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DOUBLY CONNECTED MINIMAL SURFACES AND

EXTREMAL HARMONIC MAPPINGS

TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

Abstract. The concept of a conformal deformation has two natural
extensions: quasiconformal and harmonic mappings. Both classes do
not preserve the conformal type of the domain, however they cannot
change it in an arbitrary way. Doubly connected domains are where
one first observes nontrivial conformal invariants. Herbert Grötzsch
and Johannes C. C. Nitsche addressed this issue for quasiconformal and
harmonic mappings, respectively. Combining these concepts we obtain
sharp estimates for quasiconformal harmonic mappings between doubly
connected domains. We then apply our results to the Cauchy problem
for minimal surfaces, also known as the Björling problem. Specifically,
we obtain a sharp estimate of the modulus of a doubly connected min-
imal surface that evolves from its inner boundary with a given initial
slope.
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1. Introduction: if Grötzsch had met Nitsche

The classical Björling problem [5, 9] is to find a minimal surface that
contains a given curve and has prescribed normal vector along the curve.
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2 TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

For real-analytic data a local solution exists and admits an integral repre-
sentation due to H. A. Schwarz. However, the Schwarz representation tells
us little about global geometric properties of the solution, as was recently
emphasized by the authors of [28, p. 787], see also [12] and [30]. In this
paper we study the Björling problem for closed curves. Such curves give rise
to doubly connected parametric minimal surfaces, not necessarily embed-
ded in R3. A natural global invariant associated with such a surface is the
conformal modulus of its domain of isothermal parametrization. We give a
sharp estimate for conformal modulus of solution of a Björling problem. Our
method is based on analysis of quasiconformal harmonic mappings in doubly
connected domains. Both concepts, quasiconformality and harmonicity, are
generalizations of conformal mappings. The extremal problem that we solve
in this paper has roots in the works of Herbert Grötzsch (for quasiconfor-
mal mappings) and Johannes Nitsche (for harmonic mappings). The main
results of the paper are Theorems 1.6, 1.9, and 3.5.

1.1. Expanding the Notion of Conformality. We study mappings h =
u + iv : Ω → C defined in a domain Ω of the complex plane C = {z =
x + iy , x, y ∈ R }. The partial differentiation in Ω will be expressed by
the Wirtinger operators

∂

∂z
=

1

2

(
∂

∂x
− i ∂

∂y

)
and

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

Accordingly, we shall abbreviate the complex derivatives of h to

hz =
∂h

∂z
=

1

2

(
∂h

∂x
− i∂h

∂y

)
and hz̄ =

∂h

∂z̄
=

1

2

(
∂h

∂x
+ i

∂h

∂y

)
In these terms the complex differential form dh(z) = hz(z) dz + hz̄(z) dz̄
represents the Jacobian matrix

Dh(z) =

[
ux vx
uy vy

]
,

Its operator norm and the Hilbert-Schmidt norm are given by:

‖Dh‖ = |hz|+ |hz̄| , |Dh|2 = 2 ( |hz|2 + |hz̄|2 ) = u2
x + v2

x + u2
y + v2

y

and the Jacobian determinant

Jh(z) = J(z, h) = detDh(z) = uxvy − uyvx = |hz|2 − |hz̄|2 .

1.1.1. Quasiconformal mappings. The concept of planar quasiconformal map-
pings has originated around 1928 from the paper by H. Grötzsch [13], though
the term “quasiconformal” was coined by Ahlfors only in 1935 [1]. Among
many equivalent definitions used nowadays, we conveniently adopt the fol-
lowing analytical one:

Definition 1.1. An orientation preserving homeomorphism h : Ω → C of
Sobolev class W 1,1

loc (Ω,C) is said to be K-quasiconformal , 1 6 K <∞ , if

(1.1) ‖Dh(z)‖2 6 KJ(z, h) , almost everywhere ,
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or equivalently

|Dh(z)|2 6
(
K +

1

K

)
J(z, h)

It is worth noting that K-quasiconformal mappings are invariant under
the conformal change of the variables in both the domain and the target
space. They have positive Jacobian determinant almost everywhere, thus
one can speak of the distortion function

(1.2) Kh(z) :=
‖Dh(z)‖2

detDh(z)
=

(|hz|+ |hz̄|)2

|hz|2 − |hz̄|2
=
|hz|+ |hz̄|
|hz| − |hz̄|

6 K

Note the Dirichlet energy formula for h over a measurable subset U ⊂ Ω

EU [h] :=

∫∫
U
‖Dh‖2dx dy 6(

K +
1

K

) ∫∫
U
J(z, h) dx dy =

(
K +

1

K

)
|h(U)|

which is finite whenever the area |h(U)| of the image of U is finite. In

particular, h ∈ W 1,2
loc (Ω,C) . Another way to express the distortion inequal-

ity (1.1) is:

(1.3) |hz̄(z)| 6 k |hz(z)| , k =
K − 1

K + 1
< 1 .

There is a useful interplay between quasiconformal mappings and the first
order elliptic systems of PDEs in the complex plane. The most general linear
(over R) elliptic operator for orientation preserving mappings (homotopic to
the Cauchy-Riemann operator) takes the form:

B =
∂

∂z̄
− µ(z)

∂

∂z
− ν(z)

∂

∂z̄
: W 1,2

loc (Ω)→ L 2
loc(Ω)

where µ and ν are complex valued measurable functions such that

|µ(z)| + |ν(z)| 6 k =
K − 1

K + 1
< 1 , a.e. Ω

Two special cases, referred to as the first and the second Beltrami operators,
are worth noting. It is customary to investigate geometric and analytic fea-
tures of a quasiconformal mapping via the celebrated first Beltrami equation,
because it is linear over the complex numbers

(1.4) hz̄ = µ(z)hz, |µ(z)| 6 k < 1

However, we shall take advantage of the second Beltrami equation

(1.5) hz̄ = ν(z)hz, |ν(z)| 6 k < 1 .

The ν-Beltrami coefficient

(1.6) ν(z) = hz̄(z)/hz(z)

tells us not only about quasiconformal features but also how far is h from
harmonic functions; it is harmonic exactly when ν is antianalytic. One
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major advantage of the equations of type (1.5) over (1.4) is that they are
preserved upon conformal change of the z-variable in Ω , while equations in
(1.4) are not. The ν-Beltrami coefficient will be used to describe geometric
entities of minimal surfaces, such as the Gauss map, etc.

1.1.2. Harmonic mappings. The theory of minimal surfaces provides us with
another classical example of useful generalization of conformal mappings.
These are complex harmonic functions whose real and imaginary parts need
not be coupled in the Cauchy-Riemann systems. Of special interest to us
will be orientation preserving harmonic homeomorphisms. Such mappings
are C∞-diffeomorphisms due to Lewy’s Theorem [10, p. 20]. For other
(noninjective) harmonic functions the second Beltrami coefficient will still
be defined as an antimeromorphic function.

1.2. The Grötzsch Distortion Problem (1928). We recall the Confor-
mal Mapping Theorem: Every doubly connected domain Ω ⊂ C can be
mapped conformally onto a circular region A(r,R) = {z ; r < |z| < R },
where 0 6 r < R 6∞ . It will simplify the arguments, and cause insignifi-
cant loss of generality, if we restrict ourselves to doubly connected domains
of finite conformal type; that is, when 0 < r < R < ∞ . We call such Ω
a ring domain. The ring domains fall into conformal equivalence classes,
according to their modulus.

(1.7) Mod Ω = log
R

r

The famous Schottky theorem (1877) [40] asserts that an annulus

A = A(r,R) = {z ∈ C : r < |z| < R}
can be mapped conformally onto the annulus

A∗ = A(r∗, R∗) = {w ∈ C : r∗ < |w| < R∗}
if and only if

ModA := log
R

r
= log

R∗
r∗

=: ModA∗ ; that is,
R

r
=
R∗
r∗

Moreover, modulo rotation, every conformal mapping h : A onto−→ A∗ takes the
form

h(z) =
r∗
r
z or h(z) =

Rr∗
z

Note that the latter mapping, though orientation preserving, reverses the
order of the boundary circles. The mapping problem for doubly connected
domains becomes more flexible if we admit quasiconformal deformations.
However, there are still constraints on the domains.

Theorem 1.2 (Grötzsch (1928)). Let h : Ω
onto−→ Ω∗ be a K-quasiconformal

mapping between doubly connected domains. Then

1

K
Mod Ω 6 Mod Ω∗ 6 K Mod Ω
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If Ω and Ω∗ are circular annuli, say A(r,R) and A(r∗, R∗), then this in-
equality translates into

(1.8)

(
R

r

)1/K

6
R∗
r∗
6

(
R

r

)K
Equalities are attained, uniquely modulo rotation, for the multiples of the

mappings h(z) = |z|
1
K
−1z and h(z) = |z|K−1z, respectively.

The reader may wish to notice that these mappings fail to be harmonic,
except for K = 1.

Remark 1.3. In general a homeomorphism h : Ω
onto−→ Ω∗ between doubly

connected domains does not extend continuously to the closure of Ω. Never-
theless it gives a one-to-one correspondence between boundary components
in the sense of cluster sets. The closed set ∂Ω ⊂ C consists of two compo-
nents called the inner boundary ∂IΩ and outer boundary ∂OΩ.

