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Scheduling of Unstructured Communication on the Intel iPSC/860�Jhy-Chun Wangy Sanjay RankaSchool of Computer and Information ScienceSyracuse UniversitySyracuse, NY 13244-4100AbstractIn this paper we present several algorithms fordecomposing all-to-many personalized communicationinto a set of disjoint partial permutations. These par-tial permutations avoid node contention as well aslink contention. We discuss the theoretical complexityof these algorithms and study their e�ectiveness bothfrom the view of static scheduling and from runtimescheduling. Experimental results for our algorithmsare presented on the iPSC/860.1 IntroductionExperience with parallel computing has shown thata \good" mapping is a critical part of executing a pro-gram on massively parallel processing machines. Themapping typically can be performed statically or dy-namically. For most regular and synchronous prob-lems, this mapping can be performed at the time ofcompilation by giving directives in the language to de-compose the data and its corresponding computations(based on the owner computes rule) [5]. This typi-cally results in regular collective communication be-tween processors. Many such primitives have beendeveloped in [1, 13].For a large class of scienti�c problems, which areirregular in nature, achieving a good mapping is con-siderably more di�cult [6]. The nature of this irregu-larity may not be known at the time of compilation,and can be derived only at run time. Packages like�This work was supported in part by NSF under CCR-9110812 and in part by DARPA under contract #DABT63-91-C-0028. The contents do not necessarily re
ect the positionor the policy of the United States government and no o�cialendorsement should be inferred.yJhy-Chun Wang's current address is Department of Com-puter Science, University of Illinois at Urbana-Champaign,email: jcwang@cs.uiuc.edu .

PARTI [8, 11] derive the necessary communication in-formation based on the data required for performingthe local computations and data partitioning. Thistends to result in unstructured communication pat-terns. Each processor needs to send messages to somenumber of processors, with no obvious patterns. Fur-ther, for a large class of such problems, the same sched-ule is used a large number of times [5]. Thus, it maybe feasible to perform the scheduling of communica-tion at runtime if the e�ective gains from using sucha schedule are greater than the cost of �nding such aschedule.In this paper we develop and analyze several simplemethods of scheduling all-to-many personalized com-munication. The scheduling overhead of many of themethods developed in this paper is small enough thatthey can be used at runtime. The methods developedin this paper can be classi�ed into three categories:1. Methods based on asynchronous communication2. Methods which avoid node contention3. Methods which avoid link contentionWith the advent of new routing methods [7, 12],the distance to which a message is sent is becomingrelatively less and less important. Permutations havea useful property that, in one phase, each node re-ceives at most one message and sends at most onemessage, thus permutation seems to be a good can-didate for collective communication primitive. If aparticular node receives more than one message orhas to send out more than one message in one phase,then the time would be lower bounded by the timerequired to remove the messages from the network bythe processor receiving the maximum number of mes-sages. Sometimes processors also compete for com-munication path (that will result in link contention),the contention, if not well-managed, may severely de-grade overall performance. There are some (partial)



