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Genetic Algorithms for Soft DecisionDecoding of Linear Block CodesHarpal MainiKishan Mehrotra, Chilukuri Mohan, Sanjay RankaSchool of Computer and Information Science4-116 Center for Science and TechnologySyracuse UniversitySyracuse, NY 13244-4100email: hsmaini/kishan/mohan/ranka@top.cis.syr.edutel: (315) 443-2368July 8, 1994AbstractSoft-decision decoding is an NP-hard problem of great interest to developers of com-munication systems. We show that this problem is equivalent to the problem of optimizingWalsh polynomials. We present genetic algorithms for soft-decision decoding of binarylinear block codes and compare the performance with various other decoding algorithmsincluding the currently developed A* algorithm. Simulation results show that our algo-rithms achieve bit-error-probabilities as low as 0:00183 for a [104; 52] code with a lowsignal-to-noise ratio of 2:5 dB, exploring only 22; 400 codewords, whereas the search spacecontains 4:5� 1015 codewords. We de�ne a new crossover operator that exploits domain-speci�c information and compare it with uniform and two point crossover.Keywords: genetic algorithms, soft-decision decoding, uniform crossover.



1 IntroductionCodes are used for the reliable transmission of data over communication channels susceptibleto noise. Codes may be classi�ed as either block codes or tree codes. An encoder for a blockcode accepts as input a k symbol message sequence (usually binary sequence) and maps it toan n (> k) symbol sequence. Each n-symbol sequence is completely determined by a speci�ck-symbol message. Block codes may further be classi�ed as linear or nonlinear. A linear code,is a vector space over a �nite �eld. We restrict our attention to codes over the two-element�eld, Z2. Figure 1 describes a typical communication system. As a result of noise, the receivedvector components are real numbers. Of the n codeword coordinates, exactly k are linearlyindependent. Let i be the information vector and G = (gjm) the generator matrix, a listing ofthe basis vectors of a code C; then the encoding operation yields iG = c, and, consequently,cj = Pkm=1 imgjm represents the j-th component of the codeword, c. Let r be a receivedvector. \Hard decision" decoding involves quantizing each component of the received vectorindependently to the nearest value 2 f0; 1g and then moving to the code-vector nearest to theresulting sequence. \Soft-decision" decoding algorithms utilize received vector components, notjust their quantized estimates (Taipale & Pursley, 1991). A maximum-likelihood decoder �ndsMessageSource Encoder ModulatorChannelDemodulatorand DecoderInformationVector Code Vector TransmittedVectorReceivedVectorr c( ) (iEstimatedCode Vectorand InformationVectork bits n bits) Noise� N(0; �2)c0i0Figure 1: A Typical Communication Systema codeword c0 that maximizes the conditional probability of receiving r, i.e.P (c0jr) = maxc P (cjr) = maxc2C P (rjc)P (c)=P (r)The above equation holds since we assume that all codewords are equally likely to be transmit-ted. A maximum-likelihood decoder is optimal in this sense. If transmitted signals are binaryantipodal over a discrete memoryless channel susceptible to additive white Gaussian noise, andthe noise a�ects each symbol independently, then P(rjc0) is maximized when the squared Eu-clidean distance between vector r and c0, Pnj=1(rj � c0j)2, is minimized (Clark & Cain, 1988;Farrell, Rudolph & Hartmann, 1983). Thus maximum-likelihood decoding reduces to nearest-neighbor decoding, with the Euclidean metric. More formally the soft-decision decoding problem1



reduces to:Given received real vector r = (r1; :::; rn), �nd a codeword c 2 C that minimizes Pnj=1(rj � cj)2.Most research in decoding algorithms has been focused on hard-decision decoding algorithmsbased on algebraic techniques. Soft-decision decoding has not been as extensively studied anduntil recently there were not many e�cient decoding algorithms for linear block codes of largeblock length. An e�cient algorithm is the recently developedA�-based decoding algorithm (Han,1993). Algorithm GADEC is a signi�cant contribution to soft-decision decoding as shown bycomparing it with an A* based approach that is currently the most successful algorithm for softdecision decoding.The problem of decoding an error correcting code is known to be NP-hard. It is indeeddesirable and often preferable to obtain suboptimal solutions to such a problem. In this paperwe present a suboptimal decoding algorithm for linear block codes that is based on �nding anear-global minimum for the function Pnj=1(rj � cj)2. In section 2, we describe the motivationfor considering a genetic algorithm-based decoding scheme. In section 3, GADEC, our geneticalgorithm for decoding, is described. In section 4, we present and discuss simulation results. Insection 5, we analyze the algorithm. In Section 6, we give a comparison with other decodingalgorithms.1.1 An ExampleSince code vectors are transmitted over the analog communication channel, the actual transmit-ted vector is typically a vector of the form (ai;�ai;�ai; ai;�ai; : : :), where ai is the amplitudeof the transmitted signal, which is proportional to the square root of the signal energy. For ourpurposes, we assume ai = 1, and that the modulator maps each 0 bit (component) of the codevector to +1, and each 1 bit of the code vector to -1. This is a one-to-one, onto mapping, andthe transmitted vector is hence a vector consisting of positive and negative pulses.Some channels are noisier than others, and the amount of corruption of the transmitted vectorby the channel depends on the signal-to-noise ratio. Unbiased, normal error, noise models areoften assumed (and observed). Components of the actual n-bit received vector are real numbers,whose values may di�er from f1, -1g. The task of the decoder is to extract the transmitted vectorfrom the received vector.Let us consider k = 2, n = 4, and an encoder represented by the matrixG = 0@ 1 0 1 00 1 0 1 1AThe set of all possible messages (information vectors) is f00; 01; 10; 11g, and the corre-sponding set of code vectors is f0000; 0101; 1010; 1111g. The modulator transforms these intof(1; 1; 1; 1); (�1; 1;�1; 1); (1;�1; 1;�1); (�1;�1;�1;�1)g. A transmited vector such as (�1; 1;�1; 1)2



