
Syracuse University Syracuse University

SURFACE SURFACE

Northeast Parallel Architecture Center College of Engineering and Computer Science

1995

Software Tool Evaluation Methodology Software Tool Evaluation Methodology

Salim Hariri
Syracuse University

Sung Yong Park
Syracuse University

Rajashekar Reddy
Syracuse University

Mahesh Subramanyan
Syracuse University

Follow this and additional works at: https://surface.syr.edu/npac

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Hariri, Salim; Park, Sung Yong; Reddy, Rajashekar; and Subramanyan, Mahesh, "Software Tool Evaluation
Methodology" (1995). Northeast Parallel Architecture Center. 46.
https://surface.syr.edu/npac/46

This Working Paper is brought to you for free and open access by the College of Engineering and Computer
Science at SURFACE. It has been accepted for inclusion in Northeast Parallel Architecture Center by an authorized
administrator of SURFACE. For more information, please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/npac
https://surface.syr.edu/lcsmith
https://surface.syr.edu/npac?utm_source=surface.syr.edu%2Fnpac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Fnpac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/npac/46?utm_source=surface.syr.edu%2Fnpac%2F46&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Software Tool Evaluation Methodology 1Salim Hariri2 , Sung-Yong Park, Rajashekar Reddy,Mahesh Subramanyan, Rajesh Yadav, and Geo�rey FoxNortheast Parallel Architectures CenterSyracuse UniversitySyracuse, NY 13244Manish ParasharDepartment of Computer Sciences & Center for RelativityUniversity of Texas, Austin, TX
AbstractThe recent development of parallel and distributed computing software has introduceda variety of software tools that support several programming paradigms and languages.This variety of tools makes the selection of the best tool to run a given class of appli-cations on a parallel or distributed system a non-trivial task that requires some inves-tigation. We expect tool evaluation to receive more attention as the deployment andusage of distributed systems increases. In this paper, we present a multi-level evalua-tion methodology for parallel/distributed tools in which tools are evaluated from di�er-ent perspectives. We apply our evaluation methodology to three message passing toolsviz Express, p4, and PVM. The approach covers several important distributed sys-tems platforms consisting of di�erent computers (e.g., IBM-SP1, Alpha cluster, SUNworkstations) interconnected by di�erent types of networks (e.g., Ethernet, FDDI,ATM).1This research is funded by Rome Laboratory (contract number F-30602-92-C-0063), Rome, NY2Dr. Salim Hariri, Professor, ECE Department, Syracuse University, Syracuse, NY 13244, email:hariri@cat.syr.edu

1 INTRODUCTION 21 IntroductionThe recent decades have seen an increasing interest in parallel/distributed multi-computer systems (multiple independent computing units interconnected by local-area or custom networks) as a feasible and cost-e�ective means of achieving the high-performance computing capabilities demanded by existing and future applications.Consequently there has been a proliferation of (commercial as well as academic) soft-ware systems aimed at providing the communication infrastructure required to exploitsuch computing environments. Available software systems or parallel/distributedcomputing tools (PDC tools) vary signi�cantly in terms of the application domaintargeted and corresponding functionality provided, the computational & communica-tion model supported, the underlying implementation philosophy, and the computingenvironments supported.General purpose systems like MPI, PVM and P4 provide a wide class of basic commu-nications primitives while dedicate systems like BLACS (Basic Linear Algebra Com-munication System) and TCGMSG (Theoretical Chemistry Group Message PassingSystem) are tailored to speci�c application domains. Furthermore, some systemsprovide higher level abstractions of application speci�c data-structures (e.g. VSG(Virtual Shared Grids), GRIDS, CANOPY). Existing systems also di�er in the com-putational model they provide to the user; for example loosely synchronous dataparallelism, functional parallelism, or shared memory. Di�erent systems use di�erentimplementation philosophies such as remote procedure calls, interrupt handlers, ac-tive messages, or client-server based, which makes them more suited for a particulartype of communication. Finally certain systems (such as CMMD and NX/2) are tiedto a particular system; in contrast to portable systems like PVM and MPI.Given the number and diversity of available systems, the selection of a particular sys-tem for an application development is non-trivial. Factors governing such a selectioninclude application characteristics and system speci�cations as well as the usabilityof a system and the development interface it provides. It is critical therefore, thatthere exists a methodology for generating a normalized evaluation of available sys-tems which can assist users in evaluating the suitability of any particular system totheir needs. In this paper we de�ne such an evaluation methodology. The proposedmethodology provides a comprehensive characterization of PDC tools by de�ningtheir evaluation from three di�erent perspectives:1. A low-level performance perspective evaluates the basic communication primi-tives provided by the tools. These include point-to-point communications (send/receive),collective communications (bcast/mcast), ring communications (all nodes sendand receive), and global reduction operations.2. An application-level performance perspective evaluates the PDC tools from theapplication's point of view. Here we evaluate the performance of representativeNPAC/ECE, Syracuse University