permutations which have the property of avoiding linkcontention (e.g., bit complement permutation on thehypercube [13]).In general, assuming a system with n processors,our algorithms take as input an n� n communicationmatrix COM . COM (i; j) is equal to a positive integerm if processor Pi needs to send a message (of m unit)to Pj, 0 � i; j � n � 1. Our algorithms decomposethe communication matrix COM into a set of partialpermutations, pm1; pm2; � � � ; pml, where l is a positiveinteger and pmik represents the ith entry in vector pmk.The decomposition is made such that if COM (i; j) 6=0, then there exists a k, 1 � k � l, such that pmik = j.These partial permutations are made to avoid nodeand/or link contention. Experimental results for thesealgorithms are presented on the iPSC/860.The rest of this paper is organized as follows. Nota-tions, de�nitions, general communication properties,and an overview of iPSC/860 are given in Section 2.It also discusses several idiosyncrasies of the iPSC/860architecture which require modi�cations to the gen-eral strategies to achieve good performance. Section 3presents a simple asynchronous communication algo-rithm. Section 4 develops algorithms that will avoidnode contention and discusses their time complexity.Section 5 describes an algorithm which avoids bothnode and link contention. The algorithms given in Sec-tion 4 and 5 assume that all messages are of equal size.Section 6 presents experimental results for a 64-nodeiPSC/860. Finally, conclusions are given in Section 7.2 PreliminariesThe communication matrix COM is an n� n ma-trix where n is the number of processors. COM (i; j)is equal to a positive integer m if processor Pi needsto send a message (of m units) to Pj , otherwiseCOM (i; j) = 0, 0 � i; j < n. Thus, row i ofCOM represents the sending vector, sendi, of pro-cessor Pi, which contains information about the des-tination node and the size of outgoing messages. Col-umn i of COM represents the receiving vector, recvi,of processor Pi, which contains information about thesource node and the size of incoming messages. Theentry sendji (recvji ) represents the jth entry in thevector sendi (recvi). Assuming COM (i; j) = m, thensendji = recvij = m. We will use send and recv torepresent each processor's sending vector and receiv-ing vector when there is no ambiguity.The n � n COM can be decomposed into a set ofcommunication phases, cpk, 1 � k � l, l, a positive

integer, such thatCOM (i; j) = m; m > 0 ) 9!k; 1 � k � l; cpik = j :Thus, node contention can be formally de�ned as9k; 1 � k � l;cpi1k = j1 and cpi2k = j2 ) i1 6= i2 and j1 = j2 ;where 0 � i1; i2; j1; j2 < n:A partial permutation pmk is a communicationphase that pmi1k = j1 and pmi2k = j2;0 � i1; i2; j1; j2 < n ;i1 = i2 , j1 = j2 ;pmik = �1 if Pi does not send a message at this per-mutation.Since permutation has the useful property that ev-ery processor both sends and receives at most one mes-sage, it can signi�cantly reduce node contention.The methods developed to reduce link contentionassume a static routing algorithm is used in mes-sage routing, i.e., based on the source and destinationnodes, one can determine the path that will be usedfor routing. Let edgeij represent the direct communi-cation link (if one exists) between processors Pi andPj. Let pathijk represent the set of links that Pi willuse in the kth permutation in order to send a messageto Pj,pathijk = fedgeim1 ; edgem1m2 ; : : : ; edgemxjg :If pmik = j = �1, then pathijk = �.We de�ne the term link contention as:9k; 1 � k � l;pmi1k = j1 and pmi2k = j2; 0 � i1; i2; j1; j2 < n ;) i1 6= i2 and pathi1j1k \ pathi2j2k 6= � :Thus, a communication scheduling that avoidsnode/link contention is a scheduling such that,8k; 1 � k � l;pmi1k = j1 and pmi2k = j2; 0 � i1; i2; j1; j2 < n ;i1 6= i2 ) pathi1j1k \ pathi2j2k = � :



2.1 AssumptionsWe make the following assumptions for the devel-opment of our algorithms and complexity analysis.1. Every permutation can be completed in (�+M')time, where � is the communication latency, Mis the maximum size of any message sent in thispermutation, and ' represents the inverse of datatransmission rate.2. In case communication is sparse, all nodes sendand receive an approximately equal number ofmessages. Let density d represent the number ofmessages sent or received by every processor.3. We assume that each processor can send only onemessage and receive only one message at a time.If the density is d, then at least d permutationsare required to send all messages.4. Each processor knows the destination nodes of itsoutgoing messages as well as the source nodes ofits incoming messages. The latter restriction canbe removed by an initial exchange of the localdestination vectors.2.2 System Overview: Intel iPSC/860The experiments described in this paper are devel-oped on a 64-node iPSC/860 at CalTech. The In-tel iPSC/860 system consists of compute nodes, I/Onodes, and a host computer.1. The nodes are i860-based processor boards.2. The I/O nodes are Intel386-based processorboards through which the nodes have access tothe Concurrent File System (CFS) and an Ether-net network.3. The host computer, called the System ResourceManager (SRM), is an Intel386-based computerthat runs UNIX1. Users logged into the SRM canallocate computer nodes and run node programs.The iPSC/860 uses a circuit-switched communica-tion via a hypercube interconnection network. Whentwo nodes need to communicate, a dedicated path isset up between them. The communication path is de-termined by the e-cube routing algorithm. This al-gorithm chooses a �xed, shortest-path by changingthe source node's address one bit at a time (from theleast signi�cant bit to the most signi�cant bit) until1UNIX is a registered trademark of AT&T Bell Laboratories.

