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Rank-Based Outlier Detection

H. Huang, K. Mehrotra, C. K. Mohan
Department of EECS, Syracuse University

April 6, 2011

Abstract

We propose a new approach for outlier detection, based on a new ranking measure that focuses on
the question of whether a point is “important” for its nearest neighbors; using our notations low
cumulative rank implies the point is central. For instance, a point centrally located in a cluster
has relatively low cummulative sum of ranks because it is among the nearest neighbors of its own
nearest neighbors. But a point at the periphery of a cluster has high cummulative sum of ranks
because its nearest neighbors are closer to the points. Use of ranks eliminates the problem of
density calculation in the neighborhood of the point and this improves performance. Our method
performs better than several density-based methods, on some synthetic data sets as well as on some
real data sets.

Keywords: Oulier detection, ranking, neighborhood sets

1 Introduction

Outlier detection algorithms attempt to find data points that are “different” from the rest of the
data points in a given data set. The problem is of considerable importance, arising frequently in
many real-world applications, for data mining researchers. Many practical applications concerning
outlier detection occur in different domains such as fraud detection, cyber-intrusion detection,
medical anomaly detection, image processing and textual anomaly detection [1].

Statistics-based approaches (see [2,3]) were first used for outlier detection based on an assump-
tion that the distributions of datasets are known. A data point was defined as an outlier if it
deviates from the existing distribution. With sufficient knowledge about the dataset, statistics-
based methods work effectively. But in real-world, unfortunately, distributions of datasets are
unknown, significantly impacting the performances of these methods. To overcome this obstacle
clustering-based algorithms have been proposed to detect outliers [4, 5]. The basic idea is that a
data point is an outlier if it does not belong to any cluster. Outliers can be found by removing
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all points that belong to clusters. The effectiveness of this approach depends on the clustering
algorithm. Knorr and Ng [6] propose to detect an outlier based on its distances from neighbor-
ing data points, many other variations of distance-based approaches have been discussed in the
literature [7–9].

Breunig et al. [10] proposed that each data point of the given data set should be assigned a
degree of outlierness. In their view, as in other recent studies, a data point’s degree of outlierness
should be measured relative to its neighbors; hence they refer to it as the “local outlier factor”
(LOF) of the data point. Tang et al. [11] argued that an outlier doesn’t always have to be of
lower density and lower density is not a necessary condition to be an outlier. They modified LOF
to obtain the connectivity-based outlier factor (COF) which they argued is more effective when a
cluster and a neighboring outlier have similar neighborhood densities. Local density of a is generally
measured in terms of k-nearest neighbors; LOF and COF both exploit properties associated with
k-nearest neighbors of a given object in the data set. However, it is possible that an outlier lies in a
location between objects from a sparse and a denser cluster. To account for such possibilities, Jin et
al. [12] proposed another modification, called INFLO, which is based on a symmetric neighborhood
relationship, i.e., the proposed modification considers neighbors and ‘reverse neighbors’ of a data
point when estimating its density distribution. Detailed descriptions of the LOF, COF and INFLO
algorithms are presented in the next section.

Analysis of these density-based outlier detection algorithms reveals that they use the following
methodology:

• Define the concept of density;

• Use the notion of neighborhood (or some variation); and

• Calculate the “outlierness” of an object; ususlly defined as the ratio of a data points density
with the density in the region surrounding the data point.

A methodology that exploits k-neighborhood of a data point has many good features. For
instance, it is independent of the distribution of the data and is capable of detecting isolated
objects. But it also has some shortcomings:

• Density-based algorithms assume that neighbors of a data point have similar density. If
some neighbors located in one cluster and the other neighbors located in another cluster have
different densities, then comparing the density of the data point with all of its neighbors may
lead to a wrong conclusion and recognition of real outliers may fail.

• The notion of density does not work well for special datasets, for example, if all data points
lie on a single straight line. Even if each instance of dataset has equal distances between itself
with its closest neighbors, it may still have different density depending on its placement in
the dataset.
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To overcome the weaknesses mentioned above we defien and use the notion of of the rank of an
object with respect to its neighbor. Thus, we propose an outlier detection methodology based on
the mutuality of the relationship between a data point and its neighbors. A detailed description of
these concepts, and an analysis for the reasons why it is better, is presented in section 3. In section
4, experimental results are discussed.

2 Detailed Description of LOF, COF, and INFLO Algorithms

In the following, D denotes the given data set of all observations, k is a positive integer, and d(p, q)
denotes the distance between two points p, q ∈ D. This distance measure could be any reasonable
measure but for concreteness we use the Euclidean distance.

2.1 LOF (Local Outlier Factor) approach

Breunig et al. [10] proposed the following approach to find an outlier.

1. Find the distance, dk(p), between p and its kth nearest neighbor. Denote the set of k nearest
neighbors of p by Nk(p) = {q ∈ D − {p} : d(p, q) ≤ dk(p)}.

2. Define the reachability distance of a point q from p, as Rk(p, q) = max{dk(q), d(p, q)}.

3. The local reachability density of a point is defined as the inverse of the average reachability
distance. Specifically it is

`k(p) = [

∑
q∈Nk(p)

Rk(p, q)

|Nk(p)|
]−1.

