B�p1 A, 38



(b) A and B are 2-tt complete for EXP, and(c) there is no polynomial-time computable h:! ! !0 (respectively,h:!0 ! !) which both promptly crosses in�nitely many Cx's and that �pm-reduces A to B (respectively, B to A).Proof This stage-by-stage construction is an e�ective version of the chaincoloring method described after the proof of Lemma 19, where all chains arecolored either blue or green. Fix a set H which is polynomial-time many-one complete for EXP. The Cx's will be used to diagonalize against thepolynomial-time functions  i, and the Dy's will be used in pairs to 2-ttencode the set H into A. To help with presentation, we use the followingnotation: for all n 2 !, let:n = ( n+ 1 if n is even;n� 1 if n is odd.The construction starts with all f; g-chains of the form Ck or Dk unpaintedand unreserved, all the rest of the chains painted green, and all i 2 ! un-cancelled. The chains Ck, D2k, and D2k+1 are painted at stage k. We alsomaintain the invariant that for all j, D2j and D2j+1 are painted with oppo-site colors if j 2 H, and with the same color if j =2 H. This will ensure thatH is 2-tt reducible to A.Stage k � 0. (Note: Ck, D2k, and D2k+1 are currently unpainted.)(Part A: Painting Ck.)Find the least uncancelled i � k, if any, such that(i)  i promptly crosses Ck and(ii) no cancelled i0 < i has reserved Ck.Condition 1. There is no such i.Then paint Ck green.Condition 2. There is such an i.Let xk be the nearest successor of the root of Ck (with xk 2 ! if i iseven; with xk 2 !0 if i is odd) such that  i(xk) is not in Ck.If  i(xk)'s chain is already painted, then39



(i) paint Ck the opposite color, and(ii) cancel i and uncancel all the currently cancelled numbers largerthan i.If  i(xk)'s chain is unpainted, then:If  i(xk)'s chain is Cj for some j, then paint Ck blue and have i reserveCj.Otherwise,  i(xk)'s chain is Dj for some j � 2k.If either Dj or D:j is reserved by some cancelled i0 < i, then paintCk green and leave i uncancelled.Otherwise,(i) paint Ck blue,(ii) have i reserve Dj , removing any reservations on D:j, and(iii) cancel i and uncancel all the currently cancelled numberslarger than i.(Part B: Painting D2k and D2k+1.Note: by construction, at least one of D2k and D2k+1 is unreserved.)If either D2k or D2k+1 is reserved by some i0,then paint that chain green,otherwise, paint D2k green.Paint the remaining of the two chains D2k or D2k+1 blue if k 2 H, andgreen if k =2 H.End stage k.De�ne: A = fx 2 ! : x's chain is blue g :B = f y 2 !0 : y's chain is blue g :It is immediate that f :A�p1 B and g:B�p1 A.Claim 1. Suppose i is such that, for in�nitely many x,  i promptly crossesCx. Then: 40



(a) There is a stage k at which i is cancelled and never uncancelled atany later stages.(b) There is a k and a z 2 Ck such that z and  i(z) are in oppositecolored chains.Proof By induction on i. Fix i � 0 and assume the claim holds for alli0 < i. Then there is some stage k0 such that for all i0 < i, either i0 iscancelled and never uncancelled at a later stage, or else, for each k0 > k0, i0 never promptly crosses Ck0. Moreover, since an i0 can reserve at most onechain at any stage, there is a k1 � k such that no i0 < i reserves any Ck0 orDk0with k0 > k1. Suppose  i promptly crosses in�nitely many of the Cx's. Thenthere is a k > k1 such that  i promptly crosses Ck. By the construction, itis clear that i is cancelled at stage k, if not before. Furthermore, i can beuncancelled only when a lesser i0 < i is cancelled, which cannot happen byour choice of k. Therefore, (a) holds.Now let k be such that i is cancelled at stage k and never uncancelledafterwards. If i reserves some chain at stage k, then, by construction, thereserved chain eventually will be painted green. From this observation andthe construction, it follows that xk and  i(xk) are in opposite colored chains.Thus, with z = xk, (b) is seen to hold. Claim 1Claim 2. In stage k, if Condition 2 holds and i and xk are as under thatcondition, then j i(xk)j is bounded by 2Poly(jkj).Proof We have i � k and jxkj � jr(k)j. By hypothesis 2 of the lemma,jxkj is 2Poly(jkj)-bounded. Therefore, we have that j i(xk)j is bounded by2Poly(log(jij+jxkj)), and thus by 2Poly(jkj). Claim 2Claim 3. A and B are in EXP.Proof Given z 2 (! [ !0), it su�ces to show how to compute the color ofz's chain in 2Poly(jzj)-time. We run the construction until z's chain is painted.That this can be done within 2Poly(jzj)-time follows from these observations:41



� By hypotheses 3 and 5 of the lemma, one can decide, within 2Poly(jzj)-time, whether z is in one of the Ck's, and if so, which k, by exhaustivelychecking every k with jkj � q(jzj).� By hypothesis 6, we can decide in Poly(jzj)-time which Dk, if any,contains z.� If z's chain is not one of the Ck's or Dk's, then it is painted green andwe are done.� Suppose z 2 Ck0 [ Dk0 for some k0. By hypotheses 3 and 6, jk0j ispolynomially bounded in jzj, so we need to run the construction foronly an exponential (in jzj) number of stages to determine the color ofz's chain.� It now su�ces to show that each stage k � k0 can be simulated in2Poly(jk0j)-time. As of the end of stage k we need to keep track of:1. the color of Ci, D2i, and D2i+1 for each i � k,2. which of the i � k are cancelled and which are uncancelled,3. which of the Cj (j � k0) are reserved by which i � k, and4. which of the Dj are reserved by which i � k.The information in (1){(3) can easily be kept in a look-up table of sizePoly(k) = 2O(jkj). By hypothesis 6 and the de�nition of a stage, each jin (4) has length polynomially bounded in j i(xk0)j, for some i; k0 � k.Thus by Claim 2, jjj 2 2Poly(jkj). Hence all the information in (1){(4)above can be kept in a 2Poly(jkj)-size look-up table.� Given the look-up table described above after stage k � 1, it is nowstraightforward to verify that each part of stage k can be simulated in2Poly(jkj)-time, i.e., the look-up table can be updated in 2Poly(jkj)-time toreect the state of a�airs after stage k. In particular,{ Detecting whether  i promptly crosses Ck can be done in 2Poly(jij+jkj)-time. 42



{ Finding xk can be done in 2Poly(jkj)-time.{ Determining to which chain  i(xk) belongs can be done in 2Poly(jkj)-time.� After stage k0, the color of z's chain is read from the current look-uptable. Claim 3Claim 4. A and B are 2-tt hard for EXP.Proof It is clear by the construction that for all k, D2k and D2k+1 arepainted opposite colors if and only if k 2 H, if and only if exactly one ofs(2k) and s(2k+1) is in A. Since s is polynomial-time computable, H parity-2-tt reduces to A, and thus A is 2-tt hard for EXP. Since A�p1B, B is also2-tt hard for EXP. Claim 4Conclusion (a) of the lemma holds as mentioned above. Claims 3 and 4prove (b). Conclusion (c) follows from Claim 1.
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