Syracuse University SURFACE

Mathematics - Faculty Scholarship

Mathematics

6-27-2010

Hopf Differentials and Smoothing Sobolev Homeomorphisms

Tadeusz Iwaniec Syracuse University and University of Helsinki

Leonid V. Kovalev Syracuse University

Jani Onninen Syracuse University

Follow this and additional works at: https://surface.syr.edu/mat

Part of the Mathematics Commons

Recommended Citation

Iwaniec, Tadeusz; Kovalev, Leonid V.; and Onninen, Jani, "Hopf Differentials and Smoothing Sobolev Homeomorphisms" (2010). *Mathematics - Faculty Scholarship*. 64. https://surface.syr.edu/mat/64

This Article is brought to you for free and open access by the Mathematics at SURFACE. It has been accepted for inclusion in Mathematics - Faculty Scholarship by an authorized administrator of SURFACE. For more information, please contact surface@syr.edu.

HOPF DIFFERENTIALS AND SMOOTHING SOBOLEV HOMEOMORPHISMS

TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

ABSTRACT. We prove that planar homeomorphisms can be approximated by diffeomorphisms in the Sobolev space $\mathscr{W}^{1,2}$ and in the Royden algebra. As an application, we show that every discrete and open planar mapping with a holomorphic Hopf differential is harmonic.

1. INTRODUCTION

It is a fundamental property of Sobolev spaces $\mathscr{W}^{1,p}$, $1 \leq p < \infty$, that any element can be approximated strongly (i.e., in the norm) by \mathscr{C}^{∞} smooth functions, or by piecewise affine ones. In the context of vector-valued Sobolev functions, that is, mappings in $\mathscr{W}^{1,p}(\Omega, \mathbb{R}^n)$, invertibility comes into play. Indeed, the studies of invertible Sobolev mappings are of great importance in nonlinear elasticity [2, 14, 26, 35]. The following natural question was put forward by John M. Ball.

Question 1.1. [4] If $u \in \mathscr{W}^{1,p}(\Omega, \mathbb{R}^n)$ is invertible, can u be approximated in $\mathscr{W}^{1,p}$ by piecewise affine invertible mappings?

J. Ball attributes this question to L.C. Evans, who was led to it through his investigation of the partial regularity of minimizers [13] of neohookean energy functionals [3, 5, 7, 33]. We provide an affirmative solution of the Ball-Evans problem in the case p = n = 2. The most general formulation of our result administers Royden algebras $\mathscr{A}(\Omega)$ and $\mathscr{A}_{\circ}(\Omega)$, see Section 2. We write

$$\mathcal{E}[h] = \mathcal{E}_{\Omega}[h] := \|Dh\|_{\mathscr{L}^2(\Omega)}^2 = \int_{\Omega} |Dh(z)|^2 \, \mathrm{d}z$$

where |Dh| is the Hilbert-Schmidt norm of the differential.

Theorem 1.2 (Approximation by diffeomorphisms). Let $h: \Omega \xrightarrow{\text{onto}} \Omega^*$ be a homeomorphism of Sobolev class $\mathscr{W}_{\text{loc}}^{1,2}(\Omega,\Omega^*)$. Then for every $\epsilon > 0$ there exist a diffeomorphism $H: \Omega \xrightarrow{\text{onto}} \Omega^*$ such that

Date: June 26, 2010.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46E35; Secondary 30E10, 58E20.

Key words and phrases. Approximation, Sobolev homeomorphisms, Hopf differential, harmonic mappings.

Iwaniec was supported by the NSF grant DMS-0800416.

Kovalev was supported by the NSF grant DMS-0968756.

Onninen was supported by the NSF grant DMS-1001620.

(i) $H - h \in \mathscr{A}_{\circ}(\Omega)$ (ii) $\|H - h\|_{\mathscr{A}(\Omega)} \leq \epsilon$ (iii) $\mathcal{E}[H] \leq \mathcal{E}[h].$

Part (iii) is nontrivial only in the finite energy case, $\mathcal{E}_{\Omega}[h] < \infty$. Let us note that the existence of smooth approximation implies the existence of piecewise-affine approximation, since a diffeomorphism can be triangulated. (In the converse direction, a piecewise-affine mapping can be smoothed in dimensions less than four [25], but not in general.) Partial results toward the Ball-Evans problem were obtained in [24] (for planar bi-Sobolev mappings that are smooth outside of a finite set) and in [6] (for planar bi-Hölder mappings, with approximation in the Hölder norm). The articles [4, 32] illustrate the difficulty of preserving invertibility in the process of smoothing a Sobolev homeomorphism.

