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Abstract

Soft-decision decoding is an NP-hard problem of great interest to developers of com-
munication systems. We show that this problem is equivalent to the problem of optimizing
Walsh polynomials. We present genetic algorithms for soft-decision decoding of binary
linear block codes and compare the performance with various other decoding algorithms
including the currently developed A* algorithm. Simulation results show that our algo-
rithms achieve bit-error-probabilities as low as 0.00183 for a [104,52] code with a low
signal-to-noise ratio of 2.5 d B, exploring only 22,400 codewords, whereas the search space
contains 4.5 X 10'® codewords. We define a new crossover operator that exploits domain-
specific information and compare it with uniform and two point crossover.

Keywords: genetic algorithms, soft-decision decoding, uniform crossover.



1 Introduction

Codes are used for the reliable transmission of data over communication channels susceptible
to noise. Codes may be classified as either block codes or tree codes. An encoder for a block
code accepts as input a k symbol message sequence (usually binary sequence) and maps it to
an n (> k) symbol sequence. FEach n-symbol sequence is completely determined by a specific
k-symbol message. Block codes may further be classified as linear or nonlinear. A linear code,
is a vector space over a finite field. We restrict our attention to codes over the two-element
field, Z;. Figure 1 describes a typical communication system. As a result of noise, the received
vector components are real numbers. Of the n codeword coordinates, exactly k are linearly
independent. Let ¢ be the information vector and G = (g;,,) the generator matrix, a listing of
the basis vectors of a code (C'; then the encoding operation yields ¢G = ¢, and, consequently,
¢; = S _imgim represents the j-th component of the codeword, e. Let 7 be a received
vector. “Hard decision” decoding involves quantizing each component of the received vector
independently to the nearest value € {0,1} and then moving to the code-vector nearest to the
resulting sequence. “Soft-decision” decoding algorithms utilize received vector components, not

just their quantized estimates (Taipale & Pursley, 1991). A maximum-likelihood decoder finds

Mseglsﬁfgg ( ¢ bltS) ' Encoder (n bltS) ¢ Modulator
Information Code Vector
Vector Transmitted
Estimated Vector
Code Vector ¢ Demodulator r - } Channel ‘
and Information and Decoder Received 1

Vector v Vector Noise~ N(0,0?)

Figure 1: A Typical Communication System

a codeword ¢’ that maximizes the conditional probability of receiving r, i.e.
P(c|r) = mcaXP(c|r) = rgggP(ﬂc)P(c)/P(r)

The above equation holds since we assume that all codewords are equally likely to be transmit-
ted. A maximum-likelihood decoder is optimal in this sense. If transmitted signals are binary
antipodal over a discrete memoryless channel susceptible to additive white Gaussian noise, and
the noise affects each symbol independently, then P(r|c/) is maximized when the squared Eu-
clidean distance between vector » and ¢, Y5 y(r; — ¢;)?, is minimized (Clark & Cain, 1988;
Farrell, Rudolph & Hartmann, 1983). Thus maximum-likelihood decoding reduces to nearest-

neighbor decoding, with the Euclidean metric. More formally the soft-decision decoding problem



reduces to:
Given received real vector 7 = (7, ...,7,,), find a codeword ¢ € C' that minimizes }>7_, (r; — ¢;)*.

Most research in decoding algorithms has been focused on hard-decision decoding algorithms
based on algebraic techniques. Soft-decision decoding has not been as extensively studied and
until recently there were not many efficient decoding algorithms for linear block codes of large
block length. An efficient algorithm is the recently developed A*-based decoding algorithm (Han,
1993). Algorithm GADEC is a significant contribution to soft-decision decoding as shown by
comparing it with an A* based approach that is currently the most successful algorithm for soft
decision decoding.

The problem of decoding an error correcting code is known to be NP-hard. It is indeed
desirable and often preferable to obtain suboptimal solutions to such a problem. In this paper
we present a suboptimal decoding algorithm for linear block codes that is based on finding a
near-global minimum for the function Y7_, (r; — ¢;)?. In section 2, we describe the motivation
for considering a genetic algorithm-based decoding scheme. In section 3, GADEC, our genetic
algorithm for decoding, is described. In section 4, we present and discuss simulation results. In
section 5, we analyze the algorithm. In Section 6, we give a comparison with other decoding

algorithms.

1.1 An Example

Since code vectors are transmitted over the analog communication channel, the actual transmit-
ted vector is typically a vector of the form (a;, —a;, —a;, a;, —a,, . ..), where a; is the amplitude
of the transmitted signal, which is proportional to the square root of the signal energy. For our
purposes, we assume a; = 1, and that the modulator maps each 0 bit (component) of the code
vector to +1, and each 1 bit of the code vector to -1. This is a one-to-one, onto mapping, and
the transmitted vector is hence a vector consisting of positive and negative pulses.

Some channels are noisier than others, and the amount of corruption of the transmitted vector
by the channel depends on the signal-to-noise ratio. Unbiased, normal error, noise models are
often assumed (and observed). Components of the actual n-bit received vector are real numbers,
whose values may differ from {1, -1}. The task of the decoder is to extract the transmitted vector
from the received vector.

Let us consider £ = 2, n = 4, and an encoder represented by the matrix

1
G 0(1 0
0 1]0 1

The set of all possible messages (information vectors) is {00,01,10,11}, and the corre-
sponding set of code vectors is {0000,0101,1010,1111}. The modulator transforms these into
{(1,1,1,1),(=1,1,=1,1),(1,—1,1,—1),(=1,—1,—1,—1)}. A transmited vector such as (—1,1,—1,1)




may be corrupted by the communication channel into the received vector (—0.7,1.3,0.2,0.3).
The decoder then needs to recover the transmitted vector from the received vector.

