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The Syracuse University Library
Radius Project: Development of a
non-destructive playback system
for cylinder recordings

by William A. Penn and Martha J. Hanson

Abstract

The Syracuse University Library Radius Project: Development of a non-destructive playback
system for cylinder recordings by William A. Penn and Martha J. Hanson

Syracuse University Library's Belfer Audio Laboratory and Archive (Belfer) holds nearly 20,000
cylinder recordings produced during the 'cylinder era' of 1895-1929. Many cylinders have
become deteriorated over the past one hundred years and cannot be played without suffering
serious physical damage inflicted by the sharp styli (needles) of traditional mechanical
playback machines. In some cases, even one pass of a stylus may irrevocably damage a
cylinder. In response to the playback challenges of cylinder recordings, Syracuse University
Library developed the Radius Project: Development of a Non-Destructive Playback System for
Cylinder Recordings, funded by the Institute of Museum and Library Services.

Recorded sound on a cylinder is represented by the alternating motion/velocity of the groove
over a period of time. In order to capture sounds from cylinders in a non-destructive way, the
Radius Project developed a prototype playback system that uses a laser beam to interrogate
the cylinder. The system reconstructs sounds from cylinders by using an optical heterodyne
interferometer to exploit the temporal, rather than spatial, coherence of the laser. The
interferometer obtains a precise measurement of the Doppler frequency shift (the rate of
change of optical phase shift) caused by the motion of the modulated groove in the cylinder,
using wavelength of light as the unit of measure. The ability of the Radius system to measure
the rate of change of optical phase shift may provide the optimal approach for reconstructing
historically accurate sound from cylinder recordings.

Successful completion of the Radius system will provide Belfer with the capability to preserve
the sonic content of previously inaccessible cylinder recordings by producing high fidelity,
historically accurate analog reproductions. In turn, and as copyright permits, Belfer will also be
able to meet the changing needs and expectations of twenty-first century learners by
contributing high fidelity, historically accurate digitized sounds from cylinders, thereby
enriching the historical content of the World Wide Web.
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Introduction

Syracuse University Library's Belfer Audio Laboratory and Archive (Belfer) is one of five major
archives in the United States — the Library of Congress, New York Public Library, and the
libraries of Stanford, Syracuse, and Yale Universities. Belfer holds more than 300,000 historical
sound recordings in all formats, including a collection of nearly 20,000 cylinder recordings
produced during the 'cylinder era' of 1895-1929. Of these cylinders, Belfer holds 15,000
commercially produced cylinders — approximately 85 percent of the total number of
commercially produced two-minute and four-minute cylinders released during this period.
Belfer's collection of commercially produced cylinders includes the following major labels:

e FEdison Gold Molded: Two-minute wax cylinders, of which Belfer holds at least 75 percent
(4,550) of the total numbers issued;

e Edison Amberols: Four-minute wax cylinders, of which Belfer holds at least 90 percent
(1,800) of the total numbers issued; and,

e FEdison Blue Amberols: Four-minute celluloid cylinders, of which Belfer holds at least 90
percent (7,488) of the numbers issued (commercial cylinder releases are identified by
issue numbers).

The collection includes a significant number of cylinders (approximately 2,756) issued under an
assortment of other labels, such as Columbia Records (two-, three-, and four-minute wax
cylinders); Indestructibles (two- and four-minute celluloid cylinders); U.S. Everlasting (two-
and four-minute celluloid cylinders); Lambert (two-and four-minute celluloid cylinders), and
the Anglo-Italian Commerce Company, Busy Bee, Pathé, Leeds & Catlin labels, which are
primarily two-minute wax cylinders. In addition, Belfer's collection of more than 180,000 pre-
LP disc records is one of the largest and finest in the country. Belfer also contains early radio
broadcasts, as well as hundreds of spoken word recordings covering a wide range of
personalities. Voices from the past include Thomas Edison, Amelia Earhart, Carl Sandburg,
Albert Einstein, Dylan Thomas, Margaret Bourke-White, and Albert Schweitzer.