We also give an application of Theorem 1.2 to a problem that originated in a series of papers by Eells, Lemaire and Sealey [11, 12, 31]. It concerns the nonlinear differential equation

(1.1)
$$\frac{\partial}{\partial \bar{z}} \left(h_z \overline{h_{\bar{z}}} \right) = 0$$

for mappings defined in a domain in the complex plane \mathbb{C} . Naturally, the Sobolev space $\mathscr{W}_{\text{loc}}^{1,2}(\Omega,\mathbb{C})$ should be considered as the domain of definition of equation (1.1). This places $h_z \overline{h_{\bar{z}}}$ in $\mathscr{L}_{\text{loc}}^1(\Omega)$, so the complex Cauchy-Riemann derivative $\frac{\partial}{\partial \bar{z}}$ applies in the sense of distribution. By Weyl's lemma $h_z \overline{h_{\bar{z}}}$ is a holomorphic function.

The expression $Q_h := h_z \overline{h_z} \, \mathrm{d} z \otimes \mathrm{d} z$ is known as the Hopf differential of h (named after H. Hopf, who employed a similar device, e.g., in [19, Chapter VI]). It is clear that Q_h is a holomorphic quadratic differential whenever h is harmonic, which is a general fact about energy-stationary mappings between Riemannian manifolds [10, (10.5)], [21] and [34]. Eells and Lemaire inquired about the possibility of a converse result, e.g., for mappings with finite energy and almost-everywhere positive Jacobian [11, (2.6)]. In this setting a counterexample was provided by Jost [20], who also proved the existence of $\mathcal{W}^{1,2}$ -solutions of (1.1) in every homotopy class of mappings between compact Riemann surfaces. A more restricted form of the Eells-Lemaire problem, [12, (5.11)] and [31], imposed the additional assumption that h is a quasiconformal homeomorphism, and was settled by Hélein [17] in the affirmative. Here we dispose with the quasiconformality condition and treat general planar homeomorphisms of finite energy. Since the inverse of such a homeomorphism need not be in any Sobolev class [18], some difficulties are to be expected. They shall be overcome with the aid of our approximation theorem 1.2.

Theorem 1.3. Every continuous, discrete and open mapping h of Sobolev class $\mathscr{W}_{loc}^{1,2}(\Omega,\mathbb{C})$ that satisfies equation (1.1) is harmonic.

The failure of Theorem 1.3 for uniform limits of homeomorphisms should be mentioned. This is illustrated by Example 4.1.

2. Background

Let Ω be a bounded domain in $\mathbb{R}^2 \simeq \mathbb{C}$, nonempty open connected set. We consider a class $\mathscr{A}(\Omega)$ of uniformly continuous functions $h: \Omega \to \mathbb{C}$ having finite Dirichlet energy, and furnish it with the norm

$$\|h\|_{\mathscr{A}(\Omega)} = \|h\|_{\mathscr{C}(\Omega)} + \|Dh\|_{\mathscr{L}^2(\Omega)} < \infty$$

 $\mathscr{A}(\Omega)$ is a commutative Banach algebra with the usual multiplication of functions in which $\|h_1h_2\|_{\mathscr{A}(\Omega)} \leq \|h_1\|_{\mathscr{A}(\Omega)} \|h_2\|_{\mathscr{A}(\Omega)}$. The closure of $\mathscr{C}_{\circ}^{\infty}(\Omega)$ in $\mathscr{A}(\Omega)$ will be denoted by $\mathscr{A}_{\circ}(\Omega)$. Suppose, to look at more specific situation, that $\Omega = \mathbb{U}$ is a Jordan domain; that is, a simply connected open set whose boundary $\Gamma = \partial \mathbb{U}$ is a closed Jordan curve. By goodness of the Carathéodory extension theorem [27, p. 18], there is a homeomorphism $\varphi \colon \overline{\mathbb{D}} \xrightarrow{\text{onto}} \overline{\mathbb{U}}$ of the closed unit disk $\overline{\mathbb{D}} = \{\xi \colon |\xi| \leq 1\}$ that is conformal in \mathbb{D} . After the change of variable, $z = \varphi(\xi)$, we obtain a function $H(\xi) = h(\varphi(\xi))$ in $\mathscr{A}(\mathbb{D})$. The operation

$$\mathbf{T}_{\varphi} \colon \mathscr{A}(\mathbb{U}) \to \mathscr{A}(\mathbb{D})$$

so defined is an isometry; $\|\mathbf{T}_{\varphi}h\|_{\mathscr{A}(\mathbb{D})} = \|h\|_{\mathscr{A}(\mathbb{U})}$. Furthermore,

