
Syracuse University Syracuse University

SURFACE SURFACE

Electrical Engineering and Computer Science College of Engineering and Computer Science

1998

Design, implementation, and evaluation of parallell pipelined STAP Design, implementation, and evaluation of parallell pipelined STAP

on parallel computers on parallel computers

Alok Choudhary
Northwestern University

Wei-keng Liao
Northwestern University

Donald Weiner
Syracuse University

Pramod Varshney
Syracuse University

Richard Linderman
Air Force Research Laboratory

See next page for additional authors

Follow this and additional works at: https://surface.syr.edu/eecs

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Choudhary, Alok; Liao, Wei-keng; Weiner, Donald; Varshney, Pramod; Linderman, Richard; and Linderman,
Mark, "Design, implementation, and evaluation of parallell pipelined STAP on parallel computers" (1998).
Electrical Engineering and Computer Science. 49.
https://surface.syr.edu/eecs/49

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in Electrical Engineering and Computer Science by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/eecs
https://surface.syr.edu/lcsmith
https://surface.syr.edu/eecs?utm_source=surface.syr.edu%2Feecs%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Feecs%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/eecs/49?utm_source=surface.syr.edu%2Feecs%2F49&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Author(s)/Creator(s) Author(s)/Creator(s)
Alok Choudhary, Wei-keng Liao, Donald Weiner, Pramod Varshney, Richard Linderman, and Mark
Linderman

This article is available at SURFACE: https://surface.syr.edu/eecs/49

https://surface.syr.edu/eecs/49

Design, Implementation and
Evaluation of Parallel Pipelined
STAP on Parallel Computers

ALOK CHOUDHARY

WEI-KENG LIAO
Northwestern University

DONALD WEINER, Life Fellow, IEEE

PRAMOD VARSHNEY, Fellow, IEEE
Syracuse University

RICHARD LINDERMAN, Senior Member, IEEE

MARK LINDERMAN, Member, IEEE

RUSSELL BROWN, Fellow, IEEE
Air Force Research Laboratory

Performance results are presented for the design and
implementation of parallel pipelined space-time adaptive
processing (STAP) algorithms on parallel computers. In
particular, the issues involved in parallelization, our approach
to parallelization, and performance results on an Intel Paragon
are described. The process of developing software for such an
application on parallel computers when latency and throughput
are both considered together is discussed and tradeoffs considered
with respect to inter and intratask communication and data
redistribution are presented. The results show that not only
scalable performance was achieved for individual component tasks
of STAP but linear speedups were obtained for the integrated task
performance, both for latency as well as throughput. Results are
presented for up to 236 compute nodes (limited by the machine
size available to us). Another interesting observation made from
the implementation results is that performance improvement
due to the assignment of additional processors to one task can
improve the performance of other tasks without any increase in
the number of processors assigned to them. Normally, this cannot
be predicted by theoretical analysis.

Manuscript received January 29, 1999; revised June 9 and
December 6, 1999; released for publication December 11, 1999.

IEEE Log No. T-AES/36/2/05228.

Refereeing of this contribution was handled by W. D. Blair.

This work was supported by Air Force Material Command under
Contract F30602-97-C-0026.

Authors’ addresses: A. Choudhary and W. Liao, Electrical and
Computer Engineering Dept., Northwestern University, Evanston,
IL 60208; D. Weiner and P. Varshney, Electrical Engineering
and Computer Science Dept., Syracuse University, 121 Link
Hall, Syracuse, NY 13244; R. Linderman and M. Linderman,
AFRL/IFTC, 26 Electronics Parkway, Air Force Research
Laboratory, Rome, NY 13441; R. Brown, AFRL/SNRT, 26
Electronics Parkway, Air Force Research Laboratory, Rome, NY
13441.

0018-9251/00/$10.00 c° 2000 IEEE

I. INTRODUCTION

Space-time adaptive processing (STAP) is
a well-known technique in the area of airborne
surveillance radars used to detect weak target returns
embedded in strong ground clutter, interference, and
receiver noise. STAP is a 2-dimensional adaptive
filtering algorithm that attenuates unwanted signals
by placing nulls in their directions of arrival and
Doppler frequencies. Most STAP applications are
computationally intensive and must operate in real
time. High-performance computers are becoming
mainstream due to the progress made in hardware as
well as software support in the last few years. They
can satisfy the STAP computational requirements of
real-time applications while increasing the flexibility,
affordability, and scalability of radar signal processing
systems. However, efficient parallelization of a
STAP algorithm which has embedded in it different
processing steps is challenging and is the subject of
this paper.
Described here is our innovative parallel pipelined

implementation of a pulse repetition interval
(PRI)-staggered post-Doppler STAP algorithm on the
Intel Paragon at the Air Force Research Laboratory
(AFRL), Rome, NY. For a detailed description of
the STAP algorithm implemented in this work,
the reader is referred to [1, 2]. AFRL successfully
installed their implementation of the STAP algorithm
onboard an airborne platform and performed four
flight experiments in May and June 1996 [3]. These
experiments were performed as part of the Real-Time
Multi-Channel Airborne Radar Measurements
(RTMCARM) program. The RTMCARM system
block diagram is shown in Fig. 1. In that real-time
demonstration, live data from a phased-array radar
was processed by the onboard Intel Paragon and
results showed that high-performance computers can
deliver a significant performance gain. However, this
implementation used compute nodes of the machine
only as independent resources in a round robin
fashion to run different instances of STAP (rather
than speeding up each instance of STAP.) Using this
approach, the throughput may be improved, but the
latency is limited by what can be achieved using one
compute node.
Parallel computers, organized with a large

set (several hundreds) of processors linked by a
specialized high speed interconnection network,
offer an attractive solution to many computationally
intensive applications, such as image processing,
simulation of particle reactions, and so forth.
Parallel processing splits an application problem into
several subproblems which are solved on multiple
processors simultaneously. To learn more about
parallel computing, the reader is referred to [4—8]. For
our parallel implementation of this real application we
have designed a model of the parallel pipeline system

528 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

Fig. 1. RTMCARM system block diagram.

where each pipeline is a collection of tasks and each
task itself is parallelized. This parallel pipeline model
was applied to the STAP algorithm with each step as
a task in a pipeline. This permits us to significantly
improve latency as well as throughput.
This paper discusses both the parallelization

process and performance results. In addition,
design considerations for portability, task mapping,
parallel data redistribution, parallel pipelining as
well as system-level and task-level performance
measurement are presented. Finally, the performance
and scalability of the implementation for a large
number of processors is demonstrated. Performance
results are given for the Intel Paragon at AFRL.
The paper is organized as follows. In Section II

we discuss the related work. An overview of the
implemented algorithm is given in Section III.
In Section IV we present the parallel pipeline
system model and discuss some parallelization
issues and approaches for implementation of STAP
algorithms. Section V presents specific details of
STAP implementation. Software development is
presented in Section VI. Performance results and
conclusions are presented in Sections VII and VIII,
respectively.

