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Abstract: 
 
As part of our Evidence Extraction and Link Discovery (EELD) project, we proposed to use Transformation 
Based Learning (TBL) to learn domain-specific specializations for generic event extractions.  The primary goal 
of our learning task was to reduce the amount of human effort required for specializing generic event 
extractions to domains that are new and specific. Three initial annotation cycles and one annotation review and 
correction cycle involving a total of 70 documents were completed, with slightly over 32 hours required for the 
entire annotation effort; where possible, the annotation cycles started with bootstrapped files resulting from the 
application of TBL rules learned after the prior annotation cycle.  A five-fold evaluation was completed using 
the annotated files as the gold standard for evaluation purposes.  When our analysis was limited to specialized 
event types with 10 or more examples available for training, we achieved 67.93% Coverage, 88.93% Accuracy, 
and an F-score of 77.02%.  Several conclusions can be drawn from our study:  (1) the use of TBL to learn 
specializations of generic extractions to specific domains is possible, (2) the use of TBL leads to a significant 
reduction in the human effort involved in specializing to a new domain, (3) sparsity of training data has a large 
impact on the results of learning, and (4) with more training instances, coverage and accuracy would improve.   
 
Motivation: 
 
In the early days of Information Extraction (IE), IE systems extracted a limited amount of information in order 
to fill in the blanks in a predefined domain-specific template.  Today’s IE systems increasingly rely on a much 
broader model of generic event, entity and relation extraction in order to capture a wide variety of useful 
information in various domains.  While today’s generic extractions are abundant and useful, extractions that 
have been specialized for the domain are generally more meaningful and more easily interpreted by those who 
must make sense of the information provided by IE systems.  The challenge to today’s IE systems is to extract a 
wide variety of useful information about events, entities and relations while at the same time adapting those 
extractions to the domain at hand; this is the largest single impediment to portability of today’s IE systems due 
to the effort required for this specialization. 
   
As part of our Evidence Extraction and Link Discovery (EELD) project, we proposed to use Transformation 
Based Learning (TBL) to learn domain-specific specializations for generic event extractions.  The primary goal 
of our learning task was to reduce the amount of human effort required for specializing generic event 
extractions to domains that are new and specific.   
 
eQuery and Generic Extraction: 
 
The eQuery system created by the Center for Natural Language Processing (CNLP) is a Natural Language 
Processing-based automatic IE system which implements algorithms that interpret language at all the levels at 



which humans are known to extract meaning.  These are the morphological, lexical, syntactic, semantic, 
discourse and pragmatic levels.  Using these levels eQuery extracts important concepts and relations from texts 
by applying sophisticated and proven natural language processing techniques. 
 
CNLP extracts entities (which includes named entities) and events from text documents and represents them as 
objects in extraction tables.  These entities and events are put into frames with modifying slots.  One of the 
primary slots is the “type” slot, which gives the type of the entity or event.  Some slots can be viewed as 
attributes, while others are viewed as relations, primarily if their value is another entity.  The attributes and 
relations are dynamically assigned as appropriate to entities and events during the extraction process. 
 
For named entities, attributes and relations are grouped by “episode”, corresponding approximately to the 
different mentions of the entity.  So each relation will be in a separate episode and can have attributes, such as 
point-in-time, of that relation. 
 
The extracted entities include proper noun phrases and compositional noun phrases, except those denoting 
numeric concepts, which are treated separately.  The generically extracted events are almost all verbs, 
particularly those denoting actions, but not including those which denote states of being where the information 
is put into an attribute or relation instead.   
 
Prior to our work on TBL for specialization, our system had the following structure: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Structure of eQuery prior to specialization 
 
The generic extraction process uses the marked-up text to identify events and entities based on surface lexical 
and syntactic clues.  For each document, the collection of events and entities are saved in an extraction table.  
Of most interest to us for this study are the events and certain entities which are event-like nominalizations.  For 
these events and event-like entities, our table elements use a case frame representation to store information 
about the various roles associated with the event; the case frames are based on the concept of case grammar 
introduced by Fillmore (Fillmore, 1968).  The case frames capture the relationships between events and entities 
that exist at a semantic, conceptual level, regardless of the surface syntactic structure. 
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Information about the roles associated with each event are stored in slots which are attribute-value pairs 
consisting of a slot name and a slot value.  For generic extraction, our slot names are generic in nature; they 
include about 20 generic role names from Sowa’s conceptual graph theory (Sowa, 1984), as shown in Table 1. 
 