Problems and challenges of cylinder playback

Physical deterioration

Unfortunately, a portion of Belfer's substantial collection of century-old cylinder recordings has
deteriorated, becoming moldy, brittle, and/or laced with micro-cracks. Such deteriorated
cylinder recordings cannot be played without suffering serious physical damage inflicted by the
sharp styli (needles) of traditional mechanical playback machines. In some cases, even one
pass of a stylus may irrevocably damage a deteriorated cylinder recording. However, one pass
of the stylus is rarely adequate for capturing the best sonic quality from a cylinder recording
due to the unknown variations inherent in cylinder recordings. These unknown variations result
primarily from the non-standard groove size and rotation speed typical of cylinders in the early
years of production, as well as from changes in physical dimensions due to physical aging and
damage. It is typical that the production of a high quality cylinder sonic reproduction requires
several playback sessions from one cylinder recording (Figures 1-3 present images of cylinders
in good, cracked, and moldy conditions).
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Figure 1: Image of "good" cylinder recording (c. 1902-1909).

Figure 2: Image of cracked cylinder recording (c. 1902-1909).

Figure 3: Image of moldy cylinder recording (c. 1902-1909).

Deficiencies of mechanical playback systems

In addition to the re-recording challenges presented by the unknown variations inherent in
cylinder recordings, mechanical playback systems are not only physically destructive to
cylinders, but also sonically deficient. Two primary sonic deficiencies are: 1) low signal-to-
noise ratio, which produces the familiar noisy, scratchy background interference heard by the
listener; and, 2) signal distortion, which produces "garbled" sonic signals.

Bibliographic and sonic access

The provision of adequate bibliographic and sonic access to cylinder and other recordings is a
serious challenge for sound archives in research library settings. Few archives have cataloged
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their sound recordings, making it difficult for users to determine and locate what recordings a
sound archive might contain. Belfer is one of the few sound archives that has made a strong
commitment toward providing bibliographic access to cylinder and pre-LP 78 rpm recordings.
With support from the Gladys Krieble Delmas Foundation (1998-2001), Belfer staff completed
the cataloging of the cylinder recordings collection (nearly 20,000), made strong headway in
cataloging the pre-LP 78 rpm recordings collection (nearly 180,000), and loaded the resulting
catalog records into Syracuse University Library's Web-accessible online catalog, as well as into
the Online Computer Library Center's Web-accessible WorldCat national database [1].

The provision of cost-effective sonic access to cylinder and other recordings is another serious
challenge. Since few sound archives employ full- or even part-time audio engineers, staffs rely
on expensive contract re-recording services. Cylinder recordings present a particularly difficult
challenge, since cylinder playback requires specialized technical skills offered by few audio
engineers. Contract work is expensive, funds to support sound archives are limited, the pool of
individuals who are capable of re-recording cylinders is small, and the opportunities for
training and/or apprenticeships in this area are practically non-existent. In response to the
playback challenges of cylinder recordings, the Syracuse University Library developed the
Radius Project: Development of a Non-Destructive Playback System for Cylinder Recordings,
funded by the Institute of Museum and Library Services.

The Radius Project (December 1999-January 2002)

Background

The conceptual framework for the Radius Project [2] resulted from a partnership forged in
1996 between Syracuse University Library and the University's School of Engineering and
Computer Science (ECS). At that time, these two campus partners began to develop a non-
destructive cylinder playback system for Belfer's substantial collection of cylinder recordings,
using a student/faculty research team headed by ESC faculty members Dr. William A. Penn
(Radius Project Technical Coordinator) and Dr. Frederick W. Phelps.

This student/faculty research team determined that the only practical way to totally eliminate
mechanical contact with a cylinder recording was to develop an optical system that used a
focused laser beam for sound capture — that is, a playback system that used a beam of
electro-magnetic propagation as a vehicle to interrogate the modulation of the recording
groove. For reasons of spatial resolution, the wavelength of such a beam had to be
substantially smaller than both the dimension of the groove and the recorded mechanical
wavelength of the highest frequency that is to be recovered in playback. The student/faculty
research team determined that an optical (laser) beam of light [3] would achieve this required
wavelength. Having determined this, the team next needed to determine whether to employ a
non-coherent (spatial) use or coherent (temporal) use of light.