2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 3applications developed using di�erent tools. Applications are chosen so thatthey incorporate a wide set of basic algorithmic building blocks.3. A development interface (or usability) perspective characterizes the tools interms of the functionality provided, computational/communication models sup-ported, the ease of application development (coding, testing, and debuggingsupport), computing environment supported, portability, etc.The proposed methodology has two key objectives:1. To provide a means for evaluating, quantifying and comparing the suitability ofPDC tools with regard to user requirements, thereby enabling the selection ofthe most appropriate PDC tools for a particular application class and systemcon�guration.2. To serve as a uni�ed platform for PDC tool developers for identifying the de-�ciencies and bottlenecks in existing systems and for de�ning the requirementsof future systems.The application of the proposed evaluation methodology is illustrated using a selectionof widely used academic and commercial PDC tools. The low-level and application-level performance metrics are obtained experimentally using a diverse set of paral-lel/distributed multi-computer systems (IBM SP-1 using custom crossbar switch &LAN; and workstation clusters (Dec Alpha & SUN Sparcstations) interconnected us-ing Ethernet, FDDI and ATM networks). The application suite that can be usedto evaluate PDC tools from application perspective, includes codes from four broadclasses: numerical applications, signal and image processing, simulation, and systemutilities (such as parallel make, spell checker compiler). Finally, a set of criteria areoutlined for characterizing the usability of the tool and its development interface.The tools considered in this study are Express [10] (Parasoft Inc.), p4 [9](ArgonneNational Labs), and PVM [8] (Oak Ridge National Labs).The rest of this paper is organized as follows: Section 2 describes the proposed eval-uation methodology and details the three evaluation perspectives. In Section 3, weapply the methodology to evaluate three PDC tools. The corresponding experimentalresults are also presented. Finally Section 4 summarizes the evaluation methodologyand outlines future research directions.2 Multi-level Tool Evaluation MethodologyCurrently, there are no general criteria to evaluate a parallel/distributed tool nor itis easy to lay down such criteria [5]. One of the main di�culties in obtaining such anNPAC/ECE, Syracuse University

2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 4evaluation criteria set is that the importance and relevance of each criterion dependson many factors which include the type of available computers, the typical set ofuser applications, and the type of computing environment (education, government,military, industry etc.). For example, a user would give the response time as themost important performance metric to evaluate an application execution. On theother hand, a system manager might consider the system utilization or throughputas the main evaluation criterion and attempts to push the utilization to saturation(100%). By doing so, the application response time increases and reaches in�nitywhen the system is fully saturated. These two measures are contradicting each other.Consequently, one needs to decide �rst the point of view (user or system manager)that needs to be considered in evaluating the performance of a given tool.We do believe it is a challenging task to identify a meaningful criterion that takesinto consideration all these factors. Hence our approach to evaluate tools is based onmulti-levels where each level is representing one perspective for tool evaluation. Byusing weight factors, an overall tool evaluation can be tailored to take into accountthe most relevant factors associated with certain types of users. In this paper, wepresent a three level approach to evaluate parallel/distributed software tools. Theselevels are as follows:1. Tool Performance Level (TPL): In this level, we evaluate the performance of toolprimitives when they run on distributed systems that utilize di�erent computerarchitectures and networks.2. Application Performance Level (APL): In this level, we evaluate the performanceof parallel/distributed applications that are implemented using these tools andrun on di�erent platforms.3. Application Development Level (ADL): In this level, we evaluate the tool capa-bility to support and facilitate the development of parallel/distributed applica-tions.In this paper, we evaluate three tools viz, Express, p4, and PVM with respect to eachlevel. However, other levels can be added if necessary to take into consideration anyadditional set of criteria that has not been considered in these three levels. In whatfollows, we discuss the set of criteria to be used at each level.2.1 Tool Performance Level (TPL)In this level, we evaluate the performance of the primitives supported by a giventool. The primitives of any parallel/distributed software tool can be broadly charac-terized into four groups: 1) Communication primitives 2) Synchronization primitives3) Management/Control primitives and 4) Exception Handling primitives.NPAC/ECE, Syracuse University

