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Abstract 

 In the fixed-effects stochastic frontier model an efficiency measure relative to the best 

firm in the sample is universally employed. This paper considers a new measure relative to the 

worst firm in the sample. We find that estimates of this measure have smaller bias than those of 

the traditional measure when the sample consists of many firms near the efficient frontier. 

Moreover, a two-sided measure relative to both the best and the worst firms is proposed. 

Simulations suggest that the new measures may be preferred depending on the skewness of the 

inefficiency distribution and the scale of efficiency differences. 
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1 Introduction

There are several ways to estimate time-invariant technical efficiency in stochastic frontier models

for panel data. Compared to maximum likelihood or generalized least-squares estimation (Battese

and Coelli, 1988), fixed-effects estimation (Schmidt and Sickles, 1984) has the advantage of not

requiring distributional assumptions on the error components. Without these distributional as-

sumptions, efficiency levels cannot be identified directly. Hence, a measure relative to the best firm

in the sample is universally employed (Schmidt and Sickles, 1984). In this case only the efficiency

distance to the best firms matters. The worst firm in the sample is ignored. For example, sup-

pose there are 3 firms with efficiency levels 0.30, 0.90 and 0.99 respectively. It appears that firm

2 is quite efficient. If the efficiency level of the worst firm improves to 0.89 due to technological

change, the distance between the firm 2 and the best firm is unchanged. However, firm 2 is now

almost as inefficient as the worst firm. This example shows that using the worst firm as a reference

point provides a different perspective on technical efficiency. Actually, in competitive settings the

worst firm is of particular importance because the marginal cost of this firm may determine price.1

This paper considers an alternative efficiency measure relative to the worst firm in the sample and

compares this measure to the traditional relative efficiency measure on a variety of metrics.

More generally, it may be interesting to use both the best firm and the worst firm as reference

points. Therefore, a two-sided measure relative to both the best firm and the worst firm in the

sample is also proposed. Different from efficiency measures relative to the best or to the worst firms

alone, the two-sided measure linearly scales the efficiency level onto the unit interval with efficiency

scores of 0 for the worst firm and 1 for the best firm. Consequently, the distance of the efficiency

level between any firms becomes informative.

This paper discusses fixed-effects estimates of the measure relative to the worst firm and the

1We would like to thank a referee for pointing this out to us.
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two-sided measure (relative to the best and the worst). We focus on estimation bias and inference.

The level of the bias of relative efficiency estimates is related to the skewness of the underlying

distribution of technical (in)efficiency. Since the “max” operator favors positive noise, the tradi-

tional estimate has larger bias when there are more efficient firms in the population. Qian and

Sickles (2008) describe this scenario as “mostly stars, few dogs.” When there are "mostly stars"

our estimate (relative to the worst firm) is less biased than the traditional estimate. However, not

surprisingly, the bias results are reversed when there are "mostly dogs." When the distribution

of (in)efficiency is symmetric, the bias results of the two estimators are identical. These results

are borne out in our simulations based on three parameterizations of the Beta distribution. The

two-sided estimate balances these sources of bias (in a sense) as we shall see in the sequel.

Inference on estimated technical efficiency is often important, and it proceeds with construction

of confidence intervals. When distributional assumptions are made on the two error components

(noise and inefficiency), the theory for confidence interval construction is straightforward (Horrace

and Schmidt, 1996). The intervals are valid in both finite samples and asymptotically. In the case

of fixed-effects estimation, confidence intervals for technical efficiency may be based on asymptotic

normality, when the sample size is large (Horrace and Schmidt, 2000). However, when the time

dimension of the data is small, the preferred method to construct confidence intervals without

distributional assumptions is to perform the bootstrap. Kim, Kim and Schmidt (2007) provide

a detailed and intuitive survey on constructing varieties of bootstrap confidence intervals. They

argue that the “max” operator of the traditional estimate (relative to the best firm) produces

bias, leading to low coverage rates when constructing simple bootstrap confidence intervals. Our

proposed estimates suffer from the same source of bias. However, the coverage rates of bootstrap

confidence intervals are a function of the magnitude of the bias which is related to the skewness

of the underlying distribution of (in)efficiency and to the estimate employed (i.e., relative to best,

relative to worst, or two-sided).
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Ultimately, the fixed-effects estimates provide information on the skewness of the underlying

distribution of (in)efficiency. Given this skewness information there maybe an empirical trade-off

between bias and the efficiency measure employed. For example, if the data suggest there are

"mostly stars, few dogs", then the traditional estimate has large bias and our estimate (relative

to the worst) has small bias. However, a measure relative to the best firm may be of interest.

In this case, the empiricist must decide which is more important: bias or the empirical relevance

of the measure. (This trade-off also has implications for bootstrap inference.) Of course, if a

measure relative to the worst firm is needed, then there is no trade-off in this case. This trade-off

underscores the fact that the proposed estimates are alternatives to the traditional estimates and

that all three estimates are measuring different quantities (although they are all normalizations to

the unit interval, as we shall see). There is no sense in which the estimates are substitutes; they

are complements that simply add to the empiricist’s toolbox.

The paper is organized as follows. The next section discusses the efficiency measure relative to

the worst firm, our proposed estimate of this measure, and performs simulations to compare the

bias of the estimate to that of the tradition estimate under different (in)efficiency distributions.

Section 3, introduces a two-sided efficiency measure that pegs relative efficiency not only to the

most efficient firm in the sample but also to the least efficient firm. A simulation study of its bias is

also conducted. In section 4 bootstrap confidence intervals are discussed for the different measures,

and a simulation study of coverage rates and interval widths is provided in the spirit of Kim, Kim

and Schmidt (2007). Our contribution is to demonstrate how these measures and their estimates

perform in finite samples under different skewnesses of the distribution of technical inefficiency.