may be corrupted by the communication channel into the received vector (�0:7; 1:3; 0:2; 0:3).The decoder then needs to recover the transmitted vector from the received vector.One obvious method is to map every negative received vector component to �1, and everynon-negative component to 1, examining only the sign of the received vector components, andignoring their magnitudes. This is called \quantization". In the above example, the resultof this mapping is (�1; 1; 1; 1) which is mapped by the demodulator to the bit-string 1000.Unfortunately, 1000 is not a code vector, and is equally distant from the code vectors 0000 and1010.Quantization results in the loss of information which can be gleaned from the magnitudesof received vector components. For instance, we can argue that a received vector component of�0:7 is closer than �0:1 to �1, hence we should have greater con�dence in decoding the formerto �1. The magnitude of a component is thus considered a measure of the reliability of itsquantization to its sign. Soft-decision decoding attempts to take these magnitudes into account.If the communication channel was malicious enough to invert the sign of every component(e.g., corrupting (�1; 1;�1; 1) to (0; 5;�0:5; 0; 5;�0:5), then there is no hope of recovering theoriginal transmitted vector. In the absence of knowing what the transmitted vector was, thebest that can be achieved by the decoder is to �nd a vector in f1;�1gn that corresponds toa code vector (in f0; 1gn) that is at the least possible Euclidean distance from the receivedvector. Minimizing distance to the received vector maximizes the likelihood of recovering thetransmitted vector. Soft-decision decoding is thus an optimization task.For the example mentioned earlier , we can determine which of the vectors f(1; 1; 1; 1);(1;�1; 1;�1); (�1; 1;�1; 1); (�1;�1;�1;�1)g is closest to the received vector (�0:9; 1:3; 0:2; 0:3),by computing all four distances. The result, (�1; 1;�1; 1), is �nally mapped back to the codevector 1010 and thence to the information vector 10.For large codes, however, this exhaustive procedure is impractical since there are 2k code-words, and k can be large. An e�cient search procedure is needed to �nd the closest possibletransmitted vector. We have accomplished this task using a genetic algorithm for k = 52, sofar, requiring an order of magnitude less storage than the current best-known algorithm for thistask (Han, 1993).2 Walsh Polynomials and Nearest Neighbor DecodingWalsh polynomials have been used as a benchmark for genetic algorithm performance by Tanese(Tanese, 1989). This section describes how the soft-decision decoding problem is equivalent toa Walsh polynomial optimization problem. A Walsh polynomial is a function of the formf(x) = Xj2Bwj j(x)3



where B is the set of l-bit strings and x 2 B. Note that each j can be uniquely identi�ed witha vector of dimension l, j. In the context of soft-decision decoding received vector componentsrj play the role of wj. Each rj is real, and Walsh function  j(x) = (�1)j:x = 1 if j:x haseven parity and  j (x) = �1 otherwise (Forrest & Mitchell, 1991). Consider the transformation:(Z2;+)! (Z2; �)given by a 7! (�1)a, where a 2 Z2 . This isomorphism maps the additive binary group to themultiplicative binary group. Under this transformation, the cj's de�ned earlier transform to(�1)i:gj = 1 if i:gj has even parity and �1 otherwise. This is the Walsh function correspondingto the j-th column of G.We need to minimize the following objective function for nearest-neighbor decoding:nXj=1(rj � cj)2 = nXj=1(rj)2 + n � 2 nXj=1 rjcj:As the �rst and second terms are constants, this is equivalent to the task of maximizing:Pnj=1 rjcj. With i and the columns of G playing the role of x and j respectively, this is seen tobe a problem of optimizing,Pj rjcj, a Walsh polynomial.2.1 Decoding and Tanese FunctionsTanese reported (Tanese, 1989) that genetic algorithms performed rather poorly on optimizing acertain class of Walsh polynomials, genetic algorithms were in fact outperformed by hillclimbing1. An important investigation in this regard was undertaken by Forrest and Mitchell (Forrest &Mitchell, 1991) in which they remark that:in general, for a Tanese function of order n, no schema of order less than n will giveany useful information; since for a given j, half the instances of the schema will haveeven parity with respect to j, and half will have odd parity with respect to j. Thisis because each of the Walsh functions is of the same order. [Therefore] schema oflower order than n do not provide the GA with useful information.Thus for problems equivalent to Tanese functions, crossover is not a useful tool for recombin-ing building blocks. In the case of soft-decision decoding of linear block codes the j's correspondto the columns of the generator matrix, G. Recall that G is constructed by listing the basis1The Walsh polynomials generated and used by Tanese (Tanese, 1989) are hereafter referred to as Tanesefunctions. Tanese selected speci�c Walsh functions by randomly choosing 32 partition indices j all containingthe same number of ones. The Walsh coe�cient wj for each of the 32 chosen partition indices was also chosen atrandom from the interval (0:0; 0:5]. The �tness function used in her experiments was a sum, f(x) =Pj wj j(x)of these 32 terms, other terms were e�ectively set to 0.4