 $\mathbf{T}_{\omega} \colon \mathscr{A}_{\circ}(\mathbb{U}) \to \mathscr{A}_{\circ}(\mathbb{D})$

Proposition 2.1 (A generalization of Poisson's formula). Let \mathbb{U} be a Jordan domain. There is (unique) bounded linear operator

$$\mathbf{P}_{\mathbb{U}}\colon \mathscr{A}(\mathbb{U}) \to \mathscr{A}(\mathbb{U})$$

such that

$$\begin{cases} \mathbf{P}_{\mathbb{U}} - \mathbf{I}d \colon \mathscr{A}(\mathbb{U}) \to \mathscr{A}_{\circ}(\mathbb{U}) \\ \Delta \circ \mathbf{P}_{\mathbb{U}} = 0 \end{cases}$$

We name $\mathbf{P}_{\mathbb{U}}$ the *Poisson operator*. The energy of $\mathbf{P}_{\mathbb{U}}h$ does not exceed that of h. This fact is known as *Dirichlet's principle*

$$\int_{\mathbb{U}} |D\mathbf{P}_{\mathbb{U}}h|^2 \leqslant \int_{\mathbb{U}} |Dh|^2$$

The proof of this proposition reduces to the case when $\mathbb{U} = \mathbb{D}$, by conformal change of variables. A routine verification of this case is left to the reader. We only indicate that the less familiar property $\mathbf{P}_{\mathbb{D}}h - h \in \mathscr{A}_{0}(\mathbb{D})$, for $h \in \mathscr{A}(\mathbb{D})$, needs to be justified.

Corollary 2.2 (Harmonic replacement). Let Ω be a domain in \mathbb{C} and $\mathbb{U} \subset \overline{\mathbb{U}} \subset \Omega$ a Jordan domain. There exists (unique) bounded linear operator

$$\mathbf{R}_{\mathbb{U}} \colon \mathscr{A}(\Omega) \to \mathscr{A}(\Omega)$$

such that, for every $h \in \mathscr{A}(\Omega)$

$$\begin{cases} \mathbf{R}_{\mathbb{U}}h = h & on \quad \Omega \setminus \mathbb{U} \\ \Delta \mathbf{R}_{\mathbb{U}}h = 0 & in \quad \mathbb{U} \end{cases}$$

The Laplace equation yields $\mathcal{E}_{\Omega}[\mathbf{R}_{\mathbb{U}}h] \leq \mathcal{E}_{\Omega}[h]$. Equality occurs if and only if h is harmonic in \mathbb{U} .

A short proof of this corollary runs somewhat as follows. The unique harmonic extension of $h: \partial \mathbb{U} \to \mathbb{C}$ inside \mathbb{U} given by $\mathbf{P}_{\mathbb{U}}h$ has the property that $\mathbf{P}_{\mathbb{U}}h - h \in \mathscr{A}_{\circ}(\mathbb{U})$. Therefore, the zero extension of $\mathbf{P}_{\mathbb{U}}h - h$ outside \mathbb{U} , denoted by $[\mathbf{P}_{\mathbb{U}}h - h]_{\circ}$, belongs to $\mathscr{A}(\Omega)$. We define

$$\mathbf{R}_{\mathbb{U}}h := [\mathbf{P}_{\mathbb{U}}h - h]_{\circ} + h \in \mathscr{A}(\Omega)$$

The desired properties of the operator $\mathbf{R}_{\mathbb{U}}$ so defined are automatically fulfilled in view of Proposition 2.1.

Proposition 2.3. Let Ω be a domain in \mathbb{C} and $\mathbb{U} \subset \overline{\mathbb{U}} \subset \Omega$ a Jordan domain. Suppose that $h \in \mathscr{A}(\Omega)$ is a homeomorphism of Ω onto $h(\Omega)$ and $h(\mathbb{U})$ is convex. Then $\mathbf{R}_{\mathbb{U}}h$ is homeomorphism in Ω and is a harmonic diffeomorphism in \mathbb{U} .