Table 1: Generic role names from Sowa: 
agent duration material part-of 
cause frequency measure point-in-time 
characteristic instrument method quantity 
content location negation recipient 
destination manner object source 

 
 
We also have at least 24 additional generic relation names as shown below in Table 2, and more continue to be 
added over time. 
 

Table 2: Additional generic relation names: 
acronym charge geographic-affiliation 
affiliation condition isa 
age cost linked 
alias date participants 
amount date-of-birth price 
area date-of-death prior-to 
associated distance purpose 
body-part following reason 

 
An example of extracted entities and events are shown below in Figure 2. 
 
Sentence:    

Just today, a business near the French Embassy was blown up and four people were killed by an 
unidentified gunman. 

 
Generic extractions: 
 
id = 35 
frametype = namedentity 
text = French Embassy 
type = spfac 
Episode 0 
    sentenceid = s28 
    mention = French Embassy 
 
id = 128 
frametype = entity 
sentenceid = s28 
text = gunman 
Episode 0 
    characteristic = unidentified 
    sentenceid = s28 
 



id = 129 
frametype = event 
sentenceid = s28 
text = kill 
Episode 0 
    agent = unidentified gunman 
    object = four people 
    sentenceid = s28 
 
id = 131 
frametype = event 
sentenceid = s28 
text = blow_up 
Episode 0 
    object = French Embassy = 35 
    sentenceid = s28 
 
id = 132 
frametype = entity 
sentenceid = s28 
text = people 
Episode 0 
    amount = four 
    sentenceid = s28 
 
id = 133 
frametype = entity 
sentenceid = s28 
text = today 
Episode 0 
    characteristic = just 
    sentenceid = s28 
 

Fig. 2:  Example of Extracted Events and Entities 
 
Once extracted into this format, these events and entities can be queried, stored in databases for use by link 
discovery modules, and fed into visualizers, greatly facilitating access to information. 
 
The Learning Task: 
 
The learning task originally defined for this project is specialization of these generic event extractions for a 
specific domain.  Specialization of generic event extractions involves varying levels of complexity.  At the 
simplest level of complexity, specialization involves adding an event type and mapping the slot name to a 
different value that carries more conceptual meaning for the specific domain involved, as illustrated in Figure 3, 
which shows extractions from the same sentence as Figure 2, but after specialization has taken place. 
  
Sentence:    

Just today, a business near the French Embassy was blown up and four people were killed by an 
unidentified gunman. 

 



Extractions after specialization: 
 
id = 35 
frametype = namedentity 
text = French Embassy 
type = spfac 
Episode 0 
    sentenceid = s28 
    mention = French Embassy 
 
id = 128 
frametype = entity 
sentenceid = s28 
text = gunman 
Episode 0 
    characteristic = unidentified 
    sentenceid = s28 
 
id = 129 
frametype = event 
sentenceid = s28 
text = kill 
type = kill 
Episode 0 
    perpetrator = unidentified gunman 
    victim = four people 
    sentenceid = s28 
 
id = 131 
frametype = event 
sentenceid = s28 
text = blow_up 
type = attempt to kill 
Episode 0 
    victim = French Embassy = 35 
    sentenceid = s28 
 
id = 132 
frametype = entity 
sentenceid = s28 
text = people 
Episode 0 
    amount = four 
    sentenceid = s28 
 



id = 133 
frametype = entity 
sentenceid = s28 
text = today 
Episode 0 
    characteristic = just 
    sentenceid = s28 
 

Fig. 3:  Example of specialization for new domain 
 
However, even this simpler form of event specialization can be complicated by word sense ambiguity.  For 
example, not all instances of the event “pay” should be specialized; if the generic object is “attention” (pay 
attention) or “respects” (pay respects), then the event should not be specialized as this sense of the word “pay” 
falls outside of the domain model that includes the payment event. 
 
A greater level of complexity is seen when an event frame is restructured to more appropriately capture the 
conceptual meaning for a specific domain, as shown in Figure 4. 
 

 
Sentence: 

But in November Rachuk committed suicide in Russia, and it was some time later that a certain 
Sadykov asked the bosses of Summit International for a meeting. 
 