4. LOF (local outlier factor) of a point p is defined as:

Lk(p) = [

∑
o∈Nk(p)

`k(o)
`k(p)

|Nk(p)|
].

5. The LOF of each point is calculated, and points are sorted in decreasing order of Lk(p). If
the LOF values are ‘large’, the corresponding points are declared as outliers.

6. To account for k, the final decision is taken as follows: Lk(p) is calculated for selected values
of k in a pre-specified range, max Lk(p) is retained, and a p with large LOF is declared an
outlier.
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2.2 COF (Connectivity-based Outlier Factor) approach

Tang et al. [13] suggest a new method to calculate the density as described below. Define the
distance between two non-empty sets P and Q as d(P,Q) = min{d(p, q) : p ∈ P, q ∈ Q}. This can
be used to find the minimum distance between a point and a set by treating one of the set as a
singleton.

1. Given a point p we define set-based path (SBN) of length k as a path < p ≡ p1, p2, . . . , pk >
such that for all 1 ≤ i ≤ k−1, pi+1 is the nearest neighbor of the set {p1, p2, . . . , pi}. In other
words, the SBN-path represents the order in which nearest neighbors of p are successively
obtained. The set Nk(p) = {p1, p2, . . . , pk} is the set of k nearest neighbors of p.

2. The Set-based trail (SBT) is an ordered collection of k−1 edges associated with a given SBN
path < p ≡ p1, p2, . . . , pk >. The ith edge ei connects a point o ∈ {p1, . . . , pi} to pi+1 and is
of minimum distance; i.e., length of ei is equal to d(o, pi+1) = d({p1, . . . , pi}, {pi+1, . . . , pk}).
Denote the length of edge ei as l(ei).

3. Given p, the associated SBN path < p ≡ p1, p2, . . . , pk >, and the SBT < e1, e2, . . . , ek−1 >,
the average-chaining distance (A) of p is weighted sum of the lengths of the edges, with larger
weights assigned to nearest edges, that is:

ANk(p)(p) =
2

k

k−1∑
i=1

k − i

k − 1
l(e1).

4. Finally, the connectivity-based outlier factor (COF) of a point p is defined as

COFk(p) = [ANk(p)(p)][

∑
o∈Nk(p)

ANk(p)(o)

|Nk(p)|
]−1.

5. As in COF, larger values of COFk(p) denote higher possibility that p is an outlier.

2.3 INFLO (INFLuential measure of Outlierness by symmetric relationship)
approach

Proposed by Jin et al. [12], in INFLO the k nearest neighbors and reverse nearest neighbors of an
object p are used to obtain a measure of outlierness. Recall that given an object p

1. Reverse Nearest Neighborhood (RNN) of p is defined as

RN k(p) = {q : q ∈ D and p ∈ Nk(q)}.

Note that Nk(p) has exactly k objects butRN k(p) may not have k objects. In some instances,
it may be empty, because for all q ∈ Nk(p), p may not be in any of the set of Nk(q).
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2. The k-influential space for p, denoted as ISk(p) = Nk(p) ∪RN k(p).

3. The influenced outlierness of a point p is defined as

INFLOk(p) =
1

den(p)

∑
o∈ISk(p)

den(o)

|(ISk(p))|

where den(p) = 1
dk(p)

.

Thus for any p, INFLO expands Nk(p) to ISk(p) and compares p’s density with average density
of objects in ISk(p).

3 Rank-Based Detection Algorithm (RBDA)

This section presents a new approach to identify outliers based on mutual closeness of a data point
and its neighbors. To understand mutual closeness consider a data point p ∈ D and suppose that
q ∈ Nk(p). That is, consider a q which is “close” to p because it belongs to k-neighborhood of p. In
return, we ask “how close is p to q?”. If p and q are ‘close’ to each other, then we argue that (with
respect to each other) p and q are not anomalous data points. This forms the basis of RBDA.
Description of Rank-based Detection Algorithm (RBDA) Algorithm

1. For p ∈ D let q ∈ Nk(p). We calculate the rank of p among all neighbors of q; i.e., we calculate
the set of d(q, o) for all o ∈ D−{q} and find the rank of d(q, p) in this set. Let this be rq(p).

2. ’Outlierness’ of p, denoted by Ok(p), is defined as:

Ok(p) =

∑
q∈Nk(p)

rq(p)

|Nk(p)|
. (1)

If Ok(p) is ‘large’ then p is considered an outlier.

3. To determine a criterion for ‘largeness’, let Do = {p ∈ D |Ok(p) ≤ Omax} where Omax is
chosen such that the size of Do is 75% of the size of D. We normalize Ok(p) as below:

Zk(p) =
1

Sk
(Ok(p)− Ōk) (2)

where

Ōk =
1

|Do|
∑
p∈D

Ok(p) and S2
k =

1

|Do| − 1

∑
p∈D

(Ok(p)− Ōk)2

and if the normalized value Zk(p) ≥ 2.5, then we declare that p is an outlier.
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Figure 1: Rank-based Detection Algorithm.