the address of the destination node is achieved. Sincethe routing is deterministic, a message may encounternode or link contention during the communication.Following are important observations about thecommunication network of iPSC/860 and its commu-nication software [3, 9]:1. Each node can support at most one send and onereceive operation concurrently. A pairwise ex-change is guaranteed to proceed concurrently ifthe two nodes involved �rst do a \pairwise syn-chronization" [3]. However, if the two nodes donot start at the same time, the communicationis essentially unidirectional. If a node Pi sendsdata to node Pj , and at same stage receives datafrom node Pk, where j 6= k, the send and receiveoperations rarely proceed concurrently.2. A communication circuit passing through a nodehas no discernible e�ect on other communicationoperations performed by that node.3. Intersecting communication paths have no dis-cernible e�ect on any of these paths.4. For long messages, bu�er copying is costly enoughthat the sender should wait until the receiver in-dicates that it is ready. This can typically beaccomplished by the exchange of a dummy (i.e.,0 byte) message.The detailed measurements of these observations aregiven in [2, 3, 14].Thus, in order to maximize the utilization ofiPSC/860 interconnection network, care should betaken to avoid contention by e�cient communicationscheduling. The communication scheduling shouldalso exploit special features of the machine like con-current bidirectional communication (by pairwise ex-change).3 Asynchronous Communication (AC)The most straightforward approach is asynchronouscommunication. This scheme does not introduce anyscheduling overhead. The algorithm is divided intothree phases1. each processor �rst post requests for incomingmessages (this operation will pre-allocate bu�ersfor those messages).2. each processor sends out all of its outgoing mes-sages to other processors.



Asynchronous Send Receive()For all processors Pi, 0 � i � n� 1, in parallel doallocate bu�ers and post requests for incomingmessages;send out all outgoing messages to other processors;check and con�rm incoming messages from otherprocessors.Figure 1: Asynchronous communication algorithm.3. Each processor checks and con�rm incoming mes-sages (some of them may already arrived at itsreceiving bu�er(s)) from other processors.During the send-receive process, the sender proces-sor does not need to wait for a complete signal fromthe receiver processor, so it can keep sending outgoingmessages till they are all done. This naive approach isexpected to perform well when the density d is small.The asynchronous algorithm is given in Figure 1.The worst case time complexity of this algorithm isdi�cult to analyze as it will depend on the congestionand contention on the nodes and the network. Also,each processor may only have limited space of messagebu�ers. In such cases, when the system bu�er space isfully occupied by uncon�rmed messages, further mes-sages will be blocked at sender processors side. Theover
ow will block processors from doing further pro-cessing (include receiving messages) because proces-sors are waiting for other processors to consume andempty their bu�er to receive new incoming messages.The situation may never resolve and a dead lock mayoccur among processors.In case the sources of incoming messages are notknown in advance or there is no bu�er space avail-able for pre-allocation, we may replace the post-send-con�rm operation by send-detect-receive operation,where we use busy waiting to detect incoming mes-sages and copy them into the application bu�er. Asmentioned in the previous section, bu�er copying isvery costly and should be avoided. The experimentalresults described in this paper use the approach givenin Figure 1.4 Methods that Avoid Node Con-tentionThe input to the algorithms developed in this paperis a communication matrix COM , COM (i; j) repre-sents the amount of data which needs to be sent from