II. RELATED WORK

The RTMCARM experiments were performed
using a BAC 1-11 aircraft. The radar was a
phased-array L-Band radar with 32 elements
organized into two rows of 16 each. Only the data

from the upper 16 elements were processed with
STAP. This data was derived from a 1.25 MHz
IF signal that was 4 : 1 oversampled at 5 MHz.
The number representation at IF was 14 bits, 2s
complement and was converted to 16 bit baseband real
and imaginary numbers. Special interface boards were
used to digitally demodulate IF signals to baseband.
The signal data formed a raw 3-dimensional data
cube, called the coherent processing interval (CPI)
data cube, comprised of 128 pulses, 512 range gates
(32.8 mi), and 16 channels. These special interface
boards were also used to corner turn the data cube so
that the CPI is unit stride along pulses. This speeds
the subsequent Doppler processing on the high
performance computing (HPC) systems. Live CPI
data from a phased-array radar were processed by a
ruggedized version of the Paragon computer.
The ruggedized version of the Intel Paragon

system used for the RTMCARM experiments
consists of 25 compute nodes running the SUNMOS
operating system. Fig. 2 depicts the system
implementation. Each compute node has three
i860 processors accessing the common memory
of size 64M bytes as a shared resource. The CPI
data sets were sent to the 25 compute nodes in
a round robin manner and all three processors
worked on each CPI data set as a shared-memory
machine. The system processed up to 10 CPIs/s
(throughput) and achieved a latency of 2.35 s/CPI.
This implementation used compute nodes of the
machine as independent resources to run different
instances of CPI data sets. No communication

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 529

Fig. 2. Implementation of ruggedized version of Intel Paragon System in RTMCARM experiments.

among compute nodes was needed. This approach
can achieve desired throughput by using as many
nodes as needed, but the latency is limited by what
can be achieved using the three processors in one
compute node. More information on the overall
system configuration and performance results can be
found in [1, 3].
Other related work [9—12] parallelized high-order

post-Doppler STAP algorithms by partitioning
the computational workload among all processors
allocated for the applications. In [9, 10], the work
focused on the design of parallel versions of
subroutines for fast Fourier transform (FFT) and
QR decomposition. In [11, 12], the implementations
optimized the data redistribution between processing
steps in the STAP algorithms while using sequential
versions of the FFT and QR decomposition
subroutines. A multistage approach was employed
in [13] which was an extension of [11, 12]. A beam
space post-Doppler STAP was divided into three
stages and each stage was parallelized on a group
of processors. A technique called replication of
pipeline stages was used to replicate the computational
intensive stages such that a different data instance
is run on a different replicated stage. Their effort
focused on increasing the throughput while keeping
the latency fixed. For other related work, the reader is
referred to [14—16].

III. ALGORITHM OVERVIEW

The adaptive algorithm, which cancels
Doppler-shifted clutter returns as seen by the airborne
radar system, is based on a least squares solution
to the weight vector problem. This approach has
traditionally yielded high clutter rejection but suffers
from severe distortions in the adapted mainbeam
pattern and resulting loss of gain on the target. Our
approach, which is described in greater detail in the
Appendix, introduces a set of constraint equations
into the least squares problem which can be weighted

proportionally to preserve mainbeam shape. The
algorithm is structured so that multiple receive
beams may be formed without changing the matrix
of training data. Thus, the adaptive problem can
be solved once for all beams which lie within the
transmit illumination region. The airborne radar
system was programmed to transmit five beams, each
25 deg in width, spaced 20 deg apart. Within each
transmit beam, six receive beams were formed by the
processor.
A MATLAB version of the code which was

parallelized is presented in the Appendix. The
algorithm consists of the following steps.

1) Doppler filter processing.
2) Weight computation.
3) Beamforming.
4) Pulse compression.
5) CFAR processing.

Doppler filtering is performed on each receive
channel using weighted FFTs. The analog portion
of the receiver compensates the received clutter
frequency to center the clutter frequency at zero
regardless of the transmit beam position. This
simplifies indexing of Doppler bins for classification
as “easy” or “hard” depending on their proximity
to mainbeam clutter returns. For the hard cases,
Doppler processing is performed on two 125-pulse
windows of data separated by three pulses (a STAP
technique known as “PRI-stagger”). Both sets of
Doppler processed data are adaptively weighted
in the beamforming process for improved clutter
rejection. In the easy case, only a single Doppler
spectrum is computed. This simpler technique has
been termed post-Doppler adaptive beamforming and
is quite effective at a fraction of the computational
cost when the Doppler bin is well separated from
mainbeam clutter. In these situations, an angular
null placed in the direction of the competing ground
clutter provides excellent rejection. Selectable
window functions are applied to the data prior to

530 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

the Doppler FFTs to control sidelobe levels. The
selection of a window is a key parameter in that it
impacts the leakage of clutter returns across Doppler
bins, traded off against the width of the clutter
passband.
An efficient method of beamforming using

recursive weight updates is made possible by a block
update form of the QR decomposition algorithm.
This is especially significant in the hard Doppler
regions, which are computed using separate weights
for six consecutive range intervals. The recursive
algorithm requires substantially less training data
(sample support) for accurate weight computation,
as well as providing improved efficiency. Since
the hard regions have one-sixth the range extent
from which to draw data, this approach dealt with
the paucity of data by using past looks at the same
azimuth, exponentially forgotten, as independent,
identically distributed estimates of the clutter to
be canceled. This assumes a reasonable revisit
time for each azimuth beam position. During
the flight experiments, the five 25 deg transmit
beam positions were revisited at a 1—2 Hz rate
(5—10 CPIs/s).
The training data for the easy Doppler regions

was selected using a more traditional approach. Here,
the entire range extent was available for sample
support, so the entire training set was drawn from
three preceding CPIs for application to the next CPI
in this azimuth beam position. In this case, a regular
(nonrecursive) QR decomposition is performed on the
training data, followed by block update to add in the
beam shape constraints.
Pulse compression is a compute intensive

task, especially if applied to each receive channel
independently. In general, this approach is required for
adaptive algorithms which compute different weight
sets as a function of radar range. Our algorithm,
however, with its mainbeam constraint, preserves
phase across range. In fact, the phase of the solution
is independent of the clutter nulling equations,
and appears only in the constraint equations. The
adapted target phase is preserved across range,
even though the clutter and adaptive weights may
vary with range. Thus, pulse compression may
be performed on the beamformed output of the
receive channels providing a substantial savings in
computations.
In the sections to follow, we present the process

of parallelization and software design considerations
including those for portability, task mapping,
parallel data redistribution, parallel pipelining
and issues involved in measuring performance in
implementations when not only the performance of
individual tasks is important, but overall performance
of the integrated system is critical. We demonstrate
the performance and scalability for a large number of
processors.

Fig. 3. Model of parallel pipeline system. (Note that Taski for all
input instances is excuted on same number of processors, but that
the number of processors may differ from one task to another.)

IV. MODEL OF PARALLEL PIPELINED SYSTEM

The system model for the type of STAP
applications considered in this work is shown in
Fig. 3. A pipeline is a collection of tasks which are
executed sequentially. The input to the first task
is obtained normally from sensors or other input
devices with the inputs to the remaining tasks coming
from outputs of previous tasks. The set of pipelines
shown in the figure indicates that the same pipeline
is repeated on subsequent input data sets. Each block
in a pipeline represents one task that is parallelized
on multiple (different number of) processors. That
is, each task is decomposed into subtasks to be
performed in parallel. Therefore, each pipeline is a
collection of parallel tasks.
In such a system, there exist both spatial and

temporal parallelism that result in two types of
data dependencies and flows, namely, spatial
data dependency and temporal data dependency
[17—19]. Spatial data dependency can be classified
into intertask data dependency and intratask data
dependency. Intratask data dependencies arise when a
set of subtasks needs to exchange intermediate results
during the execution of a parallel task in a pipeline.
Intertask data dependency is due to the transfer and
reorganization of data passed onto the next parallel
task in the pipeline. Inter-task communication can
be communication from the subtasks of the current
task to the subtasks of the next task, or collection
and reorganization of output data of the current task
and then redistribution of the data to the next task.
The choice depends on the underlying architecture,
mapping of algorithms and input-output relationship
between consecutive tasks. Temporal data dependency
occurs when some form of output generated by the
tasks executed on the previous data set are needed
by tasks executing the current data set. STAP is an

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 531

interesting parallelization problem because it exhibits
both types of data dependency.