vectors of C as rows. Through elementary row operations G can be reduced to a systematicform, i.e: G = � I j P � ;where I is a k � k identity matrix and P is an n � (n � k) matrix. Consider, for example therow reduced G matrix of the Hamming [7; 4] code:G = 0BBBBB@ 1 0 0 0 1 1 00 1 0 0 1 0 10 0 1 0 0 1 10 0 0 1 1 1 1 1CCCCCAThe Walsh polynomials that arise as a consequence of soft-decision decoding consist of a sumof at most n terms, where n is the blocklength of the code. This is because there are n columnsin the G matrix of an [n; k] linear block code. Each transmission of a codeword gives rise to apotentially di�erent Walsh polynomial as the components of r are likely to be di�erent. We alsonote that not all Walsh functions are of the same order, in fact the �rst k terms are necessarilyof order 1. This is because not all columns of the G matrix have the same Hamming weight,and the �rst k have Hamming weight (order) 1. Therefore this problem does not su�er fromthe lack of low-order schema processing characterizing Tanese functions and there is reason tobelieve that genetic algorithms would be a useful tool for the decoding problem. This motivatesthe development of the following genetic algorithm as a nearest-neighbor soft-decision decodingalgorithm.
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3 Algorithm GADECThe following is an outline of an algorithm that performs a genetic search over the space ofall codewords to search for the codeword nearest to received vector r. For exhaustive experi-mentation, the algorithm �rst simulates the transmission of codewords over an additive whiteGaussian noise channel. An important feature of this algorithm is the utilization of domain-speci�c \reliability" information for di�erent components of the received vector.Algorithm GADEC(n; k; Y; pm; pcross; N).Algorithm GADEC expects as input the blocklength, n, of the code, the dimension, k, of thelinear code, the signal to noise ratio, Y , in decibels, the probability of mutating a single bit, pm,the crossover probability, pcross, and the size, N , of the population.� STEP 1: Simulate message transmission.Randomly generate k binary information bits. Encode these information bits using theG matrix of the code, to yield an n-bit vector. Add simulated Gaussian noise aftertransforming each 0 to a 1 and each 1 to a �1 to obtain a received vector, r 2 Rn.� STEP 2: Permute the coordinates of received vector r so that the �rst k positions are themost reliable linearly independent positions of r .By assumption data is transmitted over an additive white Gaussian noise channel. Hence,ri is considered to be more reliable than rj if jrij > jrjj. Permute the vector r in sucha way that jrij > jri+1j, for 1 � i � n. Further, permute the coordinates of r to ensurethat the �rst k positions of r are its most reliable linearly independent positions. Call thisvector r0. Modify the generator matrix of the code by applying the same transformationto the columns of G that produces r0 from r, to get G0 . Store permutation in vectorPERM .� STEP 3: Randomly generate a population of possible message vectors.Quantize the �rst k bits of r0 to obtain vector h, which is used to seed the initial population.In addition, uniformly randomly generate (N � 1) number of vectors 2 f�1; 1gk. Let bestbe the member of the population that is closest to r0.� STEP 4: while(generation counter < Total-Number-Generations) do{ STEP 4.1: Compute the �tness of each individual in the population.An individual represents an information vector of length k bits which is encoded, c =i G0 , to an n-bit codevector. The �tness function is the negated squared Euclideandistance �Pni=1(r0i � ci)2 between the received word and the encoded individual.{ STEP 4.2: Sort population in increasing order of �tness.6



{ STEP 4.3: Allot ranks to individuals in population and allocate reproductive trials tothem.{ STEP 4.4: while(population-size-counter < N ) do� STEP 4.4.1: Randomly select two individuals a and b for reproduction.� If(random num < pcross)� STEP 4.4.2: Crossover(a; b) with probability pcross to produce o�spring c.If a = (a1; :::; ak) and b = (b1; :::; bk) then:for each bit i computeP (di = 1) = 8>>>><>>>>: 0 if ai = bi = �11 if ai = bi = 111+exp �2r0i�2 if ai 6= bi; where �2 is the variance of the noise sample:O�spring d inherits 1 with probability P (di = 1) and -1 with probability1� P (di = 1).� STEP 4.4.3: Mutate(d).Flip each bit of d with probability pmut.� STEP 4.4.4: Introduce d as an individual into new population.� else� STEP 4.4.5: Introduce either a or b into new population with equal probability.� STEP 4.5: Let currbest = �ttest member of the new population. If �tness(best) <�tness(currbest), then best = currbest.{ end whilefloop invariant: Among all the vectors examined so far, best is the closest to r0 g� end while� STEP 5: To best apply the inverse of the permutation applied in STEP 2 of the algorithm.Return c0 = PERM�1(best) as the decoded result.3.1 Description of Algorithm GADEC3.1.1 Codeword TransmissionThis step is not a part of the decoder(GADEC) but is necessary in order to simulate a messagesource and noisy transmission channel. In STEP 2, the j-th component of the transmitted7