One obvious method is to map every negative received vector component to —1, and every
non-negative component to 1, examining only the sign of the received vector components, and
ignoring their magnitudes. This is called “quantization”. In the above example, the result
of this mapping is (—1,1,1,1) which is mapped by the demodulator to the bit-string 1000.
Unfortunately, 1000 is not a code vector, and is equally distant from the code vectors 0000 and
1010.

Quantization results in the loss of information which can be gleaned from the magnitudes
of received vector components. For instance, we can argue that a received vector component of
—0.7 is closer than —0.1 to —1, hence we should have greater confidence in decoding the former
to —1. The magnitude of a component is thus considered a measure of the reliability of its
quantization to its sign. Soft-decision decoding attempts to take these magnitudes into account.

If the communication channel was malicious enough to invert the sign of every component
(e.g., corrupting (—1,1,—1,1) to (0,5,—0.5,0,5,—0.5), then there is no hope of recovering the
original transmitted vector. In the absence of knowing what the transmitted vector was, the
best that can be achieved by the decoder is to find a vector in {1,—1}" that corresponds to
a code vector (in {0,1}") that is at the least possible Euclidean distance from the received
vector. Minimizing distance to the received vector maximizes the likelihood of recovering the
transmitted vector. Soft-decision decoding is thus an optimization task.

For the example mentioned earlier , we can determine which of the vectors {(1,1,1,1),
(1,—1,1,—-1),(=1,1,=1,1),(=1,—1,—1,—1)} is closest to the received vector (—0.9,1.3,0.2,0.3),
by computing all four distances. The result, (—1,1,—1,1), is finally mapped back to the code
vector 1010 and thence to the information vector 10.

For large codes, however, this exhaustive procedure is impractical since there are 2¥ code-
words, and k can be large. An efficient search procedure is needed to find the closest possible
transmitted vector. We have accomplished this task using a genetic algorithm for k£ = 52, so

far, requiring an order of magnitude less storage than the current best-known algorithm for this

task (Han, 1993).

2 Walsh Polynomials and Nearest Neighbor Decoding

Walsh polynomials have been used as a benchmark for genetic algorithm performance by Tanese
(Tanese, 1989). This section describes how the soft-decision decoding problem is equivalent to

a Walsh polynomial optimization problem. A Walsh polynomial is a function of the form

fle) = wih(x)

JEB



where B is the set of [-bit strings and & € B. Note that each j can be uniquely identified with
a vector of dimension [, 3. In the context of soft-decision decoding received vector components
r; play the role of w;. Each r; is real, and Walsh function ;/)J(a:) = (—1)-7:;13 = 1 if j.@ has
even parity and ;/)J () = —1 otherwise (Forrest & Mitchell, 1991). Consider the transformation:

(Z2,+) = (Za, %)

given by a — (—1)%, where a € Z5 . This isomorphism maps the additive binary group to the
multiplicative binary group. Under this transformation, the ¢;’s defined earlier transform to
(—1)i°gf = 1 if 2.g; has even parity and —1 otherwise. This is the Walsh function corresponding
to the j-th column of G.

We need to minimize the following objective function for nearest-neighbor decoding:

n n

(rj—e;)? = (r))? +n -2 Zn:TjCj-

1 7=1 7=1

J
As the first and second terms are constants, this is equivalent to the task of maximizing:
>i—y ricj. With 2 and the columns of G playing the role of @ and j respectively, this is seen to

be a problem of optimizing, 3, r;c;, a Walsh polynomial.

2.1 Decoding and Tanese Functions

Tanese reported (Tanese, 1989) that genetic algorithms performed rather poorly on optimizing a
certain class of Walsh polynomials, genetic algorithms were in fact outperformed by hillclimbing
!, An important investigation in this regard was undertaken by Forrest and Mitchell (Forrest &

Mitchell, 1991) in which they remark that:

in general, for a Tanese function of order n, no schema of order less than n will give
any useful information; since for a given g, half the instances of the schema will have
even parity with respect to 7, and half will have odd parity with respect to 3. This
is because each of the Walsh functions is of the same order. [Therefore] schema of

lower order than n do not provide the GA with useful information.

Thus for problems equivalent to Tanese functions, crossover is not a useful tool for recombin-
ing building blocks. In the case of soft-decision decoding of linear block codes the 3’s correspond

to the columns of the generator matrix, G. Recall that G is constructed by listing the basis

!The Walsh polynomials generated and used by Tanese (Tanese, 1989) are hereafter referred to as Tanese
functions. Tanese selected specific Walsh functions by randomly choosing 32 partition indices 3 all containing
the same number of ones. The Walsh coefficient w; for each of the 32 chosen partition indices was also chosen at
random from the interval (0.0, 0.5]. The fitness function used in her experiments was a sum, f(z) = Z]' wivi(x)

of these 32 terms, other terms were effectively set to 0.



vectors of €' as rows. Through elementary row operations G can be reduced to a systematic
form, i.e:

G=(1|P).

where [ is a k x k identity matrix and P is an n x (n — k) matrix. Consider, for example the

row reduced G matrix of the Hamming [7, 4] code:

1
0
1

—_ = O

00 0]1
10 0|1
01 00
00 11

o O o =

11

The Walsh polynomials that arise as a consequence of soft-decision decoding consist of a sum
of at most n terms, where n is the blocklength of the code. This is because there are n columns
in the G matrix of an [n, k] linear block code. Each transmission of a codeword gives rise to a
potentially different Walsh polynomial as the components of r are likely to be different. We also
note that not all Walsh functions are of the same order, in fact the first £ terms are necessarily
of order 1. This is because not all columns of the G matrix have the same Hamming weight,
and the first & have Hamming weight (order) 1. Therefore this problem does not suffer from
the lack of low-order schema processing characterizing Tanese functions and there is reason to
believe that genetic algorithms would be a useful tool for the decoding problem. This motivates
the development of the following genetic algorithm as a nearest-neighbor soft-decision decoding

algorithm.