The injectivity of $\mathbf{R}_{\mathbb{U}}h$ is the content of the Radó-Kneser-Choquet Theorem [9, p. 29]. Furthermore, planar harmonic homeomorphisms are \mathscr{C}^{∞} smooth diffeomorphisms according to Lewy's theorem [9, p. 20].

3. Smoothing Sobolev homeomorphisms, Theorem 1.2

Proof of Theorem 1.2. We may and do assume that h is not harmonic, since otherwise H = h satisfies the desired properties by Lewy's theorem (mentioned above). Let $z_o \in \Omega$ be a point such that h fails to be harmonic in any neighborhood of z_o . By choosing the origin of the coordinate system we ensure that $h(z_o)$ does not lie on the boundary of any dyadic squares associated with the coordinate system.

Let us choose and fix any $\epsilon > 0$. The construction of H proceeds in 5 steps. We construct homeomorphisms $h_k \colon \Omega \xrightarrow{\text{onto}} \Omega^*, k = 0, \ldots, 5$ such that $h_0 = h, h_k \in h_{k-1} + \mathscr{A}_{\circ}(\Omega), h_5$ is a diffeomorphism, and $||h_k - h_{k-1}||$ is bounded by a multiple of ϵ for each k. In each step we modify the previous construction to gain better regularity. In steps 1, 2 and 4 we use harmonic replacement according to Proposition 2.3. In steps 3 and 5 we smoothen the mapping near the boundaries of the domains in which harmonic replacement was performed. The result of each step is denoted by h_1, \ldots, h_5 . The finite energy case $h \in \mathscr{A}(\Omega)$ requires a few additional details, which are provided at the end of each step.

We begin with a decomposition of the target domain

(3.1)
$$\Omega^* = \bigcup_{\nu=1}^{\infty} \overline{\mathbb{Q}_{\nu}}$$

5

into closed nonoverlapping dyadic squares $\overline{\mathbb{Q}_{\nu}} \subset \Omega^*$. This decomposition is made by selecting the maximal dyadic squares that lie in Ω^* . Thus the cover of Ω^* by such squares is locally finite. The preimage of \mathbb{Q}_{ν} under h, denoted by \mathbb{U}_{ν} , is a Jordan domain in Ω . Hereafter \mathbb{U}_{ν} will be referred to as the curved-square. In fact to every partion of Ω^* into closed squares there will correspond a partition of Ω into closed curved-squares via the mapping $h: \Omega \xrightarrow{\text{onto}} \Omega^*$, for example:

$$\Omega = \bigcup_{\nu=1}^{\infty} \overline{\mathbb{U}_{\nu}}$$

Step 1. For each \mathbb{U}_{ν} we replace $h: \overline{\mathbb{U}_{\nu}} \xrightarrow{\text{onto}} \overline{\mathbb{Q}_{\nu}}$ with a piecewise harmonic homeomorphism $h_1: \overline{\mathbb{U}_{\nu}} \xrightarrow{\text{onto}} \overline{\mathbb{Q}_{\nu}}$ that coincides with h on $\partial \overline{\mathbb{U}_{\nu}}$. To this effect we partition the square $\overline{\mathbb{Q}_{\nu}}$,

(3.2)
$$\overline{\mathbb{Q}_{\nu}} = \overline{\mathbb{Q}_{\nu}^{1}} \cup \overline{\mathbb{Q}_{\nu}^{2}} \cup \dots \cup \overline{\mathbb{Q}_{\nu}^{n}}, \qquad (n = n_{\nu} = 4^{k_{\nu}})$$

into congruent dyadic squares $\overline{\mathbb{Q}_{\nu}^{i}}$, $i = 1, \ldots, n$. The number n, depending on ν , will be determined later. For the moment fix ν and look at the homeomorphisms

$$h \colon \overline{\mathbb{U}_{\nu}^{i}} = h^{-1}(\overline{\mathbb{Q}_{\nu}^{i}}) \xrightarrow{\text{onto}} \overline{\mathbb{Q}_{\nu}^{i}}$$