Definition 1.4. We denote H(Ω,Ω∗) the class of orientation preserving

homeomorphisms h : Ω
onto−→ Ω∗ which send ∂IΩ onto ∂IΩ

∗.

It should be noted that every homeomorphism h : Ω
onto−→ Ω∗, upon suitable

conformal reparametrization of Ω, becomes a member of H(Ω,Ω∗). For this
reason the restriction to mappings in H(Ω,Ω∗) will involve no loss of gener-
ality in our subsequent statements. One type of domains will be needed.

Definition 1.5. A half circular annulus is a doubly connected domain,
denoted byA = A(r, ·), whose inner boundary is the circle Tr = {z : |z| = r}.

1.3. The Nitsche Conjecture (1962). The study of doubly connected
minimal surface (or minimal annuli) has been an active area for several
decades, see [7, 8, 11, 29] for recent developments. The roots of this the-
ory were founded, among others, by J. C. C. Nitsche who made several
pivotal contributions in the 1960s. Considering the existence of doubly con-
nected minimal graphs over a given annulus A∗, he raised a question [31]
of existence of a harmonic homeomorphism between circular annuli h : A =

A(r,R)
onto−→ A∗ = A(r∗, R∗). He observed that the modulus of A∗ can be ar-

bitrarily large but not arbitrarily small. Then he conjectured that harmonic

homeomorphisms h : A onto−→ A∗ exist if an only if

(1.9)
R∗
r∗
>

1

2

(
R

r
+
r

R

)
The Nitsche bound (1.9), which appeared in [2, 10, 20, 26, 27, 35, 39, 41], was
recently proved by the authors in [17]. It turned out that (1.9) also holds
for harmonic homeomorphisms in the class H(A,A∗) where A∗ = A(r∗, ·)
is a half circular annulus contained in A∗. Moreover, the equality in (1.9)
takes place if and only if A∗ = A∗ and (modulo rotation) h(z) = 1

2

(
z
r + r

z̄

)
.

This so-called critical Nitsche mapping fails to be quasiconformal at the
inner boundary. At this point it is worthwhile to mention that the same
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Nitsche bound is necessary and sufficient for the existence of a minimizer of
the Dirichlet energy

E [h] =

∫∫
A
|Dh(z)|2 dx dy = 2

∫∫
A

(
|hz|2 + |hz̄|2

)
subject to all homeomorphisms h : A onto−→ A∗, see [3, 18].

1.4. Grötzsch meets Nitsche. Our main result strengthens the estimates
of Grötzsch and Nitsche for mappings which are both quasiconformal and
harmonic. Here is the simplified version of it.

Theorem 1.6. Let h : A onto−→ A∗ be a K-quasiconformal harmonic home-
omorphism. Then we have

(1.10)
R∗
r∗
>
K + 1

2K

R

r
+

K − 1

2K

r

R

Equality is attained if and only if, modulo rotation, h takes the form

(1.11) h(z) =
K + 1

2K

z

r
+
K − 1

2K

r

z̄
.

Remark 1.7. The estimate (1.10) readily implies both the Grötzsch estimate

R∗
r∗
>
K + 1

2K

R

r
+

K − 1

2K

r

R
>
(R
r

)K+1
2K
( r
R

)K−1
2K

=
(R
r

)1/K
,

by Young’s inequality, and the Nitsche bound

R∗
r∗
>
K + 1

2K

R

r
+

K − 1

2K

r

R
>

1

2

(
R

r
+
r

R

)
We conjecture the following analogue of the upper Grötzsch bound for

K-quasiconformal harmonic mappings.

Conjecture 1.8. Let h : A onto−→ A∗ be a K-quasiconformal harmonic home-
omorphism. Then we have

(1.12)
R∗
r∗
6

K + 1

2

R

r
− K − 1

2

r

R

{
6
(R
r

)K }
Equality is attained uniquely, modulo conformal automorphisms of A, for
h(z) = K+1

2
z
r −

K−1
2

r
z̄ .

Our applications to minimal surfaces require a more general version of
Theorem 1.6 in which quasiconformality and injectivity are imposed only
on the inner boundary of the domain. We write −

∫
for the integral average

and

A[1, R] = {z ∈ C : 1 6 |z| 6 R}, Tr = {z ∈ C : |z| = r}, T = T1.

The following theorem is the principal result of our paper.

Theorem 1.9. Let a C 1-mapping h : A[1, R]→ C be harmonic in A(1, R)
and satisfy the following conditions at the inner boundary T,

• h : T� T is an orientation preserving homeomorphism
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• There is 1 6 K <∞ (the distortion of h at T ) such that

(1.13) ‖Dh(z)‖2 6 K J(z, h) , for all z ∈ T
Then

(1.14) sup
|z|=R

|h(z)| >
[
−
∫
TR
|h|2
] 1

2

>
K + 1

2K
R+

K − 1

2K

1

R

Equality is attained, uniquely up to rotation, for

h(z) =
K + 1

2K
z +

K − 1

2K

1

z̄

The smoothness assumptions on h and Ω can be easily removed with an
approximation argument [17, Lemma 2.2]. Upon a conformal change of the
independent variable z we immediately obtain the following generalization
of Theorem 1.9.

Corollary 1.10. Let h : Ω → C be a harmonic function in a doubly
connected domain Ω ⊂ C that is K-quasiconformal near the inner boundary
∂IΩ. Suppose also that |h(z)| ↘ 1 as z → ∂IΩ. Then

sup
Ω
|h| > 1

2K

[
(K + 1) eMod Ω + (K − 1) e−Mod Ω

]
Corollary 1.10 can be viewed as a reverse Harnack inequality, as it gives

a sharp estimate of the ratio
supΩ|h|
infΩ|h|

from below. It is an interesting question whether one can dispose of the
assumption that one of the boundary components is mapped homeomorphi-
cally onto T. We formulate this as a conjecture.

Conjecture 1.11. Let Ω ⊂ C be a doubly connected domain. Suppose
h : Ω → C◦ = C \ {0} is a harmonic mapping that is not homotopic to a
constant within the class of continuous mappings from Ω to C◦. Then

(1.15)
supΩ|h|
infΩ|h|

> cosh

(
1

2
Mod Ω

)
If h is in addition injective, then the factor 1/2 can be omitted.

The mapping h(z) = z+z̄−1 attains equality in (1.15) with Ω = A(1/R,R).
It also provides an injective example when restricted to the annulus A(1, R).

2. Minimal Surfaces

For the most part of this article the terminology is standard, but it seems
worthwhile to recall and modify the required notions.

We are dealing with C 1-mappings F = (u, v, w) : Ω
into−→ R3 defined

in a domain Ω of the complex plane C = {z = x + iy , x, y ∈ R }
and valued in the 3-space R3 . Let us factor the target space into the
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complex plane and the real line R3 ' C × R = {(ξ, w) ; ξ ∈ C , w ∈ R}.
Thus F = (h,w) : Ω → C × R, where h = u + iv will be referred to as
complex coordinate and w as real coordinate of F . The Riemann sphere

Ĉ = C ∪ {∞} is the inverse image of S2 = {(ξ, w) ; |ξ|2 + w2 = 1} ⊂ R3

under the stereographic map

S : Ĉ onto−→ S2 , S(z) =

(
2z

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
∈ C× R

2.1. Parametric Surfaces. We define an oriented parametric surface Σ
in R3 to be an equivalence class of mappings F = (u, v, w) : Ω → R3

of some domain Ω ⊂ R2 into R3 , where the coordinate functions u =
u(x, y), v = v(x, y) and w = w(x, y) are of class at least C 1(Ω) . Two such

mappings F = (u, v, w) : Ω → R3 and F̃ = (ũ, ṽ, w̃) : Ω̃ → R3 , referred
to as parametrizations of the surface, are said to be equivalent if there is a

C 1-diffeomorphism φ : Ω̃
onto−→ Ω of positive Jacobian determinant such that

F̃ = F ◦ φ . Let us call such φ a change of variables, or reparametrization
of the surface. Furthermore, we assume that the critical points of Σ are
isolated. These are the points (x, y) ∈ Ω at which the tangent vectors
Fx = ∂F

∂x , Fy = ∂F
∂y are linearly dependent. Equivalently, at the critical

points the Jacobian matrix

DF (x, y) =

[
ux vx wx
uy vy wy

]
has rank at most 1. It has full rank 2 at the regular points. Various geometric
entities associated with a given surface will be introduced with the aid of a
parametrization, but in fact they will be invariant under reparametrization.
By Implicit Function Theorem, all parametrizations of the surface are locally
injective near regular points, though self intersections in F (Ω) may occur.
A surface with no critical points is called an immersion. The cross product
of Fx and Fy at a regular point represents nonzero normal vector to the
surface:

Fx × Fy =

(∣∣∣∣ vx wx
vy wy

∣∣∣∣ , − ∣∣∣∣ ux wx
uy wy

∣∣∣∣ , ∣∣∣∣ ux vx
uy vy

∣∣∣∣) 6= 0

The area of the surface equals

|F (Ω) | =

∫∫
Ω
|Fx × Fy| dx dy

The central geometric entity is the normal vector field, also known as the
Gauss map:

(2.1) N : Ω→ S2 ⊂ R3 , N(x, y) =
Fx × Fy
|Fx × Fy|

This map defines spherical image N(Ω) ⊂ S2 of the surface, a subset of the
unit sphere.