A. Parallelization Issues and Approaches

A STAP algorithm involves multiple algorithms
(or processing steps), each of which performs
particular functions, to be executed in a pipelined
fashion. Multiple pipelines need to be executed
in a staggered manner to satisfy the throughput
requirements. Each task needs to be parallelized for
the required performance, which, in turn, requires
addressing the issue of data distribution on the subset
of processors on which a task is parallelized to obtain
good efficiency and incur minimal communication
overhead. Given that each task is parallelized, data
flow among multiple processors of two or more tasks
is required and, therefore, communication scheduling
techniques become critical.
1) Intertask Data Redistribution: In an integrated

system, data redistribution is required to feed data
from one parallel task to another, because the
way data is distributed in one task may not be the
most appropriate distribution for the next task for
algorithmic or efficiency reasons. For example, the
FFTs in the Doppler filter processing task perform
optimally when the data is unit-stride in pulse, while
the next stage, beamforming, performs optimally
when the data is unit stride in channel. To ensure
efficiency and continuity of memory access, data
reorganization and redistribution are required in the
inter-task communication phase. Data redistribution
also allows concentration of communication at the
beginning and the end of each task.
We have developed runtime functions and

strategies that perform efficient data redistribution
[20]. These techniques reduce the communication
time by minimizing contention on the communication
links as well as by minimizing the overhead of
processing for redistribution (which adds to the
latency of sending messages). We take advantage of
lessons learned from these techniques to implement
the parallel pipelined STAP application.
2) Task Scheduling and Processor Assignment:

An important factor in the performance of a parallel
system is how the computational load is mapped
onto the processors in the system. Ideally, to achieve
maximum parallelism, the load must be evenly
distributed across the processors. The problem
of statically mapping the workload of a parallel
algorithm to processors in a distributed memory
system has been studied under different problem
models, such as [21, 22]. The mapping policies are
adequate when an application consists of a single
task, and the computational load can be determined
statically. These static mapping policies do not
model applications consisting of a sequence of tasks

(algorithms) where the output of one task becomes the
input to the next task in the sequence.
Optimal use of resources is particularly important

in high-performance embedded applications due
to limited resources and other constraints such as
desired latency or throughput [23]. When several
parallel tasks need to be executed in a pipelined
fashion, tradeoffs exist between assigning processors
to maximize the overall throughput and assigning
processors to minimize the response time (or latency)
of a single data set. The throughput requirement says
that when allocating processors to tasks, it should be
guaranteed that all the input data sets will be handled
in a timely manner. That is, the processing rate should
not fall behind the input data rate. The response time
criteria, on the other hand, require minimizing the
latency of computation on a particular set of data
input.
To reduce the latency, each parallel task must be

allocated more processors to reduce its execution
time, and consequently, the overall execution time of
the integrated system. But it is well known that the
efficiency of parallel programs usually decreases as
the number of processors is increased. Therefore, the
gains in this approach may be incremental. On the
other hand, throughput can be increased by increasing
the latency of individual tasks by assigning them
fewer processors and, therefore, increasing efficiency,
but at the same time having multiple streams active
concurrently in a staggered manner to satisfy the
input-data rate requirements. We next present these
tradeoffs and discuss various implementation issues.

V. DESIGN AND IMPLEMENTATION

The design of the parallel pipelined STAP
algorithm is shown in Fig. 4. The parallel pipeline
system consists of seven basic tasks. We refer to the
parallel pipeline as simply a pipeline in the rest of this
paper. The input data set for the pipeline is obtained
from a phased-array radar and is formed in terms of
a CPI. Each CPI data set is a 3-dimensional complex
data cube comprised of K range cells, J channels, and
N pulses. The output of the pipeline is a report on
the detection of possible targets. The arrows shown in
Fig. 4 indicate data transfer between tasks. Although
a single arrow is shown, note that each represents
multiple processors in one task communicating with
multiple processors in another task. Each task i is
parallelized by evenly partitioning its work load
among Pi processors. The execution time associated
with task i, Ti, consists of the time to receive data
from the previous task, computation time, and time
to send results to the next task.
The calculation of weights is the most

computationally intensive part of the STAP algorithm.
For the computation of the weight vectors for the
current CPI data cube, data cubes from previous

532 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

Fig. 4. Implementation of parallel pipelined STAP. Arrows connecting task blocks represent data transfer between tasks.

CPIs are used as input data. This introduces temporal
data dependency. For example, suppose that a set of
CPI data cubes entering the pipeline sequentially are
denoted by CPIi, i= 0,1, : : : . At any time instance
i, the Doppler filtering task is processing CPIi and
the beamforming task is processing CPIi¡1. In the
meanwhile, the weight computation task is using
past CPIs in the same azimuthal direction to calculate
the weight vectors for CPIi as described below. The
computed weight vectors will be applied to CPIi
in the beamforming task at the next time instance
(i+1). Thus, temporal data dependencies exist and are
represented by arrows with dashed lines, TD1,3 and
TD2,4, in Fig. 4 where TDi,j represents temporal data
dependency of task j on data from task i. In a similar
manner, spatial data dependencies SDi,j can be defined
and are indicated in Fig. 4 by arrows with solid lines.
Throughput and latency are two important

measures for performance evaluation on a pipeline
system. The throughput of our pipeline system is the
inverse of the maximum execution time among all
tasks, i.e.,

throughput =
1

max0·i<7Ti
: (1)

To maximize the throughput, the maximum value of Ti
should be minimized. In other words, no task should
have an extremely large execution time. With a limited
number of processors, the processor assignment to
different tasks must be made in such a way that the
execution time of the task with highest computation
time is reduced.
The latency of this pipeline system is the time

between the arrival of the CPI data cube at the system
input and the time at which the detection report is
available at the system output. Therefore, the latency
for processing one CPI is the sum of the execution
times of all the tasks except weight computation tasks,

i.e.,
latency = T0 +max(T3,T4)+T5 +T6: (2)

Equation (2) does not contain T1 and T2. The
temporal data dependency does not affect the
latency because weight computation tasks use data
from the previous instance of CPI data rather than
the current CPI. The filtered CPI data cube sent
to the beamforming tasks does not wait for the
completion of its weight computation but rather
for the completion of the weight computation of
the previous CPI. For example, when the Doppler
filter processing task is processing CPIi, the weight
computation tasks use the filtered CPI data, CPIi¡1,
to calculate the weight vectors for CPIi. At the
same time, the beamforming tasks are working on
CPIi¡1 using the data received from the Doppler
filter processing and weight computation tasks. The
beamforming tasks do not wait for the completion of
the weight computation task when processing CPIi¡1
data. The overall system latency can be reduced by
reducing the execution times of the parallel tasks, e.g.,
T0, T3, T4, T5, and T6 in our system.
Next, we briefly describe each task and its parallel

implementation. A detailed description of the STAP
algorithm we used can be found in [1, 2].