These mappings belong to the Royden algebra $\mathscr{A}(\overline{\mathbb{U}_{\nu}^{i}})$. With the aid of Propositions 2.1 and 2.3 we replace each $h: \overline{\mathbb{U}_{\nu}^{i}} \to \overline{\mathbb{Q}_{\nu}^{i}}$ with a harmonic homeomorphism $h_{\nu}^{i}: \overline{\mathbb{U}_{\nu}^{i}} \xrightarrow{\text{onto}} \overline{\mathbb{Q}_{\nu}^{i}}$ that coincides with h on $\partial \overline{\mathbb{U}_{\nu}^{i}}$, $i = 1, 2, \ldots, n$. Such mappings are \mathscr{C}^{∞} -smooth diffeomorphisms $h_{\nu}^{i}: \mathbb{U}_{\nu}^{i} \xrightarrow{\text{onto}} \mathbb{Q}_{\nu}^{i}$. Moreover, $h_{\nu}^{i} - h \in \mathscr{A}_{\circ}(\mathbb{U}_{\nu}^{i})$ and

(3.3)
$$\begin{cases} \mathcal{E}_{\mathbb{U}_{\nu}^{i}}[h_{\nu}^{i}] \leq \mathcal{E}_{\mathbb{U}_{\nu}^{i}}[h] & \text{for } 1, 2, \dots, n\\ \mathcal{E}_{\partial \mathbb{U}_{\nu}^{i}}[h_{\nu}^{i}] = \mathcal{E}_{\partial \mathbb{U}_{\nu}^{i}}[h], & \text{because } h_{\nu}^{i} = h \text{ on } \partial \mathbb{U}_{\nu}^{i} \end{cases}$$

We obtain a piecewise harmonic homeomorphism by gluing h^i_{ν} together along the common boundaries of \mathbb{U}^i_{ν} . Denote it by

$$h_{\nu}^{n} \colon \overline{\mathbb{U}_{\nu}} \stackrel{\text{onto}}{\longrightarrow} \overline{\mathbb{Q}_{\nu}}$$
$$h_{\nu}^{n} \in h + \mathscr{A}_{\circ}(\mathbb{U}_{\nu})$$

Precisely we define

$$h_{\nu}^{n} = h + \sum_{i=1}^{n} [h_{\nu}^{i} - h]_{\circ}$$

Here and in the sequel the notation $[\varphi]_{\circ}$ for $\varphi \in \mathscr{A}_{\circ}(\mathbb{U})$ stands for zero extension of φ to the entire domain Ω . Obviously $[\varphi]_{\circ} \in \mathscr{A}_{\circ}(\Omega)$. The above construction depends on the number n. For ν fixed we actually have a sequence $\{h_{\nu}^{n}\}_{n=1,2,\ldots}$ that is bounded in $\mathscr{A}(\mathbb{U}_{\nu})$. However, we have uniform bounds independent of n,

$$\|h_{\nu}^{n}\|_{\mathscr{C}(\overline{\mathbb{U}_{\nu}})} \leqslant \operatorname{diam} \mathbb{Q}_{\nu}$$

and

$$\mathcal{E}_{\mathbb{U}_{\nu}}[h_{\nu}^{n}] \leqslant \mathcal{E}_{\mathbb{U}_{\nu}}[h]$$

The key observation is that

(3.4)
$$\begin{cases} h_{\nu}^{n} - h \in \mathscr{A}_{\circ}(\mathbb{U}_{\nu}) \\ \lim_{n \to \infty} \|h_{\nu}^{n} - h\|_{\mathscr{A}(\mathbb{U}_{\nu})} = 0 \end{cases}$$

Indeed, for $z \in \overline{\mathbb{U}_{\nu}^{i}}$ we have

$$|h_{\nu}^{n}(z) - h(z)| \leq \operatorname{diam} \mathbb{Q}_{\nu}^{i} = \frac{1}{\sqrt{n}} \operatorname{diam} \mathbb{Q}_{\nu}$$

Thus $h_{\nu}^n \Rightarrow h$ uniformly on $\overline{\mathbb{U}_{\nu}}$ as $n \to \infty$. On the other hand the differential matrices Dh_{ν}^n are bounded in $\mathscr{L}^2(\mathbb{U}_{\nu}, \mathbb{R}^{2\times 2})$. Their weak limit exits and is exactly equal to Dh, because the mappings converge uniformly to h. Therefore,

$$\begin{split} \int_{\mathbb{U}_{\nu}} |Dh_{\nu}^{n} - Dh|^{2} &= \int_{\mathbb{U}_{\nu}} \left(|Dh_{\nu}^{n}|^{2} + |Dh|^{2} - 2\langle Dh_{\nu}^{n}, Dh \rangle \right) \\ &\leqslant 2 \int_{\mathbb{U}_{\nu}} \left(|Dh|^{2} - \langle Dh_{\nu}^{n}, Dh \rangle \right) \\ &= 2 \int_{\mathbb{U}_{\nu}} \langle Dh, Dh - Dh_{\nu}^{n} \rangle \longrightarrow 0 \end{split}$$