Extractions before restructuring: 
 

Extractions after restructuring: 

id = 34 
frametype = namedentity 
text = Russia 
type = cntry 
Episode 0 
    sentenceid = s17 
    mention = Russia 
 

id = 34 
frametype = namedentity 
text = Russia 
type = cntry 
Episode 0 
    sentenceid = s17 
    mention = Russia 

id = 43 
frametype = namedentity 
text = Summit International 
type = co 
Episode 0 
    sentenceid = s17 
    mention = Summit International 
 

id = 43 
frametype = namedentity 
text = Summit International 
type = co 
Episode 0 
    sentenceid = s17 
    mention = Summit International  



id = 47 
frametype = namedentity 
text = Vladimir Rachuk 
type = per 
Episode 0 
    lastname = Rachuk 
    firstname = Vladimir 
    isa = Russian financier 
    mention = Vladimir Rachuk 
    sentenceid = s13 
Episode 1 
    point-in-time = November = 49 
    mention = Rachuk 
    sentenceid = s17 
 

id = 47 
frametype = namedentity 
text = Vladimir Rachuk 
type = per 
Episode 0 
    lastname = Rachuk 
    firstname = Vladimir 
    isa = Russian financier 
    mention = Vladimir Rachuk 
    sentenceid = s13 
Episode 1 
    point-in-time = November = 49 
    mention = Rachuk 
    sentenceid = s17 

id = 49 
frametype = namedentity 
text = November 
type = unknown 
Episode 0 
    sentenceid = s17 
    mention = November 
 

id = 49 
frametype = namedentity 
text = November 
type = unknown 
Episode 0 
    sentenceid = s17 
    mention = November 

id = 50 
frametype = namedentity 
text = Sadykov 
type = unknown 
Episode 0 
    characteristic = certain 
    mention = Sadykov 
    sentenceid = s17 
 

id = 50 
frametype = namedentity 
text = Sadykov 
type = unknown 
Episode 0 
    characteristic = certain 
    mention = Sadykov 
    sentenceid = s17 

id = 143 
frametype = event 
sentenceid = s17 
text = commit 
Episode 0 
    agent = November Rachuk 
    location = Russia = 34 
    point-in-time = November = 49 
    object = suicide 
    sentenceid = s17 

id = 143 
frametype = event 
sentenceid = s17 
text = commit suicide 
type = kill 
Episode 0 
    agent = November Rachuk 
    location = Russia = 34 
    point-in-time = November = 49 
    object = null 
    sentenceid = s17 
 



id = 145 
frametype = event 
sentenceid = s17 
text = ask 
Episode 0 
    agent = Sadykov = 50 
    object = boss of Summit International 
    sentenceid = s17 

id = 145 
frametype = event 
sentenceid = s17 
text = ask 
Episode 0 
    agent = Sadykov = 50 
    object = boss of Summit International 
    sentenceid = s17 
 

id = 146 
frametype = entity 
sentenceid = s17 
text = suicide 
Episode 0 
    location = Russia = 34 
    sentenceid = s17 

id = 146 
frametype = entity 
sentenceid = s17 
text = suicide 
type = kill 
Episode 0 
    location = Russia = 34 
    sentenceid = s17 
 

id = 147 
frametype = entity 
sentenceid = s17 
text = boss 
Episode 0 
    associated = Summit International = 43 
    sentenceid = s17 

id = 147 
frametype = entity 
sentenceid = s17 
text = boss 
Episode 0 
    associated = Summit International = 43 
    sentenceid = s17 

 
Fig. 4:  Example of restructuring to fit new domain 

 
 



What is Transformation Based Learning? 
 
Transformation-Based Error-Driven Learning (TBL) is a robust corpus-based machine learning paradigm that is 
comprised of unannotated text, an initial state annotator that can be at any level of sophistication (Brill, 1993) 
but is typically based on a naïve and simplistic algorithm, a hand-tagged or hand-corrected annotated corpus 
considered to be the gold standard, a set of transformation templates, and an iterative learning program which 
learns the transformation rules necessary to change the annotations of the initial state annotator to match those 
found in the gold standard corpus.  This approach is error-driven because the transformations learned at each 
step of the iteration are those that lead to the greatest reduction in errors when compared to the gold standard.  
The transformation-based error-driven learning paradigm is illustrated in Figure 5, adapted from (Ramshaw & 
Marcus, 1996b). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5:  Transformation-Based Error-Driven Learning Paradigm 
 
 
Why TBL vs. some other machine learning method? 
 