DOUBLY CONNECTED MINIMAL SURFACES 9

2.2. Isothermal parameters. In what follows, we will concern ourselves
mostly with conformal parametrizations F = (u, v, w) : Ω → R3 . This
simply means that the coordinate functions, called isothermal parameters,
will satisfy the conformality relations:{

uxuy + vxvy + wxwy = 0 , (Fx and Fy are orthogonal in R3 )

u2
x + v2

x + w2
x = u2

y + v2
y + w2

y (Fx and Fy have egual length )

Equivalently, it means that:

(2.2) |Fx × Fy| = |Fx| · |Fy| = |Fx|2 = |Fy|2

Thus F is an immersion if DF 6= 0 at every point. We refer to [9] for an
excellent historical account of existence of isothermal coordinates. When
dealing with conformal mappings we should take advantage of the complex
variables. The conformality relations reduce to one complex equation

u2
z + v2

z + w2
z = 0 , where (uz, vz, wz) =

∂

∂z
F = Fz ∈ C3

Recall the notation R3 ' C × R and F = (h,w) : Ω → C × R, where
h = u + iv is a complex coordinate of F . A simple direct computation
shows that u2

z + v2
z = (uz + ivz)(uz − ivz) = hz hz̄. Hence the conformality

relations simplify even further to hz hz̄ + w2
z = 0. We shall try to express

surfaces in terms of their complex isothermal coordinate h : Ω→ C without
appealing to its real coordinate w . This is possible in view of the following
proposition.

Proposition 2.1. Let h : Ω→ C be the complex coordinate of the isother-
mal representation F = (h,w) : Ω→ C× R of a surface. Then

• the function hzhz̄ admits a continuous branch of square root in Ω .
• for each smooth closed curve Γ ⊂ Ω we have

(2.3) Im

∫
Γ

√
hzhz̄ dz = 0

• the real isothermal coordinate is given by

(2.4) w = 2 Im

∫ z

z◦

√
hzhz̄ dz

where the line integral runs along any smooth curve γ ⊂ Ω beginning
at a given point z◦ ∈ Ω and terminating at z .

• The normal vector field at a regular point of a surface is

(2.5) N(z) =
Fx × Fy
|Fx × Fy|

=

(
2i
√
hzhz̄

|hz|+ |hz̄|
,
|hz| − |hz̄|
|hz|+ |hz̄|

)
∈ S2 ⊂ C× R

Proof. The latter formula is a matter of a simple direct computation. We
reserve the following notation for the normal vector N(z) = (ξ(z), τ(z)) ,
where the complex component ξ : Ω→ C and the real component τ : Ω→
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R satisfy |ξ|2 + τ2 = 1 . The only not obvious fact is that for each smooth
closed curve Γ ⊂ Ω

−2 Im

∫
Γ

√
hzhz̄ dz = 2 Re

∫
Γ
wz dz =

∫
Γ

(wz dz + wz dz ) =∫
Γ

(wz dz + wz̄ dz̄) =

∫
Γ

dw = 0 .

�

Remark 2.2. If h is harmonic in a doubly connected domain Ω then the

integrand
√
hzhz̄ is holomorphic. In this case one needs to verify (2.3) only

for one closed curve homologous to the boundary components.

2.3. Doubly Connected Surfaces. We adapt to our use the following
definition:

Definition 2.3. An open doubly-connected surface Σ in R3 is a conformal
immersion F = (u, v, w) : Ω→ R3 in which Ω is either:

• punctured complex plane C◦ = {z ∈ C; z 6= 0}
• punctured disk D◦ = {z ∈ C; 0 < |z| < 1}
• or an annulus A = A(r,R) = {z; r < |z| < R} , 0 < r < R <∞

In this latter case, referred to as of finite conformal type, we define the
conformal modulus of Σ (or briefly, modulus) by seting

(2.6) Mod Σ = log
R

r
> 0

The classical theorem of Schottky [40] tells us that the ratio R
r is inde-

pendent of the conformal parametrization. Even more, the images of the
radial segments of the annulus and the images of the concentric circles are
independent of the isothermal parametrization.

2.4. Graphs. The term graph over a domain Ω∗ ⊂ C refers to the paramet-

ric surface of the form: F = (h,w) : Ω→ C×R in which h : Ω
onto−→ Ω∗ is a

C 1-diffeomorphism and w(z) = Φ(h(z)) , where Φ = Φ(ξ) is a real-valued
function in ξ ∈ Ω∗ . Graphs are always regular surfaces; the normal vector
field has nonvanishing real coordinate.

2.5. Minimal Surfaces. The study of multiply connected minimal surfaces
has a long history [4, 9, 21, 32, 33, 37]. A parametric surface is minimal
if and only if the isothermal parameters are harmonic or, equivalently, the
complex vector field Fz : Ω→ C3 is holomorphic (Enneper-Weierstrass rep-
resentation). Thus F = (h,w) : Ω → C × R is represented by a complex
harmonic map h = u+ iv : Ω→ C and a real harmonic function w : Ω→ R.
In addition these functions are coupled by the conformality relation:

(2.7) hz hz̄ + w2
z ≡ 0 hzz̄ = wzz̄ ≡ 0
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Note that any conformal change of the z-variable ( analytic bijective map)
leads to equivalent minimal surface in different isothermal parameters. All
zeros of the holomorphic function hzhz̄ have even order. The real isothermal
parameter is determined, at least locally, in terms of h as

(2.8) w = 2 Im

∫ √
hz hz̄ dz

Remark 2.4. It is evident that every complex harmonic homeomorphism
h : Ω → C can be lifted, locally near every zero of even order of hzhz̄ , to
isothermal parameters of a minimal surface. The surface has w ≡ const if
and only if h is holomorphic or antiholomorphic. The global lifting exists
provided the imaginary part of the integral in (2.8) is single valued. This is a
question which we often encounter when dealing with doubly connected min-
imal surfaces. Perhaps the best examples of this are catenoid and helicoid
over an annulus, see Section 2.8.

2.6. Area. The area formula for a parametric surface in isothermal coordi-
nates reduces to the Dirichlet energy of F ,

|F (Ω) | =
1

2

∫∫
Ω
|DF |2 =

1

2

∫∫
Ω

(
|Fx|2 + |Fy|2

)
dx dy

If the surface is minimal, we find that

|Fx|2 = |Fy|2 =
1

2

(
|Fx|2 + |Fy|2

)
=

1

2
(u2
x + v2

x + w2
x + u2

y + v2
y + w2

y)

= |hz|2 + |hz̄|2 + 2|wz|2 = |hz|2 + |hz̄|2 + 2|hz| · |hz̄| = (|hz|+ |hz̄|)2

Hence

(2.9) |Fx| = |Fy| = |hz|+ |hz̄| = ‖Dh(z)‖ − the operator norm

Now the area formula simplifies further in terms of h :

|F (Ω) | =

∫∫
Ω

(|hz|+ |hz̄|)2 dx dy

A word of caution, the variational equation for this latter integral, when

considered for all homeomorphisms h : Ω
onto−→ Ω∗ , is not the Laplace equa-

tion.

2.7. The Second Beltrami Equation. Suppose the minimal surface F =
(h,w) : Ω→ C×R , in isothermal parameters, has w 6≡ const. Consequently,
the zeros of the holomorphic function hz are isolated. This yields what we
call the second Beltrami equation for h :

(2.10) hz̄ = ν(z)hz , ν = λ̄2(z) , and wz = ± i λ hz

where λ : Ω → C is a meromorphic function. The ν-coefficient ν(z) =
λ 2(z) , will be viewed as a known quantity, whereas h as one of many
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possible solutions to this equation. Nonetheless, the Gauss normal field
turns out to be independent of the solution, namely

(2.11) N(z) = ( ξ(z), τ(z)) =

(
2i λ

1 + |λ|2
,

1− |λ|2

1 + |λ|2

)
∈ S2 ⊂ C× R

Observe that for any minimal graph (with h orientation preserving) the
normal vectors N(z) belong to the northern hemisphere; their vertical com-
ponents τ = τ(z) are positive. By virtue of (2.11), the vertical components
measure quasiconformality of h : Ω → C at the given point z ∈ Ω . For
example, if a minimal graph is obtained by lifting a K-quasiconformal har-
monic map h : Ω→ C then its spherical image lies in the cap

_
SK = {(ξ, τ) ; |ξ|2 + τ2 = 1 , τ >

1

K
} ⊂ S2

2.8. Catenoid and Helicoid. The best known minimal surfaces are the
catenoid and helicoid. The catenoid F = (h,w) : C◦ → C× R is furnished
by the parameters:

(2.12) h(z) =
1

2

(
z +

1

z̄

)
, w(z) = log |z| ,

The complex coordinate map h : C◦
onto−→ C \ D folds along the unit circle,

where the second Beltrami equation changes its ellipticity status

(2.13) hz̄ = −z̄−2hz

|ν(z)| = 1

|z|2

{
< 1 , if |z| > 1 , orientation preserving

> 1 , if |z| < 1 , orientation reversing

The Gauss map is precisely the stereographic projection N : C◦
into−→ S2 .