We can now determine the number $n = n_{\nu}$ of congruent dyadic squares in \mathbb{Q}_{ν} , simply requiring that

$$\begin{cases} \operatorname{diam} \mathbb{Q}^{i}_{\nu} \leq \epsilon & \text{for every } i = 1, 2, \dots, n_{\nu} \\ \|Dh^{n}_{\nu} - Dh\|_{\mathscr{L}^{2}(\overline{\mathbb{U}_{\nu}})} \leq \epsilon \cdot 2^{-\nu} \end{cases}$$

Fix such $n = n_{\nu}$ and abbreviate the notation for $h_{\nu}^{n_{\nu}}$ to h^{ν} . We obtain a homeomorphism

$$h_1 := h + \sum_{\nu=1}^{\infty} [h^{\nu} - h]_{\circ} \in h + \mathscr{A}_{\circ}(\Omega)$$

where we recall that $[h^{\nu} - h]_{\circ}$ stands for the zero extension of $h^{\nu} - h$ to the entire domain Ω . Clearly, h_1 is harmonic in each \mathbb{U}^i_{ν} , $\nu = 1, 2, \ldots, i = 1, 2, \ldots, n_{\nu}$ and we have

$$\|h_1 - h\|_{\mathscr{C}(\Omega)} \leq \sup\{\operatorname{diam} \mathbb{Q}^i_{\nu} \colon \nu = 1, 2, \dots, \ i = 1, \dots, n_{\nu}\} < \epsilon$$

$$(3.5) ||h_1 - h||_{\mathscr{A}(\Omega)} \leq \epsilon + \sum_{\nu=1}^{\infty} ||Dh^{\nu} - Dh||_{\mathscr{L}^2(\mathbb{U}_{\nu})} \leq \epsilon + \sum_{\nu=1}^{\infty} \epsilon \cdot 2^{-\nu} = 2\epsilon$$

For further considerations it will be convenient to number the squares \mathbb{Q}^i_{ν} and their preimages \mathbb{U}^i_{ν} using only one index. These sets will be respectively denoted by \mathbb{Q}^{α} and \mathbb{U}^{α} , $\alpha = 1, 2, \ldots$. For the record,

(3.6)
$$\operatorname{diam} \mathbb{Q}^{\alpha} \leqslant \epsilon, \qquad \alpha = 1, 2, \dots$$

 $\overline{7}$

Finite energy case. Summing up the energy inequalities for the mappings $h_{\nu}^{i}: \mathbb{U}_{\nu}^{i} \to \mathbb{Q}_{\nu}^{i}$ we see that the total energy of h_{1} does not exceed the energy of h. Even more, since h was assumed to be not harmonic, there is at least one region \mathbb{U}_{ν}^{i} for which $h: \mathbb{U}_{\nu}^{i} \to \mathbb{Q}_{\nu}^{i}$ was not harmonic. Consequently, its harmonic replacement results in strictly smaller energy. Hence

(3.7)
$$\mathcal{E}_{\Omega}[h_1] < \mathcal{E}_{\Omega}[h], \quad \text{so let } \delta = \|Dh\|_{\mathscr{L}^2(\Omega)} - \|Dh_1\|_{\mathscr{L}^2(\Omega)} > 0$$

