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Abstract

In this paper we present several algorithms for
decomposing all-to-many personalized communication
into a set of disjoint partial permutations. These par-
tial permutations avoid node contention as well as
link contention. We discuss the theoretical complexity
of these algorithms and study their effectiveness both
from the view of static scheduling and from runtime
scheduling. Experimental results for our algorithms
are presented on the iPSC/860.

1 Introduction

Experience with parallel computing has shown that
a “good” mapping is a critical part of executing a pro-
gram on massively parallel processing machines. The
mapping typically can be performed statically or dy-
namically. For most regular and synchronous prob-
lems, this mapping can be performed at the time of
compilation by giving directives in the language to de-
compose the data and its corresponding computations
(based on the owner computes rule) [5]. This typi-
cally results in regular collective communication be-
tween processors. Many such primitives have been
developed in [1, 13].

For a large class of scientific problems, which are
irregular in nature, achieving a good mapping is con-
siderably more difficult [6]. The nature of this irregu-
larity may not be known at the time of compilation,
and can be derived only at run time. Packages like
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91-C-0028. The contents do not necessarily reflect the position
or the policy of the United States government and no official
endorsement should be inferred.

tJhy-Chun Wang’s current address is Department of Com-
puter Science, University of Illinois at Urbana-Champaign,
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PARTI [8, 11] derive the necessary communication in-
formation based on the data required for performing
the local computations and data partitioning. This
tends to result in unstructured communication pat-
terns. Each processor needs to send messages to some
number of processors, with no obvious patterns. Fur-
ther, for a large class of such problems, the same sched-
ule is used a large number of times [5]. Thus, it may
be feasible to perform the scheduling of communica-
tion at runtime if the effective gains from using such
a schedule are greater than the cost of finding such a
schedule.

In this paper we develop and analyze several simple
methods of scheduling all-to-many personalized com-
munication. The scheduling overhead of many of the
methods developed in this paper is small enough that
they can be used at runtime. The methods developed
in this paper can be classified into three categories:

1. Methods based on asynchronous communication
2. Methods which avoid node contention
3. Methods which avoid link contention

With the advent of new routing methods [7, 12],
the distance to which a message is sent is becoming
relatively less and less important. Permutations have
a useful property that, in one phase, each node re-
ceives at most one message and sends at most one
message, thus permutation seems to be a good can-
didate for collective communication primitive. If a
particular node receives more than one message or
has to send out more than one message in one phase,
then the time would be lower bounded by the time
required to remove the messages from the network by
the processor receiving the maximum number of mes-
sages. Sometimes processors also compete for com-
munication path (that will result in link contention),
the contention, if not well-managed, may severely de-
grade overall performance. There are some (partial)



permutations which have the property of avoiding link
contention (e.g., bit complement permutation on the
hypercube [13]).

In general, assuming a system with n processors,
our algorithms take as input an n X n communication
matrix COM. COM(i, j) is equal to a positive integer
m if processor P; needs to send a message (of m unit)
to Pj, 0 < 4,7 < n—1. Our algorithms decompose
the communication matrix COM into a set of partial
permutations, pmy, pma, - - -, pm;, where [ is a positive
integer and pmi represents the i*" entry in vector pmy.
The decomposition is made such that if COM (i, 5) #
0, then there exists a k, 1 < k <[, such that pmi =7.
These partial permutations are made to avoid node
and/or link contention. Experimental results for these
algorithms are presented on the iPSC/860.

The rest of this paper is organized as follows. Nota-
tions, definitions, general communication properties,
and an overview of iPSC/860 are given in Section 2.
It also discusses several idiosyncrasies of the iPSC/860
architecture which require modifications to the gen-
eral strategies to achieve good performance. Section 3
presents a simple asynchronous communication algo-
rithm. Section 4 develops algorithms that will avoid
node contention and discusses their time complexity.
Section 5 describes an algorithm which avoids both
node and link contention. The algorithms given in Sec-
tion 4 and 5 assume that all messages are of equal size.
Section 6 presents experimental results for a 64-node
iPSC/860. Finally, conclusions are given in Section 7.

