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Abstract 

In this work, rigorous thermal analysis is done for the first time based on the link between Ansoft 

HFSS and ANSYS. High-frequency results obtained from HFSS including surface loss density 

and volume loss density are imported into ANSYS. The thermal analysis run into ANSYS 

incorporates accurately the non-uniform power distribution in the microwave structure and hence 

predicts very well the thermal map for high-power applications. Experimental results confirm the 

developed approach. 

 

Index TermsAnsoft HFSS, ANSYS, finite-element method, packaging, surface-loss density, 

thermal analysis, volume-loss density. 

 

I. INTRODUCTION 

 

The current demands on radio frequency (RF)/microwave planar circuits are pushing towards 

miniaturization and population of more and more circuits in smaller real estate. This comes at the 

price of increased heating which possibly limits circuit functionality. Also, for radar and ground 

station applications, the transmitting-circuit elements are expected to handle high power which 

requires special dielectric materials with high thermal conductivity and good thermal path to heat 

sink. Before proceeding to fabrication, mechanical engineer assesses the thermal map within the 

circuits based on the insertion loss as well as distribution of surface currents supplied by the RF 

engineer. The current approach of thermal analysis is mainly carried out by mechanical engineer 

and it is based on the assumption of uniform loss distribution on metallic surfaces. However, this 

assumption is quite far from real thermal measurements as will be explained later and eventually 

for packaged structures with dense circuitry this approach is expected to fail.  

 

Recently, the newer versions of ANSYS [1] have the capability to interpret Ansoft-HFSS [2] 

electromagnetic results and compute steady-state as well as transient temperature response. 

ANSYS and Ansoft-HFSS are commercial software tools based on finite-element method 

(FEM). HFSS and ANSYS are two different platforms integrated together to model accurately 

the thermal-electromagnetic interaction, i.e., finding the thermal map corresponding to power 

loss distribution within any microwave package. The objectives of this work are: (1) Use HFSS 

and ANSYS to find the temperature distribution inside packaged radio frequency/microwave 
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components. For this purpose, the temperature dependence of electrical properties such as 

complex permittivity and electrical conductivity are included in the full-wave electromagnetic 

model. (2) Study the effect of temperature dependence on the frequency response. (3) Investigate 

the outcome of electrical properties varying with temperature on power losses. (4) Compute 

temperature distribution inside packages where it is difficult to access the inside with 

thermocouple. It is noted that the intrusion of thermal probes inside a closed package is expected 

to alter the electromagnetic field distribution and hence perturb the optimized-design 

performance while doing thermal test. 

 

II. HIGH-FREQUENCY ANALYSIS 

 

The microwave circuit considered in this study is shown in Fig. 1. It consists of back-to-back 

transition between 50- line and 10- load on a Roger RT/Duroid 6006 substrate of thickness 

50 mil. Each transition consists of five sections of quarter-wave transformers. The frequency 

responses obtained at room temperature from simulations using Ansoft HFSS and measurements 

are shown in Fig. 2. The results show that the insertion loss IL at mid-band frequency 3 GHz is 

0.62 dB. An estimate of total power dissipated Pd in the circuit is computed using (1). 

 

  10/-IL

ind 101 PP , (1) 

 

where Pin is the input power applied to the circuit. It is assumed in (1) that the circuit is well 

matched at input.  

 

 

Fig. 1. Top view of back-to-back microstrip transition consisting of 5 sections of quarter-wave transformer. 



 

Fig. 2. Frequency responses of the circuit shown in Fig. 1 as obtained from HFSS and microwave measurements at 

room temperature 22 C. 

 

III. THERMAL-ELECTROMAGNETIC INTERACTION 

 

A material is heated using electromagnetic signal. This is attributed to the presence of 

inherent metallic and material losses. Material losses can be due to dielectric losses for dielectric 

materials or magnetic losses for magnetic materials. Herein, in this work, it is reasonable to 

assume that magnetic losses are neglected as we are dealing with non-magnetic materials. The 

electromagnetic signal interacts with the material on the molecular level and leads to temperature 

heating as power is absorbed within lossy material. For material losses, the temperature rise is 

linearly proportional to operating signal frequency and quadratically proportional to signal 

amplitude. To study the effect of power and frequency, first HFSS is used to compute the high-

frequency electromagnetic response of structure. HFSS gives as output the two types of loss 

quantities: (i) surface loss density (W/m
2
) which comes from metallic 

losses:
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where PLc is average conductive-power loss, Rs is surface 

resistance,  is angular frequency, 0 is the permeability of free space,  is metal conductivity, 
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denotes tangential magnetic field, and S is the surface of conductor and (ii) volume loss 

density (W/m
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) attributed to dielectric losses: 
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dielectric-power loss, 0 is the permittivity of free space, 
''

r is the imaginary part of material 

permittivity and it represents losses, E


denotes electric field, and V is the volume of dielectric. 

Second, the electrical results including losses are imported into ANSYS which performs 



mechanical simulations and gives thermal-dependent properties corresponding to losses which 

are function of frequency and the power level of input microwave signal. The graphs in Fig. 3 

give the variation of temperature versus frequency at different power levels for the microwave 

circuit shown in Fig. 1. 

 

 
(a)                                                                                   (b)  

Fig. 3. (a) Maximum and minimum steady-state temperature recorded on the top surface of the heated microwave 

circuit shown in Fig. 1 versus the frequency of applied input signal at different input power levels. (b) Zoom on 

temperature variation versus frequency at input power level of 25 W. 