Section 5 applies the estimators to a panel of Indonesian rice farms, and the salient features of all

three measures are discussed and compared. The last section summarizes and concludes.
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2 Relative Efficiency Measures

The stochastic frontier model for panel data is:

yit = α+ x0itβ − ui + vit, i = 1, · · · , N, t = 1, · · · , T. (1)

The error term contains two parts: time-invariant ui ≥ 0, a measure of technical inefficiency; and

vit ∼ iid(0, σ2v). A large value of ui implies that the firm i is inefficient. Usually, technical efficiency is

defined as ri = exp(−ui) under a log-linear specification of the Cobb-Douglas production function.2

Letting αi = α−ui, slope parameter β can be estimated consistently using fixed-effects estimation.

Call this estimate bβ. The usual estimate of αi is bαi = yi − x0i
bβ, where yi and xi are within-group

averages. However, ui is unidentified without additional assumptions. The literature suggests an

efficiency measure relative to the best firm u∗i = maxj αj − αi = ui − minj uj and its estimate

bu∗i = maxj bαj − bαi, where the bαi are fixed-effects estimates of αi (Schmidt and Sickles, 1984).
Correspondingly, when output is in logarithms, relative technical efficiency is defined as r∗i ≡

exp(−u∗i ) with its fixed-effects estimate br∗i ≡ exp(−bu∗i ). We call u∗i the max-measure or the
traditional measure.

In the stochastic frontier model (1), the efficient frontier is defined as the best firm using minj uj

or maxj αj . Hence, u∗i measures technical inefficiency as the deviation from this frontier. Similarly,

we can define the inefficient frontier as the worst firm using maxj uj or minj αj , and measure

technical efficiency as

u∗∗i = αi −min
j

αj = max
j

uj − ui. (2)

This is simply the deviation from the inefficient frontier. We call u∗∗i the min-measure. Its

corresponding technical efficiency score is r∗∗i = 1 − exp(−u∗∗i ). Using exp(−x) ≈ 1 − x for small

x, r∗∗i is an approximation of u∗∗i on the unit interval. To fix ideas, we image that ui has some

2If Y = e−uevf(x, β), then e−u is technical efficiency for y = lnY and f(x, β) = k
j=1 x

βj
j , say. Even if this is not

the production function in mind, empiricists often use the measure ri to normalize ui to the unit interval.
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upper support bound u, so that realizations of ui cannot be too large. Then minj αj approximates

α− u, and u∗∗i approximates u− ui ≥ 0, the deviation from the inefficient frontier. The concept of

a upper bound for inefficiency was recently considered in Qian and Sickles (2008). Indeed, "using

this bound as the inefficient frontier, we may define inverted efficiency scores in the same spirit of

Inverted DEA described in Entani, Maeda, and Tanaka (2002)."3 The corresponding fixed-effects

estimates of the min-measure are:

û∗∗i = α̂i −min
j

α̂j , (3)

r̂∗∗i = 1− exp(−û∗∗i ).

Using the same arguments as Schmidt and Sickles (1984), û∗∗i is consistent for u∗∗i = u− ui, as

T →∞ and N →∞. When the production function is Cobb-Douglas and output is in logarithms,

the r∗i has a natural interpretation: it is the true percentage of the output of firm i relative to the

efficient firm for a fixed set of input, so r∗i is the way we would naturally measure efficiency for

a Cobb-Douglas production function. In this case the proposed measure, r∗∗i , does not have this

natural interpretation, however (as already mentioned) performance relative to the inefficient firm

may be relevant, because the marginal cost of the inefficient firm may equal price in competitive

markets (markets where N is large and u is small). When output is not in logarithms or there is no

particular production function in mind, r∗i ’s interpretation is less clear, and it may be interpreted

as a normalization to the unit interval of the measure u∗i , as it quantifies inefficiency relative to the

most efficient firm. Interpreted this way, the nonlinear exponential normalization of r∗i may distort

the scale of u∗i . The proposed measure r
∗∗
i has a similar interpretation but relative to the least

efficient firm, and it too may distort the scale of u∗∗i . Either way, the alternative measure, r
∗∗
i , may

prove useful to empiricists, particularly if bias and confidence interval coverage are important (as

we shall see).

3Qian and Sickles (2008). Indeed, Qian and Sickles consider cross-sectional (T = 1) and random-effects estimation
of u. Hence, the current paper and the Qian and Sickles papers are complements.
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Ultimately we subject these estimates to finite sample simulations and compare their perfor-

mance under a variety of assumptions on the distribution of inefficiency. (In all cases the distribution

has bounded support from above and below, so the min-measure has a population interpretation.)

However, it is useful to consider the theoretical biases. In particular, the biases of û∗i and û∗∗i are

directly comparable, even though they estimate different measures.4 The bias of the max-measure

estimate is:

bmax = E(û∗i )− u∗i = E

∙
max
j

α̂j − α̂i − (max
j

αj − αi)

¸
= E(max

j
α̂j −max

j
αj)−E(α̂i − αi)

= E(max
j

α̂j)−max
j

αj ,

since E(α̂j) = αj for each j. Notice that the bias is not firm-specific. The bias will be largest

when there is much uncertainty over the identity of the best firm (maxj αj) in the population. Per

Horrace and Schmidt (1996), this occurs when T is small or when the variability of the ui is large.