2 Preliminaries

The communication matrix COM is an n X n ma-
trix where n is the number of processors. COM (3, 5)
is equal to a positive integer m if processor P; needs
to send a message (of m units) to P;, otherwise
COM(,7) = 0, 0 < 4,j < n. Thus, row ¢ of
COM represents the sending vector, send;, of pro-
cessor P;, which contains information about the des-
tination node and the size of outgoing messages. Col-
umn i of COM represents the receiving vector, recv;,
of processor P;, which contains information about the
source node and the size of incoming messages. The
entry send] (recv]) represents the 7t entry in the
vector send; (recv;). Assuming COM (i, j) = m, then
send] = recv;» = m. We will use send and recv to
represent each processor’s sending vector and receiv-
ing vector when there is no ambiguity.

The n x n COM can be decomposed into a set of
communication phases, cpr, 1 < k < I, I, a positive

integer, such that
COM(i,j)=m, m>0 = Tk, 1<k<Il, cpi=7.
Thus, node contention can be formally defined as

Ik, 1<k <,

szl — jl and cp;.f = j2 =i ;é ip and jl = j2 ’
where 0 < iy, 45, j1, j2 < n.

A partial permutation pm; is a communication
phase that

pmi = ji and pmi? = ja,
0 <iy,i2,51,52 < n,

W=1i < J1=J2;
pmi = —1 if P; does not send a message at this per-
mutation.

Since permutation has the useful property that ev-
ery processor both sends and receives at most one mes-
sage, it can significantly reduce node contention.

The methods developed to reduce link contention
assume a static routing algorithm is used in mes-
sage routing, i.e., based on the source and destination
nodes, one can determine the path that will be used
for routing. Let edge;; represent the direct communi-
cation link (if one exists) between processors P; and
P;. Let path; represent the set of links that P; will
use in the k*® permutation in order to send a message
to Pj,

if
path;

{edgeim,, edgem my, - .- edgem i} .

prm;'e = j = —1, then pathzj = ¢.
We define the term link contention as:

Ik, 1<k<lI,
pmyt = ji and pmi? =ja, 0 <iy, iz 1,02 <n,
= i £iz and path;:j1 ﬁpath;.:‘j2 *¢.

Thus, a communication scheduling that avoids
node/link contention is a scheduling such that,

Yk, 1<k <l,
pmi = ji and pmi? = 5, 0 <i1, iz 1,52 <,

iy # iy

= path;;‘j1 N path;.:‘j2 =¢.



2.1 Assumptions

We make the following assumptions for the devel-
opment of our algorithms and complexity analysis.

1. Every permutation can be completed in (74 M)
time, where 7 is the communication latency, M
is the maximum size of any message sent in this
permutation, and ¢ represents the inverse of data
transmission rate.

2. In case communication is sparse, all nodes send
and receive an approximately equal number of
messages. Let density d represent the number of
messages sent or received by every processor.

3. We assume that each processor can send only one
message and receive only one message at a time.
If the density is d, then at least d permutations
are required to send all messages.

4. Each processor knows the destination nodes of its
outgoing messages as well as the source nodes of
its incoming messages. The latter restriction can
be removed by an initial exchange of the local
destination vectors.

2.2 System Overview: Intel iPSC/860

The experiments described in this paper are devel-
oped on a 64-node iPSC/860 at CalTech. The In-
tel iPSC/860 system consists of compute nodes, I/O
nodes, and a host computer.

1. The nodes are 1860-based processor boards.

2. The I/O nodes are Intel386-based processor
boards through which the nodes have access to
the Concurrent File System (CFS) and an Ether-
net network.

3. The host computer, called the System Resource
Manager (SRM), is an Intel386-based computer
that runs UNIX!. Users logged into the SRM can
allocate computer nodes and run node programs.

The iPSC/860 uses a circuit-switched communica-
tion via a hypercube interconnection network. When
two nodes need to communicate, a dedicated path is
set up between them. The communication path is de-
termined by the e-cube routing algorithm. This al-
gorithm chooses a fixed, shortest-path by changing
the source node’s address one bit at a time (from the
least significant bit to the most significant bit) until

1UNIX is a registered trademark of AT&T Bell Laboratories.

the address of the destination node is achieved. Since
the routing is deterministic, a message may encounter
node or link contention during the communication.