Link Contention Avoiding Permutation()For all processors Pi, 0 � i � n� 1, in parallel dofor k = 1 to n� 1 doj = i � k;if COM (i; j) > 0 thenPi sends a message to Pj;if COM (j; i) > 0 thenPi receives a message from Pj;endforFigure 2: Scheduling with a special class of linkcontention{free permutations.node i to node j. The communication matrix COMis sparse in nature, i.e., each processor sends and re-ceives at most d di�erent messages (in a system withn processors, d � n). Assuming that each proces-sor knows its sending vector only at runtime, all pro-cessors can participate in a concatenate operation [4]which will combine each processor's sending vector toform the communication matrix COM and leave acopy at every processor. This operation has e�cientimplementation on architectures like hypercubes andmeshes [1, 13].In following subsections, we propose several al-gorithms that decompose the communication matrixCOM into a set of disjoint partial permutations,pm1; pm2; � � � ; pml, such that if COM (i; j) > 0 thenthere exists a unique k, 1 � k � l, that pmik = j.4.1 Scheduling using Special Class of Per-mutations (LP)In this algorithm (Figure 2), each processor Pisends a message to processor P(i�k)2 and receivesa message from P(i�k), where 0 < k < n [3]. IfCOM (i; j) = 0, processor Pi will not send messageto processor Pj (but will receive message from Pj ifCOM (j; i) > 0). The entire communication uses pair-wise exchanges.The worst case time complexity of this algorithm isO(n(�+'M )). One advantage of this algorithm is thatit uses pairwise exchange throughout the entire com-munication. Further, the paths between di�erent pairsin same phase do not have any link contention witheach other. This feature of the algorithm can be usedto exploit bidirectional communication on iPSC/860especially for symmetric communication matrices.2� represents bitwise exclusive OR operator.



4.2 Randomized Scheduling AvoidingNode Contention (RS N)During the communication scheduling, the worstcase time complexity to traverse through every entryof the n � n COM is O(n2). In order to reduce thisoverhead, the �rst step of this algorithm is to compressCOM into a n � d matrix CCOM by a simple com-pressing procedure which moves the d active entries ineach row to the �rst d columns [15]. This procedurewill improve the worst case time to access every activeelement (of CCOM ) to O(dn).The vector prt (in Figure 3) is used as a pointerwhose elements point to the maximum number of non-negative columns in each row. The compressing pro-cedure also randomly swaps the active entries in eachrow. This is necessary to reduce collisions and thuskeep the expected number of collisions to be bounded.Without the randomization, the active entries in eachrow are in ascend order, that, during the �rst severalcommunication phases, tends to result in node con-tention among processors with small IDs. If we per-form this compression statically, the time complex-ity is O(n(n + d)) = O(n2). This operation can beperformed at runtime: each processor compacts onerow, and then all processors participate in a con-catenate operation which will combine all rows intoa n � d matrix. The cost of this parallel scheme isO((n + d) + (dn + � logn)) = O(dn + � logn) (as-suming the concatenate operation can be completedin O(dn+ � log n) time).We set CCOM (i; j) = �1 if an entry doesn't con-tain active information. After the compressing proce-dure, only the �rst d columns of each row may containactive entries. The vectors Tsend and Trecv are usedto record the destination of each outgoing message andthe source of each incoming message in one permuta-tion, respectively; Tsend(i) = j denotes that proces-sor Pi needs to send a message to processor Pj, andTrecv(j) = i denotes that processor Pj will receive amessage from processor Pi. These two vectors are ini-tialized to�1 at the beginning of each iteration. Whensearching for an available entry along row i, the �rstcolumn j with CCOM (i; j) = k � 0 and Trecv(k) =�1 will be chosen. We then set Tsend(i) = k andTrecv(k) = i, and the value of CCOM (i; prt(i)) isthen assigned to entry CCOM (i; j), while prt(i) is de-creased by 1. The worst case time complexity to formone partial permutation here is O(dn), as comparedto O(n2) without the compressing operation.The RS N algorithm is described in Figure 3.The detailed complexity analysis of the RS N al-gorithm is given in [15]. Assuming that each node