A. Doppler Filter Processing

The input to the Doppler filter processing task
is one CPI complex data cube received from a
phased-array radar. The computation in this task
involves performing range correction for each range
cell and the application of a windowing function
(e.g. Hanning or Hamming) followed by an N-point
FFT for every range cell and channel. The output of
the Doppler filter processing task is a 3-dimensional
complex data cube of size K £ 2J £N which is

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 533

Fig. 5. Partitioning strategy for Doppler filter processing task.
CPI data cube is partitioned among P0 processors across

dimension K .

referred to as staggered CPI data. In Fig. 4, we can
see that this output is sent to the weight computation
task as well as to the beamforming task.
Both the weight computation and the beamforming

tasks are divided into easy and hard parts. These two
parts use different portions of staggered CPI data
and the associated amounts of computation are also
different. The easy weight computation task uses
range samples only from the first half of the staggered
CPI data while the hard weight computation task
uses range samples from the entire staggered CPI
data. On the other hand, easy and hard beamforming
tasks use all range cells rather than some of them.
Therefore, the size of data to be transfered to the
weight computation tasks is different from the size of
data to be sent to the beamforming tasks. In Fig. 4,
thicker arrows connected from the Doppler filter
processing task to the beamforming tasks indicate that
the amount of data sent to the beamforming tasks is
more than the amount of data sent to the weight tasks.
The basic parallelization technique employed in

the Doppler filtering processing task is to partition
the CPI data cube across the range cells, that is, if
P0 processors are allocated to this task, then each
processor is responsible for K=P0 range cells. The
reason for partitioning the CPI data cube along
dimension K is that it maintains an efficient accessing
mechanism for contiguous memory space. A total
of K ¢ 2J N-point FFTs are performed and the best

Fig. 6. (a) Staggered CPI data partitioned into easy and hard weight computation tasks. (b) Parallel intertask communication from
Doppler filter processing task to easy and hard weight computation tasks requires different sets of range samples. Data collection needs

to be performed before communication. This can be viewed as irregular data redistribution.

performance is achieved when every N-point FFT
accesses its N data sets from a contiguous memory
space. Fig. 5 illustrates the parallelization of this
step. The intertask communication from the Doppler
filter processing task to weight computation tasks is
explained in Fig. 6(b). Since only subsets of range
cells are needed in weight computation tasks, data
collection has to be performed on the output data
before passing it to the next tasks. Data collection is
performed to avoid sending redundant data and hence
reduces the communication costs.

B. Weight Computation

The second step in this pipeline is the computation
of weights that will be applied to the next CPI. This
computation for N pulses is divided into two parts,
namely, easy and hard Doppler bins, as shown in
Fig. 6(a). The hard Doppler bins (pulses), Nhard, are
those in which significant ground clutter is expected.
The remaining bins are easy Doppler bins, Neasy. The
main difference between the two is the amount of data
used and the amount of computation required. Not all
range cells in the staggered CPI are used in weight
calculation and different subsets of range samples are
used in easy Doppler bins and hard Doppler bins.
To gather range samples for easy Doppler bins to

calculate the weight vectors for the current CPI, data
is drawn from three preceding CPIs by evenly spacing
out over the first one third of K range cells of each
of the three CPIs. The easy weight computation task
involves Neasy QR factorizations, block updates, and
back substitutions. In the easy weight calculation,
only range samples in the first half of the staggered
CPI data are used while hard weight computation
employs range samples from the entire staggered CPI.
Furthermore, the range extent for hard Doppler bins is
split into six independent segments to further improve
clutter cancelation. To calculate weight vectors for the
current CPI, the range samples used in hard Doppler
bins are taken from the immediately preceding
staggered CPI combined with older, exponentially

534 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

Fig. 7. Partitioning strategy for easy and hard weight
computation tasks. Data cube is partitioned across dimension N.

forgotten, data from CPIs in the same direction. This
is done for each of the six range segments. The hard
weight computation task involves 6Nhard recursive QR
updates, block updates, and back substitutions. The
easy and hard weight computation tasks process sets
of 2-dimensional matrices of different sizes.
Temporal data dependency exists in the weight

computation task because both easy and hard Doppler
bins use data from previous CPIs to compute the
weights for the current CPI. The outputs of this step,
the weight vectors, are two 3-dimensional complex
data cubes of size Neasy£ J £M and Nhard£2J £M
for the easy and hard weight computation tasks,
respectively, where M is the number of receive beams.
These two weight vectors are to be applied to the
current CPI in the beamforming task. Because of the
different sizes of easy and hard weight vectors, the
beamforming task is also divided into easy and hard
parts to handle different amounts of computation.
Given the uneven nature of the weight

computations, different sets of processors are allocated
to the easy and hard tasks. In Fig. 4, P1 processors
are allocated to easy weight computation and P2
processors to hard weight computation. Since weight
vectors are computed for each pulse (Doppler bin),
the parallelization in this step involves partitioning of
the data along dimension N, that is, each processor
in easy weight computation task is responsible for
Neasy=P1 pulses while each processor in hard weight
computation task is responsible for Nhard=P2 pulses, as
shown in Fig. 7.
Notice that the Doppler filter processing

and weight computation tasks employ different
data partitioning strategies (along different
dimensions.) Due to different partitioning
strategies, an all-to-all personalized communication
scheme is required for data redistribution from
the Doppler filter processing task to the weight
computation task. That is, each of the P1 and
P2 processors needs to communicate with all
P0 processors allocated to the Doppler filter
processing task to receive CPI data. Since
only subsets of the output of the Doppler
filter processing task are used in the weight
computation task, data collection is performed

before intertask communication. Although data
collection reduces intertask communication cost,
it also involves data copying from noncontiguous
memory space to contiguous buffers. Sometimes the
cost of data collection may become extremely large
due to hardware limitations (e.g., high cache miss
ratio.) When sending data to the beamforming task,
the weight vectors have already been partitioned
along dimension N which is the same as the data
partitioning strategy for the beamforming task.
Therefore, no data collection is needed when
transferring data to the beamforming task.

C. Beamforming

The third step in this pipeline (which is actually
the second step for the current CPI because the result
of the weight task is only used in the subsequent
time step) is beamforming. The inputs of this task
are received from both the Doppler filter processing
and weight computation tasks, as shown in Fig. 4.
The easy weight vector received from the easy
weight computation task is applied to the easy
Doppler bins of the received CPI data while the
hard weight vector is applied to the hard Doppler
bins. The application of weights to CPI data requires
matrix-matrix multiplications on two received
data sets. Due to different matrix sizes for the
multiplications in the easy and hard beamforming
tasks, uneven computational load results. The
beamforming task is also divided into easy and hard
parts for parallelization purposes. This is because the
easy and hard beamforming tasks require different
amounts and portions of CPI data, and involve
different computational loads. The inputs for the
easy beamforming task are two 3-dimensional
complex data cubes. One data cube, which is received
from the easy weight computation task, is of size
Neasy£M £ J . The other is from the Doppler filter
processing task and its size is Neasy£ J £K. A total
of Neasy matrix-matrix multiplications are performed
where each multiplication involves two matrices
of size M £ J and J £K, respectively. The hard
beamforming task also has two input data cubes
which are received from the Doppler filter processing
and hard weight computation tasks. The data cube
of size 6Nhard£M £2J is received from the hard
weight computation task and the Doppler filtered
CPI data cube is of size Nhard£ 2J £K. Since range
cells are divided into 6 range segments, there are a
total of 6Nhard matrix-matrix multiplications in hard
beamforming. The results of the beamforming task
are two 3-dimensional complex data cubes of size
Neasy£M £K and Nhard£M £K corresponding to the
easy and hard parts, respectively.
In a manner similar to the weight computation

task, parallelization in this step also involves
partitioning of data across the N dimension (Doppler

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 535

Fig. 8. Data redistribution from Doppler filter processing task to easy beamforming task. CPI data subcube of size
(K=P0)£ J £Neasy=P3 is reorganized to subcube of size (Neasy=P3)£ (K=P0)£ J before sending from one processor in Doppler filtering

processing task to another in easy beamforming task.