Consider data set in Figure 2. Consider k = 6, which is chosen to be ten percent of the size of
the dataset and the data point A.Six closests neighbors of A are all six points of its closest cluster.
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Since A is farest away form these six points, each of these six point contributes O6(A) = 6. In
contrast, O6(.) values for other ponis of the cluster vary from 1 to 6. Thus, it can be easily seen
that A will be identified as an outlier.

In this example, LOF, COF and INFLO algorithms assign a higher outlier value to data point
B than to A; which is wrong. The reason that data point B gets a higher outlier value is that some
data points from a neighboring clusters are its 6-neighbors and density-based algorithms fail to
identify the true outlier A. In RBDA algorithm, data point A gets high Ok(A) values with respect
to all its k-neighbors. In the final analysis RBDA algorithm identiies A as an outlier and RBDA is
the only algorithm that ranks A as most likely outlier data point for k = 7.

Figure 2: Evaluation of outlierness of a data point, an example.

4 Experiments:

We use two synthetic and three real datasets to compare the performance of RBDA with LOF,
COF and INFLO. Metrics to compare the algorithms are described below.
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4.1 Metrics for Measurement

To evaluate the performance of the algorithms, three metrics were selected – precision, recall, and
Rank-Power [14–17].

Suppose, using a given outlier detection algorithm, we identify m most suspicious instances in
D which contains dt true outliers and let mt be the number of true outliers among m instances.
Then Precision which measures the proportion of true outliers in top m suspicious instances, is:

Precision =
mt

m
,

and Recal which measure the accuracy of an algorithm is:

Recall =
|mt|
|dt|

.

Precision and recall don’t capture the effectiveness completely. One algorithm may identify an
outlier as the most suspicious while another algorithm mayidentify it as the least suspicious. Yet
the above two measures remain the same. Ideally, an algorithm will be considered more effective if
it true outliers occupy top positions and non-outliers in the bottom of the m suspicious instances.
Rank-Power was proposed by Tang et al. [13] to capture this notion. Let n denote the number of
outliers found within top m instances and Ri denote the rank of the ith true outlier. Then,

RankPower =
n(n + 1)

2
∑n

i=1Ri
.

Rank-Power takes maximum value 1 when all n true outliers are in top n positions.
For a fixed value of m, larger values of these metrics imply better performance.

4.2 Synthetic Datasets

Two synthetic datasets, shown in Figures 3 and 4, are used to evaluate the outlier detection
algorithms. In each dataset, there are multiple clusters with different densities. In each dataset we
have placed six additional objects, (a, b, c, d, e, and f) in the vicinities of the clusters to evaluate
their‘’outlierness’ by LOF, COF, INFLO, and our proposed algorithm RBDA.

In tables below, that summarize the performances of the algorithms, Nrc denotes the number
of outliers within top m instances, Pr represents precision, Re represents recall, and RP represents
Rank-Power.

4.2.1 Synthetic Dataset 1

Synthetic dataset 1 contains 74 instances, including six planted outliers; has four clusters of different
densities consisting of 36, 8, 8, 16 instances. Four different values of k and four values of m are
used; results are shown in Table 1.
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Table 1: Comparison of LOF, COF, INFLO and RBDA for k = 5, 7, 10 and 12 respectively for
synthetic dataset 1. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 5 1.00 0.83 1.00 5 1.00 0.83 1.00 5 1.00 0.83 0.882 5 1.00 0.83 1.00
10 6 0.60 1.00 0.95 6 0.60 1.00 0.95 6 0.40 1.00 0.875 6 0.60 1.00 1.00
15 6 0.40 1.00 0.95 6 0.40 1.00 0.95 6 0.40 1.00 0.875 6 0.40 1.00 1.00
30 6 0.20 1.00 0.95 6 0.20 1.00 0.95 6 0.20 1.00 0.875 6 0.20 1.00 1.00

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 5 1.00 0.83 1.000 5 1.00 0.83 1.000 5 1.00 0.83 0.882 5 1.00 0.83 1.00
10 6 0.60 1.00 0.913 6 0.60 1.00 0.913 6 0.60 1.00 0.955 6 0.60 1.00 1.00
15 6 0.40 1.00 0.913 6 0.40 1.00 0.913 6 0.40 1.00 0.955 6 0.40 1.00 1.00
30 6 0.20 1.00 0.913 6 0.20 1.00 0.913 6 0.20 1.00 0.955 6 0.20 1.00 1.00

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 3 0.60 0.50 1.000 4 0.80 0.67 1.000 3 0.60 0.50 1.000 4 0.80 0.67 1.00
10 4 0.40 0.67 0.667 5 0.50 0.83 0.789 4 0.40 0.67 0.833 4 0.40 0.67 1.00
15 4 0.27 0.67 0.667 5 0.33 0.83 0.789 4 0.27 0.67 0.833 5 0.33 0.83 0.63
30 4 0.13 0.67 0.667 5 0.17 0.83 0.789 5 0.17 0.83 0.360 6 0.20 1.00 0.51

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 3 0.60 0.50 1.000 4 0.80 0.67 1.000 2 0.40 0.33 1.000 4 0.80 0.67 0.900
10 4 0.40 0.67 0.625 5 0.50 0.83 0.789 4 0.40 0.67 0.526 4 0.40 0.67 0.909
15 5 0.33 0.83 0.484 5 0.33 0.83 0.789 4 0.27 0.67 0.526 5 0.33 0.83 0.600
30 5 0.17 0.83 0.484 5 0.17 0.83 0.789 5 0.13 0.67 0.526 6 0.20 1.00 0.488
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Figure 3: A Synthetic dataset with clusters obtained by placing all points uniformly with varying
degrees of densities.