codeword c and the received vector r are cj = (�1)cjpE and rj = (�1)cjpE + ej respectively,where E is the signal energy per channel bit and ej is a noise sample of a Gaussian process withsingle-sided noise power per hertz N0. The mean of ej is zero and the variance, �2, is N0=2.The signal-to-noise ratio for the channel is Y = E=N0. In order to account for the redundancyin codes of di�erent rates, the signal-to-noise ratio per transmitted bit, i.e., Yb = Y n=k is used.For simulation purposes, E is set to 1 and the mean and variance of ei computed accordingly.3.1.2 Chromosome RepresentationIn STEP 3, solutions to the optimization problem are represented as k-dimensional vectors.The k bits represent the information bits of a code-vector. Hence, crossover and mutationoperate only on the information bits, which means that all the individuals in the population arealways feasible solutions. An alternative strategy is to represent individuals as n bit codewords.Reproduction could then create an o�spring that is not necessarily a feasible solution. Feasibilitycould be restored by following this up with a hard-decision decoding step to �nd the codewordclosest in hamming distance to the n bit o�spring.3.1.3 Population InitializationThe initial population is generated uniformly randomly, so that every schema of a given length isequiprobably represented in the intial population. The initial population also contains a binaryvector, h, consisting of components hi = sgn(r0i). 2 It is possible to seed the population withseveral good estimates of i, the transmitted information vector, by using minor perturbationsof h, or perhaps choosing di�erent information sets.3.1.4 Fitness EvaluationIn STEP 4.1, to evaluate the �tness of an individual, it is necessary to �rst encode it bymultiplying it with matrix G0 . The squared Euclidean distance between r0 and this encodedvector is then computed. An individual is �tter than another if it is closer in squared Euclideandistance to r0.3.1.5 SelectionIn STEP 4.2 & 4.3, the selection strategy used is \Linear Ranking Selection". Individuals in thepopulation are sorted by non-decreasing order of squared Euclidean distance and each individualis assigned a rank which determines the number of reproductive trials for that individual. This2r is reordered so that the most reliable k linearly independent bits occupy the �rst k positions of r0 .8



approach was �rst proposed by Baker (Baker, 1985), as a means of slowing convergence. It hasbeen reported to also result in more accurate optimization (Whitley, 1989).3.1.6 RUX: Reliability Based Uniform CrossoverSTEP 4.4.2 is the key component of genetic search. We have developed a unique crossoveroperator for this application, a variant of uniform crossover. In uniform crossover, a choicebetween inheriting a bit from either of two parents is made at each component of an o�spring.In population-elitist selection, every individual mates every generation without regard to its�tness (Scha�er, Eschelman, & O�ut, 1991), after which o�spring are pooled with all the parentsand the best 50% are selected to yield the next generation. AlgorithmGADEC implicitly useselitism in that only one of two possible o�spring is preserved; the one that is more likely tocontain good schema. This algorithm explicitly enforces the survival of the best individualin the current generation into the next generation. These conservative selection policies anduniform crossover coupled with a technique for exploiting problem speci�c knowledge lead tovery good performance. We discuss the performance of RUX and provide a comparison betweenRUX, uniform crossover and two point crossover in Section 4, Table 2.RUX, the reliability based uniform crossover operator used in algorithm GADEC, repeat-edly exploits the reliability of the received vector. Incorporating problem speci�c informationis useful in any search problem; in genetic search, Grefenstette has exploited this for the TSPproblem (Grefenstette, 1987).RUX is a variant of uniform crossover where a choice is made between inheriting a bit fromeither parent based on a suitable probability function. For example:P (ci = ai) = 8>>>>>><>>>>>>: 1 if ai = bi11+exp �2r0i�2 if ai = 1 6= bi1� 11+exp �2r0i�2 if ai = �1 6= biIn case ai = 1 6= bi, P (ci = ai) approaches 1 as r0i approaches 1 and 0 as r0i approaches�1. Similarly if ai = �1 6= bi then P (ci = ai) approaches 1 as r0i approaches �1 and 0 as ri0approaches �1.P (ci = ai) depends on ri in such a way that the probability of ci inheriting either ai orbi increases, depending upon which one has the same sign as ri. The crossover operator thusexploits reliability information provided by vector r0.9