Transformation-based, error-driven learning has the following advantages, TBL:  (a) creates a relatively small 
number of rules that are linguistically motivated and understandable to both humans and machines, (b) exploits 
a wide range of symbolic vs. statistical linguistic regularities, (c) iteratively transforms an initial automatic 
imperfect annotation into one with fewer errors, (d) requires an order of magnitude fewer decisions than 
estimating the parameters of statistical models, (e) is surprisingly resistant to overtraining (Ramshaw & Marcus, 
1996a), and (f) is more powerful than decision trees. 
 
Transformation-based error-driven learning has been successfully applied to numerous NLP tasks, including 
learning rules for part-of-speech tagging (Brill, 1993; Brill, 1994; Brill, 1995); prepositional phrase attachment 
(Brill & Resnik, 1994; Yeh & Vilain, 1998); subordinate conjunction attachment (Yeh & Vilain, 1998); parsing 
(Brill, 1993; Satta & Brill, 1996); word segmentation (Palmer, 1997; Hockenmaier & Brew, 1998); and 
grammatical relation extraction (Ferro, Vilain, & Yeh, 1999). 
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The TBL Learning Environment for the EELD Project 
 
In order to use TBL, several things must be prespecified:  the initial state annotation algorithm, the search 
space, the list of allowable transformation templates and the scoring function.  The initial state annotation 
algorithm specifies what annotations will be added by the initial state annotator.  The search space defines both 
what elements can be referred to in transformations (e.g.,  words, word classes, part of speech tags, phrase 
types, etc.) and some measure of the maximum distance to be considered (e.g., 1 element away, 2 elements 
away, 3 elements away, etc.).  The allowable transformation templates include the original content of the base 
element to be changed, the revised content after the change, and a description of the conditioning environment 
consisting of other elements and their distance from the base element, all in a sufficiently generic language that 
the template is considered to be uninstantiated (i.e. based on variable names).  The scoring function defines the 
measures that will be used to determine the value of the net gain for a particular transformation; it is the 
comparison of these net gain values upon which the selection of the next transformation to be learned depends.  
The scoring function metrics are also used to determine when learning should stop; learning typically stops for a 
particular training run when either (1) there is no possible transformation left which leads to an additional net 
gain (reduction in errors), or (2) the remaining possible transformations do not lead to a net gain greater than the 
defined threshold. 
 
The fnTBL toolkit was used for this learning task.  Generic extraction tagged text provides the initial state 
annotation.  The search space and allowable transformation templates are both user-defined aspects of the 
fnTBL toolkit, and are defined in the rule template file.  One example template from our rule template file is as 
follows: 
 

FrameType TextWord SlotWord SlotCat SlotName => SlotName 
 
This template is used to learn the specialization rules for generic slot names.  The scoring function is based on 
the number of good rule applications and the number of bad rule applications.  The score of a rule learned with 
the fnTBL toolkit is the residual value of good – bad rule applications, and represents a net gain in learning.  
When running a learning cycle using the fnTBL toolkit, a threshold value is supplied by the developer.  For the 
fnTBL toolkit, the threshold value indicates a learning cutoff such that the net gain in learning must be one 
more than the value of the threshold. 
 



Detail on use of TBL for EELD 
 
Addition of Transform phase 
 
For this project, an additional processing module was added to our eQuery document processing system.  This 
additional module applies specialization rules to the generic event extractions, as seen in the far right of the 
figure.  The specialization rules, also called transform rules, are the result of the TBL learning process.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Structure of eQuery after addition of specialization phase 
 
Specialization, or transform rules, include two components – a triggering environment and a rewrite rule: 
 

• if [triggering environment] then [re-write rule] 
• if [event = kill, object = ?X, ?X.type = person] then [object-> victim] 

 
Training and Testing 
 
The data used for this study came from the Russian Contract Killing corpus supplied for the EELD project.  Our 
initial effort was focused on obtaining a set of gold standard documents to use for training and testing purposes. 
 