For k equals to 5 and 7, all algorithms find all six outliers within top m ranked instances, but
the RankPower of RBDA algorithm is higher than those of LOF and COF algorithms.

For k equals to 10 and 12 and for m smaller than 10, COF has higher precision and recall than
the other algorithms, RBDA algorithm comes second. When m is 30, Precision of RBDA is higher
than others since all six outliers can be found by RBDA while only 5 outliers can be found in LOF,
COF and even less by INFLO.

4.2.2 Synthetic Dataset 2

Synthetic dataset 2 consists of 515 instances including planted six outliers; has one large normally-
distributed cluster and two small uniform clusters.

Results are presented in Table 2 for k = 10, 15, and 20 and m = 5, 10, 15, 20 and 30. It can be
seen that when k equals to 10, INFLO has the best Rank-Power and RBDA has the best precision.
When k is increased to 15 and 20, RBDA performs better than others and it has the best precision,
recall and Rank-Power. Especially for k is 20, RBDA achieves maximum Rank-Power for all values
of m from 5 to 30.

In this experiment, RBDA algorithm works better than others in most of the cases, and when
k = 20, it achieves the best performance.
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Table 2: Comparison of LOF, COF, INFLO and RBDA for k = 10, 15 and 20 respectively for
synthetic dataset 2. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 5 1.00 0.83 1.000 4 0.80 0.67 0.909 5 1.00 0.83 1.000 5 1.00 0.83 1.000
10 5 0.50 0.83 1.000 5 0.50 0.83 0.882 5 0.50 0.83 1.000 5 0.50 0.83 1.000
15 5 0.33 0.83 1.000 5 0.33 0.83 0.882 5 0.33 0.83 1.000 5 0.33 0.83 1.000
20 5 0.25 0.83 1.000 5 0.25 0.83 0.882 5 0.25 0.83 1.000 6 0.30 1.00 0.636
30 5 0.25 0.83 1.000 6 0.20 1.00 0.512 5 0.17 0.83 1.000 6 0.20 1.00 0.636

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 5 1.00 0.83 1.000 4 0.80 0.67 1.00 5 1.00 0.83 1.000 5 1.00 0.83 1.000
10 6 0.60 1.00 0.955 5 0.50 0.83 0.938 6 0.60 1.00 0.955 6 0.60 1.00 0.955
15 6 0.40 1.00 0.955 6 0.40 1.00 0.750 6 0.40 1.00 0.955 6 0.40 1.00 0.955
20 6 0.30 1.00 0.955 6 0.30 1.00 0.750 6 0.30 1.00 0.955 6 0.30 1.00 0.955
30 6 0.20 1.00 0.955 6 0.20 1.00 0.750 6 0.20 1.00 0.955 6 0.20 1.00 0.955

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 4 0.80 0.67 1.000 4 0.80 0.67 0.909 4 0.80 0.67 1.000 5 1.00 0.83 1.000
10 6 0.60 1.00 0.913 6 0.60 1.00 0.875 5 0.50 0.83 0.938 6 0.60 1.00 1.000
15 6 0.40 1.00 0.913 6 0.40 1.00 0.875 5 0.33 0.83 0.938 6 0.40 1.00 1.000
20 6 0.30 1.00 0.913 6 0.30 1.00 0.875 5 0.25 0.83 0.938 6 0.30 1.00 1.000
30 6 0.20 1.00 0.913 6 0.20 1.00 0.875 6 0.20 1.00 0.568 6 0.20 1.00 1.000
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Figure 4: A Synthetic Data set with one cluster obtained using the Gaussian distribution and other
clusters by placing all points uniformly.

4.3 Real Datasets:

We have used three well known datasets, namely the Iris, Ionosphere, and Wisconsin breast cancer
datasets. We use two ways to evaluate the effectiveness and accuracy of outlier detection algorithms;
(i) detect rare classes within the datasets (which has also been used by other researchers such as Feng
et al., Orlowska, and Tang et al. [?, 13,18]) and (ii) plant outliers into the real datasets (according
to datasets’ domain knowledge) and expect outlier detection algorithms to identify them.

4.4 Real Datasets with Rare Classes

In this sub-section, we compare the algorithms in detecting rare classes. A class is made ‘rare’ by
removing most of its ovservations. In general, the value of k is chosen between five to ten percentage
of the size of the dataset.
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4.4.1 Iris Dataset

The dataset is about iris plant and contains three classes: iris setosa, iris versicolour, iris virginica
with 50 instances each. The iris setosa class is linearly separable from the other two classes, but
the other two classes are not linearly separable from each other. We randomly remove 45 instances
from iris-setosa class to make it ‘rare’; remaining 105 instances are used in the final dataset. Three
selected values of k are 5, 7, 10. Tables 3 summarize our findings.