bins.) Different sets of processors are allocated to the
easy and hard beamforming tasks. Since the cost of
matrix multiplications can be determined accurately,
the computations are equally divided among the
allocated processors for this task. As seen from Fig. 4,
this task requires data to be communicated from
the first as well as the second task. Because data is
partitioned along different dimensions, an all-to-all
personalized communication is required for data
redistribution between the Doppler filter processing
and beamforming tasks. The output of the Doppler
filter processing task is a data cube of size K £ 2J £N
which is redistributed to the beamforming task after
data reorganization in the order of N £K £ 2J . Data
reorganization has to be done before the intertask
communication between the two tasks takes place, as
shown in Fig. 8.
Data reorganization involves data copying from

noncontiguous memory space and its cost may
become extremely large due to cache misses. For
example, two Doppler bins in the same range cell and
the same channel are stored in contiguous memory
space. After data reorganization, they are K=P0 ¢ J
element distance apart. Therefore, if P0 is small
and the size of the CPI data subcube partitioned
in each processor is large, then it is quite likely
that expensive data reorganization will be needed
which becomes a major part of the communication
overhead. The algorithms which perform data
collection and reorganization are crucial to exploit
the available parallelism. Note that receiving data
from the weight computation tasks does not involve
data reorganization or data collection because
they have the same partitioning strategy (along
dimension N.)

D. Pulse Compression

The input to the pulse compression task is a
3-dimensional complex data cube of size N £M £K,

Fig. 9. Partitioning strategy for pulse compression task. Data
cube is partitioned across dimension N into P5 processors.

as shown in Fig. 9. This data cube consists of
two subcubes of size Neasy£M £K and Nhard£
M £K which are received from the easy and hard
beamforming tasks, respectively. Pulse compression
involves convolution of the received signal with
a replica of the transmit pulse waveform. This is
accomplished by first performing K-point FFTs
on the two inputs, point-wise multiplication of the
intermediate result, and then computing the inverse
FFT. The output of this step is a 3-dimensional real
data cube of size N £M £K. The parallelization
of this step is straightforward and involves the
partitioning of the data cube across the N dimension.
Each of the FFTs could be performed on an individual
processor and, hence, each processor in this task
gets an equal amount of computation. Partitioning
along the N dimension also results in an efficient
accessing mechanism for contiguous memory space
when running FFTs. Since both the beamforming
and pulse compression tasks use the same data
partitioning strategy (along dimension N), no
data collection or reorganization is needed prior
to communication between these two tasks. After
pulse compression, the square of the magnitude
of the complex data is computed to move to the
real power domain. This cuts the data set size in
half and eliminates the computation of the square
root.

536 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

E. CFAR Processing

The input to this task is an N £M £K real data
cube received from the pulse compression task. The
sliding window constant false alarm rate (CFAR)
processing compares the value of a test cell at a given
range to the average of a set of reference cells around
it times a probability of false alarm factor. This step
involves summing up a number of range cells on each
side of the cell under test, multiplying the sum by
a constant, and comparing the product to the value
of the cell under test. The output of this task, which
appears at the pipeline output, is a list of targets
at specified ranges, Doppler frequencies, and look
directions. The parallelization strategy for this step
is the same as for the pulse compression task. Both
tasks partition the data cube along the N dimension.
Also, no data collection or reorganization is needed in
the pulse compression task before sending data to this
task.

VI. SOFTWARE DEVELOPMENT AND SYSTEM
PLATFORM

All the parallel program development and their
integration was performed using ANSI C language
and message passing interface (MPI) [24]. This
permits easy portability across various platforms
which support C language and MPI. Since MPI is
becoming a de facto standard for high-performance
systems, we believe the software is portable.
The implementation of the STAP application

based on our parallel pipeline system model has been
done on the Intel Paragon at the Air Force Research
Laboratory, Rome, NY. This machine contains 321
compute nodes interconnected in a two-dimensional
mesh. The Paragon runs Intel’s standard Open
Software Foundation (OSF) UNIX operating system.
Each compute node consists of three i860 RISC
processors which are connected by a system bus and
share a 64M byte memory. The speed of an i860
RISC processor is 40 MHz and its peak performance
is 100M floating point operations per second. The
interconnection network has a message startup time
of 35:3 ¹s and a data transfer time of 6.53 ns/byte for
point-to-point communication.
In our implementation, a double buffering strategy

was used both in the receive and send phases.
During the execution loops, this strategy employs
two buffers alternatively such that one buffer can be
processed during the communication phase while the
other buffer is processed during the compute phase.
Together with the double buffering implementation,
asynchronous send and receive calls were employed in
order to maximize the overlap of communication and
computation. Asynchronous communication means
that the program executing the send/receive does not
wait until the send/receive is complete. This type of

Fig. 10. Implementation of timing computation and
communication for each task. Double buffering strategy is used to
overlap communication with computation. Receive time = t1¡ t0,

compute time = t2¡ t1, send time = t3 ¡ t2.

communication is also referred to as non-blocking
communication. The other option is synchronous
communication which blocks the send/receive
operation until the message has been sent/received.
The general execution flow and the approach to
measure the timing for each part of computation and
communication is given in Fig. 10. We used MPI
timer, MPI Wtime(), because this function is portable
with high resolution.

VII. PERFORMANCE RESULTS

We specified the parameters that were used in our
experiments as follows:

range cells (K) = 512,
channels (J) = 16,
pulses (N) = 128,
receive beams (M) = 6,
easy Doppler bins (Neasy) = 72,
hard Doppler bins (Nhard) = 56.

Given these values of parameters, the total number
of floating point operations (flops) required for each
CPI data to be processed throughout this STAP
algorithm is 403,552,528. Table I shows the number
of flops required for each task. A total of 25 CPI
complex data cubes were generated as inputs to the
parallel pipeline system. Each task in the pipeline
contains three major parts: receiving data from the
previous task, main computation, and sending results
to the next task. Performance results are measured
separately for these three parts, namely receiving
time, computation time, and sending time. In each
task timing results for processing one CPI data were
obtained by accumulating the execution time for the
middle 20 CPIs and then averaging it. Timing results
presented here do not include the effect of the initial
setup (first 3 CPIs) and final iterations (last 2 CPIs).

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 537

Fig. 11. Performance and speedup of computation time as function of number of compute nodes for all tasks.

TABLE I
Number of Floating Point Operations for PRI-Staggered
Post-Doppler STAP Algorithm to Process One CPI Data

A. Computation Costs

The task of computing hard weights is the most
computationally demanding task. The Doppler filter
processing task is the second most demanding task.
Naturally, more compute nodes are assigned to these
two tasks in order to obtain a good performance.
For each task in the STAP algorithm, parallelization
was done by evenly dividing the computational load
across the compute nodes assigned. Since there is
no intratask data dependency, no inter-processor
communication occurs within any single task in the
pipeline. Another way to view this is that intratask
communication is moved to the beginning of each task
within the data redistribution step. Fig. 11 gives the

computation performance results as functions of the
numbers of nodes and the corresponding speedup on
the AFRL Intel Paragon. For each task, we obtained
linear speedups.

B. Intertask Communication

Intertask communication refers to the
communication between the sending and receiving
(distinct and parallel) tasks. This communication
cost depends on both the processor assignment for
each task as well as on the volume and extent of data
reorganization. Tables II—VI present the intertask
communication timing results. Each table considers
pairs of tasks where the number of compute nodes
for both tasks are varied. In some cases timing results
shown in the tables contain idle time for waiting for
the corresponding task to complete. This happens
when the receiving task’s computation part of the
receiving task completes before the sending task has
generated data to send.
From most of the results (Tables II—VI) the

following important observations can be made.
First, when the number of nodes is unbalanced (e.g.,
sending task has a small number of nodes while
the receiving task has a large number of nodes),
the communication performance is not very good.
Second, as the number of nodes is increased in the
sending and receiving tasks, communication scales

538 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

TABLE II
Timing Results of Intertask Communication From Doppler Filter Processing Task to Its Successor Tasks

Note: Time in seconds.