3 Algorithm GADEC

The following is an outline of an algorithm that performs a genetic search over the space of
all codewords to search for the codeword nearest to received vector . For exhaustive experi-
mentation, the algorithm first simulates the transmission of codewords over an additive white
Gaussian noise channel. An important feature of this algorithm is the utilization of domain-

specific “reliability” information for different components of the received vector.

Algorithm GADEC(n, k., Y, pm, Perosss N).
Algorithm GADEC expects as input the blocklength, n, of the code, the dimension, k, of the
linear code, the signal to noise ratio, Y, in decibels, the probability of mutating a single bit, p,,,

the crossover probability, pe..ss, and the size, N, of the population.

e STEP 1: Simulate message transmission.
Randomly generate k& binary information bits. Encode these information bits using the
G matrix of the code, to yield an n-bit vector. Add simulated Gaussian noise after

transforming each 0 to a 1 and each 1 to a —1 to obtain a received vector, r € R".

e STEP 2: Permute the coordinates of received vector r so that the first k£ positions are the
most reliable linearly independent positions of 7 .
By assumption data is transmitted over an additive white Gaussian noise channel. Hence,
r; is considered to be more reliable than r; if |r;| > |r;|. Permute the vector * in such
a way that |r;| > |ri], for 1 <@ < n. Further, permute the coordinates of = to ensure
that the first £ positions of = are its most reliable linearly independent positions. Call this
vector r'. Modify the generator matrix of the code by applying the same transformation
to the columns of G that produces *' from =, to get G'. Store permutation in vector

PERM.

e STEP 3: Randomly generate a population of possible message vectors.
Quantize the first k bits of " to obtain vector h, which is used to seed the initial population.
In addition, uniformly randomly generate (N — 1) number of vectors € {—1,1}*. Let best

be the member of the population that is closest to .
e STEP 4: while(generation_counter < Total-Number-Generations) do

— STEP 4.1: Compute the fitness of each individual in the population.
An individual represents an information vector of length & bits which is encoded, ¢ =
1 G/, to an n-bit codevector. The fitness function is the negated squared Euclidean

distance — Y7, (r: — ¢;)? between the received word and the encoded individual.

— STEP 4.2: Sort population in increasing order of fitness.



— STEP 4.3: Allot ranks to individuals in population and allocate reproductive trials to
them.
— STEP 4.4: while(population-size-counter < N ) do
« STEP 4.4.1: Randomly select two individuals @ and b for reproduction.
« f(random_num < pgyoss)

- STEP 4.4.2: Crossover(a,b) with probability p.,.ss to produce offspring c.
If a = (aq,...,a;) and b = (by,..., by) then:

for each bit ¢ compute

0 ifai:bi:—l
P(dzzl): 1 ifai:bizl

- if a; # b;, where o? is the variance of the noise sample.
—sZr.
1+exp 02’

Offspring d inherits 1 with probability P(d; = 1) and -1 with probability
1 —P(d; =1).
- STEP 4.4.3: Mutate(d).
Flip each bit of d with probability p,,.:.
- STEP 4.4.4: Introduce d as an individual into new population.
* else
- STEP 4.4.5: Introduce either a or b into new population with equal probability.
« STEP 4.5: Let currbest = fittest member of the new population. If fitness(best) <

fitness(currbest), then best = currbest.

— end while

{loop invariant: Among all the vectors examined so far, best is the closest to # }
e end while

e STEP 5: To best apply the inverse of the permutation applied in STEP 2 of the algorithm.
Return ¢’ = PERM~"(best) as the decoded result.

3.1 Description of Algorithm GADEC

3.1.1 Codeword Transmission

This step is not a part of the decoder(GADEC) but is necessary in order to simulate a message

source and noisy transmission channel. In STEP 2, the j-th component of the transmitted

7



codeword ¢ and the received vector ¢ are ¢; = (—1)%VE and r; = (—1)9VE + ¢; respectively,
where FE is the signal energy per channel bit and ¢; is a noise sample of a Gaussian process with
single-sided noise power per hertz Ny. The mean of ¢; is zero and the variance, a*, is Ny/2.
The signal-to-noise ratio for the channel is Y = E/Ny. In order to account for the redundancy
in codes of different rates, the signal-to-noise ratio per transmitted bit, i.e., ¥, = Yn/k is used.

For simulation purposes, £ is set to 1 and the mean and variance of e; computed accordingly.

3.1.2 Chromosome Representation

In STEP 3, solutions to the optimization problem are represented as k-dimensional vectors.
The k bits represent the information bits of a code-vector. Hence, crossover and mutation
operate only on the information bits, which means that all the individuals in the population are
always feasible solutions. An alternative strategy is to represent individuals as n bit codewords.
Reproduction could then create an offspring that is not necessarily a feasible solution. Feasibility
could be restored by following this up with a hard-decision decoding step to find the codeword

closest in hamming distance to the n bit offspring.