Uncertainty over the best firm is also worse when there are many firms in the population (αi)

close to being best (maxj αj). This is likely to occur when the distribution of ui is skewed to the

right: "mostly stars, few dogs". In this paper, we use the Beta distribution B(a, b) to model three

cases of the distribution of ui: B(2, 8) "mostly stars, few dogs", B(8, 2) "mostly dogs, few stars",

and the symmetric distribution B(2, 2) "few stars, few dogs". See Figure 1. The discussion above

suggest that ceteris paribus, the bias, bmax, is small in the case of "mostly dogs, few stars". (It

is interesting to note that most Monte Carlos studies of the stochastic frontier model involve the

truncated normal distribution which can only be skewed in the opposite direction: "mostly stars,

few dogs. See, for example, KKS, 2007.)

4 It is not entirely clear how to compare the theoretical bias of the r̂∗i and r̂∗∗i . Also, per Kim, Kim and Schmidt
(2007) coverage rates for bootstrap confidence intervals on û∗i (and û∗∗i ) converted to intervals on r̂∗i (and r̂∗∗i ) are
better than coverage rates on r̂∗i (and r̂∗∗i ) directly, so understanding the bias of the û

∗
i (and û∗∗i ) helps us better

understand the coverage rates of the preferred intervals.
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Similarly, the bias of the min-measure estimate is bmin = E(minj α̂j) −minj αj . Here, bias is

large in magnitude when there is uncertainty over the worst firm in the population, which will

be worse when the are many firms in the population (αi) close to being worst (minj αj). This

corresponds to the case where the distribution of ui is "mostly dogs, few stars". While we cannot

know which of the biases, bmax or bmin, will be larger in magnitude in any empirical analysis, it

would be easy to speculate based on one’s knowledge of the relative frequencies of dogs and stars

that occur in the sample. Obviously when the relative frequency of dogs and stars is equal, one

would speculate that the biases be equal in magnitude. These types of results are borne out in

simulations that follow.

Table 1 reports the simulation results on the biases bmax and bmin. Ignoring regressors in

equation 1, simulations are performed with vit ∼ iidN(0, σ2v) and ui distributed B(8, 2) or B(2, 2)

or B(2, 8). Each Beta distribution represents different efficiency scenarios as described above. As

is standard in SF model simulations, we define γ = V ar(u)/(σ2v + V ar(u)) and vary σ2v so that

γ = 0.1, 0.5 and 0.9. The γ is a "signal to noise ratio" measure, so small γ indicates a particularly

noisy experiment. We focus on the cases where T is small and bias of the estimates of the min-

and max-measures will be largest, so we fix T = 10. We consider four values of N = 10, 20, 50 and

100.

The bias analysis in Table 1 contains no surprises. Bias for both estimates is increasing in N

(for fixed T ) and decreasing in γ as uncertainty over the best and worst firms in the population

increases. Varying the skew of the distribution of inefficiency also produces predictable results.

The max-measure estimate outperforms our min-measure estimate when the distribution of ineffi-

ciency is B(8, 2), while the min-measure estimate outperforms the max-measure estimate when the

distribution of inefficiency is B(2, 8). Compare the 0.077 of B(8, 2) and 0.122 of B(2, 8) for measure

u∗i (first row of results) to the 0.125 of B(8, 2) and 0.077 of B(2, 8) for measure u
∗∗
i (second row).

This near-perfect symmetry of the results across the two inefficiency distributions occurs every-
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where in the table for obvious reasons. When the inefficiency distribution is symmetric, B(2, 2),

the estimates perform equally with any differences in bias being caused by sampling variability of

the simulations. Compare 0.097 for u∗i to 0.099 for u
∗∗
i in the first and second rows of results for

B(2, 2). The implications are clear: in an industry marked with mostly stars and few dogs, the

"min" operator in the min-measure estimate induces a smaller bias than the max operator of the

max-measure estimate. Put more generally, the min-estimator is less biased than the max-estimator

when the industry under study has many efficient firms. (In competitive markets this may be the

relevant case.) In any empirical exercise, if bias concerns outweigh the choice of the inefficiency

measure employed (u∗i vs. u
∗∗
i ), then the choice of estimator should be based on prevailing efficiency

market conditions in the industry under study. Knowledge of the distribution of inefficiency (up

to location) is contained in the distribution of the estimated αi and can be used used to inform

these empirical choices.

3 Two-Sided Measure

We now consider a two-sided measure that incorporates both the max operator and the min oper-

ator. The motivation of the two-sided measure is the issue of scale. By scale we mean the way in

which estimators are normalized (transformed) to the unit interval. For the max-measure we have

the normalization r∗i , which rescales (distorts) efficiency differences with the exponential function.
5

Due to the non-linearity of the exponential function, technical efficiency differences between firms

in the low range of br∗i are smaller than those in the high range, for a given difference in bαi, and
are, therefore, not comparable. Hence, efficiency differences in the low range of br∗i are less informa-
tive. This creates a distortion in the efficiency differences for br∗i when it serves as a normalization
for −bu∗i . The normalization of the min-measure, r∗∗i , also nonlinearly rescales (distorts) efficiency

5This idea of distortion is based on the idea that r∗i ≈ u∗i , for small u
∗
i . Obviously if output is in logarithms, then

r∗i is not simply a normalization; it is the true percentage of the output of firm i relative to the efficient firm for a
fixed set of inputs. However, the normalization could magnify the bias associated with estimating u∗i . If output is
not in logarithms, then r∗i is simply a normalization.
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differences.

An alternative (or complementary) efficiency measure that does not distort efficiency differences

yet normalizes efficiency scores on the unit interval is the two-sided:

ei ≡
αi −minj αj

maxj αj −minj αj
,

with estimate

bei ≡ bαi −minj bαj
maxj bαj −minj bαj .

Compared to br∗i or br∗∗i , technical efficiency differences (bei − bej) are not distorted:
bei − bej = bαi − bαj

maxj bαj −minj bαj .
Since bαi is a consistent estimator in T for α − ui, then the difference bei − bej is consistent for
−ui − (−uj). Since the denominator is constant for each pair of firms, efficiency differences have

the same scale across the sample.