2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 51. Communication Primitives: These primitives can be divided into two types:point-to-point and group communication primitives.(a) Point-to-Point Communication: It is the basic message passing prim-itive for any parallel/distributed programming tool. To provide e�cientpoint-to-point communication, most systems provide a set of function callsrather than the simplest send and receive primitives. The main primi-tives include synchronous and asynchronous send/receive, synchronous andasynchronous data exchange, non-contiguous or vector data.(b) Group Communication: These primitives can be divided into threecategories: one-to-many, many-to-one, and many-to-many.2. Synchronization Primitives: A parallel/distributed program can be dividedinto several di�erent computational phases. To prevent asynchronous messagesfrom di�erent phases interfering with one another, it is important to synchronizeall processes or a group of processes. Usually, a simple command without anyparameter, such as, exsync in Express can provide a transparent mechanism tosynchronize all the processes. But, there are several options that can be adoptedto synchronize a group of processes. In PVM, pvm barrier, which requires twoparameters group name and num, blocks the caller until a certain number ofcalls with the same group name are made.3. System Management: The tasks of con�guration, control, and managementof a system are quite di�erent from system to system. Most of the con�gu-ration, control and management primitives supported by the studied softwaretools include primitives to allocate and deallocate one processor or a group ofprocessors to load, start, terminate, or abort programs, for dynamic recon�g-uration, process concurrent or asynchronous �le I/O, and query the status ofenvironment.4. Exception Handling: In a parallel/distributed environment, it is impor-tant that the network hardware and software failures must be reported to theuser's application or system kernel. In traditional operating systems such asUNIX, exception handling is processed by an event-based approach, where asignal is used to notify a process that an event has occurred and after that, asignal handler is invoked to take care of the event. Basically, an event couldbe a hardware condition (e.g., bus error) or software condition (e.g., arithmeticexception). Express supports tools for debugging and performance evaluation.The experimental results presented later evaluate the performance of send/receive,broadcast/multicast, ring communication and global summation primitives of thestudied software tools (see Table 1).These communication primitives play an important role in determining the perfor-mance of a large class of parallel/distributed applications. Hence, the tool that pro-vides the best performance in executing its communication primitives will also giveNPAC/ECE, Syracuse University

2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 6Primitive Express p4 PVMSend/Receive exsend p4 send pvm sendexreceive p4 recv pvm recvBroadcast/Multicast exbroadcast p4 broadcast pvm mcastRing exsend p4 send pvm sendexreceive p4 recv pvm recvGlobal Sum excombine p4 global op Not AvailableTable 1: Communications primitives for evaluating tools at TPL# Numerical Algorithms Signal/Image Simulation/Optimization UtilitiesProcessing1. Fast Fourier Transform JPEG Compression N-body Simulation ADA Compiler2. LU Decomposition Hough Transform Monte Carlo Parallel SortingIntegration3. Linear Equation Solver Ray Tracing Traveling Salesman Parallel Search4. Matrix Multiplication Data Compression Branch and Bound Distributed SpellChecker5. Cryptology Distributed MakeTable 2: SU PDABSthe best performance results for a large number of distributed applications as will beshown later in section 4.2.2 Application Performance Level (APL)Low level benchmark tests such as communication primitive performance can sometime be misleading by suggesting performance advantages for one tool over anotherthat may not be relevant in actual applications. So in this level, we evaluate thetools from application performance perspective. We have used di�erent classes ofapplications from parallel/distributed applications benchmark suit (SU PDABS) thatis currently being developed at NPAC (Northeast Parallel Architectures Center) ofSyracuse University.We have divided the applications into four classes namely, Numerical algorithms, Sig-nal/Image Processing applications, Simulation/Optimization applications, and Util-ities. Applications under di�erent classes are shown in Table 2. We have chosenapplications to include simple, medium, and complex problems, to represent a broadspectrum of applications. Even though it covers a broad spectrum of applications,it is not comprehensive. All applications in this suit are written in C using di�erentdistributed/parallel tools viz. Express, p4, and PVM.NPAC/ECE, Syracuse University