Non-coherent use of light does not exploit the temporal phase of the return light, but such use
might exhibit spatial coherence. In a playback system that employs only spatially coherent
(non-coherent) use of light, the light reflected from a cylinder recording groove may assume
certain spatial shapes or spatial directions, depending on the physical modulation imparted by
the cylinder groove. Therefore, in a non-coherent system, these coherent light effects can be
translated into only an approximate reproduction of the groove modulation produced by the
cylinder recording. However, since the goal of the faculty/student team was to accurately
reconstruct the recorded acoustic signal of a cylinder recording, they decided to employ
coherent use of light, which exploits the temporal coherence of the laser beam.

Radius Project goals and strategy

As custodian of a collection that contains 85 percent of the total output of commercially
produced cylinders in the United States, Belfer intends to preserve and retain these original
recordings. Retention of these cylinders will allow for future capture of sound from the original
artifacts, rather than from second-generation analog and/or digital masters. This retention
strategy is similar to that taken by a research library when it decides to retain and preserve
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original manuscripts (although these may also be accessible through facsimile editions,
microfilm, and/or digital files), thereby ensuring their survival as original artifacts for a variety
of current and future access endeavors.

Therefore, as a primary custodian of our nation's cylinder recordings, Belfer needs the
capability to provide non-destructive, cost-effective, and historically accurate playback for its
cylinder recordings. The goal of the Radius Project was to develop such a playback system by
coherent use of a laser-driven optical heterodyne system configuration for sound capture.
Advantages of the Radius optical playback system include:

e Total elimination of mechanical contact with a cylinder recording;
Rejection of stylus-induced noise;
Suppression of some microscopic mechanical noises (scratches and pits) accomplished by
a small but finite area of optical integration;
High playback fidelity; and,
Precise sensing (measuring) of the velocity signal of the cylinder carrier.

The goal and strategy of the Radius system architecture is to reconstruct historically accurate
sounds from cylinder recordings. The system strategy is to obtain a precise measurement of
the cylinder recording groove modulation, which is the vertical velocity signal of the cylinder
carrier. The system achieves this by measuring the target velocity of the cylinder carrier from
optical phase shift, using an optical heterodyne interferometer to exploit the temporal, rather
than spatial, coherence of the laser. The interferometer obtains a precise measurement of the
Doppler frequency shift (the rate of change of optical phase shift) caused by the motion of the
modulated groove in the cylinder, using wavelength of light as the unit of measure. This
precise sensing (i.e., measuring) of the velocity signal of the cylinder carrier is the unique
aspect of the Radius system concept and the ideal variable to construct in an optical playback
system for the reproduction of historically accurate sound. Indeed, the Radius system strategy
may provide the optimal approach for reconstructing historically accurate sound from cylinder
recordings.

Radius Project benefits

Successful completion of the Radius cylinder playback system will provide Belfer with the
capability to produce high fidelity, historically accurate sonic access to its collection of nearly
20,000 cylinder recordings. In addition, successful completion will also provide Belfer with the
eventual capability to:

e Offer non-destructive, cost-effective cylinder re-recording services for other archives,
historical associations, individual collectors, and others throughout the United States and
beyond;

e Provide enhanced bibliographic and sonic access to cylinder recordings by providing links
from each MARC bibliographic record (through the 856 field) to digital sound and image
files associated with each recording, thereby offering users a richer contextual setting for
the original recordings; and,

e Meet the changing needs and expectations of 21st century learners by providing high
fidelity, historically accurate sonic reproductions (in analog tape, cassette, and/or digital
formats) of Belfer's previously inaccessible cylinder recordings to support and enhance
learning, teaching, and research activities.

Relationship of the Radius Project to other initiatives

When Syracuse University Library submitted the Radius Project proposal to IMLS in 1999, the
advent of digital technology had already sparked a few groundbreaking institutional initiatives
to deliver portions of historical sound collections via the World Wide Web. At that time, as part
of the American Memory Project, the Library of Congress provided digital access to 81 Edison
disc recordings at their Inventing Entertainment: The Motion Pictures and Sound Recordings of
the Edison Companies Web site [4], and planned to provide access to cylinder recordings, as
well. Indiana University Library's IMLS-funded Digitizing and Preserving the Hoagy Carmichael
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Collections project created a model for integrating multimedia materials, including sound
recordings, photographs, and printed and textual materials, and distributing them via the
Internet [5].