Table 3: Comparison of LOF, COF, INFLO and RBDA for k = 5, 7 and 10 respectively for the
Iris dataset. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0 0 0 0 0 0 2 0.200 0.4 0.150
15 5 0.333 1 0.211 0 0 0 0 1 0.067 0.2 0.067 2 0.133 0.4 0.150
20 5 0.250 1 0.211 0 0 0 0 2 0.100 0.4 0.091 5 0.250 1 0.208

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 4 0.800 0.8 0.714 0 0 0 0 4 0.800 0.8 0.714 4 0.800 0.8 0.769
10 5 0.500 1 0.750 0 0 0 0 5 0.500 1 0.710 5 0.500 1 0.790

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 5 1 1 1 5 1 1 0.833 5 1 1 1 5 1 1 1
10 5 0.500 1 1 5 0.500 1 0.833 5 0.500 1 1 5 0.500 1 1

We observe that for k = 5 and m = 15, LOF has the highest precision value and RBDA comes
second. For m = 20, LOF and RBDA both have the same performance; COF performs poorly (its
precision and recall values are all zero). The reason for COF’s poor performance is that instances
of rare class are close to each other which decrease average-chaining distance of COF algorithm
significantly and thus decrease it’s outlierness.

For k = 7, RBDA performs better than LOF, INFLO and COF for all values of m. In particular,
COF doesn’t find any outlier within top 10 ranked instances.

For k = 10 and all values of m, LOF, INFLO and RBDA perform well. In general, performance
of RBDA algorithm is better than LOF, COF and INFLO algorithms for other values of k. When
k increases, precision, recall and Rank-Power of all algorithms improve.
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4.4.2 Johns Hopkins University Ionosphere Dataset

The Johns Hopkins University Ionosphere dataset contains 351 instances with 34 attributes; all
attributes are normalized in the range of 0 and 1. There are two classes labeled as good and bad
with 225 and 126 instances respectively. There is no duplicate instances in the dataset. To form
the rare class, 116 instances from the bad class are randomly removed. Final dataset has only 235
instances with 225 good and 10 bad instances. Four values of k = 8, 11, 13 and 15 are used and for
different value of k the m values also vary. Results are presented in Table 4.

We observe that, for k = 8, RBDA has the best Rank-Power among all algorithms, but LOF
algorithm achieves the best precision and recall for m > 85; and it is also the only algorithm that
finds all ten ‘bad’ class instances. RBDA performs better than COF and INFLO algorithms for all
values of m.

For k = 11 and m = 65, LOF has higher precision (0.15) than RBDA algorithms (0.14). For
other values of m, RBDA is the winner and has largest values of precision and recall. COF algorithm
has the highest Rank-Power when m = 85 but it finds only 8 ‘bad’ class instances instead of 10
found by LOF and RBDA algorithms. For k = 15, situation is very similar to previous case. For
m from 5 to 85, RBDA consistently does well in precision and recall, but it doesnt achieve the best
Rank-Power for all m. When m is 65 or 85, COF algorithm shows the highest Rank-Power and
RBDA comes second.

In general, RBDA algorithm shows the best performance compared with other algorithms.

4.4.3 Wisconsin Diagnostic Breast Cancer Dataset

Wisconsin diagnostic breast cancer dataset contains 699 instances with 9 attributes. There are
many duplicate instances and instances with missing attribute values. After removing all duplicate
and instances with missing attribute values, 236 instances labeled as benign class and 236 instances
as malignant were left. Following the method proposed by Cao [17], 226 malignant instances are
randomly removed. In our experiments the final dataset consisted 213 benign instances and 10
malignant instances.

Results in Tables 5 clearly shows that RBDA consistently performs better than the other algo-
rithms and for all values of k and m RBDA achieves the best precision, recall and Rank-Power. In
addition, RBDA algorithm is the only algorithm that detects all ten rare class instances for all five
k values.

4.5 Real Datasets with Planted Outliers

Detecting rare class instances may not be adequate to measure performance of an algorithm designed
to find outliers; because it may not be appropriate to declare them as outliers. In experiments
described in this subsection we plant some outliers into the real datasets according to datasetss
domain knowledge.
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Table 4: Comparison of LOF, COF, INFLO and RBDA for k = 8, 11 and 15 respectively for the
Ionosphere dataset. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 3 0.600 0.3 0.600 3 0.600 0.3 0.857 3 0.600 0.3 0.600 5 1 0.5 1
15 6 0.400 0.6 0.570 6 0.400 0.6 0.600 6 0.400 0.6 0.620 7 0.467 0.7 0.970
25 7 0.280 0.7 0.483 7 0.280 0.7 0.549 7 0.280 0.7 0.519 8 0.320 0.8 0.783
45 8 0.178 0.8 0.38 8 0.178 0.8 0.440 8 0.178 0.8 0.400 8 0.178 0.8 0.783
65 8 0.123 0.8 0.379 8 0.123 0.8 0.440 8 0.123 0.8 0.396 8 0.123 0.8 0.783
85 9 0.106 0.9 0.253 8 0.094 0.8 0.440 9 0.106 0.9 0.273 9 0.106 0.9 0.391
105 10 0.095 1 0.196 8 0.076 0.8 0.440 9 0.086 0.9 0.273 9 0.086 0.9 0.391
130 10 0.077 1 0.196 9 0.069 0.9 0.238 9 0.069 0.9 0.273 9 0.069 0.9 0.391