2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 7From this benchmark suit, we have chosen JPEG Compression, Fast Fourier Trans-form (FFT), Monte Carlo Integration and Parallel sorting applications for bench-marking the software tools in this paper.2.3 Application Development (Usability) PerspectiveThe application development perspective characterizes PDC tools on the basis of theirusability (ease of use), their functionality, and the development overheads incurredin using them. In what follows we outline a set of criterion that can be used in thischaracterization.Programming Models Supported: The development of any parallel or distributedapplication is based on an underlying programmingmodel which determines its imple-mentation. A number of parallel/distributed programming models have been de�nedto meet varied requirements; the choice of the appropriate programming model be-ing dictated jointly by the characteristics the application and the speci�cations ofthe target computing environment. The Data Parallel programming model achievesparallelism by identifying data elements that can be operated on in parallel; whileFunctional Parallelism decomposes the application into tasks that can be performedconcurrently. A Shared Memory programming model assumes a common memoryspace and achieves cooperation via shared data elements. A Message Passing pro-grammingmodel, on the other hand, uses explicit messages for communication. Othermodels include Synchronous (processing agents proceed in lock step), Loosely Syn-chronous (processing agents are constrained to communicate at regular intervals) andasynchronous.The PDC tools studied in this paper support either one or both of the followingprogramming models:� Host-Node Model: The host-node programming model consists of a singlehost process that coordinates the execution of one or more node processes.The host is typically responsible for input/output and administrative operationswhile the node processes concurrently perform computations. Node process cancommunicate among themselves or with the host.� SPMD or Cubix Model: The SPMD (single program multiple data) or Cubixmodel is a loosely-synchronous data-parallel programming model wherein thecomputing nodes execute the same program stream on di�erent data elements.Language Interface: The programming languages supported by PDC tools havea key impact on its usability. Supporting popular languages not only enables theNPAC/ECE, Syracuse University

2 MULTI-LEVEL TOOL EVALUATION METHODOLOGY 8developer to work with a familiar environment but also enables the reuse of existingprogram components. Tools supporting multiple languages allow di�erent parts ofthe application to be implemented using di�erent languages, which may be bene�-cial for certain applications. The PDC tools evaluated in this paper support C andFORTRAN.Development Interface: The development interface criteria evaluates the supportprovided during application development. It includes the following four sub-criteria:Ease of Programming: Ease of programming measures the e�ort required on theuser part to interact with the tool. If the user spends more time thinking about howto use the tool or making the tool works, the tool is hindering and not helping withthe programming task. Measures of this criterion include the learning curve for newas well as experienced developers, and the amount of re-engineering of re-developmentrequired.Debugging Support: Given the complexity of parallel/distributed applications de-velopment and non-determinism that is typical of such an environment, suitable de-bugging supports is desirable of the PDC tool used. Possible debugging supportincludes:� The ability to trace the execution of the parallel application on the PDC system.� The ability to de�ne break points in the application program and to stop exe-cution at these points.� The ability to view application data-structures at de�ned break points and dur-ing execution of the application.Customization: The ability to customize a PDC tool and its interface to a developerneeds provides a more comfortable development environment. Customization supportincludes:� The ability to de�ne new commands and macros for frequently used commandsequences.� Re-con�guration of the tool according to desired tradeo�s for such parametersas response speed and memory utilization.� Re-de�nition of tool input and output formats.NPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 9Error Handling: A PDC tool should be able to gracefully exit when an non-retrievable error occurs. In other cases, the error message should be a pointer tothe type of error that has occurred. Protection from costly errors should be provided.For example, when the application requires more memory than what is available, itis an error condition. In this case, the tool should give an appropriate error message,delete all allocated memory, and exit the program without causing the terminal tohang. All the tools that we used in this paper do not have a mature error/exceptionhandling feature and hence will not be evaluated favorably at this level.Run-Time Interface: The run-time interface handles (among others) issues such asparallel I/O, data redistribution, and dynamic load-balancing. The ability to performI/O concurrently across processors is becoming increasing important, especially forI/O bound application where sequential I/O can be a signi�cant bottleneck. Run-timedata redistribution is necessary when the communication patterns of the applicationschange from one phase to another. Finally, dynamic load-balancing is critical forapplication with widely varying run-time load distributions.Integration with other Software Systems: Applications often require the servicesof other software systems for functionality such as visualization, pro�ling, data in-put, etc. Hence, the ability to e�ectively interface with other software system is animportant criterion to facilitate the development of parallel/distributed applicationsand is used at this level of tool evaluation.Portability: Given the number and diversity of existing parallel/distributed sys-tems, it is critical that PDC tools and the applications developed based on themare portable. Portability also dictates that the tool provide an architecture indepen-dent programming interface. For example, Express provides the user with a virtualprocessor topology which is independent of the actual physical topology.3 Experimental ResultsIn this section, we apply our evaluation methodology to three PDC tools (Express,p4, and PVM) and evaluate them from three di�erent perspectives: tool performance,application performance, and tool usability. The results of our evaluation can be usedto assist in determining the best platform, network technology, and PDC tool to runa given class of applications. NPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 103.1 Experimentation Environment
PCs