3.1.3 Population Initialization

The initial population is generated uniformly randomly, so that every schema of a given length is
equiprobably represented in the intial population. The initial population also contains a binary
vector, h, consisting of components h; = Sgn(r;). 2 Tt is possible to seed the population with
several good estimates of 2, the transmitted information vector, by using minor perturbations

of h, or perhaps choosing different information sets.

3.1.4 Fitness Evaluation

In STEP 4.1, to evaluate the fitness of an individual, it is necessary to first encode it by
multiplying it with matrix G'. The squared Euclidean distance between v’ and this encoded
vector is then computed. An individual is fitter than another if it is closer in squared Euclidean

. !
distance to r .

3.1.5 Selection

In STEP 4.2 & 4.3, the selection strategy used is “Linear Ranking Selection”. Individuals in the
population are sorted by non-decreasing order of squared Euclidean distance and each individual

is assigned a rank which determines the number of reproductive trials for that individual. This

2y is reordered so that the most reliable k linearly independent bits occupy the first & positions of v



approach was first proposed by Baker (Baker, 1985), as a means of slowing convergence. It has

been reported to also result in more accurate optimization (Whitley, 1989).

3.1.6 RUX: Reliability Based Uniform Crossover

STEP 4.4.2 is the key component of genetic search. We have developed a unique crossover
operator for this application, a variant of uniform crossover. In uniform crossover, a choice
between inheriting a bit from either of two parents is made at each component of an offspring.

In population-elitist selection, every individual mates every generation without regard to its
fitness (Schaffer, Eschelman, & Offut, 1991), after which offspring are pooled with all the parents
and the best 50% are selected to yield the next generation. Algorithm GADEC implicitly uses
elitism in that only one of two possible offspring is preserved; the one that is more likely to
contain good schema. This algorithm explicitly enforces the survival of the best individual
in the current generation into the next generation. These conservative selection policies and
uniform crossover coupled with a technique for exploiting problem specific knowledge lead to
very good performance. We discuss the performance of RUX and provide a comparison between
RUX, uniform crossover and two point crossover in Section 4, Table 2.

RUX, the reliability based uniform crossover operator used in algorithm GADEC, repeat-
edly exploits the reliability of the received vector. Incorporating problem specific information
is useful in any search problem; in genetic search, Grefenstette has exploited this for the TSP
problem (Grefenstette, 1987).

RUX is a variant of uniform crossover where a choice is made between inheriting a bit from

either parent based on a suitable probability function. For example:

1 if a; = bZ
-1 7 if a; = 1 7£ bZ
P(Ci = ai) = 14exp _j;’
1—% 1faZ:—17ébZ
1+exp U;i

In case a; = 1 # b;, P(¢; = a;) approaches 1 as r. approaches oo and 0 as r; approaches
—oo. Similarly if a; = —1 # b; then P(¢; = a;) approaches 1 as r; approaches —oco and 0 as 7/
approaches —oo.

P(¢; = a;) depends on r; in such a way that the probability of ¢; inheriting either a; or
b; increases, depending upon which one has the same sign as r;. The crossover operator thus

exploits reliability information provided by vector ="



3.1.7 Mutation

STEP 4.4.3 is the mutation step. Mutation is done bit-wise on offspring with probability p,,.:.
Mutation rate for each bit is kept low, since the probability that a vector is perturbed is 1 —

(1 —pmut)k) ~ kpmut, and k is as high as 52 in some of the problems we have experimented with.

4 Simulation Results and Discussion

We present simulation results at various signal-to-noise ratios for the [104,52] extended binary
quadratic residue code. This is a large code, with a search space of size 2°2. We present graphs
and data showing the excellent performance of our approach. We illustrate the relation between
bit error probability and the number of genetic algorithm generations. Simulation parameters for
the results presented in Figures 2, 3, and Table 1 are: n = 104, k = 52, pruws =3%, Peross = 10%,
N = population size = 300.

Figures 2 and 3 indicate the evolution of bit-error-probability with genetic algorithm gener-
ations. 1000 codewords were transmitted and the fraction of information bits in error calculated
each time. Bit error probability is the average, over 1000 simulations, of the fraction of infor-
mation bits in error. Notice that the bit-error-probability decreases with increasing number of
generations, reflecting the fact that it is possible to balance solution quality with computational
efficiency. Also notice in figure 3, the rapid initial evolution which settles down to a steady rate

of improvement in bit-error-probability.
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Figure 2: Bit Error Probability vs Number of Generations

An important question about this algorithm and, more generally, any genetic algorithm-
based optimization technique, is about the stopping criterion. When should one stop iterating

STEP 4 of algorithm GADEC? Since GADEC is iterative, one has the luxury of balancing

10
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Figure 3: Bit Error Probability in the Later Stages of Evolution

performance and computational effort. Table 1 shows that there is a steady decrease in bit
error probability with increase in the number of generations, with about 30 to 40% reduction
when the number of generations is increased from 50 to 100. When iterated still further to 1000
generations, the bit error probability drops from .016 to .011 indicating that it is possible to
obtain an improvement in performance at the cost of more computation.

For a given [n, k| code, it is possible to perform a regression between the bit-error rate and
numbers of genetic algorithm generations, based on simulation data. This will give a relation
between bit error probability and an upper bound on the number of codewords evaluated (=
number of generationsx population size).

We present in Table 1, bit error probability and related statistics after 50 and 100 genetic
algorithm generations. Figures 4 and 5 exhibit the relation between bit-error probability and
the signal-to-noise ratio, after 50 and 100 generations, respectively. Some of these errors would
necessarily be made by any maximum likelihood decoder (MLD) as well and reflect cases where a
codeword other than the transmitted codeword was found to be closer to the received vector, v .
This “lower bound” is also presented. The difference between the two curves, given in Figures
4 and 5, is often used to gauge the performance of a suboptimal decoding algorithm.