To demonstrate the distortion induced by br∗i or br∗∗i relative to bei we again consider a beta
distribution for technical inefficiency. By considering different levels of skew, we are considering

different levels of efficiency differences between ranked sample realizations at the high and low ends

of the rank statistic. For example any ranked sample from the B(8, 2) or B(2, 8) distributions will

have larger differences at one end of the rank statistic and smaller differences at the other (on

average). The B(2, 2) distribution will have symmetrical differences at either end of the ranked

sample, because the probability mass is symmetric about the mean. There are many ways that we

could illustrate these differences and the distortions created by normalization to the unit interval.

One way would be to use the distribution of ui to calculate the theoretical distributions of the

transformations r∗i , r
∗∗
i and ei. Then the distortions could be compared simply by comparing plots

9



of the distributions. However, rather than calculate these distributions (a not trivial task), we

simulate and estimate them using kernel techniques.

We simulate each beta distribution with 100,000 draws of ui. With this many draws the maximal

draw is arbitrarily close to 1 and the minimal draw is arbitrarily close to 0, so "uncertainty" over the

population maximum and minimum is essentially zero, and any "bias" caused by this uncertainty is

mitigated. Our purpose is to get a fairly accurate picture of the distribution and not to understand

the effects of sampling variability on efficiency estimation, which we investigated in the last section.

We estimate the distributions of ui, r∗i , r
∗∗
i and ei using the Gaussian kernel and an arbitrarily

selected bandwidth of 0.1. The estimated distributions are in Figures 2a-c for ui ∼ B(8, 2),

ui ∼ B(2, 8), and ui ∼ B(2, 2), respectively. Obviously, the density estimates are only approximate

at the boundaries (there is no boundary bias correction). However, this is fine for the purposes

of scale comparisons. Beginning with panel a in Figure 2, we see that when the distribution of

ui (thick dashed line) is "mostly dogs", the estimated distribution of the max-measure estimate,

r∗i , is fairly close to that of ui, while that of the min-measure, r
∗∗
i , is not. In this case the scale

distortion of the max-measure is small relative to that of the min-measure. Also, the two-sided

measure, ei, is comparable to the max-measure in terms of scale distortion. The two-sided measure

over-scales in the center of the distribution while the max-measure over-scales in the right tail of

the distribution. This makes sense as the two-sided measure is (in some sense) a "middle ground"

between the max-measure and the min-measure. The min-measure, r∗∗i , clearly over-scales in the

left tail of the distribution. Of course things are reversed in the "mostly stars" case of ui ∼ B(2, 8),

contained in panel b of Figure 2. Here the min-measure outperforms the max-measure in terms of

scale preservation. Again, the two-sided measure also preserves scale fairly well and is comparable

to the min-measure. In panel c we see that the distribution of the two-sided measure, ei, is

nearly identical to the distribution of ui (thick dashed line), while the max- and min-measures

exhibit large scale distortions. (Again, the reader is reminded that these are merely kernel density
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estimates with no end-point correction.) This is not surprising, given the way the two-sided measure

is constructed, but the point should be clear on its usefulness when scale preservation of efficiency

scores is important. Regardless of the skewness of the inefficiency distribution, the two-sided

measure reliably preserves scale (or differences in the rank statistic), while the performance of the

max- and min-measures is a function of the distributional skewness.

For completeness we now examine the bias of the two-sided measure with a brief simulation

study. The simulated bias results for the estimator bei in Table 2 use the same parameterizations
as the bias results of Table 1. Unlike the bu∗i and bu∗∗i estimates, the bias results for bei are firm
specific, so average biased across firms are reported. A few results are noteworthy. First, the

direction of the bias is a function of the skewness of the efficiency distribution. For u ∼ B(8, 2)

(mostly dogs) the bias is positive, for u ∼ B(2, 8) (mostly stars) the bias is negative, and for

u ∼ B(2, 2) (few stars or dogs) the bias is close to zero. This may suggest that for efficiency

distributions with centralized mass or symmetric efficiency distributions, the two sided estimator is

the appropriate choice.6 Indeed, in the symmetric case, the average bias for the two-sided measure

is always smaller in absolute value than the biases in the one-sided measures in Table 1. (For these

different measures bias comparisons of estimates are not entirely meaningless, because all three

measures are essentially unitless percentages.) Second, bias is (not surprisingly) increasing in N

and decreasing in γ for all levels of skewness.

4 Confidence Intervals

Per Schmidt and Sickles (1984), bβ converges to β for large N or T , while bαi converges to αi for large
T only. Therefore, when T is small (the usual panel case) asymptotic approximations for confidence

intervals on functions of αi are inappropriate, and a bootstrap method should be employed. See

Kim, Kim and Schmidt (2007) for a detailed survey of methods for bootstrap confidence intervals

6Again this may not be a "choice" per se, but the two-sided measure may simply be a conveniant way to report
efficiency scores, ui.
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on technical efficiency and a comprehensive simulation of the coverage rates and confidence interval

widths of a variety of bootstrap techniques. Our purpose here is two-fold. First, we would like to

replicate the salient features of the Kim, Kim and Schmidt (KKS) confidence interval simulations,

while experimenting with the skewness of the technical inefficiency distributions using our three

parameterizations of the beta distribution. Second (and simultaneously), we extend the simulations

to include our min-measure and the two-sided measure. Again, all the estimates considered are

for different measures and cannot be consider direct substitutes, but it is useful to empiricists to

know which measures are better in a statistical sense when information on the skew of the efficiency

distribution is known or can be approximated from the fixed-effects estimates. For simplicity the

underlying data generation mechanism for our confidence intervals is identical to that of our bias

analysis of section 2. Our overall finding is that the bias associated with max and min operators

erodes the coverage rates of the bootstrap confidence intervals, so the relationship between coverage

rates and distributional skewness is similar to that between bias and skewness.