(2.14) N(z) =

(
2z

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
, z ∈ C◦

Thus N : C◦
into−→ S2 is a one-to-one conformal map which omits the north

and the south poles of the sphere. By way of illustration, here is another
solution to the same equation (2.13), which gives rise to the isothermal
coordinates for Enneper’s surface

h(z) = z̄ − 1

3
z3 , w(z) = Re z2 , z ∈ C

This time the Gauss map omits only the north pole of the Riemann sphere.
By way of digression, Catenoid and Enneper’s surfaces are the only complete
regular minimal surfaces whose normal map is one-to-one [36, p. 87]. The
reader may wish to verify that h(z) = z̄ − 1

3 z
3 is injective in the unit disk.

Let us now return to the catenoid. This time h = h(z) is restricted to
an annulus A = A(1, R) = {z ∈ C : 1 < |z| < R }

(2.15) h : A onto−→ A∗ , A∗ = A(1, R∗), R∗ =
1

2

(
R+

1

R

)
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This is a doubly connected minimal graph over A∗ . Noteworthy is that
a different type minimal surface will emerge if we change sign of the ν-
coefficient at (2.13). This produces a helicoid expressed by locally defined
conformal parameters as follows:

(2.16) h(z) =
1

2

(
z − 1

z̄

)
, w(z) = ± arg z , thus ν(z) = z−2 , z ∈ C◦

To obtain single valued global parametrization one needs only replace z ∈
C◦ with ez , z ∈ C . Such uniformization of the parameter yields the familiar
global isothermal representation of a helicoid

(2.17) h(z) =
1

2

(
ez − e−z̄

)
, w(z) = Im z , z ∈ C

2.9. Principal Harmonics. The two complex harmonic functions that we
conferred about in (2.12) and (2.16) will be useful. Let us reserve for them
special notation,

h](z) =
1

2

(
z +

1

z̄

)
h[(z) =

1

2

(
z − 1

z̄

)
, z = ρeiθ

We have the following Dirichlet and Neumann boundary conditions on the
unit circle |z| = 1 :

|h](z)| ≡ 1 ,
∣∣∣ ∂∂ρ h](z)∣∣∣ ≡ 0

|h[(z)| ≡ 0 ,
∣∣∣ ∂∂ρ h[(z)∣∣∣ ≡ 1

More generally, to a given nonnegative real number υ there corresponds an
orientation preserving harmonic mapping

hυ(z) = h](z) + υ h[(z) =
1

2

(
z +

1

z̄

)
+

υ

2

(
z − 1

z̄

)
=

1 + υ

2
z +

1− υ
2

1

z̄
=

(
1 + υ

2
ρ+

1− υ
2

1

ρ

)
eiθ , z = ρ eiθ

(2.18)

Thus h1 is the identity mapping. For all υ > 0 , direct computation shows
that at the unit circle, |z| = 1 , we have;

(2.19) hυ(z) = z ,
∂

∂ρ
hυ(z) = υ z ,

∂

∂ρ
|hυ(z)| = υ ,

The ν-coefficient of hυ at z ∈ C◦ equals

ν(z) = ν(z, υ) =
υ − 1

υ + 1

1

z̄2

When υ is strictly positive, we have uniform ellipticity in the second Bel-
trami equation outside the unit disk,

|ν(ρ eiθ)| 6 |ν(eiθ)| =
|1− υ|
1 + υ

< 1 , for ρ > 1
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Thus hυ is K-quasiconformal in C \ D , where K = max{υ, υ−1} . In the
critical case of υ = 0 the ellipticity of the Beltrami equation is lost at
the unit circle where the Jacobian of h] vanishes. The harmonic mappings
hυ : C◦ → C give rise to a catenoid if 0 6 υ < 1 , the punctured plane
if υ = 1 , and helicoid if υ > 1 . Outside the unit disk they are self-
homeomorphisms hυ : C \ D � C \ D. When restricted to an annulus
A(1, R) = {z; 1 < |z| < R} , these mappings turn out to be extremal for
numerous questions concerning minimal surfaces. From now on, to capture
only doubly connected surfaces, we shall confine ourselves to the parameters:

(2.20) 0 6 υ 6 1

One may view hυ as function of circles defined by the rule hυ(Tρ) = Tρ(υ) ,

where ρ(υ) = 1+υ
2 ρ + 1−υ

2
1
ρ . Let us paraphrase this view by calling this

function harmonic evolution of the inner boundary T = T1 . By virtue of
equations (2.19) parameter υ represents the initial rate of change of the
radii of the circles. Therefore, the term initial speed of the evolution should
be attached to υ.

3. Björling Problem for Minimal Surfaces

There are several natural geometric problems that lead to minimal sur-
faces. The classical Plateau problem, for example, is the question of finding
a surface framed by one or several Jordan curves with minimum area. Thus
the boundary components of the surface are given and fixed. This problem
is a geometric counterpart of the Dirichlet problem for elliptic equations.
Another classical approach to creation of minimal surfaces goes back to
Björling [5]. In it a minimal surface emanates from a given Jordan curve
under prescribed slope at every point of the curve, and continues to grow (on
one or both sides of the curve) until unacceptable singularities occur. This
is very much reminiscent of the classical initial value problem for curves of
a second order ODE.

Note that in this concept we are looking for an isothermal parametrization
of a minimal surface having prescribed Dirichlet and Neumann boundary
values. This leads us to the familiar illposed Cauchy problem for the Laplace
equation. Precisely, we asks for the harmonic extension of a given self-
homeomorphism h : T � T of the unit circle T which takes outward the
concentric circles {Tρ}16ρ<1+ε into Jordan curves with prescribed initial
speed, i.e. with given normal derivative at T . In this course of harmonic
evolution of circles the images of Tρ when lifted to the minimal surface
become isothermal latitude curves.

The illposed Cauchy Problem for elliptic equations (thus non-characteristic
setting) has a long and distinguished history. On the one hand the cel-
ebrated Cauchy-Kovalevskaya Theorem asserts that Cauchy problems on
non-characteristic analytic varieties have unique solutions if the Cauchy data
and the coefficients of the partial differential equation are real analytic func-
tions. On the other hand the instability (the lack of continuous dependence
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of the solutions on the data, even in the real-analytic case), first shown in
the famous example by Hadamard [15], demonstrates illposedness of the
problem. In fact Hadamard’s early work [14, 15] stimulated the theory, see
[22, 23, 24, 25, 38]. Analogous questions for minimal surfaces will certainly
gain in interest if we enhance them with geometric interpretations. While
analyzing a given Cauchy data, one should bear in mind all its geometric fea-
tures for the well-posedness. For example the subsequent successful global
solutions and their stability seem to depend on the total energy allowed for
the evolution.

Given a Jordan curve Γ ⊂ R3 , it is natural to ask whether there is a
regular minimal surface passing through this curve whose normal vectors
(Gauss map) are prescribed on Γ . In other words the slope of the surface is
given at every point of Γ . The two principal conditions must be imposed.
The first of these, a geometric one, is that the given normal vectors must
be orthogonal to Γ . The second, regularity, is that both Γ and the normal
vector field must admit a real-analytic parametrization. In all that follows,
we assume that F◦ : T→ R3 is a given real analytic one-to-one map, called
parametric Jordan curve,

F◦ = F◦(e
iθ) ,

d

dθ
F◦(e

iθ) 6= 0 , for 0 6 θ < 2π

In addition, we shall choose and fix a real analytic vector field N◦ : T →
S2 ⊂ R3 ' C× R that is orthogonal to F◦, meaning that〈

N◦(e
iθ) ,

d

dθ
F◦(e

iθ)

〉
= 0 , for all 0 6 θ < 2π

We shall call such a pair (F◦, N◦) the real-analytic Björling data.

Definition 3.1. (Real-analytic setting) Given the real-analytic Björling
data (F◦, N◦), extend F◦ to a minimal surface F : A(r,R) → R3, for some
r < 1 < R, whose Gauss map N(z) = N◦(e

iθ) at z = eiθ.

A grasp of our goals is obtained when one has in mind a doubly connected
minimal surface Σ that is regular near the unit circle but not far from it.

3.1. An Example. To expect here that a regular surface Σ , which em-
anates from a real analytic Jordan curve, will remain regular for the whole
process of evolution is entirely unrealistic. Such a situation is illustrated by
the following example

Example 3.2. Consider the second Beltrami equation in the annulusA(3
4 , R),

R > 1

hz̄ = ν(z)hz , where ν(z) =
1

4 z̄4
, |ν(z)| < 1

The following solution, together with the associated third isothermal pa-
rameter w = w(z) , represent a minimal surface

h(z) =
1

15

(
16 z − 1

z̄

)
+

4

45

(
z3 − 1

z̄3

)
, w(z) =

4

15
Im

(
z − 4

z

)
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Thus h(eiθ) = eiθ and we have

hz(z) =
4(4 + z2)

15
, hz̄(z) =

(4 + z̄2)

15 z̄4
, wz =

−2i(4 + z2)

15 z2

Hence the conformality relation hz hz̄ + w2
z = 0 is readily verified. The

Jacobian determinant of h is positive

|hz|2 − |hz̄|2 >
∣∣∣∣4 + z2

15

∣∣∣∣2 > 0 ,

except for two critical points of the parametrization at z = ± 2i , where we
have hz = hz̄ = wz = 0. Let us examine h in the half closed annulus A[1, R).
The evolution of the inner circle begins in a regular fashion with a positive
speed

∂

∂ρ

∣∣∣h(ρeiθ)
∣∣∣

at ρ=1
=

17

15
+

8

15
cos 2θ >

3

5

We obtain a minimal graph over an annulus A(1, σ) , with σ > 1 sufficiently
close to 1. The initial average speed equals

υ := −
∫
T
|h|ρ =

17

15

Nevertheless, far from the unit circle the injectivity of h is lost. Even more,
the map h returns to its initial values on the inner circle, it even vanishes
at z = ±i λ ,

h(±i λ) = 0, where λ6 − 48λ4 + 3λ2 − 4 = 0 , λ ≈ 6.92

3.2. Existence and uniqueness for the Björling problem.

Proposition 3.3. To each real analytic Björling data (F◦, N◦), with N◦ : T into−→
_
SK , there corresponds unique minimal surface F : A(r,R) → C × R, de-
fined for some r < 1 < R, such that F (z) = F◦(e

iθ) and its Gauss map
N(z) = N◦(e

iθ) for z = eiθ .