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 3 0.600 0.3 0.600 3 0.600 0.3 1 3 0.600 0.3 0.600 5 1 0.5 1
15 6 0.400 0.6 0.570 6 0.400 0.6 0.620 7 0.467 0.7 0.600 7 0.467 0.7 1
25 7 0.280 0.7 0.528 7 0.280 0.7 0.549 7 0.280 0.7 0.600 8 0.320 0.8 0.818
45 8 0.178 0.8 0.420 8 0.178 0.8 0.440 8 0.178 0.8 0.470 9 0.200 0.9 0.510
65 10 0.154 1 0.284 8 0.123 0.8 0.440 9 0.138 0.9 0.344 9 0.138 0.9 0.506
85 10 0.118 1 0.284 8 0.094 0.8 0.440* 9 0.106 0.9 0.344 10 0.118 1 0.353

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 4 0.800 0.4 0.769 3 0.600 0.3 1 4 0.800 0.4 0.769 5 1 0.5 1
15 7 0.467 0.7 0.651 7 0.467 0.7 0.560 7 0.467 0.7 0.670 8 0.533 0.8 0.920
25 7 0.280 0.7 0.651 7 0.280 0.7 0.560 8 0.320 0.8 0.537 8 0.320 0.8 0.923
45 9 0.200 0.9 0.430 8 0.178 0.8 0.460 9 0.200 0.9 0.410 9 0.200 0.9 0.692
65 10 0.154 1 0.350 8 0.123 0.8 0.456 9 0.138 0.9 0.410 10 0.154 1 0.430
85 10 0.118 1 0.350 8 0.094 0.8 0.456 10 0.118 1 0.304 10 0.118 1 0.430
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Table 5: Comparison of LOF, COF, INFLO and RBDA for k = 8, 11, 13, 15, and 20 respectively
for the Wisconsin Breast Cancer data. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

15 1 0.067 0.1 0.091 0 0 0 0 2 0.133 0.2 0.13 3 0.2 0.3 0.316
25 3 0.120 0.3 0.125 1 0.04 0.1 0.059 3 0.120 0.3 0.130 4 0.160 0.4 0.256
40 5 0.125 0.5 0.125 3 0.075 0.3 0.07 5 0.125 0.5 0.128 8 0.200 0.8 0.198
60 5 0.083 0.5 0.123 5 0.083 0.5 0.083 8 0.133 0.8 0.132 10 0.167 1 0.190
80 9 0.113 0.9 0.118 10 0.125 1 0.107 8 0.100 0.8 0.132 10 0.125 1 0.190

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

15 2 0.133 0.2 0.115 0 0 0 0 2 0.133 0.2 0.120 4 0.267 0.4 0.313
25 3 0.120 0.3 0.130 2 0.080 0.2 0.073 3 0.12 0.3 0.125 5 0.200 0.5 0.263
40 5 0.125 0.5 0.132 4 0.100 0.4 0.093 5 0.125 0.5 0.144 8 0.200 0.8 0.228
60 7 0.117 0.7 0.130 7 0.117 0.7 0.111 7 0.117 0.7 0.138 10 0.167 1 0.211
80 10 0.125 1 0.135 10 0.125 1 0.122 8 0.1 0.8 0.136 10 0.125 1 0.211

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

15 1 0.067 0.1 0.091 1 0.067 0.1 0.067 1 0.067 0.1 0.077 3 0.200 0.3 0.400
25 3 0.120 0.3 0.115 3 0.120 0.3 0.100 3 0.120 0.3 0.120 4 0.160 0.4 0.323
40 5 0.125 0.5 0.118 5 0.125 0.5 0.120 6 0.150 0.6 0.139 7 0.175 0.7 0.228
60 9 0.150 0.9 0.138 10 0.167 1 0.141 7 0.117 0.7 0.142 10 0.167 1 0.212
80 10 0.125 1 0.141 10 0.125 1 0.141 9 0.113 0.9 0.134 10 0.125 1 0.212

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

15 1 0.067 0.1 0.091 0 0 0 0 2 0.133 0.2 0.103 4 0.267 0.4 0.370
25 3 0.120 0.3 0.113 4 0.160 0.4 0.128 3 0.120 0.3 0.115 5 0.200 0.5 0.319
40 5 0.125 0.5 0.118 6 0.150 0.6 0.146 7 0.175 0.7 0.151 9 0.225 0.9 0.238
60 9 0.150 0.9 0.145 10 0.167 1 0.162 8 0.133 0.8 0.157 10 0.167 1 0.225
80 10 0.125 1 0.148 10 0.125 1 0.162 8 0.100 0.8 0.157 10 0.125 1 0.225