Step 2. Denote by $\mathcal{F} = \{\mathbb{Q}^{\alpha} : \alpha = 1, 2, ...\}$ the family of all open squares $\mathbb{Q}^{\alpha} \subset \overline{\mathbb{Q}^{\alpha}} \subset \Omega^{*}$ that are build in Step 1 for the construction of the mapping $h_{1} : \Omega \to \Omega^{*}$. Let \mathcal{V} be the set of vertices of these squares. Whenever two squares $\mathbb{Q}^{\alpha}, \mathbb{Q}^{\beta} \in \mathcal{F}, \ \alpha \neq \beta$, meet along their boundaries the intersection $I^{\alpha,\beta} = \partial \mathbb{Q}^{\alpha} \cap \partial \mathbb{Q}^{\beta}$ is either a point in \mathcal{V} or a closed interval with endpoints in \mathcal{V} . Denote by $\mathcal{J} \subset \{I^{\alpha,\beta} : \alpha \neq \beta, \ \alpha, \beta = 1, 2, ...\}$ the subfamily of all such intersections, excluding empty set and vertices. For each interval $I^{\alpha,\beta} \in \mathcal{J}$ we shall construct a doubly convex lens-shaped region $\mathbb{L}^{\alpha,\beta}$ with $I^{\alpha,\beta}$ as its axis of symmetry in the following way. Let R be a number greater than the length of $I^{\alpha,\beta}$ to be chosen later. There exist exactly two open disks of radius R for which $I^{\alpha,\beta}$ is a chord. Let $\mathbb{L}^{\alpha,\beta}_{R}$ be their intersection. This is a symmetric doubly convex lens of curvature $\frac{1}{R}$. Thus $\mathbb{L}^{\alpha,\beta}_{R}$ is bounded by two circular arcs $\gamma^{\alpha,\beta} = \mathbb{Q}^{\alpha} \cap \partial \mathbb{L}^{\alpha,\beta}_{R}$ and $\gamma^{\beta,\alpha} = \mathbb{Q}^{\beta} \cap \partial \mathbb{L}^{\alpha,\beta}_{R}$. As the curvature of the lens approaches zero the area of $\mathbb{L}^{\alpha,\beta}_{R}$ tends to 0. This allows us to choose R depending on α and β so that the lenses $\mathbb{L}^{\alpha,\beta} = \mathbb{L}^{\alpha,\beta}_{R}$ have the following property.

(3.8)
$$\int_{\mathbb{K}^{\alpha,\beta}} |Dh_1|^2 < \frac{\epsilon^2}{2^{\alpha+\beta}}, \quad \text{where } \mathbb{K}^{\alpha,\beta} = h_1^{-1}(\mathbb{L}_R^{\alpha,\beta})$$

The lenses $\mathbb{L}^{\alpha,\beta}$ are disjoint because the opening angle of each lens is at most $\pi/3$ and their axes are either parallel or orthogonal. However, the closures of the lenses considered here may have a common point that lies in \mathcal{V} . On each $\mathbb{K}^{\alpha,\beta}$ we replace h_1 by the harmonic extension of its restriction to $\partial \mathbb{K}^{\alpha,\beta}$. Thus we obtain a homeomorphism $h_2^{\alpha,\beta} : \overline{\mathbb{K}^{\alpha,\beta}} \xrightarrow{\text{onto}} L^{\alpha,\beta}$ of class $h_1 + \mathscr{A}_{\circ}(\mathbb{K}^{\alpha,\beta})$. By Proposition 2.3 the mappings $h_2^{\alpha,\beta} : \mathbb{K}^{\alpha,\beta} \xrightarrow{\text{onto}} \mathbb{L}^{\alpha,\beta}$ are diffeomorphisms. Finally, we define

$$h_2 = h_1 + \sum_{\alpha,\beta} [h_2^{\alpha,\beta} - h_1]_{\circ} \in h_1 + \mathscr{A}_{\circ}(\Omega) = h + \mathscr{A}_{\circ}(\Omega)$$

and observe that, from (3.6),

$$||h_2 - h_1||_{\mathscr{C}(\Omega)} \leq \sup_{\alpha,\beta} \operatorname{diam}\left(\mathbb{L}^{\alpha,\beta}\right) \leq \epsilon.$$

Also, (3.8) and Dirichlet's principle imply

$$\int_{\Omega} |Dh_2 - Dh_1|^2 \leqslant \sum_{\alpha,\beta} \int_{\mathbb{K}^{\alpha,\beta}} 2\left(|Dh_2|^2 + |Dh_1|^2\right) \leqslant 4 \sum_{\alpha,\beta=1}^{\infty} \int_{\mathbb{K}^{\alpha,\beta}} |Dh_1|^2$$
$$\leqslant 4 \sum_{\alpha,\beta=1}^{\infty} \frac{\epsilon^2}{2^{\alpha+\beta}} = 4\epsilon^2$$