The KKS simulation study considers both direct bootstrap confidence intervals from the dis-

tribution of br∗i and indirect bootstrap confidence intervals from the distribution of bu∗i , which are
transformed to confidence intervals on r∗i . When the indirect and direct confidence intervals are

the same, the interval is said to be transformation-respecting (Efron and Tibshirani 1993, p.175).

The empirical advantage of transformation-respecting confidence intervals are obvious: the choice

of estimator to report (transformed or not transformed) does not affect the coverage probabilities of

the intervals. Of all the bootstrap intervals considered by KKS, only the percentile bootstrap (per-

centile) is transformation respecting. However, the bias-corrected with acceleration (BCa) intervals

are approximately transformation-respecting (KKS, p.169). They find that the bias-corrected per-

centile (BC percentile) intervals are generally not transformation-respecting but conclude that they

have better coverage rates than the other bootstrap confidence intervals that they consider. They

also find that, when the intervals are not transformation-respecting, the indirect method for inter-
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val construction on br∗i has better coverage rates than direct methods. Therefore, in what follows

we only consider these three confidence interval construction techniques and only for the indirect

method. Our bootstrap confidence interval construction procedures are EXACTLY those of KKS,

so we do not detail their procedures here. The reader is referred to the KKS study for details

on indirectly constructing percentile, bias-corrected percentile and bias-corrected with acceleration

intervals. While our coverage rate results are slightly different than those of KKS, our overall

findings are the same: for the indirect method, the bootstrap BC percentile intervals (Simar and

Wilson, 1998) are generally better in terms of coverage rates than either the percentile or the BCa

intervals.7

Coverage results for the percentile and the two bias-corrected bootstraps for r∗i and for r
∗∗
i using

the indirect method are reported in Table 3 . Here the nominal coverage rate is 0.90. Generally

speaking, the BC percentile coverage rates appear to be best for all scenarios considered. (This is

the general finding of the KKS study.) When the distribution of inefficiency is symmetric, B(2, 2),

the coverage rates and interval widths for the r∗i and for r
∗∗
i measures are identical up to sampling

variability for all the bootstrap techniques. This corresponds to the case where the biases of the

two measures are the same (few stars, few dogs). This is particularly clear when the signal to

noise ratio (sampling variability) is large (small). Not surprisingly the coverage rates are always

decreasing in N , as uncertainty over the best or worst firms in the sample is increasing (as is bias).

Coverage rates are uniformly better for r∗i when inefficiency is distributed B(8, 2) and better for

r∗∗i when inefficiency is distributed B(2, 8). For example, when N = 100, γ = 0.1, and B(8, 2)

the BC percentile coverage rate for r∗i and r∗∗i are 0.826 and 0.760 in Table 3. However, when

inefficiency is distributed B(2, 8) the respective coverage rate are 0.750 and 0.821. Again these

results are driven by the relative level of bias of the two estimates under the different inefficiency

7A referee also pointed out that the distributions of interest for construction of the bootstrap confidence intervals
are invariant to the true values of the model parameters α and β.
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regimes (mostly stars or mostly dogs). In terms of the different interval construction techniques, it

appears that both bias-corrected techniques have coverage rates of about 0.7-0.8 regardless of the

skew of the distribution, the size of N , or the signal to noise ratio (except in the noisiest cases).

The uncorrected percentile bootstrap intervals do surprisingly well relative to the bias-corrected

intervals except in the noisiest cases (large N and small γ). For example, for N = 100, γ = 0.1,

and B(2, 2) the percentile coverages for r∗i and r
∗∗
i are 0.359 and 0.349, respectively. However, even

then the bias-corrected intervals are not very impressive. For example, the BCa intervals are 0.624

and 0.611, respectively in this case. The worst coverage probability is the uncorrected percentile

bootstrap in the noisiest case (N = 100, γ = 0.1) for r∗∗i and B(8, 2). In this case, the coverage

rate is only 0.254.

For completeness the bootstrap confidence intervals for the two-sided measure, ei, are provided

in Table 4. Notice that the coverage rates for this measure are fairly stable across the different

technical inefficiency distributions. For example, in the least noisy setting (N = 10, γ = 0.9) the

coverage rates for the BCa intervals are 0.847, 0.854 and 0.851 for B(8, 2), B(2, 2) and B(2, 8),

respectively. The interval widths are also about the same. Again, this is due to the fact that

scale distortion is minimal for the two-sided measure across the different levels of skew. Also,

the uncorrected percentile bootstrap has generally higher coverage rates than the bias-corrected

intervals, and in the least noisy cases it comes very close to achieving the nominal coverage rate

of 0.90. While the measures in this study are all different, it is interesting to note that, when

inefficiency is distributed B(2, 2), the coverage probabilities on the two-sided measure (Table 4)

are uniformly higher than those of the one-sided measures (Table 3). This illustrates the effects

of scale distortions of the exponential transformations of the u∗i and u∗∗i when the distribution is

symmetric. This is depicted in panel c of Figure 2.
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5 Rice Farm Application

The quintessential example of large N and small T in the stochastic frontier literature is the

Indonesian rice farm data set with N = 171 and T = 6. This particular data set has been analyzed

a number of times, starting with Erwidodo (1990) and, most recently, with Kim, Kim and Schmidt

(2007). See Horrace and Schmidt (1996, 2000) for a detailed description. In our example we ignore

the issue of bias caused by unidentifiable time-invariant inputs in fixed-effects estimation (Feng and