Proof. The proof is immediate from Cauchy-Kovalevskaya’s theorem. We
shall, nevertheless, give some details for better insight.

We look for F : A(r,R)→ C×R in the form F (z) =
(
h(z), w(z)

)
, where

h : A(r,R) → C and w : A(r,R) → R are harmonic functions. They are
know at the unit circle. Namely, F◦(e

iθ) =
(
h◦(e

iθ), w◦(e
iθ)
)
, so we have the

initial real analytic values.

h(eiθ) = h◦(e
iθ)

w(eiθ) = w◦(e
iθ)

(3.1)

The complex harmonic function h must satisfy a second Beltrami equation

(3.2) hz̄ = ν(z)hz
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where ν is antianalytic in A(r,R). The values ν(eiθ) are uniquely determined
by knowing N◦(e

iθ),

(3.3) N◦(e
iθ) =

(
2i
√
ν

1 + |ν|
,

1− |ν|
1 + |ν|

)
= (ξ, τ) ∈ C× R

In particular, ν is real-analytic on T, it has single valued square root, and
|ν(eiθ)| 6 k < 1. The latter condition allows us to solve (3.2) for hρ in

terms of hθ = dh◦
dθ on the unit circle.

Therefore, there exists unique harmonic function h = h(z) in some an-
nulus A(r,R), r < 1 < R, such that

(3.4) h(z) =
∑
n∈Z

(
anz +

bn
z̄n

)
+ c log|z|,

where the coefficients an and bn are determined from the Fourier series

hθ(e
iθ) = i

∑
n∈Z

n(an + bn)einθ

hρ(e
iθ) =

∑
n∈Z

n(an − bn)einθ + c

Concerning the real isothermal coordinate w , we observe that its derivatives
must satisfy

Re(ξ hρ) + τwρ = 0 , (ξ, τ) = N ∈ ŜK , τ >
1

K

Re(ξ hθ) + τwθ = 0 , (ξ, τ) = N ∈ ŜK , τ >
1

K

(3.5)

These relations simply express the fact that N is orthogonal to the tangent
vectors Fρ = (hρ, wρ) and Fθ = (hθ, wθ) . As before, knowing w and wρ
on T determines uniquely the harmonic function w = w(z) in an annulus
A(r,R) . It remains to verify the conformality relation hz hz̄ + w2

z ≡ 0 in
the annulus. We see from (3.5) that on the unit circle −2τ wz = ξ hz +ξ hz̄.
Hence

4 τ2w2
z = ξ 2h2

z + ξ 2hz̄
2 + 2 |ξ| 2 hzhz̄

where we recall from (3.3) that ξ2 = −4 ν
(1+|ν|)2 and τ2 = (1−|ν|)2

(1+|ν|)2 , and that

ν = hz̄/hz . This yields the conformality relation hz hz̄ + w2
z ≡ 0 on the

unit circle. Since the left hand side of this equation represents a complex
analytic function in an annulus A(r,R) , by unique continuation property,
the conformality relation remains valid in this annulus. �

3.3. Alternative formulation. The Björling Problem can be formulated
many different ways by using various geometric terms as the Cauchy data.
By way of illustration, suppose we are given a real analytic one-to-one para-
metric Jordan curve F◦(e

iθ) =
(
h◦(e

iθ), w◦(e
iθ)
)

together with the slope of
the surface at every point of the curve. We take the vertical coordinate τ
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of the normal vector field N◦(e
iθ) = (ξ, τ) ∈ C × R as representative of

the slope of the surface, and assume that 0 < τ 6 1 . This determines
the modulus of the ν-coefficient of the minimal surface at the unit circle,
see (3.3)

k = k(z) = |ν(z)| = 1− τ(z)

1 + τ(z)
< 1

The minimal surface in an annulus A(r,R) , r < 1 < R , is obtained by
solving the following system of equations for complex function h and real
function w . {

hz hz̄ + w2
z = 0 , hzz̄ ≡ 0, wzz̄ ≡ 0

|hz̄| = k|hz| ; 0 6 k = k(z) < 1
(3.6)

Here we regard as known quantities the tangential derivatives hθ , wθ and
k(z) at z = eiθ . Let us assume that h takes the unit circle T diffeomorphi-
cally onto a Jordan curve, so hθ 6= 0 . The following compatibility inequality
for the tangential derivatives must be imposed

(3.7)
|wθ|
|hθ|

6
√
K2 − 1 , K = K(z) =

1 + k(z)

1− k(z)
> 1

This is immediate from the second equation in (3.5);∣∣∣∣wθhθ
∣∣∣∣ =

∣∣∣∣Re(ξ̄hθ)

τ hθ

∣∣∣∣ 6 |ξ|τ =

√
1

τ2
− 1 6

√
K2 − 1

In polar coordinates the system (3.6) takes the form{
(hρ − ihθ) (hρ − ihθ) + (wρ − iwθ)2 = 0 ,

|hρ + ihθ| = k|hρ − ihθ|
(3.8)

Straightforward computation reveals that

(3.9) wρ =
1

K

√
(K2 − 1)|hθ|2 − w2

θ , hρ = (a+ ib)hθ

where

a =
−wθ
K |hθ|2

√
(K2 − 1)|hθ|2 − w2

θ and b = − 1

K

(
1 +

w2
θ

|hθ|2

)
6 0

The latter inequality, Im
hρ
hθ

= b 6 0 , has a geometric significance. It tells

us that at the unit circle the vectors hρ are directed outward the Jordan
curve h(T) if h(T) is traversed counterclockwise. In particular, if h(T) = T
then

|h|ρ = −|hθ| Im
hρ
hθ
>
|hθ|
K
> 0

Let us illustrate this computation in two examples.
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First consider the ellipse F◦(e
iθ) = (eiθ, λ cos θ) circumscribed on the

cylinder T × R , where we chose λ 6= 0 to be constant on T . The minimal
surface is flat if its initial slope coincides with that of the plane of the ellipse;
that is, when λ =

√
τ−2 − 1 .

Figure 1. Evolution of minimal surfaces with different ini-
tial slopes

One general method for obtaining Cauchy data is by cutting a hole in a
given surface with the aid of a cylindrical chisel. This is the method we want
to exemplify in detail, as it motivates geometrically our sharp estimates in
Section 3.5.

3.4. Example: Enneper’s surface evolves from hyperbolic parabo-
loid. We start with the hyperbolic paraboloid

w = x2 − y2 = Re z2

which is a negatively curved surface, but not minimal. Take its intersection
with |z| = 1 as initial data; that is,

F◦(e
iθ) = (eiθ, cos 2θ); N◦(e

iθ) =
1√
5

(−2e−iθ, 1)

Notice the constant slope of normal vector N◦; it corresponds to

k =

√
5− 1√
5 + 1

, K =
√

5 , τ =
1√
5

To find the solution of the above Björling problem, we first find the anti-
analytic ν-coefficient,

ν(eiθ) = −k e−2iθ, hence ν(z) = −kz̄2, z ∈ C
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On the unit circle we have

hρ + ihθ = ν(h̄ρ + ih̄θ)

hence

hρ = −i 1 + |ν|2

1− |ν|2
hθ +

2ν i

1− |ν|2
h̄θ

Given our initial condition h(eiθ) = eiθ,

hρ =
1 + |ν|2

1− |ν|2
eiθ +

2ν

1− |ν|2
e−iθ

=
3√
5
eiθ − 2√

5
e−3iθ

Knowing h and hρ on the unit circle determines uniquely its harmonic
extension,

h(ρeiθ) =
ρ+ ρ−1

2
eiθ +

3√
5

ρ− ρ−1

2
eiθ − 2√

5

ρ3 − ρ−3

6
e−3iθ

To find w, we turn to the first of the normality conditions in (3.5), namely:
Re(ξh̄ρ) + τwρ = 0, where

ξ =
−2√

5
e−iθ, τ =

1√
5

From this we find

wρ =
2√
5

cos 2θ

and therefore

w(ρeiθ) =
ρ2 + ρ−2

4
cos 2θ +

ρ2 − ρ−2

4

2√
5

cos 2θ

The so obtained isothermal parameters F = (h,w) represent familiar En-
neper’s surface that evolves from a Jordan curve with the surface slope
being constant along the curve. In Figure 2 we illustrate four stages of this
evolution.