While developing the Radius Project, the authors of the proposal were aware that other
researchers had conceived and investigated the use of an optical beam for sonic playback. The
two most pertinent initiatives to the Radius Project proposal at the time were the:

e Laser-scanning phonograph record player by William K. Heine (Heine, 1977), developed
specifically for disc records; and,

e Laser-beam reflection method developed by T. Iwai, T. Asakura, T. Kawashima, and T.
Ifukube (Iwai et al., 1986) in the early 1980's (at the Research Institute of Applied
Electricity at the University of Hokkaido in Japan), created to re-record wax cylinders from
indigenous peoples living in the northern Japanese islands.

However, it is believed that these two investigations are based on non-coherent use, rather
than coherent use of light, as pursued in the Radius Project.

Features of sound and recordings

Physics of sound propagation

The features of sound and recordings demonstrate the phenomenon of sound propagation in a
compressible medium — air. This phenomenon demonstrates that the local (molecular) velocity
propagates as a wave that is synchronistic with the acoustic pressure wave. The analogy of
surface waves propagating on a body of water may be helpful in understanding the physics of
sound propagation. When a person riding in a boat experiences a passing water wave, it is a
common experience that the boat 'bobs' up and down, but does not move with the wave. It is
also easy to appreciate that no water (in a global sense) moves with the wave. Rather, the
water 'sloshes' up and down and, to some extent, forwards and backwards, as the wave
passes through. The important point is that there is no transport of the medium (water) with
the wave at the wave velocity. The propagation is a result of an interchange between potential
energy of the water (the wave crest being higher than the trough) and kinetic energy
(involved in the small localized motion of the water, the most important part being the up and
down motion).

The wave analogy is similar to the propagation of an acoustic wave in air. As the acoustic wave
moves through a point in space, the air molecules move back and forth in the direction of the
wave propagation, but are not transported with the wave. Rather, the air stays close to its
original location, but the small back-and-forth motion causes alternate compression and
rarefaction (decompression) of a given point of air. Thus, this back-and-forth motion gives rise
to a "pressure wave" (compression) and an accompanying displacement or excursion of the air
molecules, which in turn also implies a molecular velocity (as opposed to the wave velocity).
When such a wave impinges on a microphone diaphragm, its motion assumes that of the
adjoining medium. If the output of this microphone (usually amplified) is applied to a cutting
stylus that is creating a mechanical recording, the stylus motion (and, therefore, the contour of
the recorded groove) follows the molecular velocity of the air. The molecular velocity of the air
also represents the pressure wave (see Figure 4).
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Figure 4: Features of sound and recordings.
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In addition, the velocity or pressure determines acoustic intensity for all acoustic frequencies,
while the molecular (or "virtual stylus") displacement varies as the reciprocal of frequency for a
given intensity. In the context of the Radius Project, it is important to understand that acoustic
pressure and molecular velocity in a sinusoidal acoustic wave (a pure tone) are in phase with
each other, but displacement is not in phase with either of these. This confirms that molecular
velocity is the key to determining the truest representation of the actual sound signal.

Achieving high playback fidelity

In order to achieve high playback fidelity, the cylinder playback speaker "cone" needs to
accurately imitate the motion of the microphone. One of the important advantages of the
Radius concept is that the mechanical modulation velocity imparted to the "virtual stylus" of
the system is directly sensed (measured). The Radius system is able to measure this velocity
in a fundamentally accurate way by using a laser beam and an optical interferometer.