DEC
WSs Sun

WSs

Front
Ends

FDDI
switch FDDI

concentrator

DECmpps

NYNET
OC3/OC12

FORE
switch

SGI
Network
Server

Allnode
switch

DECNIS
Router

SP1

CM-5

nCUBE

FDDI
Ethernet
HiPPI
ATM

Allnode
DS3/ATM

X terminal
server

Xterminals

IBM R/6000
cluster

Alpha
Cluster

File Servers
(50 GB+)

* This diagram doesn't reflect the details of the actual network topology.Figure 1: Computing Environment at NPACThe evaluation presented in this section was performed on a wide set of state-of-the-art multi-computer systems which are a part of the high performance computingenvironment at the Northeast Parallel Architectures Center, Syracuse University (seeFigure 1). The platforms used are brie
y described below:IBM SP-1: The SP-1 consists of a cluster 16 RISC/6000 370 nodes interconnectedby a crossbar switch (Allnode) and a dedicated Ethernet. Each node runs at a clockrate of 62.5 MHz. The evaluation presented in this section is performed on the Allnodeswitch and the dedicated Ethernet.ALPHA/FDDI: The ALPHA/FDDI con�gurations consisted of 8 DEC ALPHAworkstations interconnected by a high performance (100 Mbps) backbone composedof dedicated, switched FDDI segments. The ALPHA nodes have a clock rate of 150MHz. NPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 11SUN/ATM WAN: This con�guration consists of SUN SPARCstation IPXs com-municating over the NYNET. NYNET is an ATM wide area network (WAN) thatcovers all New York State and Part of Massachusetts State. Most of the wide areaportion of the NYNET operates at speed OC 48 (2.4 Giga bits per second) while eachsite is connected with two OC 3 links (155 Million bits per second). In this paper, weevaluate the performance of PDC tools on the NYNET connection between SyracuseUniversity and Rome Laboratories, Rome, NY.SUN/ATM LAN: This con�guration consists of SUN SPARCstation IPXs inter-connected by an ATM LAN using an ATM FORE switch. TAXI interface is providedbetween the workstations and the ATM switch. The network bandwidth is 140 Mbps.SUN IPX nodes operate on a 40MHz clock.SUN/Ethernet: This con�guration consists of SUN SPARCstation ELCs intercon-nected by an Ethernet LAN. The ELCs operate at a clock rate of 33 MHz.3.2 Tool Performance Level (TPL)In what follows, we benchmark the point-to-point and group communication primi-tives of the three tools on di�erent distributed computing platforms.3.2.1 Send/Receive primitivesTable 3 shows the execution time of snd/rcv primitives when implemented in Express,p4, and PVM and for di�erent message sizes up to 64 Kbytes. For example, formessage size of 16 Kbytes, snd/rcv primitive takes approximately 111, 44, and 61milliseconds when it is implemented using Express, p4, and PVM, respectively overEthernet. It is clear from this table that the p4 implementation of point-to-pointcommunications on SUN Workstations has the best performance when compared tothe other tool implementations.Table 3 shows the snd/recv time for these tools on SUN SPARCstations over ATMLAN and ATMWAN (NYNET). Similarly to the Ethernet results, p4 implementationof the send/receive primitives outperformed the other tool implementations. Expressperforms a little better than PVM for small message sizes (upto 1 Kbytes) but PVMoutperforms Express for large messages. This table shows the signi�cant improve-ment in throughput when ATM networks are used as the underlying communicationnetwork of high performance distributed systems. Furthermore, this table shows thatATM WAN performance of send/receive primitives is similar.to those of ATM LAN.NPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 12Hence, it is feasible to build distributed computing systems across an ATMWAN andtheir performance is comparable to those based on LANs.Mesg Size PVM p4 Express(Kbytes) Ethernet ATM ATM Ethernet ATM ATM Ethernet ATM(LAN) (WAN) (LAN) (WAN) (LAN)0 9.655 7.991 7.764 3.199 2.966 3.636 4.807 4.1521 11.693 8.678 8.878 3.599 3.393 4.168 10.375 7.2402 14.306 9.896 10.105 4.399 3.748 4.822 18.362 11.0614 25.537 13.673 14.665 9.332 4.404 5.069 32.669 16.9908 44.392 18.574 19.526 24.165 6.482 7.459 59.166 27.04716 61.096 27.365 28.679 44.164 11.191 13.573 111.411 46.00332 109.844 48.028 53.320 98.996 19.104 22.254 189.760 82.56664 189.120 88.176 91.353 173.158 35.899 41.725 311.700 153.970Table 3: snd/recv timing for SUN SPARCstations (in milliseconds)3.2.2 Broadcast PrimitivesFigure 2 shows the execution time for broadcasting messages of di�erent messagesizes up to 64 Kbytes among 4 Sun Workstations over Ethernet and ATM wide areanetwork. For this group communication primitive, p4 has the best performance whileExpress has the worst performance. It is worth noting that the tool with bettersnd/rcv performance does not necessarily imply the better performance for broad-cast/multicast primitives. This is because of the fact that broadcast/multicast per-formance greatly depends on the algorithm used for its implementation. We observesimilar results on NYNET network.
0