Random Scheduling Node()1. Use the n � n matrix COM to create an n � dmatrix CCOM and generate a vector prt;2. For all processors Pi, 0 � i � n�1, in parallel doRepeat(a) Set all entries of vectors Tsend and Trecvto �1;(b) x = random(0::n� 1);(c) for k = 0 to n� 1 doi. Along row x of CCOM , �nd an entryCCOM (x; z) = y that satis�es y � 0and Trecv(y) = �1;ii. If such a z exists, then setTsend(x) = y;Trecv(y) = x;CCOM (x; z) = CCOM (x; prt(x));CCOM (x; prt(x)) = �1;prt(x) = prt(x)� 1;iii. x = (x+ 1) mod n;endfor(d) if (Tsend(i) 6= �1) thenPi sends a message to PTsend(i);if (Trecv(i) 6= �1) thenPi receives a message from PTrecv(i);Until all messages are sentFigure 3: RS N algorithm: randomized schedulingthat avoids node contention.is sending d messages to random destinations and re-ceives d messages from di�erent sources, we have thefollowing results:� The average time complexity for generating a per-mutation in one iteration is O(n ln d+ n);� The number of iterations needed to complete theentire message scheduling is upper bounded byd+ log d.Thus,� Time for compressing COM into CCOM is O(n2)in sequential case and O(dn+ � log n) in the par-allelized version;� Time for performing the scheduling: O(d+log d) �O(n ln d+ n), which is approximately O(dn ln d).



5 Scheduling that Avoid Link Con-tentionFor systems that use circuit switched message rout-ing (e.g., iPSC/860), the path between two processorsis pre-claimed before the actual data is transferred.During the period that data is transferred, no othercommunication paths are allowed to overlap with thispath. The scheduling algorithm proposed in this sec-tion modi�es the RS N algorithm to avoid any linkcontention. In this algorithm (RS NL, Figure 4) weintroduce an n � n array PATHS which is used torecord all claimed paths in one communication phase(Obviously, for regular topologies like mesh and hyper-cube, the size of PATHS can be much smaller thanthe one proposed here).The function Check Path() is used to verify thatthe path between nodes Pi and Pj is not occupied byother communication pairs in the same phase. The un-derlying assumption is that the hardware uses a deter-ministic routing algorithm. Check Path() will returna value TRUE if there is no link contention, otherwise,the value returned is FALSE. Once a path is avail-able, the procedure Mark Path() is called to markthe path's corresponding entries in PATHS such thatno other communication can overlap this path in thesame phase.Further, for iPSC/860 which supports concurrentsend and receive only under certain circumstances (es-pecially pairwise exchange), it is bene�cial to locate(and use) as many pairwise exchange as possible. InStep 3(c)i (Figure 4), priority is given to entries thatcan result in pairwise exchange. Detail discussionof locating pairwise exchange in one communicationphase can be found in [15].6 Experimental ResultsWe implemented our algorithms on a 64-nodeiPSC/860. The experiments are focused on evaluatingthree factors: (1) the number of permutations requiredto complete the communication; (2) the cost of execut-ing the communication scheduling algorithms; and (3)the communication cost. The algorithms presented inprevious sections assume phase synchronization, i.e.,phase i + 1 should not be started before phase i iscompleted. This would require an expensive globalsynchronization at the end of every phase. To avoidglobal synchronization, we have modi�ed the commu-nication strategies in the following manner: whenevera node needs to receive data at one communication