To this end, several annotation cycles were run.  The first annotation cycle was purposefully small, and based 
on 14 sentences that were hand-picked by the analysts as representative of the domain-specific events that they 
wished to specialize; these sentences contained examples of such domain-specific events as kill, murder and 
apprehend among others.  The analysts provided the generic extractions from these sentences along with the 
specialized extractions for these sentences.  Using the generic extractions as the baseline and the matching 
specialized extractions as the gold standard; from these first 14 sentences, 26 specialization rules were learned 
using the fnTBL toolkit and a learning threshold of 0.  A value of zero for the threshold was used to bootstrap 
our gold standard annotations. 
 
For the second annotation cycle, 35 documents were chosen from the available corpus using a frequency count 
of the desired events.  The documents in the corpus were examined automatically to determine the number of 
instances in each document of the following events: 
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Table 3: Event Types and Associated Events for 2nd Annotation Cycle 

Event Type Associated Events 
arrest arrest 
detain apprehend, detain 
kidnap abduct, kidnap 
kill assassinate, execute, kill, murder 

   
A total event count for each document was obtained and the documents were sorted in decreasing order of 
frequency of this total event count.  Without modification, this method resulted in a preference for the largest 
documents in the corpus; they corresponded to the largest values for total event count.  Therefore, the method 
was modified to normalize the event frequency count for the size of the document.  A list of documents was 
produced, showing document names in descending order of total event count; the first 35 documents on the list 
were chosen to be the first annotation corpus. 
 
The initial set of 26 transform rules were applied to this set of 35 documents to bootstrap the annotation for the 
gold standard.  Then the documents, along with both the generic extractions and the bootstrapped transformed 
extractions, were provided to the analysts for hand-correction of the preliminary transformed extractions.  
During this hand-correction effort, the analysts added event types where they were needed, specialized slot 
names where applicable, restructured event frames where necessary, and corrected the generic event extraction 
errors.  The hand-correction effort was completed in 8 hours. The generic extractions and matching gold 
standard extractions from this set of 35 documents were fed into the fnTBL toolkit; again using threshold 0, and 
272 transform rules were produced.   
 
At that point, it was determined that more data was needed for training, so a third annotation cycle was 
included.  For the third annotation cycle, another 35 documents were chosen using the method for the second 
annotation cycle, and the following set of events of interest: 
 

Table 4: Event Types and Associated Events for 3rd Annotation Cycle 
Event Type Associated Events 
arrest arrest, charge 
attempt-to-kill attempt to assassinate, attempt to kill, attempt to murder 
deal bargain 
detain apprehend, detain, extradite 
disappear disappear, escape 
investigation interrogate, investigate, probe 
kidnap abduct, kidnap 
kill assassinate, execute, kill, murder 
payment invest, pay 
telephone conversation answer phone 
theft steal, theft 
warn alert, warn 

 
As in the second annotation cycle, the rules learned from the prior cycle (in this case 272 rules) were applied to 
this set of 35 documents, once again in an effort to bootstrap the annotation of the gold standard.  The resulting 
set of documents, generic extractions and preliminary specialized extractions was turned over to the analysts for 
hand-correction, and again, the hand correction was completed in 8 hours.   
 



At this point, we had a combined set of 70 gold standard documents; the annotation cycles were complete and 
we began to focus on the learning cycles. 
 
We ran a five-fold cross-validation test using an 80/20 split over the whole set of 70 documents.  For each test, 
56 documents were used for training and 14 documents were held out for testing. 
 
To begin this process, each of the two sets of 35 documents was divided into 5 chunks of 7 documents each, 
using the alphabetical order of document names as the grouping factor; since the alphabetical order of document 
names had no bearing on the frequency of event counts, it was felt that alphabetical order allowed for sufficient 
randomness.  To create the training and testing breakdown for each test run, one chunk from each set of 35 
documents (two chunks for a total of 14 documents) was held out for testing, and the remaining four chunks 
from each set (eight chunks for a total of 56 documents) were used for training.  For each test, a different group 
of chunks was held back for testing purposes. 
 