Figure 5 illustrates a laser beam that is projected on a target (mirror), where it is reflected
back into an optical receiver. Consideration of this figure will reveal that the number of optical
wavelengths represented in the path from the laser to the receiver will change if the mirror
moves toward or away from the laser source. Specifically, this path will vary by twice the
number of wavelengths that the mirror moves. This phase shift is measured by the Radius
interferometer by using a comparison of the optical phase in a "reference leg" with that in the
"signal leg," which is part of the interferometer. If the mirror is continuously moving (implying
a velocity), then the phase shift measured by the interferometer will also be changing
continuously. This can be characterized as a "Doppler frequency shift" of the light in the signal
leg, and is analogous to the change in the pitch of a sound when one is moving with respect to
the source of that sound. In the optical case, the wavelength is significantly smaller than that
of the sound and, therefore, the Doppler frequency shift imparted to the signal is much larger
for a given value of velocity.
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Figure 5: The unique Radius concept: Measuring target velocity from optical phase
shift.

Radius system design

The Radius system architecture is comprised of five major sub-systems:

Cylinder rotation and transport sub-system;
Optical delivery sub-system;

Heterodyne interferometer sub-system;
Signal demodulator; and,

Tracking sub-system.

Figure 6 illustrates the essential sub-systems of the complete apparatus.

and transport system

. Audio
Op_ncal M Interkrometer >

delivery system Demodulator F———»
system

3
3
Tracking
system

Figure 6: Radius system diagram.

This figure shows that the system delivers a laser beam through an optical delivery system to
the groove of the rotating cylinder. The light is reflected back through this delivery system to
the optical interferometer, and then to the demodulator that converts the frequency
modulation signal to an audio signal voltage. A tracking system controls a mirror in the
delivery system that automatically keeps the beam directed into the center of the groove.

Radius cylinder rotation and transport sub-system

To expedite the construction of a rotation and transport system, the Radius team used as a
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base the Archeophone cylinder playback system invented and manufactured by Henri Chamoux
(Paris, France). Mr. Chamoux's device is a very high quality unit that uses a conventional
playback stylus. The Archeophone provides several interchangeable mandrels on which the
cylinders are mounted and, therefore, can play a variety of types of cylinders. The device
accommodates prescribed rotation speeds by using a high precision rotation rate regulator, for
which Mr. Chamoux also provides a digital speed gauge and display.

The Radius technical team modified (with Mr. Chamoux's permission) the Archeophone for use
in the Radius system. They modified the base of the device to raise the mounting plate of the
rotator so that the axis of the rotator is on the same level as the hub of the tone arm. The
team discarded the tone arm and stylus cartridge, and replaced them with an optical delivery
system or "optical head" designed and constructed by the Radius technical team (see Figure
7).

Figure 7: Cylinder driver (modified Archeophone with optical head).

Radius optical delivery sub-system

The Radius optical delivery sub-system consists of:

e A pair of tracking detectors through which the laser beam passes between and then
immediately impinges on the cylinder groove;

e An electrically controlled mirror ("galvanometer") that directs the fine position of the laser

beam;

A fixed mirror to feed the controlled mirror;

A main objective lens that focuses the beam to a small spot at the groove;

A micrometer controlled translation stage to provide focusing control;

A small telescope to expand the cross section of the beam for focusing by the object lens;

An optical fiber "collimator" that matches the small light beam in the optical fiber feed to

the telescope; and,

e An output fiber which attaches to the interferometer.

The action of the telescope and final objective lens provides a focused beam in the groove that
has a focused diameter of approximately 10 microns. The beam is reflected from the bottom of
the groove, and passes back through the system in the reverse direction, and finally reaches
the same output fiber that delivered it. The beam then passes through this fiber also in the
direction opposite to the original projected beam, and a beamsplitter in the interferometer
sorts the projected beam and received beams. The fact that the transmitted beam and
reflected (or received) beam travel along the same path in opposite directions create an
architecture that is commonly designated a "monostatic" system. Some of the light that is
reflected from the cylinder groove is scattered, and does not re-enter the interferometer. This
light is intercepted by the two tracking detectors, and this provides a means for developing a
control for the tracking system.

The entire optical head is mounted on a plate provided with a means for attachment to the
Archeophone tone arm stub in the rear of the head, and the front of the optical head is
provided with wheels that ride on a monorail situated on the Archeophone top plate of the
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housing of the hub drive system (see Figure 8). Thus, the entire optical head moves along with
the precessing cylinder groove during playback, and is controlled by the tracking system.

Figure 8: Radius system optical head and tracking sensor.