RS Node Link()1. Use the n � n matrix COM to create an n � dmatrix CCOM and a vector prt;2. Set all entries of matrix PATHS to �1;3. For all processors Pi, 0 � i � n�1, in parallel doRepeat(a) Set all entries of vectors Tsend and Trecvto �1;(b) x = random(0::n� 1);(c) for k = 0 to n� 1 doi. Along row x of CCOM , �nd an en-try CCOM (x; z) = y that satis-�es y � 0 ,Trecv(y) = �1, andCheck Path(x; y) = TRUE;ii. If such a z exists, then setTsend(x) = y;Trecv(y) = x;Call Mark Path(x; y);CCOM (x; z) = CCOM (x; prt(x));CCOM (x; prt(x)) = �1;prt(x) = prt(x)� 1;iii. x = (x+ 1) mod n;endfor(d) if (Tsend(i) 6= �1) thenPi sends a message to PTsend(i);if (Trecv(i) 6= �1) thenPi receives a message from PTrecv(i);Until all messages are sentFigure 4: RS NL algorithm: RS that avoids node/linkcontention.



phase, it �rst posts its message bu�er, then sends asignal (0 bytes message) to the sender node. Once thesender node receives the signal, it sends out the data.By using this strategy (we will call it S1 from nowon), we can maintain a loose synchrony at a relativelylower cost. Another advantage of this method is thatall the data will go directly into receiver node's ap-plication bu�er, which will avoid extra bu�er copyingoperations (from system bu�er to application bu�er).We also experimented with other communicationscheme: According to its communication schedulingtable, every processor �rst posts all of its receivingrequests (and allocates receiving bu�ers), then sendsout all of its outgoing messages (without waiting forany kind inquire or completion signal), and �nallyveri�es and con�rms its incoming messages (we willcall this scheme as S2). This scheme is essentially thescheme described in Section 3, with the modi�cationthat the communication ordering is chosen so as toreduce node and/or link contention. Any of S1 or S2can be performed in conjunction with the algorithmsdescribed in this paper. Our experimental results sug-gest that S1 performs better (in terms of communica-tion cost) than S2 in most cases unless the density issmall and/or the algorithm does not exploit the pair-wise bidirectional communication on iPSC/860.The experimental results presented in this paperare thus for S1 in case the algorithm exploit pairwisebidirectional communication (LP and RS NL), and forS2 otherwise (AC and RS N).To measure the time spent on communication, weperform the communication k times for each schedul-ing table generated by a particular algorithm. In eachrun, we take the maximum time spent by any proces-sor as the cost of this test run. The average of the(maximum) communication cost (over k runs) is thecost of a given schedule. Each test data set containsnumber of samples. We use the average communi-cation cost of each sample to calculate the averagecommunication cost of a given scheduling algorithm.The experiments conducted here assuming equalmessage size, i.e., in one test, every processor sendsand receives messages of equal size. The test set usedin the experiments contains 50 random generated sam-ples for each density d, the value of d ranges from 4 to48. The machine used in the experiments is a 64-nodeiPSC/860.Table 1 and Figure 6 to 9 show the experimentalresults for message sizes of range 16 bytes to 128Kbytes. These results reveal the following:1. AC performs better than all algorithms for smalldensity (d � 4) and/or small messages (� 1K

bytes for d = 4 and � 128 bytes for d = 32);2. LP performs better than all algorithms for largedensity and large messages (> 1K bytes and d �32);3. For most of the other cases RS NL has superiorperformance than all the other algorithms. Thisobservation con�rms the importance of exploit-ing node contention, link contention, and pairwisebidirectional communication.The experiments demonstrate that each of the abovealgorithms is useful for certain (d;M ) combinations.Figure 5 shows the di�erent regions for which each ofthe algorithm is most useful on a 64-node iPSC/860.This diagram does not take scheduling cost into ac-count (i.e., it assumes the scheduling is performedstatically, or the scheduling is conducted at runtimeand its cost can be amortized over repeated utiliza-tions and become negligible).In Figure 10 and 11, we present the schedulingoverhead for a 64-node iPSC/860 using the RS N al-gorithm and RS NL algorithm respectively for caseswhere each node has to send d messages. It depictsthat this fraction decreases as the message size in-creases (assuming the same communication scheduleis utilized only once). The fraction declines sharplywhen the message size is between 64 and 128 bytes,this behavior is caused by the change of the underly-ing iPSC/860 communication protocols. In such casesthe AC algorithm is the better choice. For messagesize ranging from 128 bytes to 128K bytes, the cost ofscheduling for RS N algorithm is thus at most 0.6 thecost of communication and the cost is negligible forlarge messages (less than 0.25 for messages of size 2Kbytes). For RS NL algorithm, the cost of scheduling isat most 2.5 the cost of communication for small mes-sages and negligible for large messages (less than 0.25for messages of size 8K bytes). In most applicationsthe same schedule will be utilized many times. Hence,the fractional cost would be considerably lower (in-versely proportional to the number of times the sameschedule is used). In such cases, our algorithms arealso suitable for runtime scheduling.7 ConclusionsThis paper develops several algorithms for all-to-many communication on iPSC/860 and shows thatusing the above methods can signi�cantly reduce thecommunication time over naive methods. For many