For each cross-validation test, the method was the same: 
 

• Run generic extraction only on the test set and save the output (i.e. extractions) to establish the baseline 
files 

• Use the training set to run 3 different TBL learning cycles with the fnTBL toolkit 
o Using threshold 1 
o Using threshold 2 
o Using threshold 3 

• Convert the rules learned by the fnTBL toolkit to eQuery format 
• Apply the learned rules (transforms) to the test set and save the output (extractions) to facilitate 

evaluation 
• Evaluate the learned rules by comparing for each test set the extractions from the baseline files, the 

transformed files, and the matching gold standard files for each threshold. 
 
After running just one of the cross-validation tests, it became clear that there were some inconsistencies in the 
gold standard annotation between the first set of 35 documents and the second set of 35 documents.  So the 
entire set of 70 documents with gold standard annotations was reviewed by the analysts again in an effort to 
remove the inconsistencies that had been present.  This review and reconciliation effort took 16 hours of analyst 
time.  When the review of the 70 documents was complete, and the gold standard annotations had been 
reconciled, that one test was re-run and the remaining tests were also run. 
 
Evaluation and Results 
 
In preparation for evaluation of the results, comparison files were created that showed, for each element of each 
frame to be evaluated, the corresponding values from the baseline file, the gold standard file and the 
transformed file.  
 
The results were evaluated using two complementary but slightly different methods.  The first method used was 
to calculate desired changes, learned changes and correctly learned changes.  Desired changes were determined 
by comparing the baseline extraction to the gold standard extraction; if these values differed, it was considered 
to be a desired change.  Learned changes were determined by comparing the baseline extraction to the 
transformed extraction; if these values differed, it was considered to be a learned change.  Correctly learned 
changes were determined by comparing the transformed extraction to both the baseline and gold standard 
extractions; if the transformed extraction was different from the baseline extraction and the same as the gold 



standard extraction, it was considered to be a correctly learned change.  These three values were then used to 
calculate coverage and accuracy figures, which were in turn used to calculate an F-score: 
 

Coverage (C) = Correctly Learned Changes / Desired Changes 
 

Accuracy (A) = Correctly Learned Changes / Learned Changes 
 

F = (2 * C * A) / (C + A) 
 

The results obtained for the five cross-validation tests are shown below in Table 5: 
 
                             Table 5: Five-fold cross-validation test results 

Test Threshold 1 Threshold 2 Threshold 3 
Test 1 Coverage = 68.29% 

Accuracy = 88.42% 
F-score = 77.06% 

Coverage = 64.50% 
Accuracy = 90.15% 

F-score = 75.20% 

Coverage = 64.50% 
Accuracy = 90.15% 

F-score = 75.20% 
Test 2 Coverage = 54.05% 

Accuracy = 88.21% 
F-score = 67.03% 

Coverage = 50.33% 
Accuracy = 90.55% 

F-score = 64.70% 

Coverage = 48.36% 
Accuracy = 92.08% 

F-score = 63.41% 
Test 3 Coverage = 64.71% 

Accuracy = 87.38% 
F-score = 74.36% 

Coverage = 59.17% 
Accuracy = 86.80% 

F-score = 70.37% 

Coverage = 56.40% 
Accuracy = 88.59% 

F-score = 68.92% 
Test 4 Coverage = 54.47% 

Accuracy = 91.16% 
F-score = 68.19% 

Coverage = 48.98% 
Accuracy = 90.60% 

F-score = 63.58% 

Coverage = 45.73% 
Accuracy = 91.09% 

F-score = 60.89% 
Test 5 Coverage = 66.12% 

Accuracy = 83.16% 
F-score = 73.67% 

Coverage = 60.93% 
Accuracy = 85.77% 

F-score = 71.25% 

Coverage = 59.56% 
Accuracy = 87.55% 

F-score = 70.89% 
 
As the threshold level increases, the coverage decreases and the accuracy increases; these findings are 
consistent with what others have reported.  These figures for coverage, accuracy and F-score are comparable to 
what others have reported for similar tasks (Gildea & Palmer, 2002; Gildea & Hockenmaier, 2003). 

 
The results reported above are based on an evaluation method that is similar to recall and precision in that the 
judgments are binary in nature; the judgments made for this first evaluation are also binary in nature – a change 
is either desired or not, a change is either learned or not. 
 