Horrace, 2007). The form of the production function and the parameter estimates are precisely

those contained in Horrace and Schmidt (2000), but what is important to know is that output is

in logarithms of kilograms of rice. Our purpose is to highlight the different efficiency measures

considered. The distribution of the bαi in Figure 3 is produced using the ksdensity(x) command in
MATLAB and a Gaussian kernel. It has a normalized positive skewness of 0.4740. Therefore, the

distribution of the bu∗i (up to location) is its mirror image and has a skewness of -0.4740. However,
the distribution in Figure 3 is actually quite symmetric (except for a small wiggle in the right

tail). Table 5 presents efficiency estimates for 7 of the rice farms. These are the ranked by bαi
and correspond to the 2 best farms, the 75%ile farm, the median farm, the 25%ile farm and the

two worst farms. Each entry in the last three columns contains the estimate and the indirect 90%

bias-corrected percentile confidence interval based on 999 bootstrap replications.

In any empirical exercise a discussion of potential bias is difficult. However, given our simulation

results and the fact that the distribution of the bαi is nearly symmetric (or u∗i have slight negative
skewness), perhaps the two-sided measure (or traditional measure) will have a less biased estimate

than that of the the measure relative to the least efficient farm r∗∗i . Even though the measures

are different, they are all unitless, so their biases will be unitless and, perhaps, comparisons are

not entirely unreasonable. However, for this particular data set the efficiency measures are quite

imprecise, judging from the confidence intervals. This is particularly telling, when one considers the
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poor coverage rates of the bootstrap confidence intervals that arose in our (and KKS’s) simulation

study. The implication being that the confidence intervals in Table 5 may only achieve 70-80%

coverage rates, even after bias correction.

We now discuss scale considerations. The difference in the bαi of the two best farms is 0.070 log-
points. For the measure r∗i we see that the second-best farm has technical efficiency 6.8 percentage

points below the best farm (1.000-0.932), a good approximation for the log-point difference in the

bαi. Ceteris paribus, efficiency differences suggest that the second-best farm will produce 6.8%

fewer kilograms of rice (0.070 fewer log-points of rice) than the best farm. For r∗∗i we see that the

second-best farm is 27 percentage points below the best, so its approximation for the the log-point

difference in the bαi is poor at this end of the order statistic (where u − ui is large). Things are

reversed at the other end of the order statistic. The log-point difference in the bαi for the two
worst firms is approximated well by r∗∗i and poorly by r∗i . By definition the two-sided measure,

ei, will always approximate these differences well, particularly at the ends of the order statistic.

All three measures approximate the log-point differences less precisely in the middle of the order

statistic, but it is clear what the two-sided measure is doing: it is a middle ground between the

two exponential measures. For the median farm r∗i = 0.544, r∗∗i = 0.340 and ei = 0.413. Hence,

for reporting purposes, the two-sided measure is a simple log-point normalization that facilitates

discussion of relative efficiency over the entire range of the order statistic and that approximates

well the percentage change of output (r∗i and r∗∗i ) at both ends of the order statistic.

6 Conclusions

The goal of this research is to consider the performance of various technical efficiency measures under

different skewness of the distribution of technical inefficiency. We find that the traditional one-

sided estimate relative to the sample maximum, br∗i , performs best in terms of bias and confidence
interval coverage rates when the distribution of inefficiency consists of "few stars, mostly dogs." In
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highly competitive markets where inefficient firms are rare, estimators of the traditional measure

may not be reliable (large bias and poor interval coverage). On the other hand, estimators of

the traditional measure may be reliable in markets where competitive forces are weak, and this

may be the empirically relevant case for efficiency measurement in general. That is, estimating

technical efficiency may only be meaningful in markets or industries where is might already exist

to a great extent (like utility industries, where capital barriers to entry limit competitive forces).

The proposed min-measure, br∗∗i , has small bias and better confidence interval coverage when the
inefficiency distribution has "mostly stars, few dogs, which may correspond to highly competitive

industries. The majority of economic theory would suggest that this corresponds to the more

frequently encountered case. Of course in competitive markets, technical efficiency estimation may

be difficult from the start, but that does not diminish the potential importance of the min-meaure.

For example, the marginal cost of the least efficient firm in the sample may equal the market price,

so a measure relative to the least efficient firm in the industry may be useful. Estimates of the

two-sided measure, ei, are particularly appealing when the distribution of inefficiency is symmetric

and when issues of scale are important. That is, when the magnitude of the differences of the

u∗i must be preserved, the two-sided measure normalizes scores to the unit intervals without the

nonlinear scale distortion induced by the exponent operator.

We reiterate that all the measures are different, so comparisons between the measures are

sometimes difficult to interpret. However, this study adds a few new measures to the empiricist’s

toolbox that may prove useful in the future. Our example suggests that the inefficiency distribution

of Indonesian rice farms is fairly symmetric; this suggests that the two-sided estimator may be

preferred in terms of bias and confidence interval coverage of the measure. Symmetry aside, the

two-sided measure necessarily preserves the scale of the bu∗i , better than the traditional measure in
this (or any) particular example.
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Table 1. Biases of Estimates of the Min- and Max-Measures.
Bias