The results obtained using GADEC are excellent: the ratio of the bit error probability to
the maximum likelihood decoding lower bound, is as low as 1.65 to 2.2 after 100 generations.
As shown by the simulation results, it is possible to obtain a lower bit error probability and
Py /M LD ratio, at the expense of more computation.

For a fixed bit error probability, it is possible to compute the difference in SNR between
the lower bound maximum-likelihood decoding curve and the curve obtained from algorithm
GADEC. This difference is at most 0.55 dB after 50 generations of genetic search and reduces
to at most 0.35 dB after 100 generations.

11



Signal-to-Noise Ratio, dB 1.5 1.75 2.0 2.25 2.5
Bit-Error Probability

(Uncoded Data) .0462 .0418 .0375 .0334 .0296
No. of Codewords

Evaluated 30000 30000 30000 30000 30000
Number of Generations 100 100 100 100 100
Py, Bit-Error Probability

(Coded Data) 0.0165 0.00873 | 0.00563 | 0.00217 | 0.00183
MLD Lower Bound 0.00904 | 0.00404 | 0.00267 | 0.00135 | 0.00083
Ratio, P,/M LD 1.82 2.16 2.10 1.65 2.2
No. of Codewords

Evaluated 15000 15000 15000 15000 15000
Number of Generations 50 50 50 50 50
Py, Bit-Error Probability

(Coded Data) 0.019730 | 0.010838 | 0.007769 | 0.004200 | 0.002569
MLD Lower Bound 0.008307 | 0.004039 | 0.002676 | 0.001336 | 0.000810
Ratio, P,/M LD 2.37 2.28 2.90 3.14 3.17

Table 1: Simulation Results for the [104, 52] Code
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Figure 4: Bit Error Probability, (BEP) vs Signal-to-noise Ratio, 50 generations: [104,52] Code
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Figure 5: Bit Error Probability, (BEP) vs Signal-to-noise Ratio, 100 generations: [104,52] Code
Signal-to-Noise Ratio, dB 1.5 2.0 2.5
No. of Codewords

Evaluated 30000 | 30000 30000
Number of Generations 100 100 100
Py, Bit-Error Probability, RUX

(Coded Data) 0.0165 | 0.00563 | 0.00183
Py, Bit-Error Probability, UX

(Coded Data) 0.151 0.116 | 0.0851
Py, Bit-Error Probability, 2PTX

(Coded Data) 0.130 | 0.098 0.065

Table 2: Comparison Between Different Crossover Operators in Algorithm GADEC

In Table 2 we present a comparison between results obtained using RUX, uniform crossover
(UX), and two point crossover (2PTX) in algorithm GADEC. In the case of two point crossover
the algorithm was modified to produce two offspring.

Simulation results show that RUX is superior to UX and 2PTX by at least an order of

magnitude.

5 Analysis of Algorithm GADEC

In this section we show analyze the time and memory complexity of algorithm GADEC. We
present a probabilistic analysis of the algorithm which includes an analysis of the role played by

crossover.
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5.1 Complexity Analysis

We show that algorithm GADEC has polynomial time complexity per generation.
Given that:

n = blocklength of code,
k = dimension of code = length of individuals in population,

N = population size = total number of individuals in population,

At any given stage, we maintain a few sets of N x k arrays, therefore the memory complexity

of this algorithm is O(Nk).

STEP 3 has time complexity of O(k*n) (Han, 1993). STEPS 4.1 to 4.3 have a computational
complexity of O(knN) + O(Nlog N) + O(k).

The complexity of STEP 3 depends on the random number generator in use; but the cost is
negligible compared to that of STEP 4

STEPS 4.4.1 to 5 have an average case complexity of O(1) 4+ peross[O(k) + O(k) + O(k)] +
(1 = Peross ) [O(1) + O(k)] = O(1) + PerossO(k) + (1 = peross )O(k). This reduces to O(k), which is
also the worst case complexity. Hence each iteration of the genetic algorithm part of GADEC
has a total time complexity of O(knN 4+ N log N') per generation.

Algorithm GADEC has a time complexity of O(knN + Nlog N) per generation + an ini-
tialization complexity of O(k*n).

5.2 Probabilistic Analysis of Algorithm GADEC

Next, we proceed to give a mathematical and empirical analysis of the algorithm. Such an
analysis must necessarily be probabilistic because genetic algorithms are essentially stochastic
processes. We start this analysis by computing the effect of STEP 2 on the decoding effort. We
obtain the probability that the vector produced as a result of STEP 3, is the nearest neighbor
code vector to the received vector r. We know that vector r = (rq,...,7,) has components r;
that are Gaussian random variables with mean 41 or —1 and variance Ny/2, as described in
STEP 2 of algorithm GADEC.

If n independent and identically distributed random variables with probability density func-

tion f(x) are rearranged in order of decreasing magnitude, denoted by xy > 23 > -+ - > 2(),
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then the probability density function of ;) is given by
pile) = nox (1)) - fla) - P ()G (a)
where F(x) = f)ydt and G(z)=1— F(x).