TABLE III
Timing Results of Intertask Communication From Easy Weight

Computation Task to Easy Beamforming Task

Note: Time in seconds.

TABLE IV
Timing Results of Intertask Communication From Hard Weight

Computation Task to Hard Beamforming Task

Note: Time in seconds.

TABLE V
Timing Results of Intertask Communication From Easy and Hard

Beamforming Tasks to Pulse Compression Task

Note: Time in seconds.

tremendously. This happens for two reasons. One,
each node has less data to reorganize, pack and send
and each node has less data to receive; and two,
contention at the sending and receiving nodes is
reduced. For example, Table II shows that when the
number of nodes of the sending task is increased
from 8 to 32, the communication times improve
in a superlinear fashion. Thus, it is not sufficient

TABLE VI
Timing Results of Intertask Communication From Pulse

Compression Task to CFAR Processing Task

Note: Time in seconds.

to improve the computation times for such parallel
pipelined applications to improve throughput and
latency.
In Fig. 10 the receiving time for each loop is

given by subtracting t1 from t0. Since computation
has to be performed only after the input data has
been received, receiving time may contain the waiting
time for the input, shown in line 4. Sending time,
t3¡ t2, measures the time containing data packing
(collection and reorganization) and posting sending
requests. Because of the asynchronous send used in
the implementation, the results shown here are the
visible sending time and the actual sending action
may occur in other portions of the task. Similar to the
receiving time, the sending time may also contain the
waiting time for the completion of sending requests
in the previous loop, shown in line 8. Especially in
the cases when two communicating tasks have an
uneven partitioned parallel computation load, this
effect becomes more apparent. With a large number
of nodes, there is tremendous scaling in performance
of communicating data as the number of nodes is
increased. This is because the amount of processing
for communication per node is decreased (as it
handles less amount of data), the amount of data per
node to be communicated is decreased and the traffic
on links going in and out of each node is reduced.
This model scales well for both computation and
communication.

C. Integrated System Performance

Integrated system refers to the evaluation of
performance when all the tasks are considered
together. Throughput and latency are the two most

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 539

TABLE VII
Performance Results for 3 Cases With Different Node

Assignments

Note: Time in seconds.

important measures for performance evaluation in
addition to individual task computation time and
intertask communication time. Table VII gives timing
results for three different cases with different node
assignments.
In Section V, (1) and (2) provide the throughput

and latency for one CPI data set. The measured
throughput is obtained by placing a timer at the end
of the last task and recording the time difference
between every loop (that is between two successive
completions of the pipeline.) The inverse of this
measure provides the throughput. On the other hand,
it is more difficult to measure latency because it
requires synchronizing clocks at the node of the first

TABLE VIII
Throughput and Latency for the 3 Cases of Table VII

Note: Real results obtained from experiments while equation
results obtained from applying individual tasks’ timing to
equations (1) and (2). Unit of throughput is number of CPIs per
second. Unit of latency is second.

and last task. Thus, to obtain the measured latency, the
timing measurement should be made by first reading
time at both the first task and last task when the first
task is ready to read a new input data. This can be
done by sending a signal from the first task to the
last task when the first task is ready for reading the
new input data. Then the timer for the last task can be
started.
In fact, the latency given in (2) represents an

upper bound because the way we time tasks contains
the time of waiting for input from the previous
task. This waiting time portion overlaps with the
computation time in the previous tasks and should
be excluded from the latency. Thus, the latency
results are conservative values and the real latency
is expected to be smaller than this value. However,
the latency given from (2) indicates the worst case
performance for our implementation. The real latency
equation, therefore, becomes

real latency = T0 +max(T
0
3 ,T

0
4)+T

0
5 +T

0
6 (3)

where T0i = Ti-idle time at receiving, i= 3, 4, 5, and 6.
Table VIII gives the throughput and latency

results for the 3 cases shown in Table VII. From
these 3 cases, it is clear that even for the latency and
throughput measures we obtain linear speedups from
our experiments. Given that this scale-up is up to
compute 236 nodes (we were limited to these number
of nodes due to the size of the machine), we believe
these are very good results.
As discussed in Section IV, tradeoffs exist between

assigning nodes to maximize throughput and to
minimize latency, given limited resources. Using
two examples, we illustrate how further performance
improvements may (or may not) be achieved if few
extra nodes are available. We now take case 2 from
Table VII as an example and add some extra nodes
to tasks to analyze its affect to the throughput and
latency. Suppose that case 2 has fulfilled the minimum
throughput requirement and more nodes can be added.
Table IX shows that adding 4 more nodes to the
Doppler filter processing task not only increases
the throughput but also reduces the latency. This is
because the communication amount for each send and

540 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

TABLE IX
Performance Results for Adding 4 More Nodes to Doppler Filter

Processing Task to Case 2 in Table VII

Note: Time in seconds.

receive between the Doppler filter processing task
to weight computation and to beamforming tasks is
reduced (Table IX). So, clearly, adding nodes to one
task not only affects the performance of that task but
has a measurable effect on the performance of other
tasks. By increasing the number of nodes 3%, the
improvement in throughput is 32% and in latency is
19%. Such effects are very difficult to capture in purely
theoretical models because of the secondary effects.
Since the parallel computation load may be

different among tasks, bottleneck problems arise
when some tasks in the pipeline do not have the
proper numbers of nodes assigned. If the number of
nodes assigned to one task with a heavy work load
is not enough to catch up the input data rate, this
task becomes a bottleneck in the pipeline system.
Hence, it is important to maintain approximately the
same computation time among tasks in the pipeline
system to maximize the throughput and, also, achieve
higher processor utilization. One bottleneck task can
be seen when its computation time is relatively much
larger than the rest of the tasks. The performance
of the entire system degrades because the rest of
the tasks have to wait for the completion of the
bottleneck task to send/receive data to/from it no
matter how many more nodes assigned to them and
how fast they can complete their jobs. Therefore,
poor task scheduling and processor assignment will
cause a significant portion of idle time in the resulted
communication costs. In Table X we added a total of
16 more nodes to the pulse compression and CFAR
processing tasks to the case in Table IX. Comparing
to case 2 in Table VII, we can see that the throughput
increased. However, the throughput did not improve
compared with the results in Table IX, even though
this assignment has 16 more nodes. In this case, the
weight tasks are the bottleneck tasks because their
computation costs are relatively higher than other
tasks. We can see that the receiving time of the rest
of the tasks are much larger than their computation

TABLE X
Performance Results for Adding 16 More Nodes to Pulse

Compression and CFAR Processing Tasks to the Case in Table IX

Note: Time in seconds.

time. A significant portion of idle time waiting for the
completion of weight tasks is in the receiving time.
On the other hand, we observe 23% improvement
in the latency. This is because the computation time
is reduced in the last two tasks with more nodes
assigned. From (3), the execution time of these two
tasks, T05 and T

0
6 , decreases and, therefore, the latency

is reduced.