3.1.7 MutationSTEP 4.4.3 is the mutation step. Mutation is done bit-wise on o�spring with probability pmut.Mutation rate for each bit is kept low, since the probability that a vector is perturbed is 1 �(1�pmut)k) � kpmut, and k is as high as 52 in some of the problems we have experimented with.4 Simulation Results and DiscussionWe present simulation results at various signal-to-noise ratios for the [104; 52] extended binaryquadratic residue code. This is a large code, with a search space of size 252. We present graphsand data showing the excellent performance of our approach. We illustrate the relation betweenbit error probability and the number of genetic algorithm generations. Simulation parameters forthe results presented in Figures 2, 3, and Table 1 are: n = 104; k = 52; pmut =3%, pcross = 70%,N = population size = 300.Figures 2 and 3 indicate the evolution of bit-error-probability with genetic algorithm gener-ations. 1000 codewords were transmitted and the fraction of information bits in error calculatedeach time. Bit error probability is the average, over 1000 simulations, of the fraction of infor-mation bits in error. Notice that the bit-error-probability decreases with increasing number ofgenerations, reecting the fact that it is possible to balance solution quality with computationale�ciency. Also notice in �gure 3, the rapid initial evolution which settles down to a steady rateof improvement in bit-error-probability.
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Figure 2: Bit Error Probability vs Number of GenerationsAn important question about this algorithm and, more generally, any genetic algorithm-based optimization technique, is about the stopping criterion. When should one stop iteratingSTEP 4 of algorithm GADEC? Since GADEC is iterative, one has the luxury of balancing10
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Figure 3: Bit Error Probability in the Later Stages of Evolutionperformance and computational e�ort. Table 1 shows that there is a steady decrease in biterror probability with increase in the number of generations, with about 30 to 40% reductionwhen the number of generations is increased from 50 to 100. When iterated still further to 1000generations, the bit error probability drops from :016 to :011 indicating that it is possible toobtain an improvement in performance at the cost of more computation.For a given [n; k] code, it is possible to perform a regression between the bit-error rate andnumbers of genetic algorithm generations, based on simulation data. This will give a relationbetween bit error probability and an upper bound on the number of codewords evaluated (=number of generations� population size).We present in Table 1, bit error probability and related statistics after 50 and 100 geneticalgorithm generations. Figures 4 and 5 exhibit the relation between bit-error probability andthe signal-to-noise ratio, after 50 and 100 generations, respectively. Some of these errors wouldnecessarily be made by any maximum likelihood decoder (MLD) as well and reect cases where acodeword other than the transmitted codeword was found to be closer to the received vector, r0.This \lower bound" is also presented. The di�erence between the two curves, given in Figures4 and 5, is often used to gauge the performance of a suboptimal decoding algorithm.The results obtained using GADEC are excellent: the ratio of the bit error probability tothe maximum likelihood decoding lower bound, is as low as 1:65 to 2:2 after 100 generations.As shown by the simulation results, it is possible to obtain a lower bit error probability andPb=MLD ratio, at the expense of more computation.For a �xed bit error probability, it is possible to compute the di�erence in SNR betweenthe lower bound maximum-likelihood decoding curve and the curve obtained from algorithmGADEC. This di�erence is at most 0:55 dB after 50 generations of genetic search and reducesto at most 0:35 dB after 100 generations. 11



Signal-to-Noise Ratio, dB 1.5 1.75 2.0 2.25 2.5Bit-Error Probability(Uncoded Data) .0462 .0418 .0375 .0334 .0296No. of CodewordsEvaluated 30000 30000 30000 30000 30000Number of Generations 100 100 100 100 100Pb, Bit-Error Probability(Coded Data) 0.0165 0.00873 0.00563 0.00217 0.00183MLD Lower Bound 0.00904 0.00404 0.00267 0.00135 0.00083Ratio, Pb=MLD 1.82 2.16 2.10 1.65 2.2No. of CodewordsEvaluated 15000 15000 15000 15000 15000Number of Generations 50 50 50 50 50Pb, Bit-Error Probability(Coded Data) 0.019730 0.010838 0.007769 0.004200 0.002569MLD Lower Bound 0.008307 0.004039 0.002676 0.001336 0.000810Ratio, Pb=MLD 2.37 2.28 2.90 3.14 3.17Table 1: Simulation Results for the [104; 52] Code
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Figure 4: Bit Error Probability, (BEP) vs Signal-to-noise Ratio, 50 generations: [104,52] Code12
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Figure 5: Bit Error Probability, (BEP) vs Signal-to-noise Ratio, 100 generations: [104,52] CodeSignal-to-Noise Ratio, dB 1.5 2.0 2.5No. of CodewordsEvaluated 30000 30000 30000Number of Generations 100 100 100Pb, Bit-Error Probability, RUX(Coded Data) 0.0165 0.00563 0.00183Pb, Bit-Error Probability, UX(Coded Data) 0.151 0.116 0.0851Pb, Bit-Error Probability, 2PTX(Coded Data) 0.130 0.098 0.065Table 2: Comparison Between Di�erent Crossover Operators in Algorithm GADECIn Table 2 we present a comparison between results obtained using RUX, uniform crossover(UX), and two point crossover (2PTX) in algorithmGADEC. In the case of two point crossoverthe algorithm was modi�ed to produce two o�spring.Simulation results show that RUX is superior to UX and 2PTX by at least an order ofmagnitude.5 Analysis of Algorithm GADECIn this section we show analyze the time and memory complexity of algorithm GADEC. Wepresent a probabilistic analysis of the algorithm which includes an analysis of the role played bycrossover. 13