Following are important observations about the
communication network of iPSC/860 and its commu-
nication software [3, 9]:

1. Each node can support at most one send and one
receive operation concurrently. A pairwise ex-
change is guaranteed to proceed concurrently if
the two nodes involved first do a “pairwise syn-
chronization” [3]. However, if the two nodes do
not start at the same time, the communication
is essentially unidirectional. If a node P; sends
data to node P;, and at same stage receives data
from node Py, where j # k, the send and receive
operations rarely proceed concurrently.

2. A communication circuit passing through a node
has no discernible effect on other communication
operations performed by that node.

3. Intersecting communication paths have no dis-
cernible effect on any of these paths.

4. For long messages, buffer copying is costly enough
that the sender should wait until the receiver in-
dicates that it is ready. This can typically be
accomplished by the exchange of a dummy (i.e.,
0 byte) message.

The detailed measurements of these observations are
given in [2, 3, 14].

Thus, in order to maximize the utilization of
iPSC/860 interconnection network, care should be
taken to avoid contention by efficient communication
scheduling. The communication scheduling should
also exploit special features of the machine like con-
current bidirectional communication (by pairwise ex-
change).

3 Asynchronous Communication (AC)

The most straightforward approach is asynchronous
communication. This scheme does not introduce any
scheduling overhead. The algorithm is divided into
three phases

1. each processor first post requests for incoming
messages (this operation will pre-allocate buffers
for those messages).

2. each processor sends out all of its outgoing mes-
sages to other processors.



Asynchronous_Send Receive()
For all processors P;, 0 < i < mn — 1, in parallel do
allocate buffers and post requests for incoming
messages;
send out all outgoing messages to other processors;
check and confirm incoming messages from other
Processors.

Figure 1: Asynchronous communication algorithm.

3. Each processor checks and confirm incoming mes-
sages (some of them may already arrived at its
receiving buffer(s)) from other processors.

During the send-receive process, the sender proces-
sor does not need to wait for a complete signal from
the receiver processor, so it can keep sending outgoing
messages till they are all done. This naive approach is
expected to perform well when the density d is small.
The asynchronous algorithm is given in Figure 1.

The worst case time complexity of this algorithm is
difficult to analyze as it will depend on the congestion
and contention on the nodes and the network. Also,
each processor may only have limited space of message
buffers. In such cases, when the system buffer space is
fully occupied by unconfirmed messages, further mes-
sages will be blocked at sender processors side. The
overflow will block processors from doing further pro-
cessing (include receiving messages) because proces-
sors are waiting for other processors to consume and
empty their buffer to receive new incoming messages.
The situation may never resolve and a dead lock may
ocCur among processors.

In case the sources of incoming messages are not
known in advance or there is no buffer space avail-
able for pre-allocation, we may replace the post-send-
confirm operation by send-deteci-receive operation,
where we use busy wailing to detect incoming mes-
sages and copy them into the application buffer. As
mentioned in the previous section, buffer copying is
very costly and should be avoided. The experimental
results described in this paper use the approach given
in Figure 1.

4 Methods that Avoid Node Con-
tention

The input to the algorithms developed in this paper
is a communication matrix COM, COM(i, j) repre-
sents the amount of data which needs to be sent from

Link_Contention_Avoiding Permutation()
For all processors P;, 0 < i < n — 1, in parallel do
fork=1ton—1do
i=i®k;
if COM(i,7) > 0 then
P; sends a message to Pj;
if COM(j,1) > 0 then
P; receives a message from Pj;

endfor

Figure 2: Scheduling with a special class of link
contention—free permutations.

node i to node j. The communication matrix COM
is sparse in nature, i.e., each processor sends and re-
ceives at most d different messages (in a system with
n processors, d < n). Assuming that each proces-
sor knows its sending vector only at runtime, all pro-
cessors can participate in a concatenate operation [4]
which will combine each processor’s sending vector to
form the communication matrix COM and leave a
copy at every processor. This operation has efficient
implementation on architectures like hypercubes and
meshes [1, 13].