50

100

150

200

250

300

350

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Broadcast Timing on ATM using 4 SUNs

PVM
p4

0

100

200

300

400

500

600

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Broadcast Timing on Ethernet using 4 SUN

PVM
p4
Express

Figure 2: Broadcast on SUN SPARCstations over Ethernet and ATM WANNPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 133.2.3 Ring CommunicationResults of the ring communication for di�erent message sizes are given in Figure 3.Ring communication was implemented using snd/recv primitive in all three tools. Aswith other communication primitives p4 performs best among all other tools. Oneinteresting point to note is that even though PVM performs better than Expressin snd/recv primitive, Express outperforms PVM for ring communication and thisindicates that Express is better suited for continuous
ow of incoming and outgoingdata when compared to PVM. However, p4 is the best among the three for this typeof applications.
0

100

200

300

400

500

600

700

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Ring(Loop) Timing on ATM using 4 SUNs

PVM
p4

0

100

200

300

400

500

600

700

800

0 10 20 30 40 50 60 70

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Message Size (Kbytes)

Ring(Loop) Timing on Ethernet using 4 SUNs

PVM
p4
express

Figure 3: Ring communication on SUN SPARCstations over Ethernet and ATM WAN3.2.4 Global SummationGlobal operations are very important in measuring performance of PDC tools. Weselected global summation for our performance measurement as this is the most com-monly used global operation. PVM does not support any global operation and thusit is not evaluated for this operation. The performance results of p4 and Expressimplementation of this global summation on Ethernet are shown in Figure 4. This�gure shows the performance on NYNET as well. P4 implementation is also betterthan Express for this operation.Table 4 summarizes the results of our evaluation of these tools with respect to theircommunication primitives. From this table we can see that p4 outperforms Expressand PVM in all classes of communication primitives. This can be attributed to thee�cient implementation of p4 communication primitives which add very small amountof overhead to the underlying transport layer.NPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 14
0

2000

4000

6000

8000

10000

12000

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000

E
x
e
c
u
t
i
o
n

T
i
m
e

(
m
s
e
c
)

Vector Size (# of integers)

Vector Sum Timing 4 SUNs

p4
express
p4-NYNET

Figure 4: Global summation on SUN SPARCstations over Ethernet and ATM WANSUN/Ethernet SUN/ATMsnd/rcv broadcast ring global sum snd/rcv broadcast ringp4 p4 p4 p4 p4 p4 p4PVM PVM Express Express PVM PVM PVMExpress Express PVM ExpressTable 4: Summary of Tool Performance on di�erent Platforms3.3 Application Performance Level (APL)In this section we evaluate the PDC tools by comparing the execution times of fourapplications that are commonly used in distributed systems. A brief description ofthese applications and their parallel implementations are highlighted below:1. JPEG CompressionThe main problem with digital imaging applications is that a vast amount ofdata required to represent a digital image directly. Thus, the use of digital im-ages is limited in distributed systems because of the high storage requirementand the long transmission times to transfer images from one site to another.Image compression technology can compress images by 1/10-1/50 of their orig-inal size without a�ecting image quality. JPEG (Joint Photographic ExpertsGroup) is a standard image compression method which enables interoperabilityof equipments from di�erent manufacturers. JPEG standards are based on DCT(Discrete Cosine Transform). This application involves simulation of JPEG im-age compression that requires substantial processing and storage. In this appli-cation, parallelism is achieved by data parallel model and thus the image to becompressed or decompressed is divided into N equal parts (where N denotes thenumber of processors), except for the one portion which can be slightly largerthan the rest. We use host-node programming model in which the master pro-cess distributes the image among all nodes and then collects the results from allNPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 15nodes. It also processes its portion of the image. The parallel implementationof JPEG application consists of three phases: Distribution, computation, andcollection phases. During distribution and collection phases, the computers ex-change large volume of data while no communication is performed during thecomputation phase.2. Two-Dimensional Fast Fourier Transform (2D-FFT)Two-Dimensional FFT is a useful transformation and has many applications inimage enhancement, data compression, and image reconstruction. To computethe FFT in two dimensions (e.g., a screen of video data), one has to computea one dimensional FFT for each of the rows and each of the columns. Thisalgorithm involves intensive computations. Although the processing in 2D-FFTcan be easily distributed, a distributed 2D-FFT involves transfer of large amountof data between processors. Thus, it is a good application to benchmark theperformance of communication primitives.3. Monte Carlo IntegrationMonte Carlo integration is an e�cient method for evaluating de�nite integrals.The idea behind the Monte Carlo integration is to generate random points be-tween the integration interval and calculate the function values at these pointsand the mean of these function values gives the value of the de�nite integral.Since this involves generating random samples, this is an approximate methodand thus more samples lead to a better approximation. This application is com-pute intensive and communicate only short messages. Hence this can benchmarkthe computing capacity of parallel/distributed platforms and latency impact ofdi�erent tool implementations on the performance of this type of applications.4. Sorting by Regular SamplingSorting is one of the most studied problems in Computer Science because ofits theoretical interest and practical importance. If huge amount of data needsto be sorted, sequential sorting will be quite slow necessitating parallel sorting.Parallel Sorting by Regular Sampling (PSRS) involves partitioning the data intosmaller subsets such that all the elements in one subset not greater than anyelement in a later subset and sorting each subset independently. PSRS parti-tions the data into ordered subsets of approximately equal size. This algorithmrepresents a class of applications in which the computation and communicationrequirements are data dependent.We have benchmarked these applications on all the platforms discussed in Section 3.1when they are implemented using p4, PVM, and Express tools.Figure 5 shows the benchmark results of these applications on ALPHA cluster. Thep4 implementation of JPEG compression and 2D-FFT performed the best, whereasPVM and Express implementations were best for sorting and Monte Carlo integration,NPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 16
0.004