VIII. CONCLUSIONS

In this paper we presented performance results
for a PRI-staggered post-Doppler STAP algorithm
implementation on the Intel Paragon machine at
the Air Force Research Laboratory, Rome, NY.
The results indicate that our approach of parallel
pipelined implementation scales well both in terms of
communication and computation. For the integrated
pipeline system, the throughput and latency also
demonstrate the linear scalability of our design. Linear
speedups were obtained for up to 236 compute nodes.
When more than 236 nodes are used, the speedup
curves for the results of throughput and latency may
saturate. This is because the communication costs will
become significant with respect to the computation
costs.
Almost all radar applications have real-time

constraints. Hence, a well-designed system should
be able to handle any changes in the requirements
on the response time by dynamically allocating or
reallocating processors among tasks. Our design
and implementation not only shows tradeoffs in
parallelization, processor assignment, and various
overheads in inter and intratask communication
etc., but it also shows that accurate performance
measurement of these systems is very important.
Consideration of issues such as cache performance
when data is packed and unpacked, and impact of
the parallelization and processor assignment for one

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 541

Fig. 12. Conventional least squares processing.

task on another task are crucial. This is normally not
easily captured in theoretical models. In the future we
plan to incorporate further optimizations including
multithreading, multiple pipelines, and multiple
processors on each compute node.

APPENDIX A. SPACE-TIME ADAPTIVE PROCESSING
WITH MAINBEAM CONSTRAINT

The STAP problem can be formulated as a least
squares minimization of the clutter response. This
approach is desirable from a computational standpoint,
as it is not necessary to produce an estimate of
the clutter covariance matrix, which is an order n3

operation. In the least squares approach, a matrix
M is constructed from snapshots of the array data
after Doppler processing, and a weight vector w is
computed which minimizes the norm of the product
vector Mw. The snapshots are samples of data from
each array element taken at range cells adjacent to
the test cell, and also from multiple CPIs which
are decorrelated across time. Typically a beam
constraint, such as a requirement for unit response in
the direction of the desired target, is added to rule out
the trivial solution, w= 0. As illustrated in Fig. 12,
the weight vector is computed by multiplying the
pseudoinverse of M times a unit vector.
While assuring a non-zero solution for the weights,

the conventional beam constraint placed on the least
squares problem as formulated above often produces
an adapted pattern with a highly distorted main
beamwith a peak response far removed from the
target of interest. The algorithm that was formulated
and implemented here is a constrained version of
the least squares problem. Given a steering vector
ws we seek a weight vector w that minimizes the
clutter response while maintaining a close similarity
between w and ws. This condition is specified by
augmenting the data matrix M with an identity matrix
as depicted in Fig. 13. The product of the identity
matrix and the solution vector w is set to a scalar
multiple of the steering vector ws. The least squares
solution is a compromise between clutter rejection

Fig. 13. Beam constrained least squares processing.

and preservation of mainbeam shape. In practice,
only slight modifications of the weight vector are
required to move spatial nulls into the clutter region,
for clutter returns that are outside of the mainbeam.
Thus, preservation of mainbeam shape requires only
a slight reduction of clutter rejection performance,
and is often offset by an increase in array gain on the
desired target. As shown in Fig. 13, the preservation
of main beam shape is controlled by scalar k. The
choice of k directs the least squares solution for w
to adhere more closely to the steering vector when
k is large, and emphasize clutter cancellation at the
expense of beam shape when k is small. Since k is
variable depending on operating requirements, we
normalize the resulting weight vector to unit length.
There is a computational advantage of the

constrained technique of Fig. 13 over that of Fig. 12
for systems that utilize multiple beam steering. Since
the steering vector ws appears only on the right side
of the equation, and matrix M is independent of the
mainbeam pointing angle, the QR factorization of M
needs be performed only once for a given data set.
Multiple weight vectors can be computed for different
steering vector choices by multiplying the same matrix
pseudoinverse or QR factorization by several choices
of constraint vectors.

APPENDIX B. MATLAB VERSION OF RT-MCARM
PROCESSING ALGORITHM

542 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 543

544 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

ACKNOWLEDGMENTS

We acknowledge the use of the Intel Paragon at
Caltech for the initial development.

REFERENCES

[1] Linderman, M., and Linderman, R. (1998)
Real-time STAP demonstration on an embedded high
performance computer.
IEEE AES Systems Magazine (Mar. 1998), 15—21.

[2] Brown, R., and Linderman, R. (1997)
Algorithm development for an airborne real-time STAP
demonstration.
In Proceedings of the IEEE National Radar Conference,
1997.

[3] Little, M., and Berry, W. (1997)
Real-time multi-channel airborne radar measurements.
In Proceedings of the IEEE National Radar Conference,
1997.

[4] Kumar, V., Grama, A., Gupta, A., and Karypis, G. (1994)
Introduction to Parallel Computing: Design and Analysis of
Algorithms.
Benjamin-Cummings, 1994.

[5] Fox, G., Johnson, M., Lyzenga, G., Otto, S., Salmon, J., and
Walker, D. (1990)
Solving Problems on Concurrent Processors.
Englewood Cliffs, NJ: Prentice-Hall, 1990.

[6] Hwang, K. (1993)
Advanced Computer Architecture: Parallelism, Scalability,
Programmability.
New York: McGraw-Hill, 1993.

[7] Golub, G., and Ortega, J. (1993)
Scientific Computing: An Introduction with Parallel
Computing.
Boston: Academic Press, 1993.

[8] Xavier, C., and Iyengar, S. (1998)
Introduction to Parallel Algorithms.
New York: Wiley, 1998.

[9] Lebak, J., Durie, R., and Bojanczyk, A. (1996)
Toward a portable parallel library for space-time adaptive
methods.
Technical report CTC96TR242, Cornell Theory Center,
June 1996.

[10] Olszanskyj, S., Lebak, J., and Bojanczyk, A. (1995)
Parallel algorithms for space-time adaptive processing.
In Proceedings of the International Parallel Processing
Symposium (Apr. 1995), 77—81.

[11] Lim, Y., and Prasanna, V. (1996)
Scalable portable implementations of space-time adaptive
processing.
In Proceedings of the 10th International Conference on
High Performance Computing (June 1996).

[12] Bhat, P., Lim, Y., and Prasanna, V. (1995)
Issues in using heterogeneous HPC systems for embedded
real time signal processing applications.
In Proceedings of the 2nd International Workshop on
Real-Time Computing Systems and Applications (Oct.
1995).

[13] Lee, M., and Prasanna, V. (1997)
High throughput-rate parallel algorithms for space time
adaptive processing.
Presented at the 2nd International Workshop on
Embedded Systems and Applications, Apr. 1997.

[14] Martinez, D. (1999)
Application of parallel processors to real-time sensor
array processing.
Presented at the International Parallel Processing
Symposium, Apr. 1999.

[15] Cain, K., Torres, J., and Williams, R. (1997)
RT STAP: Real-time space-time adaptive processing
benchmark.
Technical report 96B0000021, MITRE Corporation, Feb.
1997.

[16] Brown, C., Flanzbaum, M., Games, R., and Ramsdell, J.
(1994)
Real-time embedded high performance computing:
Application benchmarks.
Technical report MTR94B145, MITRE Corporation, Oct.
1994.

[17] Choudhary, A., and Patel, J. (1990)
Parallel Architectures and Parallel Algorithms for
Integrated Vision Systems.
Boston: Kluwer Academic Publishers, 1990.

[18] Choudhary, A., and Ponnusamy, R. (1992)
Run-time data decomposition for parallel implementation
of image processing and computer vision tasks.
Journal of Concurrency, Practice and Experience, 4, 4
(June 1992), 313—334.

[19] Choudhary, A., and Ponnusamy, R. (1992)
Parallel implementation and evaluation of a motion
estimation system algorithm using several data
decomposition strategies.
Journal of Parallel and Distributed Computing, 14 (Jan.
1992), 50—65.