Measure T γ N B(8, 2) B(2, 2) B(2, 8)

u∗i 10 0.1 10 0.077 0.097 0.122
u∗∗i 0.125 0.099 0.077
u∗i 10 0.1 20 0.092 0.129 0.160
u∗∗i 0.162 0.130 0.088
u∗i 10 0.1 50 0.106 0.174 0.212
u∗∗i 0.211 0.174 0.106
u∗i 10 0.1 100 0.117 0.208 0.249
u∗∗i 0.248 0.207 0.112

u∗i 10 0.5 10 0.021 0.029 0.046
u∗∗i 0.043 0.029 0.022
u∗i 10 0.5 20 0.023 0.046 0.064
u∗∗i 0.062 0.042 0.022
u∗i 10 0.5 50 0.029 0.068 0.094
u∗∗i 0.094 0.065 0.028
u∗i 10 0.5 100 0.029 0.087 0.120
u∗∗i 0.119 0.085 0.031

u∗i 10 0.9 10 0.002 0.004 0.009
u∗∗i 0.007 0.004 0.002
u∗i 10 0.9 20 0.004 0.007 0.012
u∗∗i 0.011 0.006 0.004
u∗i 10 0.9 50 0.002 0.011 0.019
u∗∗i 0.019 0.013 0.003
u∗i 10 0.9 100 0.005 0.017 0.026
u∗∗i 0.026 0.016 0.004
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Table 2. Average Bias of the Two-sided Estimate, bei
Average Bias

Measure T γ N B(8, 2) B(2, 2) B(2, 8)

ei 10 0.1 10 0.0555 -0.0028 -0.0554
10 0.1 20 0.0725 0.0002 -0.0743
10 0.1 50 0.1012 0.0012 -0.0983
10 0.1 100 0.1124 0.0013 -0.1148

ei 10 0.5 10 0.0616 0.002 -0.0153
10 0.5 20 0.0220 -0.006 -0.0241
10 0.5 50 0.0314 0.0014 -0.0300
10 0.5 100 0.0381 0.0013 -0.0374

ei 10 0.9 10 0.0027 -0.0009 -0.0025
10 0.9 20 0.0025 0.0008 -0.0029
10 0.9 50 0.0055 -0.0006 -0.0051
10 0.9 100 0.0068 0.0004 -0.0069
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Measure T gamma N
cover width cover width cover width cover width cover width cover width cover width cover width cover width

r* 10 0.1 10 0.780 0.342 0.754 0.347 0.702 0.348 0.823 0.332 0.819 0.329 0.810 0.327 0.828 0.387 0.838 0.399 0.838 0.402
r** 0.712 0.348 0.757 0.348 0.785 0.342 0.757 0.298 0.773 0.304 0.787 0.304 0.847 0.404 0.841 0.399 0.832 0.389
r* 10 0.1 20 0.734 0.331 0.640 0.335 0.563 0.339 0.794 0.319 0.773 0.315 0.750 0.309 0.823 0.383 0.824 0.396 0.823 0.406

r** 0.565 0.340 0.651 0.335 0.735 0.331 0.715 0.299 0.750 0.301 0.775 0.305 0.820 0.408 0.831 0.397 0.829 0.384
r* 10 0.1 50 0.673 0.306 0.482 0.313 0.372 0.320 0.758 0.294 0.697 0.289 0.637 0.286 0.816 0.364 0.804 0.384 0.783 0.401

r** 0.371 0.320 0.486 0.313 0.672 0.304 0.626 0.283 0.689 0.284 0.756 0.290 0.786 0.401 0.812 0.385 0.823 0.360
r* 10 0.1 100 0.630 0.284 0.359 0.295 0.254 0.303 0.748 0.275 0.624 0.270 0.545 0.265 0.826 0.342 0.780 0.371 0.750 0.388

r** 0.254 0.303 0.349 0.295 0.627 0.284 0.542 0.262 0.611 0.268 0.740 0.272 0.760 0.390 0.775 0.371 0.821 0.343

r* 10 0.5 10 0.858 0.214 0.848 0.228 0.830 0.241 0.839 0.223 0.833 0.236 0.835 0.245 0.824 0.223 0.824 0.241 0.832 0.258
r** 0.825 0.241 0.844 0.228 0.860 0.211 0.801 0.224 0.822 0.217 0.840 0.203 0.827 0.259 0.824 0.241 0.834 0.221
r* 10 0.5 20 0.841 0.198 0.809 0.220 0.766 0.237 0.831 0.204 0.818 0.223 0.804 0.232 0.831 0.208 0.827 0.237 0.825 0.260

r** 0.759 0.238 0.816 0.219 0.833 0.198 0.785 0.224 0.797 0.211 0.818 0.195 0.828 0.260 0.818 0.235 0.820 0.208
r* 10 0.5 50 0.837 0.171 0.746 0.203 0.649 0.222 0.820 0.175 0.797 0.200 0.764 0.212 0.825 0.181 0.828 0.224 0.821 0.251

r** 0.645 0.223 0.750 0.203 0.824 0.168 0.758 0.208 0.790 0.197 0.818 0.169 0.827 0.253 0.831 0.224 0.827 0.178
r* 10 0.5 100 0.817 0.151 0.663 0.190 0.525 0.210 0.809 0.154 0.767 0.187 0.711 0.197 0.821 0.161 0.820 0.214 0.803 0.243

r** 0.523 0.211 0.677 0.191 0.826 0.150 0.704 0.196 0.764 0.184 0.814 0.151 0.807 0.244 0.824 0.216 0.827 0.160

r* 10 0.9 10 0.856 0.083 0.862 0.094 0.856 0.106 0.844 0.086 0.846 0.098 0.839 0.110 0.832 0.084 0.831 0.095 0.821 0.107
r** 0.860 0.106 0.862 0.094 0.860 0.083 0.838 0.103 0.850 0.093 0.849 0.082 0.822 0.107 0.832 0.095 0.837 0.083
r* 10 0.9 20 0.855 0.075 0.844 0.091 0.851 0.105 0.845 0.077 0.831 0.094 0.840 0.108 0.838 0.076 0.824 0.092 0.835 0.108

r** 0.842 0.105 0.852 0.092 0.854 0.076 0.822 0.102 0.836 0.091 0.842 0.075 0.824 0.107 0.833 0.093 0.836 0.076
r* 10 0.9 50 0.845 0.062 0.838 0.087 0.806 0.101 0.833 0.063 0.822 0.087 0.807 0.100 0.834 0.062 0.827 0.088 0.821 0.104

r** 0.815 0.101 0.834 0.086 0.843 0.062 0.806 0.098 0.819 0.086 0.831 0.062 0.824 0.104 0.823 0.088 0.830 0.063
r* 10 0.9 100 0.845 0.054 0.819 0.082 0.773 0.098 0.837 0.055 0.813 0.082 0.806 0.095 0.839 0.054 0.826 0.085 0.834 0.102

r** 0.770 0.098 0.817 0.082 0.846 0.053 0.795 0.094 0.812 0.081 0.836 0.054 0.827 0.101 0.826 0.084 0.837 0.054