But in fact, this learning task is not binary; it is instead ternary in nature.  Using the same comparison files that 
show the baseline, gold standard and transformed value for each element in each frame to be evaluated, another 
set of evaluation figures was devised that shows a breakdown of the original set of figures.  This second set of 
figures is based on the following viewpoint: 
 

• Desired learning: For each element, the following (binary) possibilities exist 
o Learning is desired (gold standard not = baseline) 
o Learning is NOT desired (gold standard = baseline) 

 
• Actual learning:  For each element, the following (ternary) possibilities exist 

o No learning achieved (transformed = baseline) 
o Learning achieved (transformed not = baseline) and  



��Learning is CORRECT (transformed = gold standard) 
o Learning achieved (transformed not = baseline) but 

��Learning is INCORRECT (transformed not = gold standard) 
 
Combining these two views, five1 possible combinations exist: 
 
                Table 6:  Comparison of Desired Learning to Actual Learning 

Desired Learning Actual Learning Comparison 
(A) No learning achieved gold standard = baseline, 

transformed = baseline 
No learning desired (B) Incorrect (spurious) learning gold standard = baseline, 

transformed not = baseline 
transformed not = gold standard 

(C) No learning achieved (misses) gold standard not = baseline, 
transformed = baseline 

(D) Correct learning achieved gold standard not = baseline, 
transformed not = baseline 
transformed = gold standard Learning desired 

(E) Incorrect learning (errors) gold standard not = baseline, 
transformed not = baseline 
transformed not = gold standard 

 
Using this new breakdown of the data, the calculation of coverage and accuracy is redefined as follows: 
 

Coverage = D / (C + D + E) 
= Correct / (Misses + Correct + Errors) 

 
Accuracy  = D / (B + D + E) 

= Correct / (Spurious + Correct + Errors) 
 

Recalculation of our results using this new breakdown points out that the biggest cause of failure is misses, or 
cases where we did not learn anything but were supposed to.  Three illustrative results are shown below in 
detail: 
 
Table 7:  Results using new breakdown 
Combination Test 1 

Threshold 1 
Test 1 
Threshold 2 

Test 2 
Threshold 1 

A � No learning desired, No learning achieved 9706 9710 10668 
B � No learning desired, Incorrect (spurious) learning 11 7 15 
C � Learning desired, No learning achieved (misses) 95 112 192 
D � Learning desired, Correct learning 252 238 247 
E � Learning desired, Incorrect learning (errors) 22 19 18 
Desired changes based on only one training instance 43 43 81 
Desired changes based on no more than two training instances  43 + 8 = 51  
 
As the threshold increases for Test 1, the cases of incorrect learning (B and E) decrease, but the misses (C) 
increase.  The direct result of the increase in the threshold value is failure to learn rules which apply to a small 

                                                 
1 It is not possible to learn correctly when no learning is desired, so that combination does not exist. 



number of instances (i.e. for the fnTBL toolkit, a number of instances equal to or less than the threshold value).  
This explains both the decrease in B and E (incorrect learning) and the increase in C (misses). 
 
This analysis points out that sparsity of usable training instances has an impact on the value of C (misses).  
Fully half of the 192 misses for Test 2, threshold 1 are explained by the fact that 81 desired changes for this test 
had only 1 training instance available in the training data; these 81 desired changes could not possibly be 
learned given threshold 1.  Sparsity of the training data also explains nearly half of the misses for Test 1, 
threshold 1 (43 out of 95), and Test 1, threshold 2 (51 out of 112). 
 
Looking back at our original figures for Coverage and Accuracy in Table 5, we find that our results improve if 
we limit our analysis to only the specialized event types with 10 or more examples available for training.  
Limiting our analysis to only these events gives us 67.93% Coverage, 88.93% Accuracy, and an F-score of 
77.02%.  
 
Conclusions 
 
Several conclusions can be drawn from our study: 
 

• The use of TBL to learn specializations of generic extractions to specific domains is possible. 
• The use of TBL leads to a significant reduction in the human effort involved in specializing to a new 

domain. 
• Sparsity of training data has a large impact on the results of learning. 
• With more training instances, coverage and accuracy would improve. 