Perhaps the most natural way of imposing the Björling data is to borrow
it from an existing doubly connected strip of a negatively curved surface, as
we did above with the hyperbolic paraboloid. This is reminiscent of a weak
formulation of the Dirichlet problem in a domain Ω when the boundary data
is presented in the form of a function defined in Ω.

3.5. Conformal modulus of minimal surfaces. The following result is a
reformulation of Theorem 1.9 in terms of minimal graphs. By a half-circular
annulus we mean a doubly connected domain A ⊂ C whose inner boundary
is the unit circle T = {z ∈ C : |z| = 1}.
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Figure 2. Enneper’s surface evolves from a closed curve

Theorem 3.4. Let Σ be a minimal graph represented by the function w =
f(u, v) that is C 1-smooth in the closure of a half-circular annulus A =
A(1, ·) ⊂ {1 < u2 + v2 < σ2}. Then

(3.10) Mod Σ 6 log
Kσ +

√
K2σ2 −K2 + 1

K + 1
,

where K > 1 is defined by

K2 = 1 + max
u2+v2=1

|∇f(u, v)|2

In fact, Theorem 1.9 yields the estimate (3.10) to minimal surfaces other

than graphs. Let us say that a surface Σ̃ is an extension of Σ if Σ̃ admits
a parametrization that extends some parametrization of Σ. Figure 2 shows
how a minimal graph Σ (in the upper left corner) extends to a minimal

surface Σ̃ that not only fails to be a graph, but also has self-intersections.

Theorem 3.5. Let Σ, σ and K be as in Theorem 3.4, and let Σ̃ be a doubly

connected minimal surface that extends Σ. If the image of Σ̃ is still contained
in the cylinder

{(u, v, w) ∈ R3 : 1 < u2 + v2 < σ2}
then

(3.11) Mod Σ̃ 6 log
Kσ +

√
K2σ2 −K2 + 1

K + 1
,

Equality is attained if Σ̃ is a catenoidal slab F = (h,w) with

h(z) =
K + 1

2K
z +

K − 1

2K

1

z̄
, w(z) =

√
K2 − 1

K
log|z|
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Proof. LetR = Mod Σ̃. Let F : A[1, R]→ C×R be a isothermal parametriza-

tion of Σ̃ such that F = (h,w) where h maps T homeomorphically onto
itself, preserving the orientation. The definition of K implies (1.13). In-
equality (1.14) yields

σ >
K + 1

2K
R+

K − 1

2K

1

R

Solving for R we arrive at (3.11). �

The reader will notice that the minimal surface that arises from the
Björling problem in Proposition 3.3 satisfies the assumptions of Theorem 3.5
provided that h◦ is a sense-preserving self-homeomorphism of T.

4. Proof of Theorem 1.9

Let us first dispose of the easy case K = 1. Since h is harmonic, its
derivative hz̄ is an antianalytic function. The inequality (1.13) implies that
hz̄ vanishes on T and therefore it is identically zero. Thus this case of
Theorem 1.9 reduces to a version of Schottky’s theorem, see Proposition 3.1
in [17] and also [6].

From now on K > 1. Two integral inequalities for complex harmonic
functions will come into play. The first of these inequalities applies for small
values of R and relates the integral means of h and its derivatives to the
integral of a nonnegative function over the annulus A = A(1, R).

Proposition 4.1. Let λ > −1 and 1 < R 6 1 +
√

3 + 3λ. Suppose
h : A[1, R]→ C is a C 1-smooth mapping that is harmonic in A(1, R). Then

2R2

R2 + λ
−
∫
TR
|h|2 − 2

λR2 + 1

(1 + λ)2
−
∫
T
|h|2 − 2

R2 − 1

1 + λ
−
∫
T
|h||h|ρ

− 2(R− 1)2(2R+ 3λ+ 1)

3(1 + λ)2
−
∫
T

Im[h̄ (hθ − ih)]

>
1

π

∫∫
A

(R− ρ)2(2Rρ+ ρ2 + 3λ)

3ρ2
·
∣∣∣∣ρhρ − ihθρ2 + λ

− 2ρ2h

(ρ2 + λ)2

∣∣∣∣2
(4.1)

The righthand side vanishes if and only if h is constant multiple of hυ with
υ = 1−λ

1+λ ; that is,

(4.2) h(z) = c

(
z +

λ

z̄

)
, c ∈ C.

Proposition 4.1 will be used with λ = K−1
K+1 > 0. Hence, it is applicable

whenever R 6 1+
√

3; the remaining values of R are covered by the following
result.

Proposition 4.2. Let 0 < λ 6 1 and R >
√

7. Suppose h : A[1, R]→ C is a
C 1-smooth mapping that is harmonic in A(1, R). Denote by f : D → C the
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harmonic extension of h to the closed unit disk. Then for all
√

7 6 ρ 6 R
we have

−
∫
Tρ
|h|2 −

(
ρ2 + λ

(1 + λ)ρ

)2

−
∫
T

Im(h̄hθ)− 2−
∫
T

{
|h||h|ρ −

1− λ
1 + λ

Im(h̄hθ)

}
− ρ2 − (3 + λ)− λρ−2

λ(1 + λ)
−
∫
T
(λ2|hz|2 − |hz̄|2)

− ρ2 − (3 + λ)− λρ−2

(1 + λ)

[∫
T
Jf −

∫∫
D
|Df |2

]
> 0

(4.3)

The equality occurs if and only if h is given by (4.2).

Lengthy computations for the proofs of Propositions 4.1 and 4.2 are given
in Section 5.

We now proceed to prove Theorem 1.9. We make frequent use of polar
coordinates z = ρeiθ. Our first step is to prove the inequality

(4.4) |h(z)|ρ >
1

K
|hθ(z)|, z ∈ T

For this we compute the Jacobian Jh(z) = detDh(z) for z ∈ T as follows.

Jh = Im(hρhθ) = Im
[
(hρh)(hhθ)

]
= |hθ|Re(hρf) = |hθ||h|ρ.

Combining this with (1.13) we have

|hθ||h|ρ >
1

K
‖Dh‖2 > 1

K
|hθ|2

which implies (4.4). Since the winding number h on T is 1, it follows

(4.5) −
∫
T

Im(h̄hθ) = 1

Case 1. R 6 1 +
√

3. We set λ = K−1
K+1 in Proposition 4.1 and observe

that

(i) −
∫
T
|h|2 = 1

(ii) −
∫
T
|h||h|ρ >

1

K
=

1− λ
1 + λ

by (4.4)

(iii) −
∫
T

Im[h̄ (hθ − ih)] = 0 by (4.5)

Hence, (4.1) implies

2R2

R2 + λ
−
∫
TR
|h|2 > 2

λR2 + 1

(1 + λ)2
+ 2

R2 − 1

1 + λ

1− λ
1 + λ

= 2
R2 + λ

(1 + λ)2

from which (1.14) follows.
Suppose the equality holds in (1.14). Then the righthand side of (4.1)

must be also zero. Thus h is a constant multiple of hυ with υ = 1/K. This
finishes Case 1.

Case 2. R >
√

7. Let f be as in Proposition 4.2. We set λ = K−1
K+1 > 0

and observe that
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(i) −
∫
T

{
|h||h|ρ −

1− λ
1 + λ

Im(h̄hθ)

}
> 0 by (4.4)

(ii) −
∫
T
(λ2|hz|2 − |hz̄|2) by (1.13)

(iii)

∫
T
Jf −

∫∫
D
|Df |2 > 0

The latter has been established in [17, Theorem 1.7] under the name Jacobian-
Energy inequality, which we recall follows.

Theorem 4.3. Let a harmonic homeomorphism f : D onto−→ D be C 1-smooth
in the closed unit disk D = {z ∈ C : |z| 6 1}. Then

(4.6)

∫
T
|detDf | >

∫∫
D
|Df |2

The inequality is strict unless f is an isometry.

Now, (4.3) yields

−
∫
TR
|h|2 >

(
R2 + λ

(1 + λ)R

)2

which is (1.14).
If equality holds in (1.14), then it also holds in (4.3). Thus h is a constant

multiple of hυ with υ = 1/K. This completes the proof of Theorem 1.9
modulo the two propositions. �

5. Proof of Propositions 4.1 and 4.2

Proof of Proposition 4.1. Inequality (4.1) is best interpreted in terms of in-
tegral means

U(ρ) = −
∫
Tρ
|h|2

and the derivative of U , denoted U̇ . Indeed, the first three terms in (4.1)
are nothing but

(5.1)
2R2

R2 + λ
U(R)− 2

λR2 + 1

(1 + λ)2
U(1)− R2 − 1

1 + λ
U̇(1)

There is a way to express (5.1) as a double integral over A(1, R), see (8.5)
and (8.14) in [16]. This integral takes a simpler form in terms of the func-
tion g = h/hυ.