cases the cost of scheduling is small enough that itcan be performed at runtime.The performance of these algorithms are presentedfor a 64-node iPSC/860 machine. The following con-clusions are based on the limited experimental resultsfor a �xed number of nodes.1. The performance of asynchronous communicationalgorithm (AC) will depend on the network con-gestion and contention on the underlying archi-tecture. The memory requirements of this algo-rithm is large. This algorithm is only suitable forsmall message sizes.2. The linear permutation algorithm (LP) is verystraightforward, it introduces very low compu-tation overhead. One bene�t of LP is its in-herent property of pairwise exchange, which canbe easily implemented to achieve concurrent sendand receive for machines like iPSC/860. Further,there is no node or link contention. This approachis not suitable for low values of d, because it needsto go through n iterations even when the value dis very small, but it performs very well for largevalue of d.3. Avoiding node contention and link contention cansigni�cantly reduce the total time spent on thecommunication.4. For machine likes iPSC/860, it is worthwhile ex-ploiting pairwise bidirectional communication toachieve concurrent send and receive.There is a large amount of literature on how to par-tition the task graph so as to minimize the communi-cation cost. Many of these methods are iterative innature [10]. After a particular threshold any improve-ment in partitioning is expensive. For problems whichrequire runtime partitioning, it is critical that this par-titioning be completed extremely fast. For such prob-lems, the gains provided by e�ective communicationscheduling may far outperform the gains by spendingthe same amount of time on achieving a better par-titioning. In this paper, we provide schemes whichcan e�ciently execute and achieve good performancein lowering communication cost.The experimental results presented in this paperare for limited communication patterns which are ran-domly generated. For di�erent applications, the kindof patterns used are di�erent. It is unclear whichmethods will be better than others for speci�c classof communication patterns. However, we do believethe methods which avoid node/link contention can
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d msg size AC LP RS N RS NLcomm256 2.70 28.13 3.54 3.631K 5.91 34.31 6.51 6.514 128K 579.25 1318.44 505.88 486.11# iters - 63.00 5.92 7.10comp - 0.06 1.73 8.16comm256 6.05 30.48 7.05 7.101K 14.00 40.24 13.46 13.168 128K 1378.55 1898.21 1069.60 1008.68# iters - 63.00 10.50 11.92comp - 0.06 3.16 13.56comm256 14.02 33.92 14.00 13.751K 33.00 48.12 27.20 25.8616 128K 3211.79 2610.74 2186.59 2018.77# iters - 63.00 19.16 20.74comp - 0.05 6.37 24.53comm256 31.60 38.67 27.74 26.381K 75.27 57.42 54.38 49.5232 128K 7176.16 3271.96 4408.19 3854.76# iters - 63.00 35.52 37.76comp - 0.05 13.24 46.41comm256 49.82 41.58 41.17 37.791K 117.18 62.73 81.15 69.4248 128K 11188.30 3631.69 6610.21 5260.51# iters - 63.00 51.58 53.74comp - 0.06 20.26 65.43Table 1: Experimental Results on a 64-node iPSC/860for �xed message size (Timings are in milliseconds; #iters means number of communication phases).
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Figure 8: Communication cost for uniform messageswith d = 16 on a 64-node iPSC/860.
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