 
 

References 
 

 1.  Brill, E. (1993). A corpus-based approach to language learning (Ph.D. Thesis). Philadelphia, PA: 
Department of Computer and Information Science, University of Pennsylvania. 
Available at:  http://www.cs.jhu.edu/~brill/dissertation.ps 
 

 2.  Brill, E. (1994). Some advances in transformation-based part of speech tagging. Twelfth National 
Conference on Artificial Intelligence (AAAI-94) . 
Available at:  http://www.cs.jhu.edu/~brill/TAGGING_ADVANCES.ps 
 

 3.  Brill, E. (1995). Transformation-based error-driven learning and natural language processing:  A case 
study in part of speech tagging. Computational Linguistics. 
Available at:  http://www.cs.jhu.edu/~brill/CompLing95.ps 
 

 4.  Brill, E., & Resnik, P. (1994). A rule-based approach to prepositional phrase attachment disambiguation. 
COLING 1994 . 
Available at:  http://www.cs.jhu.edu/~brill/pp-attachment.ps 
 

 5.  Ferro, L., Vilain, M., & Yeh, A. (1999). Learning transformation rules to find grammatical relations. 
Computational Natural Language Learning:  A workshop at the 9th Conf. of the European Chapter 
of the Association for Computational Linguistics . 



 

 6.  Fillmore, C. J. (1968). The case for case. Universals in Linguistic Theory (pp. 1-88). New York: Holt, 
Rinehart and Winston, Inc. 
 

 7.  Gildea, D., & Hockenmaier, J. (2003). Identifying semantic roles using combinatory categorial grammar. 
2003 Conference on Empirical Methods in Natural Language Processing (EMNLP 2003) 
Association for Computational Linguistics. 
Available at:  http://www.cis.upenn.edu/~dgildea/gildea-emnlp03.pdf 
 

 8.  Gildea, D., & Palmer, M. (2002). The necessity of parsing for predicate argument recognition. 
Proceedings of the 40th Annual Meeting of the Association for Computational Linguistics (ACL-
02) (pp. 239-246). Association for Computational Linguistics. 
Available at:  http://www.aclweb.org/anthology/P02-1031.pdf 
 

 9.  Hockenmaier, J., & Brew, C. (1998). Error-driven learning of Chinese word segmentation. 12th Pacific 
Conference of Language and Information (pp. 218-229). Singapore: Chinese and Oriental 
Languages Processing Society. 
Available at:  http://www.ltg.ed.ac.uk/~chrisbr/papers/hockenmaier-colips98.1/ 
 

 10.  Palmer, D. P. (1997). A trainable rule-based algorithm for word segmentation. Proceedings of the 35th 
Annual Meeting of the Association for Computational Linguistics (ACL97) Association for 
Computational Linguistics. 
Available at:  http://ssli.ee.washington.edu/ssli/people/palmer/papers/acl97.ps 
 

 11.  Ramshaw, L. A., & Marcus, M. P. (1996a). Exploring the nature of transformation-based learning. In J. L. 
Klavens, & P. Resnik (Eds.), The balancing act:  Combining symbolic and statistical approaches to 
language (pp. 135-156). Cambridge, MA: MIT Press. 
 

 12.  Ramshaw, L. A., & Marcus, M. P. (1996b). Exploring the nature of transformation-based learning. In J. L. 
Klavens, & P. Resnik (Eds.), The balancing act:  Combining symbolic and statistical approaches to 
language (pp. 135-156). Cambridge, MA: MIT Press. 
 

 13.  Satta, G., & Brill, E. (1996). Efficient transformation-based parsing. ACL 1996 Association for 
Computational Linguistics. 
Available at:  http://www.cs.jhu.edu/~brill/Eff_Pars.ps 
 

 14.  Sowa, J. F. (1984). Conceptual Structures:  Information processing in mind and machine (The Systems 
Programming Series). Reading, Massachusetts: Addison-Wesley Publishing Company. 
 

 15.  Yeh, A. S., & Vilain, M. B. (1998). Some properties of preposition and subordinate conjunction 
attachments. 17th International Conference on Computational Linguistics and 36th Annual 



Meeting of the Association for Computational Linguistics (COLING-ACL '98) Montreal, Canada: 
Association for Computational Linguistics. 
Available at:  http://xxx.lanl.gov/ps/cmp-lg/9808007 
 

 


	Transformation Based Learning for Specialization of Generic Event Extractions
	Recommended Citation

	Transformation Based Learning for Specialization of Generic Event Extractions
	Description/Abstract
	Keywords
	Disciplines
	Creative Commons License

	Microsoft Word - EELD_TBL_Paper_December_2002.doc