0.005

0.006

0.007

0.008

0.009

0.01

0.011

0.012

0.013

0.014

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on FDDI

Express
p4
PVM

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on FDDI

Express
p4
PVM

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on FDDI

Express
p4
PVM

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on FDDI

Express
p4
PVM

Figure 5: Application Performances on ALPHA/FDDI
0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on IBM-SP1 (Switch)

Express
p4
PVM

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on IBM-SP1 (Switch)

Express
p4
PVM

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on IBM-SP1 (Switch)

Express
p4
PVM

0.8

1

1.2

1.4

1.6

1.8

2

2.2

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on IBM-SP1 (Switch)

Express
p4
PVM

Figure 6: Application Performances on IBM-SP1 with crossbar switchNPAC/ECE, Syracuse University

3 EXPERIMENTAL RESULTS 17respectively. Since JPEG compression involves heavy communication, p4 implemen-tation of JPEG compression is understandably performs best, since it involves leastcommunication overhead among all three tools as shown in the previous subsection.
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on ATM (NYNET)

p4
PVM

6

8

10

12

14

16

18

20

22

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on ATM (NYNET)

p4
PVM

2

3

4

5

6

7

8

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on ATM (NYNET)

p4
PVM

1

2

3

4

5

6

7

8

9

10

1 1.5 2 2.5 3 3.5 4

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on ATM (NYNET)

p4
PVM

Figure 7: Application Performances on SUN/ATM-WAN(NYNET)Figure 6 shows the benchmark results when the four applications run on IBM-SP1.The results of this �gure are consistent with those obtained on the ALPHA cluster.However, the execution times are signi�cantly higher on IBM-SP1 compare to ALPHAcluster because SP1 uses slower processing nodes and interconnect network.Figure 7 and Figure 8 shows the timings on SUN IPXs connected by Ethernet andATM WAN. Comparing the applications performance when they are implemented onNYNET (ATM WAN) and on Ethernet LAN shows that distributed computing isfeasible across wide area networks and can outperform LANs if higher speed networktechnology such as ATM is used.3.3.1 Application Development (Usability) PerspectiveIn this section, we evaluate the tools from their programability and their supportto developing e�cient distributed computing applications. For each tool, we showwhether or not a usability criterion is supported and if it does how well it is coveredin such a tool. However, more research is needed to quantify and validate this assess-ment and we are investigating techniques to address these issues. Table 3.3.1 showsNPAC/ECE, Syracuse University

4 SUMMARY AND CONCLUSION 18
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

2D-FFT on Ethernet

Express
p4
PVM

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

JPEG Simulation on Ethernet

Express
p4
PVM

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Monte Carlo Integration on Ethernet

Express
p4
PVM

2

4

6

8

10

12

14

16

18

20

22

1 2 3 4 5 6 7 8

E
x
e
c
u
t
i
o
n

T
i
m
e

(
s
e
c
o
n
d
s
)