 

The thermal-electromagnetic interaction is a closed-feedback process. Electromagnetic power 

is applied to the microwave circuit to be tested. Initially, at room temperature a well-designed 

microwave circuit has minimum insertion losses which are the inherent losses of the circuit 

itself. As the amount of power input to the circuit increases, each element of circuit dissipates 

partial amount of electromagnetic energy which transforms to heating energy and a 

corresponding rise of temperature that may differ from one point of the circuit to another 

depending on the layout of circuit. The electrical properties of circuit elements are changing as it 

is heating up as indicated by the following equation: 

 

        ,1
2

02010 TTCTTCTxTx   
(2) 

where x is any electrical property such as: dielectric constant, loss tangent, and resistivity. T0 is 

the ambient temperature, T is the temperature of heated circuit which is position dependent if 

circuit is not heated homogenously, and C1 and C2 are linear and quadratic expansion 

coefficients, respectively. In real world, all elements are continuously varying which is 

equivalent to a varying output response until steady state condition is reached. This is the reason 

why the approach of uniform power distribution followed by mechanical engineer fails. 

Moreover, edge effects are not taken into account. It is noted that while circuit elements are 

heating there are three different mechanisms of heat transfer: (i) conduction takes place in 



metallic/dielectric parts and it is controlled by their thermal conductivities, (ii) convection occurs 

in fluids and the corresponding convection coefficient need to be evaluated accurately. 

Convection mechanism is divided into two categories: natural and forced. Natural convection 

coefficient varies from 1 to 25 W/m
2
.C. It is obtained from iterative numerical process in 

ANSYS as shown in Fig. 4 where the results indicate that no significant change of temperature 

as long as convection coefficient is less than 25 W/m
2
.C. (iii) Radiation is electromagnetic 

radiation emitted from heated material. 
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Fig. 4. Variation of temperature versus convection coefficient used in ANSYS model. 

 

The thermal results obtained from ANSYS are imported back to HFSS for re-computation of 

new losses and this process is repeated for several iterations until a convergence criterion is 

satisfied as clarified by the decision chart shown in Fig. 5.  

 

 

Fig. 5. Decision chart showing the main steps for running HFSS-ANSYS. 



The validity of simulation results are verified versus experimental results for input power levels 

up to 25 W as shown in Fig. 6. It is noted that the discrepancy between the simulation and 

measurement is due to the fact that substrate surface was not flat against the hot plate which 

creates air pockets between the RF ground plane of circuit and hot plate. The presence of air gaps 

becomes more pronounced as the input power level increases. Temperature profiles on the top 

surfaces of dielectric and metallization as obtained from ANSYS are illustrated in Fig. 7 (a) and 

(b), respectively for the case of 1 W applied input power at frequency 2.148 GHz (first resonant 

frequency obtained at room temperature). The thermal map helps to visualize clearly the 

locations of hot and cold spots in the structure and hence find possible solution to have drastic 

increase of temperature in critical areas. 

 

 

Fig. 6. Steady state temperature versus power level at different frequency as obtained from measurements and 

simulations using ANSYS. 

 

After getting the temperature profile as shown in Fig. 7, the change of electrical parameters can 

be determined as follows. For dielectric substrate used in this case study: C1 = -410  10
-6

 C
-1

, 

C2 = 0, T0 = 22 C, T = 65 C, (T0) = 6.15, substituting these parameters in (2) gives (T) = 

6.0416. For conductor metallization, the following equation is used: 

         12

02010 1


 TTaTTaTT   

For copper metallization using the following parameters: a1 = 4.29  10
-3

 C
-1

, a2 = 0, T0 = 22 

C, T = 65 C, and (T0) = 5.8  10
7
 S/m gives (T) = 4.897  10

7
 S/m. 

The dielectric constant drops from 6.15 at 22 C to 6.0416 at 65 C, i.e., (T) < (T0). This leads 

to the change of a resonant frequency according to the following relation: 
 Tl

c
f r

4
 , where 

c is the speed of light and l is the physical length of each quarter-wavelength section. The 



resonant frequencies of the initial frequency response shown in Fig. 2 are shifted 25 MHz up as 

shown in Fig. 8. This shift of resonant frequencies can cause severe effects on the frequency 

response of narrow-band components. 

 

 

Fig. 7. Temperature distribution on the top surface of the back-to-back transition shown in Fig. 1 as obtained from 

ANSYS software for the case of 1 W applied input power at frequency 2.148 GHz. (a) Temperature plot on 

dielectric surface. (b) Temperature plot on metallization surface. 

 

 

Fig. 8. Frequency response obtained from HFSS after importing the temperature profile from ANSYS. Resonant 

frequencies are shifted up by 25 MHz due to temperature increase and change of electrical parameters. 

 

More simulation analyses have been carried out at different power levels and different 

frequencies (see results in Fig. 3). The temperature profiles on the top surfaces of dielectric and 

metallization as obtained from ANSYS are illustrated in Fig. 9 (a) and (b), respectively for the 

case of input power equal to 75 W applied at frequency 2.148 GHz. 



 

 

Fig. 9. Temperature distribution on the top surface of the back-to-back transition shown in Fig. 1 as obtained from 

ANSYS software for the case of 75 W applied input power at frequency 2.148 GHz. (a) Temperature plot on 

dielectric surface. (b) Temperature plot on metallization surface. 

 

IV. CONCLUSIONS 

In this work, the thermal-electromagnetic link is analyzed using HFSS and ANSYS. The high-

frequency simulation results including surface and volume loss densities are imported into 

ANSYS where appropriate thermal boundaries are applied. The thermal results are imported 

back into HFSS to model the effect of changed temperature-dependent electrical parameters on 

the frequency response. This modeling approach involving both the RF and thermal analysis 

gives more rigorous results without the need to do any approximation. The accurate thermal 

maps obtained from ANSYS help to make the right choice of materials in the early stages of 

design and to avoid any failure of the final product. 
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