We are interested in computing the probability that STEP 3 of algorithm GADEC produces
= P(—z <1 <x).

the nearest-neighbor codeword. Let Y; = |r;|; then P(Y; < x)

x—l)_l_q)(x—l)_l (1)

g g

If r; is received with mean g = 1, then

z 1 1{y—1 2
PY, <z)= iy o3 (%) dy = ¢ (

w 1 2
where ®(u) :/ et 24y,
—oco 2T

Likewise, if r; is received with mean y = —1, then
Tl - (%)2dt:<1><

:1;—|—1)_|_(D<:1;—1)_1

g

[T

PY, <z)= €
—z 2710 o
In other words, the random variables Y7,..., Y, are distributed independently and identically, ir-
respective of the mean of the received component r; for 2 = 1,...,n and the common distribution

(2)

function of the Y;’s is given by equation (1) with associated density function
1 2=12
e 7). fora > 0.

o

&)2 n :

L

r)=—c¢€ —
Itw) 2ro Vito
We will approximate the probability of STEP 3, producing the nearest-neighbor codeword

by neglecting the effect of interchanges required to restore linear independence to the first k
bit positions. These interchanges should not affect the probability very much (Battail & Fang,

(I
~~

1983), as there are very few of them; they are hence neglected in the analysis.

The probability of quantization yielding the transmitted bit is given by

I leJﬁWﬁ:QG)

V27

[N

[N

if 1 was transmitted, and
0 1(t41)2
/ L =0 (1)

€
—00 \/27‘(’ g

if —1 was transmitted. In other words, this probability of quantization yielding the transmitted

bit is also independent of the transmitted bit.
The following expression for A(n,j) approximates the probability that the j-th received

vector component is quantized to its associated transmitted bit.
Al j) v [ ey Gy ) d
n,j) = x -Gz x) dx
SNCETIEESN
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where f(x) is defined in Equation 2, F(x) is the associated distribution function and, G(x) =
1 — F(x).

The product Hle A(n, j) , approximates the probability that all of (), ..., r) are quantized
to their associated transmitted bits. Since the first k& positions uniquely determine a codeword,
product H§:1 A(n,j) represents the probability that STEP 3 yields the transmitted codeword.

The results presented in Table 3 arise from simulating several codeword transmissions to observe

SNR (dB) o Theoretical Estimate | Observed by Simulation
1.5 0.837 0.415 .398
1.75 0.813 0.482 462
2.0 0.7905 0.546 533
2.25 0.768 0.611 .592
2.5 0.746 0.673 .656
2.75 0.725 0.729 719

Table 3: Estimates of [T"_; A(n,j) for the [104,52] Code

the frequency with which STEP 3 produced the transmitted codeword correctly. The theoretical
estimate of probability given by Hle A(n,j) computed using Mathematica, agrees very closely
with simulation results for the [104,52] code at six different signal-to-noise ratios.

Since we are interested in computing the probability that STEP 3 yields the nearest-neighbor
codeword, H§:1 A(n,j) does not account for the case where the transmitted codeword is not
the nearest neighbor codeword. In this sense, too, Hle A(n,j) is an approximation, albeit a
reasonable one.

The above has provided us with a handle on the first step of algorithm GADEC and indicates
that at least one member of the initial population is chosen reasonably close to the transmitted
vector. In (Maini, Mehrotra, Mohan, & Ranka, 1993) we present a schema theorem for RUX
showing that high reliability schema constitute the building blocks for the evolutionary process.

6 Comparison of Algorithm GADEC with Other De-
coding Algorithms

We provide a comparison of algorithm GADEC with pure random search, a systematic ex-
haustive search method and an A* based algorithm. The comparison puts in perspective the
excellent results obtained which are comparable in performance from the A* based algorithm,
an order of magnitude better than the systematic exhaustive search method and several orders

of magnitude better than pure random search.
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6.1 Systematic Exhaustive Search

To further bolster the claim that the genetic algorithm is driven by the forces of reproduction
and intelligent search space sampling, we give a comparison of the performance of algorithm
GADEC with a systematic, exhaustive search procedure. The systematic exhaustive search
procedure described below fixes some of the most reliable positions in a code vector and allow
the others vary over all possibilities. This search exhaustively samples that schema of the search

space that is most likely to contain a candidate nearest neighbor codeword.

Algorithm SystematicExhaustiveSearch(n, k, Y, dim)
n is the of the code, k is the dimension of the code, Y is the signal to noise ratio, in decibels, and

dim the dimension of the subspace to be exhaustively searched.
e STEP 1: Same as STEP 1 of algorithm GADEC.

o STEP 2: Same as STEP 2 of algorithm GADEC.

o STEP 3: Compute squared Euclidean distance between vector # and transmitted codeword

¢, call it dist. Let h be the quantized estimate obtained from vector v .
e STEP 4: while ( counter < 2%™ ) do

— STEP 4.1: Store binary equivalent of integer counter, in vector b.
STEP 4.2: Set l == (hl, hg, ceey hk—dirrm bl, ceey bdzm)
STEP 4.3: Encode ¢, ie. ¢ =1 G

STEP 4.4: Compute the squared Euclidean distance, dist’, between vector ¢ and

vector *'. Keep a running count of the minimum dist encountered so far. Find the

number of its information bits in error.

Steps 1 through 3 of this algorithm are essentially the same as those of algorithm GADEC.
Once vector h has been obtained, its most reliable n—dim bits determines the subspace (schema)
that is exhaustively searched for the codeword nearest in Euclidean distance to the received
vector r.

The following simulations were done on the [104,52] code with dim = 15, and the results
are shown in Table 4. Bit error probability was computed in the same way as for algorithm
GADEC, i.e., taking the average fraction of information bits in error over all simulated code-
word transmissions. A total of 21° = 32767 codewords were evaluated for each simulated trans-

mission. This is to provide a fair comparison with algorithm GADEC simulated to perform
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SNR (dB) | SystematicExhaustiveSearch (BEP) | GADEC (BEP)
1.5 0.067 0.0165
2.0 0.045 0.00563
2.5 0.028 0.00183

Table 4: Systematic Exhaustive Search vs Algorithm GADEC

30,000 codeword evaluations. Simulation results obtained from this approach demonstrate that
GADEC is superior by an order of magnitude showing that selection, crossover and mutation

do play important roles in nearest-neighbor decoding.