Number of Processors

Sorting by Sampling on Ethernet

Express
p4
PVM

Figure 8: Application Performances on SUN/Ethernetour assessment of these tools in terms of their support to the criteria mentioned insection 2.3Criterion P4 PVM ExpressProgramming Models Supported WS WS WSLanguage Interface WS WS WSDevelopment InterfaceEase of Programming PS WS PSDebugging Support PS PS WSCustomization PS NS PSError Handling PS PS PSRun-Time Interface PS WS WSIntegration with other Software Systems PS WS NSPortability WS WS WS4 Summary and ConclusionCurrent trends in parallel/distributed computing indicate that the future of parallelcomputing lies in the integration of existing computers into a single heterogeneoushigh performance computing environment that allows them to cooperate in solvingNPAC/ECE, Syracuse University

4 SUMMARY AND CONCLUSION 19complex problems. Software development for that environment is a non-trivial processand requires a through understanding of the application and architecture. Anotherimportant aspect of high performance distributed computing is the availability ofsuitable message passing tools. The recent development of parallel/distributed com-puting software has introduced a variety of message passing tools. In this paper, weproposed a hierarchical approach for evaluating message passing tools. This schemeevaluates tools from di�erent perspectives viz. tool performance, application per-formance, and application development. In evaluating tool performance, we usedfour di�erent types of communication primitives (send/receive, broadcast, ring op-eration, and global summation) to evaluate tools performance. We also presented abenchmark suite with four classes of algorithms to evaluate PDC tools from appli-cation performance perspective. We also presented the performance of these toolson four applications. Furthermore, we presented a set of criteria to evaluate thesetools from programmability perspective and their e�ectiveness to develop distributedapplications. We then used this set to evaluate the PDC tools studied in this paper.Although the tool criteria presented in this paper cover a broad spectrum of require-ments, they do not form an exhaustive list of requirements. A criterion can be addedor deleted according to the user requirements. Our objective is to present an outlinefor a general multi-level evaluation methodology, which can be used to evaluate anyparallel/distributed tool from di�erent perspectives. Further research is needed toquantify and validate accurately the tools capability to support the development ofparallel/distributed applications.

NPAC/ECE, Syracuse University

REFERENCES 20References[1] Paul Messina., Arnold Alagar., Clive Ballie., Edward Felten., Paul Hipes., ANkeKamrath., Robert Leary., Wayne Pfei�er., Jack Rogers., David Walker., RoyWilliams., "Benchmarking Advanced Architecture Computers", Caltech Super-computing Facility, San Diego Super Computing Center, Department of Mathe-matics, University of South Carolina, Caltech Report, C3P712.[2] G. C. Fox, W. Furmanski, "Communications Algorithms for Regular Convolu-tions on the Hypercube", Caltech report C3P-329(1986).[3] Geo�rey C. Fox., Mark A. Johnson., Gregory A. lyzenga., Steve W. Otto., JohnK. Salmon., David W. Walker., "Solving Problems on Concurrent Processors",New Jersey : Prentice Hall, November 1988.[4] Doveen Y. Cheng and D. M. Pase, "An Evaluation of Automatic and InteractiveParallel Programming Tools", Proceedings of Supercomputing, 1991.[5] Salim Hariri, Geo�rey C. Fox, Balaji Thiagarajan, Manish Parashar, "ParallelSoftware Benchmark for BMC3/IS Systems", Northeast Parallel ArchitecturesCenter, 111 College Place, Syracuse University, Syracuse, NY 13244-4100.[6] R.Olson.,"Parallel Processing in a Message Based Operating System", IEEE Soft-ware, July 1985.[7] D.Reed and D.Grunwald, "The performance of multicomputer interconnectionnetwork", IEEE Computer, June 1987.[8] AdamBeguelin, Jack Dongara, Al Geist, Robert Manchek , and Vaidy Sunderam,\User Guide to PVM", Oak Ridge National Laboratory, Oak Ridge TN 378 31-6367 and Department of Mathematics and Computer Science, Emory University,February 1993.[9] Ralph Butler, and Ewing Lusk, \User's Guide to the p4 Programming System",Mathematics and Computer Science Division, Argonne National Laboratory,9700 South Cass Avenue, Argonne, IL 60439-4801[10] Parasoft Corporation, \Express 3.0 Documentation", Parasoft Corporation,2500, E.Foothill Blvd. Pasadena, CA 91107.
NPAC/ECE, Syracuse University

	Software Tool Evaluation Methodology
	Recommended Citation

	tmp.1285252205.pdf.D7ZDh