[20] Thakur, R., Choudhary, A., and Ramanujam, J. (1996)
Efficient algorithms for array redistribution.
IEEE Transactions on Parallel and Distributed Systems, 6,
7 (June 1996), 587—594.

[21] Berger, M., and Bokhari, S. (1987)
A partitioning strategy for nonuniform problems on
multiprocessors.
IEEE Transactions on Computers, C-36, 5 (May 1987),
570—580.

[22] Berman, F., and Snyder, L. (1987)
On mapping parallel algorithms into parallel architectures.
Journal of Parallel and Distributed Computing, 4 (1987),
439—458.

[23] Choudhary, A., Narahari, B., Nicol, D., and Simha, R.
(1994)
Optimal processor assignment for pipeline computations.
IEEE Transactions on Parallel and Distributed Systems
(Apr. 1994).

[24] Snir, M., et al. (1995)
MPI the Complete Reference.
Cambridge, MA: The MIT Press, 1995.

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 545

Alok Choudhary received his Ph.D. from University of Illinois,
Urbana-Champaign, in electrical and computer engineering, in 1989, M.S. from
University of Massachusetts, Amherst, in 1986 and B.E. (Hons.) from Birla
Institute of Technology and Science, Pilani, India in 1982.
He has been an associate professor in the Electrical and Computer

Engineering Department at Northwestern University since September 1996.
From 1989 to 1996 he was a faculty member in the ECE Department at Syracuse
University. He has worked in industry for computer consultants prior to 1984. His
main research interests are in high-performance computing and communication
systems and their applications in many domains of information processing,
datamining, and scientific computing. In particular, his interests lie in the design
and evaluation of architectures and software systems, high-performance servers,
and input-output.
Dr. Choudhary has served as program chair and general chair for several

conferences in parallel and high-performance computing areas. He received the
National Science Foundation’s Young Investigator Award in 1993 (1993—1999).
He also received an IEEE Engineering Foundation award, an IBM Faculty
Development award and an Intel Research Council award.

Wei-keng Liao received a Ph.D. in computer and information science from
Syracuse University in 1999.
He is a Research Assistant Professor in the Electrical and Computer

Engineering Department at Northwestern University. His research interests are
in the area of high-performance computing, parallel I/O, and data management
for large-scale scientific applications.

546 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

Donald D. Weiner (S’54–M’60–SM’90–F’94–LF’97) received the S.B.
and S.M. degrees from the Massachusetts Institute of Technology, Cambridge,
MA, in 1956 and 1958, respectively, and the Ph.D. from Purdue University, West
Lafayette, IN, in 1964, all in electrical engineering.
In 1964 he joined the Department of Electrical and Computer Engineering

at Syracuse University as an Assistant Professor where he was promoted to
Associated Professor in 1968 and Professor in 1974. He served as Department
Chair from January 1993 through June 1996. Dr. Weiner became an Emeritus
Professor in 1998 and continues to serve the Department as a Research Professor.
His present research deals with signal processing in an interference environment
including non-Gaussian noise. He has performed extensive work on the
application of nonlinear systems analysis techniques and communications theory
to electromagnetic compatibility problems.
Dr. Weiner has authored or coauthored over 40 journal articles, has presented

over 80 papers at various conferences and has delivered many invited lectures.
He coauthored a book with J. Spina on The Sinusoidal Analysis and Modeling
of Weakly Nonlinear Circuits, published by Van Nostrand Reinhold Company in
1980. He also produced several films for the National Committee for Electrical
Engineering Films released by the Education Development Center in 1988. In
1994 he was elected to the grade of Fellow in the IEEE for contributions to the
analysis of nonlinear effects in electromagnetic compatibility. He received the
Best Paper Award of the IEEE Transactions on Electromagnetic Compatibility in
1979, the General Electric Company Teaching Excellence Award in 1980, and
the IEEE Electromagnetic Compatibility Society Certificate of Achievement for
outstanding theoretical contributions to the analysis of nonlinear systems in 1985.

Pramod K. Varshney (S’72–M’77–SM’82–F’97) was born in Allahabad,
India on July 1, 1952. He received the B.S. degree in electrical engineering
and computer science (with highest honors), and the M.S. and Ph.D. degrees in
electrical engineering from the University of Illinois at Urbana-Champaign in
1972, 1974, and 1976, respectively.
During 1972—1976, he held teaching and research assistantships at the

University of Illinois. Since 1976 he has been with Syracuse University, Syracuse,
NY where he is currently a professor of Electrical Engineering and Computer
Science. He served as the Associate Chair of the department during 1993—1996.
His current research interests are in distributed sensor networks and data fusion,
detection and estimation theory, wireless communications, image processing,
radar signal processing, and parallel algorithms.
Dr. Varshney has authored and coauthored over sixty journal papers and over

one hundred thirty conference papers. He is the author of Distributed Detection
and Data Fusion, published by Springer-Verlag in 1997. He has consulted for
General Electric, Hughes, SCEEE, Kaman Sciences Corp., Andro Consulting,
Stiefvater Consulting and Digicomp Research Corp. While at the University
of Illinois, Dr. Varshney was a James Scholar, a Bronze Tablet Senior, and a
Fellow. He is a member of Tau Beta Pi and is the recipient of the 1981 ASEE
Dow Outstanding Young Faculty Award. He was elected to the grade of Fellow
of the IEEE in 1997 for his contributions in the area of distributed detection and
data fusion. He was the guest editor of the special issue on data fusion of the
Proceedings of the IEEE, January 1997. He is on the editorial boards of Cluster
Computing and Information Fusion. He is listed in Who’s Who in Technology
Today and Outstanding Young Men of America.

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 547

Richard W. Linderman (S’81–M’84–SM’90) received his B.S.E.E. degree
from Cornell University, Ithaca, NY, in 1980; and his M.Eng. (EE) degree
and Ph.D. degrees from Cornell University, Ithaca, NY, in 1981 and 1984,
respectively.
He served as Chair, Signal Processing Technology at the U.S. Air Force

Research Laboratory (Rome Research Site) from 1988 to 1997. From 1984 to
1988, he served on the graduate faculty of the Air Force Institute of Technology
teaching and conducting research in advanced computer architectures. His
research interests include high performance computing architectures, VLSI
architecture, advanced packaging, and digital signal processing applications.
Dr. Linderman is an AFRL Fellow.

Mark H. Linderman (M’95) received his B.S.E.E. from the University of
Delaware, Newark, in 1986 and his M.Eng. in electrical engineering and Ph.D.
degrees in 1990 and 1994, respectively from Cornell University, Ithaca, NY.
He has worked as an engineer at HRB Singer in State College, PA. He

is currently the Technical Director at Air Force Research Laboratory, Rome
Research Site, IFTC Branch. He also is the Director of the High Performance
Computing Facility at Rome Research Site. His research interests include
computer aided-design tools for VLSI and computer architecture for signal
processing.
Dr. Linderman is a member of Eta Kappa Nu.

Russell D. Brown (SM’92–F’99) was born in Washington, DC on Sept. 5,
1949. He received a B.S.E.E. degree in 1972, and M.S.E.E. in 1973, from the
University of Maryland, College Park, and Ph.D. in electrical engineering in 1995
from Syracuse University, Syracuse, NY.
From 1973 to 1978 he served as a Communications Electronics Officer for the

U.S. Air Force, and since 1978 has performed research in radar signal processing
at the USAF Research Laboratory in Rome, NY.

548 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS VOL. 36, NO. 2 APRIL 2000

	Design, implementation, and evaluation of parallell pipelined STAP on parallel computers
	Recommended Citation
	Author(s)/Creator(s)

	untitled