Radius optical heterodyne interferometer sub-system

The Radius optical heterodyne sub-system was constructed using optical fiber. The original
research and development effort in 1996 achieved "proof of concept" using conventional free
space beam propagation, characterized as using "unguided" optical beams. In the current
Radius system, the optical beams are "guided" in optical fibers (see Figure 9).

Figure 9: Radius system fiber interferometer.

Figure 10 illustrates the essentials of an optical heterodyne interferometer.
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Figure 10: Essentials of an optical heterodyne system.

The laser provides a source of coherent light as a beam of small diameter, usually about one
millimeter (mm) in diameter. The particular laser used in the Radius design is a Helium-Neon
(HeNe) laser operating at a wavelength of 633 nanometers (nm), which provides a visible
beam with a red color. The heterodyne sub-system contains a beamsplitter that splits the laser
into two directions, creating a reference beam and a signal beam (Figure 9 shows the
reference leg as the frequency shifted beam and the signal leg as the target beam). One of the
two beams is frequency shifted, so that the optical frequency in the reference leg differs from
that in the signal leg by this shift. Theoretically, either leg can provide the frequency shift — in
the original unguided system the shift was accomplished in the reference leg (as shown in
Figure 10), but in the present Radius system the shift is accomplished in the signal leg.

The reference leg is routed by fiber in the Radius guided case (by a mirror in the original
unguided case) to an output beam combiner, which contains a beamsplitter used in reverse.
The signal leg directs the beam to the target (i.e., the cylinder groove) where another
beamsplitter reflects and directs the light to the final output combiner. The two combined
beams, now collocated, pass to an optical detector, which is a square-law device. The square-
law characteristic enables the optical detector to produce a mixing of the two beams that
generates the sum and difference frequencies of the two optical beams. The component
represented by the difference frequency carries the original phase modulation imparted to the
laser beam by the rotating cylinder groove. This signal is found in the electronic output of the
optical detector, and can be demodulated to recover the desired audio signal by electronic
circuits.

It is instructive to list the actual values of the frequencies used in the interferometer in hertz
(cycles per second). The optical frequencies are very large, and even a small fractional shift
represents a fairly high electronic radio frequency as an output carrier. We can suppose that
the laser frequency, corresponding to the wavelength of 633 nm (red light), is exactly
474,000,000,000,000 hertz (the exact number to this many places depends on a large nhumber
of circumstances). In Figure 10, this would be the frequency in the signal leg. The selection of
the frequency shift is 100,000,000 hertz (100 megahertz). Therefore, the frequency in the
reference leg becomes 474,000,100,000,000 hertz. When these two beams reach the output
optical detector they "beat" with each other to produce the difference frequency of
100,000,000 hertz, which is the same as the original frequency shift. This beat frequency is
obtained in electronic form on the output side of the detector. The phase modulation found on
the new lower frequency carrier (100 MHz) is identical to that on the original optical signal
beam. The selection of the frequency shift was strategic, in that 100 MHz is in the center of the
frequency modulation (FM) broadcast band. Thus, this signal can be demodulated and played
on an ordinary FM radio receiver.

The optical frequency shift is accomplished by an acousto-optical (AO) cell (see Figure 11). A
sinusoidal drive (usually applied by an electro-mechanical transducer attached to one end of
the cell) acoustically energizes a polished optically transparent cell. The light beam to be
frequency-shifted passes through the cell in a direction at right angles to the axis of the
acoustic propagation. The moving wave fronts of acoustic compression and rarefaction
(resembling a moving "Venetian blind") cause diffraction of the light. This diffraction of light is
manifested by an array of exiting beams, all resembling the input beam, but all traveling in
different directions. These are called "orders" of diffraction, and the angles of the orders tend
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to be equally spaced. The extension of the input beam on the output side is called the "zero"
order, where the "first order" of diffraction (which is the diffracted beam closest to the zero
order) is shifted by an amount equal to the acoustic excitation. This effect is due to a Doppler
shift imposed by the moving acoustic grating, and one only needs to create an aperture that
will pass the first order, and block the other orders to obtain the desired frequency-shifted
reference (or signal) beam.