5.1 Complexity AnalysisWe show that algorithm GADEC has polynomial time complexity per generation.Given that:n = blocklength of code,k = dimension of code = length of individuals in population,N = population size = total number of individuals in population,At any given stage, we maintain a few sets of N � k arrays, therefore the memory complexityof this algorithm is O(Nk).STEP 3 has time complexity of O(k2n) (Han, 1993). STEPS 4.1 to 4.3 have a computationalcomplexity of O(knN) +O(N logN) +O(k).The complexity of STEP 3 depends on the random number generator in use; but the cost isnegligible compared to that of STEP 4STEPS 4.4.1 to 5 have an average case complexity of O(1) + pcross[O(k) + O(k) + O(k)] +(1� pcross)[O(1) +O(k)] = O(1) + pcrossO(k) + (1� pcross)O(k). This reduces to O(k), which isalso the worst case complexity. Hence each iteration of the genetic algorithm part of GADEChas a total time complexity of O(knN +N logN) per generation.Algorithm GADEC has a time complexity of O(knN + N logN) per generation + an ini-tialization complexity of O(k2n).5.2 Probabilistic Analysis of Algorithm GADECNext, we proceed to give a mathematical and empirical analysis of the algorithm. Such ananalysis must necessarily be probabilistic because genetic algorithms are essentially stochasticprocesses. We start this analysis by computing the e�ect of STEP 2 on the decoding e�ort. Weobtain the probability that the vector produced as a result of STEP 3, is the nearest neighborcode vector to the received vector r. We know that vector r = (r1; :::; rn) has components rithat are Gaussian random variables with mean +1 or �1 and variance N0=2, as described inSTEP 2 of algorithm GADEC.If n independent and identically distributed random variables with probability density func-tion f(x) are rearranged in order of decreasing magnitude, denoted by x(1) � x(2) � � � � � x(n),14



then the probability density function of x(i) is given bypi(x) = n� �n�1i�1� � f(x) � F n�i(x)Gi�11 (x)where F (x) = Z x�1f(t)dt and G(x) = 1� F (x):We are interested in computing the probability that STEP 3 of algorithm GADEC producesthe nearest-neighbor codeword. Let Yi = jrij; then P (Yi � x) = P (�x < ri < x).If ri is received with mean � = 1, thenP (Yi < x) = Z x�x 1p2�� e� 12( y�1� )2dy = ��x� 1� �+ ��x� 1� �� 1 (1)where �(u) = Z u�1 1p2� e�t2=2dt:Likewise, if ri is received with mean � = �1, thenP (Yi < x) = Z x�x 1p2�� e� 12( t+1� )2dt = ��x+ 1� �+ ��x� 1� �� 1In other words, the random variables Y1; : : : ; Yn are distributed independently and identically, ir-respective of the mean of the received component ri for i = 1; : : : ; n and the common distributionfunction of the Yi's is given by equation (1) with associated density functionf(x) = 1p2�� e� 12 (x+1� )2 + 1p2�� e� 12(x�1� )2; for x > 0: (2)We will approximate the probability of STEP 3, producing the nearest-neighbor codewordby neglecting the e�ect of interchanges required to restore linear independence to the �rst kbit positions. These interchanges should not a�ect the probability very much (Battail & Fang,1983), as there are very few of them; they are hence neglected in the analysis.The probability of quantization yielding the transmitted bit is given byZ 10 1p2� e� 12 ( t�1� )2dt = ��1��if 1 was transmitted, and Z 0�1 1p2� e� 12( t+1� )2dt = ��1��if �1 was transmitted. In other words, this probability of quantization yielding the transmittedbit is also independent of the transmitted bit.The following expression for A(n; j) approximates the probability that the j-th receivedvector component is quantized to its associated transmitted bit.A(n; j) = n!(n� j)!(j � 1)! Z 10 F (x)n�j �G(x)j�1f(x) dx15



where f(x) is de�ned in Equation 2, F (x) is the associated distribution function and, G(x) =1� F (x).The product Qkj=1A(n; j) , approximates the probability that all of r(1); : : : ; r(k) are quantizedto their associated transmitted bits. Since the �rst k positions uniquely determine a codeword,product Qkj=1A(n; j) represents the probability that STEP 3 yields the transmitted codeword.The results presented in Table 3 arise from simulating several codeword transmissions to observeSNR (dB) � Theoretical Estimate Observed by Simulation1.5 0.837 0.415 .3981.75 0.813 0.482 .4622.0 0.7905 0.546 .5332.25 0.768 0.611 .5922.5 0.746 0.673 .6562.75 0.725 0.729 .719Table 3: Estimates of Qkj=1A(n; j) for the [104; 52] Codethe frequency with which STEP 3 produced the transmitted codeword correctly. The theoreticalestimate of probability given by Qkj=1A(n; j) computed using Mathematica, agrees very closelywith simulation results for the [104; 52] code at six di�erent signal-to-noise ratios.Since we are interested in computing the probability that STEP 3 yields the nearest-neighborcodeword, Qkj=1A(n; j) does not account for the case where the transmitted codeword is notthe nearest neighbor codeword. In this sense, too, Qkj=1A(n; j) is an approximation, albeit areasonable one.The above has provided us with a handle on the �rst step of algorithmGADEC and indicatesthat at least one member of the initial population is chosen reasonably close to the transmittedvector. In (Maini, Mehrotra, Mohan, & Ranka, 1993) we present a schema theorem for RUXshowing that high reliability schema constitute the building blocks for the evolutionary process.6 Comparison of Algorithm GADEC with Other De-coding AlgorithmsWe provide a comparison of algorithm GADEC with pure random search, a systematic ex-haustive search method and an A* based algorithm. The comparison puts in perspective theexcellent results obtained which are comparable in performance from the A* based algorithm,an order of magnitude better than the systematic exhaustive search method and several ordersof magnitude better than pure random search.16