Table 3: 90% Indirect Bootstrap Confidence Intervals for Technical Efficiency Measures
BCa BC percentile Percentile 

B(8,2) B(2,2) B(2,8) B(8,2) B(2,2) B(2,8) B(8,2) B(2,2) B(2,8)



T gamma N
cover width cover width cover width cover width cover width cover width cover width cover width cover width

10 0.1 10 0.809 0.567 0.823 0.570 0.806 0.568 0.714 0.487 0.729 0.489 0.733 0.487 0.714 0.567 0.712 0.570 0.703 0.568
10 0.1 20 0.750 0.497 0.786 0.501 0.753 0.496 0.681 0.437 0.699 0.440 0.696 0.435 0.686 0.497 0.692 0.501 0.687 0.496
10 0.1 50 0.667 0.424 0.748 0.428 0.669 0.423 0.640 0.383 0.674 0.388 0.651 0.382 0.653 0.424 0.673 0.428 0.656 0.423
10 0.1 100 0.601 0.380 0.714 0.385 0.599 0.380 0.612 0.348 0.657 0.356 0.611 0.349 0.634 0.380 0.659 0.385 0.627 0.380

10 0.5 10 0.861 0.305 0.867 0.299 0.865 0.300 0.805 0.289 0.819 0.289 0.829 0.288 0.795 0.305 0.788 0.299 0.798 0.300
10 0.5 20 0.823 0.270 0.846 0.274 0.827 0.270 0.787 0.257 0.798 0.263 0.806 0.257 0.790 0.270 0.789 0.274 0.793 0.270
10 0.5 50 0.769 0.230 0.831 0.242 0.772 0.228 0.772 0.217 0.787 0.232 0.782 0.215 0.788 0.230 0.788 0.242 0.789 0.228
10 0.5 100 0.709 0.207 0.809 0.224 0.705 0.205 0.748 0.194 0.768 0.215 0.749 0.193 0.775 0.207 0.772 0.224 0.749 0.205

10 0.9 10 0.876 0.114 0.874 0.111 0.873 0.113 0.847 0.113 0.854 0.112 0.851 0.116 0.814 0.114 0.819 0.111 0.817 0.113
10 0.9 20 0.856 0.102 0.861 0.104 0.864 0.103 0.829 0.102 0.838 0.105 0.847 0.104 0.816 0.102 0.819 0.104 0.829 0.103
10 0.9 50 0.839 0.088 0.850 0.096 0.832 0.089 0.820 0.087 0.824 0.096 0.825 0.088 0.826 0.088 0.818 0.096 0.823 0.089
10 0.9 100 0.815 0.081 0.846 0.091 0.817 0.080 0.813 0.079 0.818 0.091 0.820 0.079 0.824 0.081 0.819 0.091 0.828 0.080

Percentile BCa BC percentile 
Table 4: 90% Indirect Bootstrap Confidence Intervals for the Two-sided Measure

B(8,2) B(2,2) B(2,8) B(8,2) B(2,2) B(2,8) B(8,2) B(2,2) B(2,8)



Table 5. Rice Farm Efficiency Estimates.
αi %ile r∗i r∗∗i ei

5.556 best
1.000

[ 0.912, 1.000 ]
0.635

[ 0.493, 0.667 ]
1.000

[ 0.929, 1.000 ]

5.486 99th
0.932

[ 0.837, 1.000 ]
0.608

[ 0.463, 0.658 ]
0.930

[ 0.836, 1.000 ]

5.072 75th
0.616

[ 0.423, 0.890 ]
0.407

[ 0.000, 0.566 ]
0.519

[ 0.156, 0.780 ]

4.970 50th
0.554

[ 0.448, 0.737 ]
0.340

[ 0.078, 0.450 ]
0.413

[ 0.197, 0.566 ]

4.859 25th
0.498

[ 0.439, 0.608 ]
0.266

[ 0.000, 0.387 ]
0.308

[ 0.070, 0.436 ]

4.586 1st
0.379

[ 0.306, 0.477 ]
0.036

[ 0.000, 0.215 ]
0.036

[ 0.000, 0.790 ]

4.550 worst
0.366

[ 0.275, 0.531 ]
0.000

[ 0.000, 0.189 ]
0.000

[ 0.000, 0.157 ]
Bracketed values are 90% bias-corrected percentile intervals.
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Feng, Figure 1 
 

 
Figure 1. Skewness of Various Beta Distributions 
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Feng, Figure 2 
 

Figure 2a. Efficiency Distribution Estimates – Mostly Dogs B(8,2) 

 
 

Figure 2b. Efficiency Distribution Estimates – Mostly Stars B(2,8) 

 
 

Figure 2c. Efficiency Distribution Estimates – Few Stars or Dogs B(2,2) 

 
Note: the curves u and e are indistinguishable. 
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Feng, Figure 3 
 
 
 

Figure 3.  Distribution of αi for 171 Rice Farms. Skewness = 0.4740 
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