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

15 3 0.200 0.3 0.182 3 0.200 0.3 0.200 2 0.133 0.2 0.143 5 0.333 0.5 0.385
25 3 0.120 0.3 0.182 6 0.24 0.6 0.210 5 0.200 0.5 0.161 6 0.240 0.6 0.328
40 8 0.200 0.8 0.176 8 0.200 0.8 0.220 8 0.200 0.8 0.205 9 0.225 0.9 0.281
60 10 0.167 1 0.182 10 0.167 1 0.22 9 0.150 0.9 0.191 10 0.167 1 0.263
80 10 0.125 1 0.182 10 0.125 1 0.22 9 0.113 0.9 0.191 10 0.125 1 0.263
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4.5.1 IRIS with Outliers

We insert three outliers into IRIS dataset, that is, there are three classes with 50 instances each and
3 planted outliers. The first outlier has maximum attribute values, second outlier has minimum
attribute values, and the third has two attributes with maximum values and the other two with
minimum values. Table 6 contains the results for this setting.

Table 6: Comparison of LOF, COF, INFLO and RBDA for k = 10 and 15, respectively, for the Iris
data with planted anomalies. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 3 0.30 1 0.857 3 0.30 1 0.545 3 0.30 1 0.857 3 0.30 1 1
15 3 0.20 1 0.857 3 0.20 1 0.545 3 0.20 1 0.857 3 0.20 1 1
20 3 0.15 1 0.857 3 0.15 1 0.545 3 0.15 1 0.857 3 0.15 1 1
25 3 0.12 1 0.857 3 0.12 1 0.545 3 0.12 1 0.857 3 0.12 1 1
30 3 0.10 1 0.857 3 0.10 1 0.545 3 0.10 1 0.857 3 0.10 1 1

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

5 3 0.60 1 0.857 2 0.4 0.667 1 3 0.60 1 1 3 0.60 1 1
10 3 0.30 1 0.857 3 0.30 1 0.5 3 0.30 1 1 3 0.30 1 1
15 3 0.20 1 0.857 3 0.20 1 0.5 3 0.20 1 1 3 0.20 1 1
20 3 0.15 1 0.857 3 0.15 1 0.5 3 0.15 1 1 3 0.15 1 1
25 3 0.12 1 0.857 3 0.12 1 0.5 3 0.12 1 1 3 0.12 1 1

For k = 10 and m = 10, all algorithms found the three outliers, but their Rank-Powers are
different. Rank-Power of RBDA is better than all other three algorithms; COF has the lowest
value. Only RBDA algorithm ranks three outliers in top 3 positions while no other algorithm do
the same.

For k = 15, INFLO and RBDA are the best because they all rank three outliers in top three
positions which are exactly the expected results that outlier detection algorithms are designed to
do. COF has the worst Rank-Power.

4.5.2 Johns Hopkins University Ionosphere Dataset with Outliers

For ionosphere dataset, two classes labeled as good and bad with 225 and 126 instances respectively
are kept in resulting dataset. Three outliers are inserted into the dataset; first two outliers have
maximum or minimum value in every attribute, and the third has 9 attributes with unexpected
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values and 25 attributes with maximum or minimum values. Unexpected value here is the value that
is valid between minimum and maximum number but it actually never observed in real datasets.
For example, one attribute may have a scope from 0 to 100, but value of 12 never appears in real
dataset actually. Since the size of resulting dataset is 354, k = 15, 20, 25 were selected for the
experiments.

Table 7: Comparison of LOF, COF, INFLO and RBDA for k = 15, 20, and 25, respectively, for the
Ionosphere data with planted anomalies. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
20 0 0 0 0 1 0.050 0.333 0.091 1 0.05 0.333 0.050 3 0.150 1 0.143
30 1 0.033 0.333 0.042 2 0.067 0.667 0.079 2 0.067 0.667 0.064 3 0.100 1 0.143
40 3 0.075 1 0.063 3 0.075 1 0.080 3 0.075 1 0.074 3 0.075 1 0.143
50 3 0.060 1 0.063 3 0.060 1 0.080 3 0.060 1 0.074 3 0.060 1 0.143

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 0 0 0 0 0 0 0 0 0 0 0 0 1 0.100 0.333 0.125
20 0 0 0 0 1 0.050 0.333 0.063 0 0 0 0 2 0.100 0.667 0.158
30 1 0.033 0.333 0.034 2 0.067 0.667 0.079 1 0.033 0.333 0.040 3 0.100 1 0.136
40 2 0.050 0.667 0.048 2 0.050 0.667 0.079 2 0.050 0.667 0.052 3 0.075 1 0.136
50 3 0.060 1 0.056 3 0.060 1 0.071 3 0.060 1 0.060 3 0.060 1 0.136

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 0 0 0 0 0 0 0 0 0 0 0 0 2 0.200 0.667 0.3
20 0 0 0 0 0 0 0 0 0 0 0 0 2 0.100 0.667 0.3
30 2 0.067 0.667 0.051 2 0.067 0.667 0.060 2 0.067 0.667 0.061 3 0.100 1 0.182
40 2 0.050 0.667 0.051 2 0.050 0.667 0.060 3 0.075 1 0.067 3 0.075 1 0.182
50 3 0.060 1 0.058 2 0.040 0.667 0.060 3 0.060 1 0.067 3 0.060 1 0.182

In Table 7 we observe that, for k = 15, and m = 10 no algorithm can detect planted outliers.
RBDA algorithm is the only algorithm that detects all three outliers for m = 20. When m = 40 or
50, all algorithms find all outliers but RBDA algorithm has the best Rank-Power value and LOF
algorithm has the worst Rank-Power.