6.1 Systematic Exhaustive SearchTo further bolster the claim that the genetic algorithm is driven by the forces of reproductionand intelligent search space sampling, we give a comparison of the performance of algorithmGADEC with a systematic, exhaustive search procedure. The systematic exhaustive searchprocedure described below �xes some of the most reliable positions in a code vector and allowthe others vary over all possibilities. This search exhaustively samples that schema of the searchspace that is most likely to contain a candidate nearest neighbor codeword.Algorithm SystematicExhaustiveSearch(n; k; Y; dim)n is the of the code, k is the dimension of the code, Y is the signal to noise ratio, in decibels, anddim the dimension of the subspace to be exhaustively searched.� STEP 1: Same as STEP 1 of algorithm GADEC.� STEP 2: Same as STEP 2 of algorithm GADEC.� STEP 3: Compute squared Euclidean distance between vector r and transmitted codewordc, call it dist. Let h be the quantized estimate obtained from vector r0.� STEP 4: while ( counter < 2dim ) do{ STEP 4.1: Store binary equivalent of integer counter, in vector b.{ STEP 4.2: Set i = (h1; h2; :::; hk�dim; b1; :::; bdim).{ STEP 4.3: Encode i, i.e. c0 = i G0.{ STEP 4.4: Compute the squared Euclidean distance, dist0, between vector c0 andvector r0. Keep a running count of the minimum dist0 encountered so far. Find thenumber of its information bits in error.Steps 1 through 3 of this algorithm are essentially the same as those of algorithmGADEC.Once vector h has been obtained, its most reliable n�dim bits determines the subspace (schema)that is exhaustively searched for the codeword nearest in Euclidean distance to the receivedvector r.The following simulations were done on the [104; 52] code with dim = 15, and the resultsare shown in Table 4. Bit error probability was computed in the same way as for algorithmGADEC, i.e., taking the average fraction of information bits in error over all simulated code-word transmissions. A total of 215 = 32767 codewords were evaluated for each simulated trans-mission. This is to provide a fair comparison with algorithm GADEC simulated to perform17



SNR (dB) SystematicExhaustiveSearch (BEP) GADEC (BEP)1.5 0.067 0.01652.0 0.045 0.005632.5 0.028 0.00183Table 4: Systematic Exhaustive Search vs Algorithm GADEC30; 000 codeword evaluations. Simulation results obtained from this approach demonstrate thatGADEC is superior by an order of magnitude showing that selection, crossover and mutationdo play important roles in nearest-neighbor decoding.6.2 Pure Random SearchTo further support the claim that crossover plays the major role role in algorithm GADEC,simulation results with pcross = 0 (crossover turned o�) and a bit mutation rate of 3% show thatthe bit error probability rose from .0165 to .120 at a signal-to-noise ratio of 1:5dB, which is asigni�cant deterioration in performance.We now analyze the behavior of a random search over the space of all codewords for the oneclosest in Euclidean distance to the received vector, r. This is done to show the failure of blindrandom search for this problem. We use the extreme value theory of random variables toapproximate this behavior.In a random sample of size n drawn from a population with cumulative distribution functionP (x), the asymptotic distribution of the largest/smallest element, x(n), may possess a limitingdistribution. If it does, then the limiting distribution must be one of three possible types whoseforms are found in (David, 1970). If P (x) denotes the distribution of the standard normalrandom variable then the limiting cumulative distribution of x(n), the largest observation in asample of n, normalized as p2 lnn[x(n) �p2 lnn], is exp(�e�x).In pure random search we denote the squared Euclidean distance by random variable xi,i.e., xi = P(rj � cij)2, where r = (r1; : : : ; rn) is the �xed received vector and cij's are randomlygenerated binary bits. By the central limit theorem, xi is normally distributed for large n. Inthe context of nearest-neighbor decoding we are interested in the distribution of the minimumxi, and p2 lnn[x(n)�p2 ln n] describes the distribution of the maximum, consequently, we willconsider the statistical behavior of �max(�xi).In case the cij's are randomly selected, each satisfying the Bernoulli distribution with proba-bilty p = 1=2, each xi has expected valuePnj=1 r2j +n and standard deviation 2qPnj=1 r2j . Hence,�xi has mean � = �Pnj=1 r2j � n, standard deviation � = 2qP r2j , and18



(�xi +P r2j + n2qP r2j )represents a standard normal random variable. Consider a search algorithm that randomlysamples L codewords from a code of size 2k. Then, by the extreme value theorem, the minimumdistance among L codewords isP 24�x(L) +P r2j + n2qP r2j �p2 lnL � yp2 lnL35 = e�e�y :Let x� = �2qP r2j n yp2 lnL +p2 lnLo+P r2j + n: For a given value of e�e�y = c and a speci�edthreshold x�, we can estimate the number, L, of samples that would be required to discover acodeword at squared Euclidean distance less than x�, with probability 1� c. This can be doneby solving x� as a quadratic equation in L.The results presented in Table 5, give an estimate of L for threshold x� set to some typicalvalues of distance obtained after STEP 3 of algorithmGADEC. We use values of unconditionalmean, E(Pj=nj=1 r2j + n) = �uc = n(2 + �2) and unconditional variance, �2uc = 4n(1 + �2), where�2 = N02 (see description of GADEC) in place of conditional mean and variance, � and �2respectively. It is observed that L is a signi�cant fraction (between 12 and 23) of the search spaceSNR dB 1.5 1.75 2.0 2.25 2.5 2.75Unconditional Mean, �uc 280 276.64 272.8 268.32 265.82 262.6Unconditional St.Dev., �uc 26.5 26.27 25.99 25.63 25.44 25.18A Typical x� 116.01 183.82 93.55 109.97 92.32 91.65Estimated Number of Codewords, L 108 108 1010 108 109 109Table 5: Pure Random Search vs Algorithm GADECthat has size 252 = 4:5�1015, for the [104; 52] code. Hence, if a random search procedure is goingto produce any improvement over that obtained in STEP 3 of GADEC, it would probably takea very long time to do so.6.3 Algorithm A* vs GADECIn the A* based algorithm, a linear code is represented as a trellis wherein each path representsa codeword (Han, 1993). The suboptimal version of algorithm A* restricts the list of nodes tobe expanded for exploration based on a limit on memory size and prunes search paths which areestimated to contain the required solution with a probability less than an A* speci�c threshold�. 19