In following subsections, we propose several al-
gorithms that decompose the communication matrix
COM into a set of disjoint partial permutations,
pmy, pma, - - -, pmy, such that if COM (4, 7) > 0 then
there exists a unique k, 1 < k <, that pmi =7.

4.1 Scheduling using Special Class of Per-
mutations (LP)

In this algorithm (Figure 2), each processor P;
sends a message to processor P(,@k)z and receives
a message from P(igr), where 0 < k < n [3]. If
COM(i,7) = 0, processor P; will not send message
to processor P; (but will receive message from P; if
COM(j,1) > 0). The entire communication uses pair-
wise exchanges.

The worst case time complexity of this algorithm is
O(n(r+¢M)). One advantage of this algorithm is that
it uses pairwise exchange throughout the entire com-
munication. Further, the paths between different pairs
in same phase do not have any link contention with
each other. This feature of the algorithm can be used
to exploit bidirectional communication on iPSC/860
especially for symmetric communication matrices.

2@ represents bitwise exclusive OR operator.



4.2 Randomized Scheduling Avoiding
Node Contention (RS_N)

During the communication scheduling, the worst
case time complexity to traverse through every entry
of the n x n COM is O(n?). In order to reduce this
overhead, the first step of this algorithm is to compress
COM into a n X d matrix CCOM by a simple com-
pressing procedure which moves the d active entries in
each row to the first d columns [15]. This procedure
will improve the worst case time to access every active
element (of CCOM) to O(dn).

The vector prt (in Figure 3) is used as a pointer
whose elements point to the maximum number of non-
negative columns in each row. The compressing pro-
cedure also randomly swaps the active entries in each
row. This is necessary to reduce collisions and thus
keep the expected number of collisions to be bounded.
Without the randomization, the active entries in each
row are in ascend order, that, during the first several
communication phases, tends to result in node con-
tention among processors with small IDs. If we per-
form this compression statically, the time complex-
ity is O(n(n + d)) = O(n?). This operation can be
performed at runtime: each processor compacts one
row, and then all processors participate in a con-
catenate operation which will combine all rows into
a n X d matrix. The cost of this parallel scheme is
O((n + d) + (dn + tlogn)) = O(dn + Tlogn) (as-
suming the concatenate operation can be completed
in O(dn + tlogn) time).

We set CCOM(3,j) = —1 if an entry doesn’t con-
tain active information. After the compressing proce-
dure, only the first d columns of each row may contain
active entries. The vectors T'send and Trecv are used
to record the destination of each outgoing message and
the source of each incoming message in one permuta-
tion, respectively; T'send(i) = j denotes that proces-
sor P; needs to send a message to processor P;, and
Trecv(j) = ¢ denotes that processor P; will receive a
message from processor P;. These two vectors are ini-
tialized to —1 at the beginning of each iteration. When
searching for an available entry along row i, the first
column 5 with CCOM (i,7) = k > 0 and Trecv(k) =
—1 will be chosen. We then set T'send(i) = k and
Trecv(k) = i, and the value of CCOM/ (%, prt(i)) is
then assigned to entry CCOM (i, 5), while pri(é) is de-
creased by 1. The worst case time complexity to form
one partial permutation here is O(dn), as compared
to O(n?) without the compressing operation.

The RS_N algorithm is described in Figure 3.

The detailed complexity analysis of the RS_N al-
gorithm is given in [15]. Assuming that each node

Random _Scheduling Node()

1. Use the n X n matrix COM to create an n X d
matrix CCOM and generate a vector pri;

2. For all processors P;, 0 < i < n—1, in parallel do
Repeat

(a) Set all entries of vectors T'send and Trecv
to —1;
(b) # = random(0..n — 1);
(¢) for k=0 1to n—1 do
1. Along row = of CCOM, find an entry

CCOM(=z,z) = y that satisfies y > 0
and Trecv(y) = —1;

ii. If such a z exists, then set
Tsend(z) = y;
Trecv(y) = =;
CCOM(z,z) = CCOM (=, pri(z));
CCOM (z,prt(z)) = —1;
pri(z) = pri(z) — 1;

ili. #=(2+1) mod n;

endfor

(d) o (Tsend(i) # —1) then

P; sends a message to Priend(s);

if (Trecv(i) # —1) then

P; receives a message from Pryecy(s);