6.2 Pure Random Search

To further support the claim that crossover plays the major role role in algorithm GADEC,
simulation results with peross = 0 (crossover turned off) and a bit mutation rate of 3% show that
the bit error probability rose from .0165 to .120 at a signal-to-noise ratio of 1.5dB, which is a
significant deterioration in performance.

We now analyze the behavior of a random search over the space of all codewords for the one
closest in Euclidean distance to the received vector, r. This is done to show the failure of blind
random search for this problem. We use the extreme value theory of random variables to
approximate this behavior.

In a random sample of size n drawn from a population with cumulative distribution function
P(z), the asymptotic distribution of the largest/smallest element, x(,), may possess a limiting
distribution. If it does, then the limiting distribution must be one of three possible types whose
forms are found in (David, 1970). If P(x) denotes the distribution of the standard normal
random variable then the limiting cumulative distribution of z(,), the largest observation in a
sample of n, normalized as \/M[l'(n) —/21Inn], is exp(—e~®).

In pure random search we denote the squared Euclidean distance by random variable x;,
e, x; =3 (r; —¢;j)? where r = (ry,...,r,) is the fixed received vector and ¢;;’s are randomly
generated binary bits. By the central limit theorem, z; is normally distributed for large n. In
the context of nearest-neighbor decoding we are interested in the distribution of the minimum
x;, and \/M[l'(n) —v/21n n] describes the distribution of the maximum, consequently, we will
consider the statistical behavior of — max(—uz;).

In case the ¢;;’s are randomly selected, each satisfying the Bernoulli distribution with proba-

bilty p = 1/2, each x; has expected value 3°7_, r]z +n and standard deviation 2,/377_, r?. Hence,
o n 2

—x; has mean pu = i_yri —mn, standard deviation o = 2 > r?, and

18



—zi+ 3y ri4n

T

represents a standard normal random variable. Consider a search algorithm that randomly

samples L codewords from a code of size 2*. Then, by the extreme value theorem, the minimum

distance among [ codewords is

v +Xri4n y o
P —vV2InL < =ec )
2,/ r? V2InL

Let a* = —2,/>" r]z {\/;{ﬁ +v21In L} + Zr? + n. For a given value of e ¢’ =canda specified

threshold a*, we can estimate the number, L, of samples that would be required to discover a

codeword at squared Euclidean distance less than a*, with probability 1 — ¢. This can be done
by solving z* as a quadratic equation in L.
The results presented in Table 5, give an estimate of L for threshold z* set to some typical

values of distance obtained after STEP 3 of algorithm GADEC. We use values of unconditional

mean, E(Z;jf r]z +n) = pue = n(2 + 0?) and unconditional variance, o2, = 4n(1 + o?), where

0? = 2 (see description of GADEC) in place of conditional mean and variance, y and o2

2
1

respectively. It is observed that L is a significant fraction (between 3 and %) of the search space

SNR dB 1.5 1.75 2.0 2.25 2.5 2.75
Unconditional Mean, g, 280 276.64 | 272.8 | 268.32 | 265.82 | 262.6
Unconditional St.Dev., o, 26.5 26.27 | 25.99 | 25.63 | 25.44 | 25.18
A Typical x* 116.01 | 183.82 | 93.55 | 109.97 | 92.32 | 91.65

Estimated Number of Codewords, L

10® 10® 10%° 10® 10? 10?

Table 5: Pure Random Search vs Algorithm GADEC

that has size 2°% = 4.5 x 10'®, for the [104, 52] code. Hence, if a random search procedure is going
to produce any improvement over that obtained in STEP 3 of GADEC, it would probably take

a very long time to do so.

6.3 Algorithm A* vs GADEC

In the A* based algorithm, a linear code is represented as a trellis wherein each path represents
a codeword (Han, 1993). The suboptimal version of algorithm A* restricts the list of nodes to
be expanded for exploration based on a limit on memory size and prunes search paths which are

estimated to contain the required solution with a probability less than an A* specific threshold

0.
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Bit Error Probability

The bit error probability values obtained for the [104,52] code using a suboptimal version
of algorithm A* (delta = 0) whose performance is stated in (Han, 1993) as being practically
optimum are comparable to those of algorithm GADEC after 19,200 codeword evaluations.

0.05
0.045 Uncoded Data
004 | /
0.035
0.03

0.025 175 Generations of GA

0.02
0.015 %7 120 Generations of GA
0.01 B R

0.005 B S

0

14 22

Signal to Noise Ratio (dB)

Figure 6: A Comparison of Bit Error Probabilites in Algorithm GADEC and A*

Table 6 and Figure 6 show the results of decoding using a distributed population version
of our algorithm. This consists of 16 subpopulations each of size 10 configured as a mesh;
subpopulation chromosomes are made available to neighboring subpopulations at intervals of 10
generations. Further, each subpopulation is reinitialized with genetic material upon convergence.
We find that bit error probabilities and P,/M LD ratios are comparable with those obtained via
algorithm A* (see Figure 6 and Table 6). The P,/M LD ratio indicates the fraction of errors
that were actually committed by the decoder since M LD percentage of errors would actually
have been committed by any optimal decoder. This ratio is what is used as a benchmark of
performance, and we find that our algorithm yields P,/M LD ratios in the 1 to 2.3 range, which
is as good as that given by the A* algorithm.