The bit error probability values obtained for the [104; 52] code using a suboptimal versionof algorithm A* (delta = 0) whose performance is stated in (Han, 1993) as being practicallyoptimum are comparable to those of algorithm GADEC after 19,200 codeword evaluations.
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fact that genetic algorithms are scalably parallel, suitable for implementation on a wide rangeof parallel architectures including massively parallel ones (Cohoon, Martin, & Richards, 1991;Muhlenbein, 1989; Manderick & Spiessens, 1989). The distributed population simulation resultsmentioned in Table 6 were conducted on a Sun workstation with a 33 Mhz CPU; for a singletransmission, each genetic algorithm generation required approximately 2:0 seconds. (Severalother algorithmic optimizations are also possible). This is in comparison with the A* algorithmwhich in the worst case takes time exponential in the dimension of the code and on the averagetakes over 8 minutes to decode a single transmission on a 33 Mhz Sun workstation. For thegenetic algorithm, it is therefore reasonable to expect decoding times of approximately 18 secondson a 16 processor parallel machine. On the other hand, an A* based algorithm is limited inspeedup because it is necessary to compute the maximum node value at each level in the trellisbefore proceeding to the next one.Additionally, the A* algorithm uses knowledge about the weight distribution of the code(as in the case of the [104; 52] code) in computing the heuristic function (h) to improve itscomputation speed. The weight distribution of a code (the Hamming weights that its codevectors can have) is not always known and is a signi�cant research problem in coding theory.The genetic algorithm approach makes no assumptions about the weight distribution of the codeand is applicable to a superset of the codes to which the A* approach is applicable.Therefore, we see that the genetic algorithm approach o�ers three advantages; an order ofmagnitude reduction in memory complexity, faster computation time and ease of parallelization,wide applicability to linear block codes irrespective of whether their weight distributions areknown or not.These advantages make the genetic algorithm using RUX an attractive decoding strategy incomparison with Algorithm A*.7 ConclusionsWe have investigated a novel and realistic application of genetic algorithms. We have presentedan e�cient genetic algorithm for soft-decision decoding, analyzed this algorithm, implemented iton a large code, of size 252 and demonstrated the superiority of this method over other existingsoft-decision decoding methods. We have presented a new crossover operator whose performanceis superior by atleast an order of magnitude to conventional crossover operators. This is justthe �rst step in what will emerge as a very important technique in soft-decision decoding oflinear block codes with issues such as population representation, population size, distributedpopulation models and crossover and mutation rates constituting important research topics insoft-decision decoding. The relationship between soft-decision decoding and optimizing Walshpolynomials, which has been observed for the �rst time, provides an interesting analogy between21



Signal-to-Noise Ratio, dB 1.5 1.75 2.0 2.25 2.5 2.75ALGORITHM GADECNo. of CodewordsEvaluated 19200 19200 19200 19200 19200 19200Pb, Bit-Error Probability .015 .01 .006 .002 .002 .00083MLD Lower Bound 0.0086 0.0046 0.0036 0.001 .001 0.00036Ratio, Pb=MLD 1.74 2.17 1.6 2.0 2.0 2.3No. of CodewordsEvaluated 22400 22400 22400 22400 22400 22400Pb, Bit-Error Probability .015 .008 .006 .002 .018 .00083MLD Lower Bound 0.0086 0.0046 0.0036 0.001 .001 0.00036Ratio, Pb=MLD 1.74 1.73 1.6 2.0 1.8 2.3No. of CodewordsEvaluated 28000 28000 28000 28000 28000 28000Pb, Bit-Error Probability .014 .008 .006 .002 .017 .00083MLD Lower Bound .0086 .0046 .0036 .001 .001 .00036Ratio, Pb=MLD 1.62 1.73 1.6 2.0 1.7 2.3No. of CodewordsEvaluated 32000 32000 32000 32000 32000 32000Pb, Bit-Error Probability .014 .008 .005 .002 .017 .00083MLD Lower Bound 0.0086 0.0046 0.0036 0.001 .001 0.00036Ratio, Pb=MLD 1.62 1.73 1.38 2.0 1.7 2.3ALGORITHM A*Pb, Bit-Error Probability .01 .0075 .0045 .002 .01 .00036MLD Lower Bound .008 .005 .003 .0015 .0005 .00015Ratio, Pb=MLD 1.25 1.5 1.5 1.3 2.0 2.3Table 6: Comparison Between AlgorithmA* and A Distributed Population Version of AlgorithmGADEC: Decoding The [104; 52] Code. 22
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