. Incoming Laser Bearn

Sgnal Generator
100hTH:

-2 Oxrder

-1 Order

2 Oxder

1 Order 0 Order

0 Order = Laser Frequercy
1 Order = Laser Frequency + 100MHz
-1 Order = Laser Frequercy - 100 Mz

Figure 11: Acousto-optic cell.

In the Radius system architecture, all optical connections are guided by fiber within in a
monostatic interfermometer sub-system (see Figure 12). Frequency shifting occurs in the signal
leg to minimize spurious signals generated by cross talk between the acousto-optical generator
and the detector circuit.

Reference leg

Rotating

AO cell cylinder

Signal leg

Dekctor

Figure 12: Radius monostatic interferometer diagram.

Radius signal demodulator sub-system

As noted earlier, since the electronic carrier frequency obtained from the optical detector
(which is also the acoustic excitation frequency) is 100 MHz — the center of the FM radio band
— the simplest demodulator is an ordinary FM radio. The frequency demodulation provided by
the electronic discriminator found in every FM radio is precisely the process needed to recover
the molecular velocity signal. The virtual stylus velocity provided by the acoustically modulated
cylinder groove is exactly proportional to the Doppler frequency shift imparted to the optical
signal beam by the modulation. Therefore, the desired modulation signal comes to the
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demodulator as a frequency modulation of the 100 MHz carrier frequency.

For reasons of radio frequency isolation, and accurate demodulation, the Radius technical team
constructed an electronic "phase locked loop" for use, instead of an ordinary FM radio. The
linearity and isolation of the phase locked loop is superior to other discriminator designs (see
Figure 13).

Figure 13: Completed Radius "phase locked loop" signal demodulator.

Radius tracking sub-system

The system must provide a way to steer the laser beam into the center of the groove during
the playback process. Figure 14 is a microphotograph of a typical area on an Edison cylinder
recording. It exposes five grooves, where the second groove from the top shows a relatively
high audio-recorded frequency and the fourth groove down displays a lower frequency. Groove
spacing is 250 microns center-to-center.

Figure 14: Microphotograph of cylinder grooves.

The tracking is based on a comparison of the strength of scattered light in directions to the left
and right of the main reflected signal beam. Figure 15 shows groove cross sections and how
the light is directed in reflection, as a function of beam position. In the left two diagrams the
beam is shown aligned with the groove center. In the upper right diagram the beam is too far
to the right (left) and thus the scattered light is predominant to the left (right).
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Figure 15: Groove cross-sections — How light is directed in reflection.

Figure 16 illustrates how these two components are intercepted by the right and left auxiliary
detectors that have been seen in the picture of the optical head in Figure 8, and described in

that previous section of this discussion. Figure 16 also suggests how the two detector outputs
are subtracted to produce a tracking error signal.

2 bk positions
(2possbk P Differsrtial
anplifier

Opticalto
electrovdc detector

Figure 16: Tracking error detection.

This tracking error signal is applied to two control actuators. The low frequency component of
the error signal is filtered out and used to control, after appropriate power amplification, a
motor drive lead screw that drives the optical head hub (the previous tone arm hub), which
positions the entire optical head so that it approximately follows the "drift" of the precessing
groove on the rotating cylinder. The high frequency component of the error signal is used to
position the tracking mirror that was also described in the earlier discussion of the optical
head, and this tracking mirror is also visible in the photograph of the optical head shown in
Figure 8. In that photograph, the tracking mirror will be located as the nearest device to the
slit between the front pair of tracking detectors. It is this mirror that accomplishes the precise
quick-reacting tracking function. Thus, the overall tracking system is a two-tiered system to
provide drift and fine tracking functions.

Testing Radius system performance

A meaningful test of Radius system performance required confirmation of the interferometer
concept. To this end, the Radius technical team substituted a small mirror for the cylinder
groove as the reflecting target. This mirror was driven by a speaker coil with a signal
equivalent to that found in a rotating cylinder — that is, the motion of the mirror was made to
emulate the groove motion of a cylinder recording. In Figure 17, the small mounted mirror is
located in the right side of the photograph and the objective lens is situated in a mount in the
center. The receiving telescope located in the left side of the photograph is the same telescope
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used in the optical head (it was removed and relocated for use in this simulation). The
remaining components of the Radius system were undisturbed.