For k = 20, 25, RBDA is the only algorithm that detects outliers within top 10 ranked objects
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and it also has the best Rank-Power for any given m; LOF algorithm is always the worst.
The gap of performance between RBDA and other algorithms is large since RBDAs RankPower

is almost double as those of other algorithms for every k and m. Overall performance of RBDA is
the best.

4.5.3 Wisconsin Diagnostic Breast Cancer with Outliers

After removal of duplicated instances and instances with missing attribute values, only 449 instances
were left with 213 instances labeled as benign and 236 as malignant. Two outliers are planted into
dataset. Both outliers have maximum or minimum values for all attributes.

Table 8: Comparison of LOF, COF, INFLO and RBDA for k = 15, 20, and 30, respectively, for
the Wisconsin Breast data with planted anomalies. Maximum values are marked as bold.

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 2 0.200 1 0.500 0 0 0 0 2 0.200 1 1 2 0.200 1 1
20 2 0.100 1 0.500 0 0 0 0 2 0.100 1 1 2 0.100 1 1
30 2 0.067 1 0.500 0 0 0 0 2 0.067 1 1 2 0.067 1 1
40 2 0.050 1 0.500 2 0.050 1 0.038 2 0.050 1 1 2 0.050 1 1
50 2 0.040 1 0.500 2 0.040 1 0.038 2 0.040 1 1 2 0.040 1 1

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 2 0.200 1 0.750 0 0 0 0 2 0.200 1 1 2 0.200 1 1
20 2 0.100 1 0.750 1 0.050 0.500 0.063 2 0.100 1 1 2 0.100 1 1
30 2 0.067 1 0.750 1 0.033 0.500 0.063 2 0.067 1 1 2 0.067 1 1
40 2 0.050 1 0.750 1 0.025 0.500 0.063 2 0.050 1 1 2 0.050 1 1
50 2 0.040 1 0.750 2 0.040 1 0.051 2 0.040 1 1 2 0.040 1 1

m LOF COF INFLO RBDA

Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP Nrc Pr Re RP

10 2 0.200 1 1 1 0.100 0.500 0.200 2 0.200 1 1 2 0.200 1 1
20 2 0.100 1 1 1 0.050 0.500 0.200 2 0.100 1 1 2 0.100 1 1
30 2 0.067 1 1 2 0.067 1 0.094 2 0.067 1 1 2 0.067 1 1
40 2 0.050 1 1 2 0.050 1 0.094 2 0.050 1 1 2 0.050 1 1
50 2 0.040 1 1 2 0.040 1 0.094 2 0.040 1 1 2 0.040 1 1

In Table 8, for k = 15, our algorithm and INFLO algorithm both perform well and rank two
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outliers in top 2 positions. LOF algorithm finds the outliers within top 10 instances of its output
but doesnt rank the outliers in first two positions. COF algorithm even couldnt find the outliers
until top 40 instances, so that its RankPower is very bad compared with others. For k = 20,
RBDA and INFLO algorithms still perform better than others. With large value of k, both LOF
and COF get better result with maximum RankPower, and COF still is the algorithm with the
smallest RankPower. When k increases to 30, all algorithms except COF achieve very good results,
and find the three outliers in first three positions. COF still looks not good in this experiment.

In general speaking, when k is increasing, most of algorithms can improve their performances.
One reason is that when k is larger, more neighbors around a specific instance are involved into
the process of evaluating that instance, so that the algorithm holds more information to make an
accurate decision about outlier.

In this experiment, RBDA and INFLO algorithms show the same performance for every selected
k, and COF algorithm performs badly compared with others especially for its poor RankPower.

5 Conclusion

Outlier detection is an important task for data mining applications. Existing algorithms are effective
and have been successfully applied in many real-world applications. But these algorithms, especially
density-based algorithms, have low efficiency in datasets with different densities or when datasets
consist of clusters with special shapes. In this paper, we introduce a new idea, ranking, to measure
an object’s outlierness. Sum of ranks of an object is naturally meaningful to measure the degree of
isolation of an object. Based on this idea, we propose the Rank-based outlier Detection Algorithm
(RBDA) that is effective to solve the problems mentioned above for many situations.

There are two directions for future work. The first one is to improve the performance of RBDA
in datasets consisting of clusters with special shapes such as lines or circles. Currently, RBDA
doesn’t perform as good as COF for this kind of datasets. The second is to further improve the
effectiveness of ranking.
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