An important advantage of GADEC is its low memory complexity of, which is O(kN).
This is contrast to algorithm A* which, in the worst case has a memory complexity that is
exponential in the dimension of the code, O(n2*). In the suboptimal version of algorithm A*,
whose results are presented in Table 6, the size of the open list used was restricted to 3000; this
is still an order of magnitude larger than the memory required by the genetic algorithm.

Perhaps the most significant advantage of GADEC over the A* based approach is the
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fact that genetic algorithms are scalably parallel, suitable for implementation on a wide range
of parallel architectures including massively parallel ones (Cohoon, Martin, & Richards, 1991;
Muhlenbein, 1989; Manderick & Spiessens, 1989). The distributed population simulation results
mentioned in Table 6 were conducted on a Sun workstation with a 33 Mhz CPU; for a single
transmission, each genetic algorithm generation required approximately 2.0 seconds. (Several
other algorithmic optimizations are also possible). This is in comparison with the A* algorithm
which in the worst case takes time exponential in the dimension of the code and on the average
takes over 8 minutes to decode a single transmission on a 33 Mhz Sun workstation. For the
genetic algorithm, it is therefore reasonable to expect decoding times of approximately 18 seconds
on a 16 processor parallel machine. On the other hand, an A* based algorithm is limited in
speedup because it is necessary to compute the maximum node value at each level in the trellis
before proceeding to the next one.

Additionally, the A* algorithm uses knowledge about the weight distribution of the code
(as in the case of the [104,52] code) in computing the heuristic function (k) to improve its
computation speed. The weight distribution of a code (the Hamming weights that its code
vectors can have) is not always known and is a significant research problem in coding theory.
The genetic algorithm approach makes no assumptions about the weight distribution of the code
and is applicable to a superset of the codes to which the A* approach is applicable.

Therefore, we see that the genetic algorithm approach offers three advantages; an order of
magnitude reduction in memory complexity, faster computation time and ease of parallelization,
wide applicability to linear block codes irrespective of whether their weight distributions are
known or not.

These advantages make the genetic algorithm using RUX an attractive decoding strategy in

comparison with Algorithm A*.

7 Conclusions

We have investigated a novel and realistic application of genetic algorithms. We have presented
an efficient genetic algorithm for soft-decision decoding, analyzed this algorithm, implemented it
on a large code, of size 2°? and demonstrated the superiority of this method over other existing
soft-decision decoding methods. We have presented a new crossover operator whose performance
is superior by atleast an order of magnitude to conventional crossover operators. This is just
the first step in what will emerge as a very important technique in soft-decision decoding of
linear block codes with issues such as population representation, population size, distributed
population models and crossover and mutation rates constituting important research topics in
soft-decision decoding. The relationship between soft-decision decoding and optimizing Walsh

polynomials, which has been observed for the first time, provides an interesting analogy between
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Signal-to-Noise Ratio, dB 1.5 1.75 2.0 2.25 2.5 2.75
ALGORITHM GADEC
No. of Codewords

Evaluated 19200 | 19200 | 19200 | 19200 | 19200 | 19200
Py, Bit-Error Probability 015 .01 .006 .002 002 | .00083
MLD Lower Bound 0.0086 | 0.0046 | 0.0036 | 0.001 | .001 | 0.00036
Ratio, P,/ M LD 1.74 217 1.6 2.0 2.0 2.3
No. of Codewords

Evaluated 22400 | 22400 | 22400 | 22400 | 22400 | 22400
Py, Bit-Error Probability 015 .008 .006 002 | .018 | .00083
MLD Lower Bound 0.0086 | 0.0046 | 0.0036 | 0.001 | .001 | 0.00036
Ratio, P,/ M LD 1.74 1.73 1.6 2.0 1.8 2.3
No. of Codewords

Evaluated 28000 | 28000 | 28000 | 28000 | 28000 | 28000
Py, Bit-Error Probability 014 .008 .006 .002 017 | .00083
MLD Lower Bound .0086 | .0046 | .0036 | .001 .001 | .00036
Ratio, P,/ M LD 1.62 1.73 1.6 2.0 1.7 2.3
No. of Codewords

Evaluated 32000 | 32000 | 32000 | 32000 | 32000 | 32000
Py, Bit-Error Probability 014 .008 .005 .002 017 | .00083
MLD Lower Bound 0.0086 | 0.0046 | 0.0036 | 0.001 | .001 | 0.00036
Ratio, P,/ M LD 1.62 1.73 1.38 2.0 1.7 2.3
ALGORITHM A*
Py, Bit-Error Probability .01 0075 | .0045 | .002 .01 .00036
MLD Lower Bound .008 .005 .003 | .0015 | .0005 | .00015
Ratio, P,/ M LD 1.25 1.5 1.5 1.3 2.0 2.3

Table 6: Comparison Between Algorithm A* and A Distributed Population Version of Algorithm
GADEC: Decoding The [104,52] Code.
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fundamental problems in genetic algorithms and information theory.

From the perspective of soft-decision decoding, results of a P,/M LD ratio between 1.65 and
2.2 represent excellent performance in the presence of very high noise, i.e., between 1.5 dB and
2.75 dB. These results suggest that GADEC is a viable and good soft-decision decoding algo-
rithm with a very low memory complexity, near-optimal performance and wide applicability, that
can be iterated to balance computation with performance. The crossover operator developed
for soft-decision decoding has been generalized and successfully applied to other optimization

problems such as the graph partitioning and the TSP.
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