Until all messages are sent

Figure 3: RS_N algorithm: randomized scheduling
that avoids node contention.

is sending d messages to random destinations and re-
ceives d messages from different sources, we have the
following results:

e The average time complexity for generating a per-
mutation in one iteration is O(nlnd + n);

e The number of iterations needed to complete the
entire message scheduling is upper bounded by

d + logd.
Thus,

e Time for compressing COM into CCOM is O(n?)
in sequential case and O(dn + Tlogn) in the par-
allelized version;

e Time for performing the scheduling: O(d+logd)-
O(nlnd + n), which is approximately O(dnlnd).



5 Scheduling that Avoid Link Con-
tention

For systems that use circuit switched message rout-
ing (e.g., iPSC/860), the path between two processors
is pre-claimed before the actual data is transferred.
During the period that data is transferred, no other
communication paths are allowed to overlap with this
path. The scheduling algorithm proposed in this sec-
tion modifies the RS_N algorithm to avoid any link
contention. In this algorithm (RS_NL, Figure 4) we
introduce an n X n array PATHS which is used to
record all claimed paths in one communication phase
(Obviously, for regular topologies like mesh and hyper-
cube, the size of PATHS can be much smaller than
the one proposed here).

The function Check_Path() is used to verify that
the path between nodes P; and P; is not occupied by
other communication pairs in the same phase. The un-
derlying assumption is that the hardware uses a deter-
ministic routing algorithm. Check_Path() will return
a value TRUE if there is no link contention, otherwise,
the value returned is FALSE. Once a path is avail-
able, the procedure Mark_Path() is called to mark
the path’s corresponding entries in PAT H S such that
no other communication can overlap this path in the
same phase.

Further, for iPSC/860 which supports concurrent
send and receive only under certain circumstances (es-
pecially pairwise exchange), it is beneficial to locate
(and use) as many pairwise exchange as possible. In
Step 3(c)i (Figure 4), priority is given to entries that
can result in pairwise exchange. Detail discussion
of locating pairwise exchange in one communication
phase can be found in [15].

6 Experimental Results

We implemented our algorithms on a 64-node
iPSC/860. The experiments are focused on evaluating
three factors: (1) the number of permutations required
to complete the communication; (2) the cost of execut-
ing the communication scheduling algorithms; and (3)
the communication cost. The algorithms presented in
previous sections assume phase synchronization, i.e.,
phase i + 1 should not be started before phase i is
completed. This would require an expensive global
synchronization at the end of every phase. To avoid
global synchronization, we have modified the commu-
nication strategies in the following manner: whenever
a node needs to receive data at one communication

RS Node_Link()

1. Use the n x n matrix COM to create an n X d
matrix CCOM and a vector pri;

2. Set all entries of matrix PATHS to —1;

3. For all processors P;, 0 < i < n—1, in parallel do
Repeat

(a) Set all entries of vectors T'send and Trecv
to —1;
(b) # = random(0..n — 1);
(¢) for k=0 1to n—1 do
1. Along row z of CCOM, find an en-
try CCOM(z,z) = y that satis-
fies y > 0 ,Trecv(y) = -1, and
Check _Path(z,y) = TRUE;
ii. If such a z exists, then set
Tsend(z) = y;
Trecv(y) = =;
Call Mark_Path(z,y);
CCOM(z,z) = CCOM (=, pri(z));
CCOM (z,prt(z)) = —1;
pri(z) = pri(z) — 1;
ili. #=(2+1) mod n;
endfor
(d) o (Tsend(i) # —1) then
P; sends a message to Priend(s);
if (Trecv(i) # —1) then

P; receives a message from Pryecy(s);

Until all messages are sent

Figure 4: RS_NL algorithm: RS that avoids node/link
contention.



phase, it first posts its message buffer, then sends a
signal (0 bytes message) to the sender node. Once the
sender node receives the signal, it sends out the data.
By using this strategy (we will call it S1 from now
on), we can maintain a loose synchrony at a relatively
lower cost. Another advantage of this method is that
all the data will go directly into receiver node’s ap-
plication buffer, which will avoid extra buffer copying
operations (from system buffer to application buffer).