Figure 17: Speaker simulation set-up.

The team used two types of signals for testing the interferometer. Music served as the first
signal, and the sound recovered by the Radius system was subjectively judged by the Radius
technical team to be of quite high fidelity. Serving as the second signal was a pure
electronically generated tone (sine wave) for which the frequency was 250 hertz. Again the
amplitude of motion of the driven mirror was made equivalent to typical motion amplitudes
found on recorded cylinders. Figure 18 shows a computer-calculated spectrum of FM pre-
demodulated spectrum produced by such a tone, using light wavelength as the basis of the
calculation.

HIMONMC vaues of Gicaital FIM, bata = 220
Y T T Y Y

Figure 18: Speaker simulation calculated spectrum.

Figure 19 is a photograph of an actual spectral display obtained during the second test on a
laboratory spectrum analyzer. The excellent agreement between the calculated and measured
spectra is evident.
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Figure 19: Speaker simulation measured spectrum.

The simulation with the driven mirror clearly demonstrates the viability — the proof of concept
— in a definitive way of the heterodyne interferometer concept for this application. At this
time, however, the quality of sound generated by the Radius system needs substantial
improvement, since optical losses in the interferometer that generates the desired playback
signal, and other areas in the system, exceed original expectations. As a result, the electronic
signal currently generated by the Radius system falls below the threshold needed for good FM
discriminator action, causing the existing shortfall in quality of sound recovery. The Radius
technical team has already identified the areas in which there is optical loss, and has
developed a strategy for resolving such losses.

Conclusion

Syracuse University Library believes that it is essential to complete the development of the
Radius system in order to preserve and enhance accessibility to its collection of 20,000
cylinder recordings. This collection represents approximately 85 percent of the total number of
commercially produced two-minute and four-minute cylinders released during the 'cylinder era’
of 1895-1929. The unique strategy of Radius system is the use of a heterodyne interferometer
to generate the desired playback signal from cylinder recordings. The interferometer obtains a
precise measurement of the Doppler frequency shift (the rate of change of optical phase shift)
caused by the motion of the modulated groove in the cylinder, using wavelength of light as the
unit of measure. This ability of the Radius system to measure the rate of change of optical
phase shift may provide the optimal approach for reconstructing historically accurate sound
from cylinder recordings.

Although the Radius system has recovered voice and music from actual cylinders, the quality
of recovery has been poor due to losses of optical power. However, the laboratory simulation
using a simulated target (an audio driven mirror) has demonstrated the viability — proof of
concept — in a definitive way of the heterodyne interferometer concept for the recovery of
recorded audio signals from Edison-era cylinder recordings.

Successful completion of the Radius system will provide Syracuse University Library's Belfer
Audio Archive and Laboratory with the capability to preserve the sonic content of Belfer's
previously inaccessible cylinder recordings cylinder recordings by producing high fidelity,
historically accurate analog reproductions. In turn, and as copyright permits, Belfer will also be
able to meet the changing needs and expectations of twenty-first century learners by
contributing high fidelity, historically accurate digitized sounds from cylinders, thereby
enriching the historical content of the World Wide Web. B
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Notes

1.The Online Computer Library Center, Inc. (OCLC) is a non profit membership organization
that serves 43,559 libraries in 86 countries and territories around the world.

2. The term "radius" derives from the Latin radius solis (beam of light).
3. The term "light" is meant to include a wide spectral band including, but not limited to the

spectrum of visible light. The groove dimensions and the shortest mechanical wavelength are
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both on the order of 0.1 millimeters. Then the appropriate light wavelength might be anywhere
in the range of 10 microns (0.01 mm), which is referred to as a "far infrared" wavelength, to
the ultraviolet band (in the general region of 0.1 microns).

4, "Inventing Entertainment: the Motion Pictures and Sound Recordings of the Edison
Companies," at http://memory.loc.gov/ammem/edhtml/edhome.html, accessed 4 April 2003.

5. "The Hoagy Carmichael Collection, 1899-1981," at
http://www.dlib.indiana.edu/collections/hoagy/, accessed 4 April 2003.
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