2R2

R2 + λ
U(R)− 2

λR2 + 1

(1 + λ)2
U(1)− R2 − 1

1 + λ
U̇(1)

=
4

(1 + λ)2

∫ R

1

(R2 − ρ2)(ρ2 + λ)

ρ
−
∫
Tρ

(
|gz|2 + |gz̄|2

)
+

4

(1 + λ)2

∫ R

1

(R2 − ρ2)(ρ2 + λ)

ρ3
−
∫
Tρ

Im (ḡ gθ)

(5.2)
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The next step in [16] was to perform integration by parts in the second term,
but here we treat it differently, by splitting it as

(R2 − ρ2)(ρ2 + λ)

ρ3
= α− dβ

dρ

where

α =
(R− ρ)(2ρ2 + 2Rρ+ 3λ−R2)

3ρ2

β =
(R− ρ)2(2Rρ+ ρ2 + 3λ)

6ρ2

The term with β is integrated by parts,∫ R

1
−dβ

dρ
−
∫
Tρ

Im (ḡ gθ) =

∫ R

1
β

d

dρ
−
∫
Tρ

Im (ḡ gθ)

+
(R− 1)2(2R+ 1 + 3λ)

6
−
∫
T

Im (ḡ gθ)

Another integration by parts, this time along Tρ, gives

d

dρ
−
∫
Tρ

Im(ḡ gθ) = Im−
∫
Tρ

(ḡρgθ + ḡgρθ)

= Im−
∫
Tρ

(ḡρgθ − ḡθgρ) = 2ρ−
∫
Tρ

(
|gz|2 − |gz̄|2

)
The condition R 6 1 +

√
3 + 3λ ensures that α > 0. The integral with α

can be estimated using the Cauchy-Schwarz and Wirtinger inequalities,∣∣∣∣−∫
Tρ

Im(ḡ gθ)

∣∣∣∣ 6 (−∫
Tρ

∣∣∣∣g −−∫
Tρ
g

∣∣∣∣2)1/2(
−
∫
Tρ
|gθ|2

)1/2

6 −
∫
Tρ
|gθ|2 6 2ρ2−

∫
Tρ

(
|gz|2 + |gz̄|2

)(5.3)

Therefore, the righthand of (5.2) is estimated from below as

4

(1 + λ)2

∫ R

1

[
(R2 − ρ2)(ρ2 + λ)

ρ
+ 2ρβ − 2ρ2α

]
−
∫
Tρ
|gz|2

+
4

(1 + λ)2

∫ R

1

[
(R2 − ρ2)(ρ2 + λ)

ρ
− 2ρβ − 2ρ2α

]
−
∫
Tρ
|gz̄|2

+
4

(1 + λ)2

(R− 1)2(2R+ 1 + 3λ)

6
−
∫
T

Im (ḡ gθ)
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which simplifies as

4

(1 + λ)2

∫ R

1

2(R− ρ)2(2Rρ+ ρ2 + 3λ)

3ρ
−
∫
Tρ
|gz|2

+
2(R− 1)2(2R+ 3λ+ 1)

3(1 + λ)2
−
∫
T

Im (ḡ gθ)

To conclude with the equality (4.1) it only remains to observe that

Im (ḡ gθ) =
(1 + λ)2ρ2

(ρ2 + λ)2
Im
(
h̄hθ − ih̄h

)
(5.4) |gz| =

1 + λ

2

∣∣∣∣ρhρ − ihθρ2 + λ
− 2ρ2h

(ρ2 + λ)2

∣∣∣∣
This finishes the proof of Proposition 4.1, except for the equality statement.
The righthand side of (4.1) vanishes if and only if gz ≡ 0, due to (5.4).
Recall that h = hυg where both h and hυ are harmonic. Hence

0 ≡ hzz̄ = (hυzg)z̄ = hυzgz̄.

Since hυz ≡ (1 + λ)−1 6= 0, we have gz̄ ≡ 0. Thus g is a constant function,
and the proof is complete. �

Finally we turn to Proposition 4.2, which will make the preceding proof
appear short and elegant.

Proof of Proposition 4.2. Since h is harmonic in a circular annulus, it admits
an expansion

(5.5) h(z) = a0 log|z|+ b0 +
∑
n6=0

(anz
n + bnz̄

−n)

for some an, bn ∈ C. Thanks to Parseval’s identity the proof reduces to el-
ementary manipulations with Fourier coefficients an, bn. Indeed, upon sub-
stituting formulas

−
∫
Tρ
|h|2 = |a0 log ρ+ b0|2 +

∑
n6=0

|anρn + bnρ
−n|2;

−
∫
T
|h||h|ρ =

1

2
−
∫
T
|h2|ρ = Re(a0b̄0) +

∑
n6=0

n(|an|2 − |bn|2);

−
∫
T

Im
(
h̄ hθ

)
=
∑
n6=0

n|an + bn|2; −
∫
T
Jh =

∑
n 6=0

n2(|an|2 − |bn|2);

−
∫
T
Jf =

∑
n6=0

n|n||an + bn|2;

∫∫
D
|Df |2 = 2π

∑
n6=0

|n||an + bn|2

(5.6)

into (4.3) the lefthand side is represented by the quadratic form

Q =
∑
n∈Z

Qn(an, bn) , Qn(ξ, ζ) = An|ξ|2 +Bn|ζ|2 + 2Cn Re(ξ ζ̄)
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Precisely, we have for n 6= 0

Qn(ξ, ζ) = |ρnξ + ρ−nζ|2 −
[

(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
n|ξ + ζ|2 − 2n

(
|ξ|2 − |ζ|2

)
− ρ2 − (3 + λ)− λρ−2

λ(1 + λ)

[
n2
(
λ2|ξ|2 − |ζ|2

)
+ λ|n|(n− 1)|ξ + ζ|2

]
and

Q0(ξ, ζ) = |ξ log ρ+ ζ|2 − 2 Re(ξ ζ̄)

The form Q0 is positive definite provided ρ >
√
e. The identity

Q1(ξ, ζ) =
ρ2 − (3− λ2) + λ2ρ−2

λ(1 + λ)2
|λξ − ζ|2

shows that Q1 is positive semidefinite. Proposition 4.2, together with the
equality statement, will follow once we show that the forms Qn(ξ, ζ) are
positive definite for n > 2 and for n 6 −1. For this we must prove

(5.7) AnBn > C2
n, and An, Bn > 0

Explicitly,

An = ρ2n −
[

(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
n− 2n

− ρ2 − (3 + λ)− λρ−2

λ(1 + λ)

[
n2λ2 + λ|n|(n− 1)

]
;

Bn = ρ−2n −
[

(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
n+ 2n

− ρ2 − (3 + λ)− λρ−2

λ(1 + λ)

[
−n2 + λ|n|(n− 1)

]
;

Cn = 1−
[

(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
n− ρ2 − (3 + λ)− λρ−2

1 + λ
|n|(n− 1).

Our proof of (5.7), while elementary, is somewhat lengthy. We split it into
three cases: n > 3, n = 2, and n 6 −1. Inequalities ρ2 > 7 and 0 < λ 6 1
will be used repeatedly without mention.

Case n > 3
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Inequality (5.7) for n > 3 is an immediate consequence of the following
estimates:

An > (7n−1 − n2)ρ2(5.8)

Bn >
31

28

nρ2

7λ
(5.9)

0 6 −Cn 6 n2ρ2

(
1

1 + λ
− λ

n(1 + λ)2

)
(5.10)

31

28

(
7n−1

n3
− 1

n

)
> 7λ

(
1

1 + λ
− λ

n(1 + λ)2

)2

(5.11)

Proof of (5.8). We write An = ρ2n + α2ρ
2 + α0 + α−2ρ

−2, where the
coefficients depend on n as well as on ρ and λ. Specifically,

α2 =
λn

(1 + λ)2
− n2

α−2 =
1

1 + λ

[
− λ2n

1 + λ
+ n2λ+ λn(n− 1)

]
> 0

α0 = − 2λn

(1 + λ)2
+ 2n

1− λ
1 + λ

− 2n+
3 + λ

1 + λ
(n2λ+ n(n− 1)) > 0

(5.12)

where the positivity of α0 can be observed by rearranging it as

α0 = 2n
1− λ
1 + λ

+
λn

1 + λ

{
(3 + λ)n− 2

1 + λ

}
+

n

1 + λ
{(3 + λ)(n− 1)− 2(1 + λ)}

Thus

(5.13) An > ρ
2n + α2ρ

2 = (ρ2n−2 − n2)ρ2 > (7n−1 − n2)ρ2.