We also experimented with other communication
scheme: According to its communication scheduling
table, every processor first posts all of its receiving
requests (and allocates receiving buffers), then sends
out all of its outgoing messages (without waiting for
any kind inquire or completion signal), and finally
verifies and confirms its incoming messages (we will
call this scheme as S2). This scheme is essentially the
scheme described in Section 3, with the modification
that the communication ordering is chosen so as to
reduce node and/or link contention. Any of S1 or S2
can be performed in conjunction with the algorithms
described in this paper. Our experimental results sug-
gest that S1 performs better (in terms of communica-
tion cost) than S2 in most cases unless the density is
small and/or the algorithm does not exploit the pair-
wise bidirectional communication on iPSC/860.

The experimental results presented in this paper
are thus for S1 in case the algorithm exploit pairwise
bidirectional communication (LP and RS_NL), and for
S2 otherwise (AC and RS_N).

To measure the time spent on communication, we
perform the communication k times for each schedul-
ing table generated by a particular algorithm. In each
run, we take the maximum time spent by any proces-
sor as the cost of this test run. The average of the
(maximum) communication cost (over k runs) is the
cost of a given schedule. Each test data set contains
number of samples. We use the average communi-
cation cost of each sample to calculate the average
communication cost of a given scheduling algorithm.

The experiments conducted here assuming equal
message size, i.e., in one test, every processor sends
and receives messages of equal size. The test set used
in the experiments contains 50 random generated sam-
ples for each density d, the value of d ranges from 4 to
48. The machine used in the experiments is a 64-node
iPSC/860.

Table 1 and Figure 6 to 9 show the experimental
results for message sizes of range 16 bytes to 128K
bytes. These results reveal the following:

1. AC performs better than all algorithms for small
density (d < 4) and/or small messages (< 1K

bytes for d = 4 and < 128 bytes for d = 32);

2. LP performs better than all algorithms for large
density and large messages (> 1K bytes and d >
32);

3. For most of the other cases RS_NL has superior
performance than all the other algorithms. This
observation confirms the importance of exploit-
ing node contention, link contention, and pairwise
bidirectional communication.

The experiments demonstrate that each of the above
algorithms is useful for certain (d, M) combinations.
Figure 5 shows the different regions for which each of
the algorithm is most useful on a 64-node iPSC/860.
This diagram does not take scheduling cost into ac-
count (i.e., it assumes the scheduling is performed
statically, or the scheduling is conducted at runtime
and its cost can be amortized over repeated utiliza-
tions and become negligible).

In Figure 10 and 11, we present the scheduling
overhead for a 64-node iPSC/860 using the RS_N al-
gorithm and RS_NL algorithm respectively for cases
where each node has to send d messages. It depicts
that this fraction decreases as the message size in-
creases (assuming the same communication schedule
is utilized only once). The fraction declines sharply
when the message size is between 64 and 128 bytes,
this behavior is caused by the change of the underly-
ing iPSC/860 communication protocols. In such cases
the AC algorithm is the better choice. For message
size ranging from 128 bytes to 128K bytes, the cost of
scheduling for RS_N algorithm is thus at most 0.6 the
cost of communication and the cost is negligible for
large messages (less than 0.25 for messages of size 2K
bytes). For RS_NL algorithm, the cost of scheduling is
at most 2.5 the cost of communication for small mes-
sages and negligible for large messages (less than 0.25
for messages of size 8K bytes). In most applications
the same schedule will be utilized many times. Hence,
the fractional cost would be considerably lower (in-
versely proportional to the number of times the same
schedule is used). In such cases, our algorithms are
also suitable for runtime scheduling.

7 Conclusions

This paper develops several algorithms for all-to-
many communication on iPSC/860 and shows that
using the above methods can significantly reduce the
communication time over naive methods. For many



cases the cost of scheduling is small enough that it
can be performed at runtime.

The performance of these algorithms are presented
for a 64-node iPSC/860 machine. The following con-
clusions are based on the limited experimental results
for a fixed number of nodes.

1. The performance of asynchronous communication
algorithm (AC) will depend on the network con-
gestion and contention on the underlying archi-
tecture. The memory requirements of this algo-
rithm is large. This algorithm is only suitable for
small message sizes.

2. The linear permutation algorithm (LP) is very
straightforward, it introduces very low compu-
tation overhead. Omne benefit of LP is its in-
herent property of pairwise exchange, which can
be easily implemented to achieve concurrent send
and receive for machines like iPSC/860. Further,
there is no node or link contention. This approach
is not suitable for low values of d, because it needs
to go through n iterations even when the value d
is very small, but it performs very well for large
value of d.

3. Avoiding node contention and link contention can
significantly reduce the total time spent on the
communication.

4. For machine likes iPSC/860, it is worthwhile ex-
ploiting pairwise bidirectional communication to
achieve concurrent send and receive.

There is a large amount of literature on how to par-
tition the task graph so as to minimize the communi-
cation cost. Many of these methods are iterative in
nature [10]. After a particular threshold any improve-
ment in partitioning is expensive. For problems which
require runtime partitioning, it is critical that this par-
titioning be completed extremely fast. For such prob-
lems, the gains provided by effective communication
scheduling may far outperform the gains by spending
the same amount of time on achieving a better par-
titioning. In this paper, we provide schemes which
can efficiently execute and achieve good performance
in lowering communication cost.

The experimental results presented in this paper
are for limited communication patterns which are ran-
domly generated. For different applications, the kind
of patterns used are different. It is unclear which
methods will be better than others for specific class
of communication patterns. However, we do believe
the methods which avoid node/link contention can

significantly reduce the total time of communication.
Choosing the best method among the variety of al-
gorithms presented in this paper will depend on the
underlying architecture, the type of communication
patterns, and whether the scheduling has to be per-
formed statically or at runtime.

Because of space limitation, the algorithms and ex-
periments discussed in this paper assuming uniform
message size (i.e., every processor sends and receives
messages of equal size). Readers are referred to [15] for
a complete discussion of methods used in non-uniform
message size problems.
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d | msg_size AC LP RSN | RS.NL
comm

256 2.70 28.13 3.54 3.63

1K 5.91 34.31 6.51 6.51

4 128K 579.25 | 1318.44 | 505.88 | 486.11

# iters - 63.00 5.92 7.10

comp - 0.06 1.73 8.16
comm

256 6.05 30.48 7.05 7.10

1K 14.00 40.24 13.46 13.16

8 128K 1378.55 | 1898.21 | 1069.60 | 1008.68

# iters - 63.00 10.50 11.92

comp - 0.06 3.16 13.56
comm

256 14.02 33.92 14.00 13.75

1K 33.00 48.12 27.20 25.86

16 128K 3211.79 | 2610.74 | 2186.59 | 2018.77

# iters - 63.00 19.16 20.74

comp - 0.05 6.37 24.53
comm

256 31.60 38.67 27.74 26.38

1K 75.27 57.42 54.38 49.52

32 128K 7176.16 | 3271.96 | 4408.19 | 3854.76

# iters - 63.00 35.52 37.76

comp - 0.05 13.24 46.41
comm

256 49.82 41.58 41.17 37.79

1K 117.18 62.73 81.15 69.42

48 128K 11188.30 | 3631.69 | 6610.21 | 5260.51

# iters - 63.00 51.58 53.74

comp - 0.06 20.26 65.43

Table 1: Experimental Results on a 64-node iPSC/860
for fixed message size (Timings are in milliseconds; #
iters means number of communication phases).

iPSC/860
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Figure 5: Regions for which the different algorithms
outperform the others (on a 64-node iPSC/860)
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Figure 6: Communication cost for uniform messages
with d = 4 on a 64-node iPSC/860.
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Figure 7: Communication cost for uniform messages
with d = 8 on a 64-node iPSC/860.
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Figure 8: Communication cost for uniform messages
with d = 16 on a 64-node iPSC/860.
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Figure 9: Communication cost for uniform messages
with d = 32 on a 64-node iPSC/860.
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Figure 10: Computation overhead of RS_N algorithm
in terms of communication cost
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Figure 11: Computation overhead of RS_NL algorithm
in terms of communication cost
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