Proof of (5.9). Ignoring the positive term ρ−2n in Bn and using the
inequality λn(n− 1) 6 n(n− 1), we obtain the desired estimate

Bn > −
[

(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
n+ 2n+ n

ρ2 − (3 + λ)− λρ−2

λ(1 + λ)

=
nρ2

λ

(
1− (3− λ2)ρ−2

(1 + λ)2
− λ(1 + λ+ λ2)

ρ4(1 + λ)2

)
>
nρ2

λ

(
4 + λ2

7(1 + λ)2
− 1

49

)
=
nρ2

7λ

(
4 + λ2

(1 + λ)2
− 1

7

)
=
nρ2

7λ

(
1 +

3− 2λ

(1 + λ)2
− 1

7

)
>

31

28

nρ2

7λ

Proof of (5.10). The first inequality in (5.10) follows from

Cn 6 1− n

1 + λ

[
(ρ+ λ/ρ)2

1 + λ
− 2(1− λ)

]
6 1−

[
7

2
− 2

]
< 0.
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Writing Cn = γ2ρ
2 + γ0 + γ−2ρ

−2, we find

γ2 = n2

{
λ

n(1 + λ)2
− 1

1 + λ

}
6 0

γ0 = 1 +
n

1 + λ

{
−2λ

1 + λ
+ 2(1− λ) + (3 + λ)(n− 1)

}
> 0

γ2 =
n

1 + λ

{
λ(n− 1)− λ2

1 + λ

}
> 0

(5.14)

Hence −Cn 6 −γ2(n)ρ2 as desired.
Proof of (5.11). When n > 4, we use the monotonicity of the lefthand

side of (5.11) to obtain(
7n−1

n3
− 1

n

)
>

73

43
− 1

4
>

7

4
>

7λ

(1 + λ)2
,

which implies (5.11). When n = 3, the inequality (5.11) takes form

λ(3 + 2λ)2

(1 + λ)4
<

310

147

This holds even if the fraction on the right is replaced with 2, because

λ(3 + 2λ)2 − 2(1 + λ)4 = −2 + λ− 4λ3 − λ4 < 0

Case n = 2

Compared to the case n > 3, we will have to keep more terms in the
estimates for An and Cn. It follows from (5.12) and (5.14) that

A2 > ρ
4 + α2ρ

2 and |C2| 6 −γ2ρ
2 − γ0

By (5.9), B2 > βρ2 with β = 31
98λ . Together, these estimates yield

A2B2 − C2
2 > βρ

2(ρ4 + α2ρ
2)− (γ2ρ

2 + γ0)2

= βρ6 + (βα2 − γ2
2)ρ4 − 2γ0γ2ρ

2 − γ2
0

Dividing by ρ2 and noticing that −γ2
0/ρ

2 > −γ2
0/7, we reduce the task to

showing that

(5.15) βρ4 + (βα2 − γ2
2)ρ2 − 2γ0γ2 −

γ2
0

7
> 0

Substitution ρ2 = t + 7 turns the lefthand side of (5.15) into a quadratic
polynomial in t with leading coefficient β > 0. It remains to show that the
coefficients of t1 and t0 are also positive, i.e.,

14β + βα2 − γ2
2 > 0(5.16)

49β + 7(βα2 − γ2
2)− 2γ0γ2 −

γ2
0

7
> 0(5.17)
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Proof of (5.16). Recall that

α2 =
2λ

(1 + λ)2
− 4

γ2 =
2λ

(1 + λ)2
− 4

1 + λ

γ0 =
1

1 + λ

(
11− λ− 4λ

1 + λ

)
Since β > 2

7λ , it follows that

β(14 + α2)− γ2
2 >

2

7λ

(
10 +

2λ

(1 + λ)2

)
−
(

4

1 + λ
− 2λ

(1 + λ)2

)2

=
1

7(1 + λ)2

[
20

λ
+ 44 + 20λ− 7

(
4− 2λ

1 + λ

)2
]

Next, we estimate 4− 2λ
1+λ from above by 4−λ and then use the arithmetic-

geometric mean inequality x+ y >
√

4xy.

β(14 + α2)− γ2
2 >

1

7(1 + λ)2

[
20

λ
+ 76λ− 68− 7λ2

]
>

1

7(1 + λ)2

(√
80 · 76− 75

)
> 0

Proof of (5.17). First complete the square and rearrange the terms as
follows.

49β + 7(βα2 − γ2
2)− 2γ0γ2 −

γ2
0

7
= 7β(7 + α2)− 1

7
(7γ2 + γ0)2

=
1

14(1 + λ)2

[
93

λ
+ 248 + 93λ− 2

(
17 + λ− 10λ

1 + λ

)2
]

Similar to the proof of (5.16), we estimate 17+λ− 10λ
1+λ from above by 17−4λ

and finally use the arithmetic-geometric mean inequality.

49β + 7(βα2 − γ2
2)− 2γ0γ2 −

γ2
0

7
>

1

14(1 + λ)2

[
93

λ
+ 365λ− 330− 32λ2

]
>

1

14(1 + λ)2

[√
372 · 365− 362

]
> 0

Case n 6 −1
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For convenience we set n = −m where m is a positive integer. Inequal-
ity (5.7) for n 6 −1 is a direct consequence of the estimates

A−m >
3mρ2

2(1 + λ)
(5.18)

B−m > 7m−1ρ2 +
mρ2

1 + λ

[
1

1 + λ
+

11

49
m+

4m

7λ

]
(5.19)

0 6 C−m 6
mρ2

(1 + λ)

(
m+

3

7
+

1

1 + λ

)
(5.20)

2

3

(
1 +

1

m

[
3

7
+

1

1 + λ

])2

<
7m−1

m3
(1 + λ) +

1

m2

[
1

1 + λ
+

11

49
m+

4m

7λ

](5.21)

Before proving (5.18)–(5.21) we write down the coefficients of Qn in terms
of m.

A−m = ρ−2m +m

[
(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
+ 2m

− ρ2 − (3 + λ)− λρ−2

λ(1 + λ)

[
m2λ2 − λm(m+ 1)

]
;

B−m = ρ2m +m

[
(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
− 2m

+
ρ2 − (3 + λ)− λρ−2

λ(1 + λ)

[
m2 + λm(m+ 1)

]
;

C−m = 1 +m

[
(ρ+ λ/ρ)2

(1 + λ)2
− 2

1− λ
1 + λ

]
+
ρ2 − (3 + λ)− λρ−2

1 + λ
m(m+ 1).

Proof of (5.18). Ignoring the term ρ−2m in A−m and using[
m2λ2 − λm(m+ 1)

]
6 −λm,

we obtain the estimate

A−m >
m

1 + λ

[
(ρ+ λ/ρ)2

1 + λ
− 2(1− λ) + 2(1 + λ) + ρ2 − (3 + λ)− λρ−2

]
=

3mρ2

2(1 + λ)
+

m

(1 + λ)2

[
1− λ

2
ρ2 + 2λ− 3 + 3λ2 − λ2ρ−2

]
The term in brackets is positive since

7− 7λ

2
+ 2λ− 3 + 3λ2 − λ2

7
>

1− 3λ+ 5λ2

2
> 0

This yields (5.18).
Proof of (5.19). Let us write B−m = ρ2m + β2ρ

2 + β0 + β−2ρ
−2. We

will show that β0 and β−2 are negative, and estimate B−m from below by

(5.22) B−m > ρ
2

(
7m−1 + β2 +

β0

7
+
β−2

49

)
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Indeed,

β−2 =
m

1 + λ

[
λ2

1 + λ
− (m+ λ(m+ 1))

]
is clearly negative and can be estimated as

(5.23) β−2 > −
3m3

1 + λ

Also,

β0 =
m

1 + λ

[
2λ

1 + λ
− 4− 3 + λ

λ
m− (3 + λ)(m+ 1)

]
is negative and can be estimated as

(5.24) β0 >
m

1 + λ

[
−7− 5m− 3

λ
m

]
We also have

(5.25) β2 =
m

1 + λ

[
1

1 + λ
+m+ 1 +

m

λ

]
Formulas (5.22)–(5.25) yield (5.19).

Proof of (5.20). The first inequality in (5.20) follows from

C−m >
m

1 + λ

[
(ρ+ λ/ρ)2

1 + λ
− 2(1− λ)

]
> m

[
7

2
− 2

]
> 0

Writing C−m = γ2ρ
2 + γ0 + γ−2ρ

−2, we observe that

γ−2 =
m

1 + λ

[
λ2

1 + λ
− λ(m+ 1)

]
6 0

γ0 = 1 +
m

1 + λ

[
2λ

1 + λ
− 2(1− λ)− (3 + λ)(m+ 1)

]
6 1 +

m

1 + λ
[4λ− 2− 2(3 + λ)] 6 m− 6m

1 + λ
6 − 4m

1 + λ

γ2 =
m

(1 + λ)

(
m+ 1 +

1

1 + λ

)
Hence

C−m 6 γ2ρ
2 + γ0 6 ρ

2(γ2 + γ0/7) 6
mρ2

(1 + λ)

(
m+

3

7
+

1

1 + λ

)
Proof of (5.21). When m > 3, the righthand side of (5.21) is greater

than 72/33 = 49/27 while the lefthand side is at most

2

3

(
1 +

1

3

[
3

7
+ 1

])2

=
2

3

(
1 +

10

21

)2

<
2

3

(
3

2

)2

=
3

2
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When m = 2, the lefthand side of (5.21) is at most 96/49 which is its
value at λ = 0. On the righthand side we have

7

8
(1 + λ) +

1

4

[
1

1 + λ
+

22

49
+

8

7λ

]
>

7

8
+

7

8
λ+

1

4

[
1

2
+ 0 +

8

7λ

]
= 1 +

7

8
λ+

2

7λ
> 1 + 1 = 2

When m = 1, we rearrange the terms of (5.21) so that it reads as

(5.26)
2

3

(
10

7
+

1

1 + λ

)2

− 1

1 + λ
− 60

49
< λ+

4

7λ

If λ 6 1/4, then

2

3

(
10

7
+

1

1 + λ

)2

− 1

1 + λ
− 60

49
6

2

3

(
10

7
+ 1

)2

− 4

5
− 60

49
< 2 <

4

7λ

thus (5.26) holds. For λ > 1/4 we obtain (5.26) as follows,

2

3

{(
10

7
+

1

1 + λ

)2

− 3

2(1 + λ)
− 90

49

}
6

2

3

{
10

49
+

33

14(1 + λ)

}
6

2

3

{
1

4
+ 2

}
=

3

2
<

4√
7
6 λ+

4

7λ

where the last step is the arithmetic-geometric mean inequality. �
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