Thus

 $\|h_2 - h_1\|_{\mathscr{A}(\Omega)} \leqslant \epsilon + 2\epsilon = 3\epsilon$

The boundary of $\mathbb{K}^{\alpha,\beta}$ consists of two \mathscr{C}^{∞} -smooth arcs $\Gamma^{\alpha,\beta}$ and $\Gamma^{\beta,\alpha}$ which share common endpoints, called the apices of $\mathbb{K}^{\alpha,\beta}$. These are preimages of $\gamma^{\alpha,\beta}$ and $\gamma^{\beta,\alpha}$ under the mapping h_1 , respectively. Outside of the apices, the homeomorphism $h_2: \mathbb{K}^{\alpha,\beta} \xrightarrow{\text{onto}} \mathbb{L}^{\alpha,\beta}$ is C^{∞} smooth with positive Jacobian. The smoothness is a classical result of Kellogg; *a harmonic function with* \mathscr{C}^{∞} -smooth values on a smooth part of the boundary is \mathscr{C}^{∞} -smooth up to this part of the boundary [16, Theorem 6.19]. The positivity of the Jacobian on such part of the boundary follows from the convexity of its image, see [9, p. 116].

In conclusion, h_2 is locally bi-Lipschitz in $\Omega \setminus h^{-1}(\mathcal{V})$. The exceptional set $h^{-1}(\mathcal{V})$ is discrete because \mathcal{V} is.

Finite energy case. By (3.7) we have

(3.9)
$$\|Dh_2\|_{\mathscr{L}^2(\Omega)} \leq \|Dh_1\|_{\mathscr{L}^2(\Omega)} \leq \|Dh\|_{\mathscr{L}^2(\Omega)} - \delta$$

Step 3. First we cover the set of vertices \mathcal{V} by disks $\{\mathbb{D}_v : v \in \mathcal{V}\}$ centered at v with radii small enough so that

and $\{3\mathbb{D}_v : v \in \mathcal{V}\}\$ is a disjoint collection of disks in Ω^* . Moreover, their preimages under h_2 must satisfy

(3.11)
$$\sum_{\nu \in \mathcal{V}} \int_{h_2^{-1}(3\mathbb{D}_{\nu})} |Dh_2|^2 < \epsilon^2$$

Denote by $\tilde{\Omega}^* = \Omega^* \setminus \bigcup_{v \in \mathcal{V}} \overline{\mathbb{D}}_v$ and $\tilde{\Omega} = \Omega \setminus \bigcup_{v \in \mathcal{V}} h_2^{-1}(\overline{\mathbb{D}}_v)$. Our focus for a while will be on one of the circular sides of a lens $\mathbb{L}^{\alpha,\beta}$, say

$$\gamma^{\alpha,\beta} = \mathbb{Q}^{\alpha} \cap \partial \mathbb{L}^{\alpha,\beta} \subset \mathbb{Q}^{\alpha}$$

We truncate it near the endpoints by setting $\tilde{\gamma}^{\alpha,\beta} = \tilde{\Omega} \cap \gamma^{\alpha,\beta}$. Such truncated open arcs are mutually disjoint; even more, their closures are isolated continua in Ω^* . This means that there are disjoint neighborhoods of them. We are actually interested in a neighborhood of $\tilde{\gamma}^{\alpha,\beta}$ of the shape of a thin *concavo-convex lens* that we shall denote by $\tilde{\mathbb{L}}^{\alpha,\beta}$. By definition, $\tilde{\gamma}^{\alpha,\beta} \subset \tilde{\mathbb{L}}^{\alpha,\beta} \subset \mathbb{Q}^{\alpha}$. The construction of such lens goes as follows. Let a and b denote the endpoints of $\tilde{\gamma}^{\alpha,\beta}$, we assemble two circular arcs $\tilde{\gamma}^{\alpha,\beta}_{+}$ and $\tilde{\gamma}^{\alpha,\beta}_{-}$ with endpoints at a and b to form together with their endpoints a

concavo-convex Jordan curve. This Jordan curve constitutes the boundary of a circular lens $\tilde{\mathbb{L}}^{\alpha,\beta}$. The term concavo-convex lens refers to the configuration in which $\tilde{\mathbb{L}}^{\alpha,\beta}$ lies in the concave side of the arc $\tilde{\gamma}_{-}^{\alpha,\beta}$ and convex side of $\tilde{\gamma}^{\alpha,\beta}_+$. It is clear that such lenses can be made arbitrarily thin so that $\tilde{\mathbb{L}}^{\alpha,\beta} \subset \tilde{\Omega}^*$ and the closures of $\tilde{\mathbb{L}}^{\alpha,\beta}$ will still be isolated continua in Ω^* . From now on we fix the family $\{\tilde{\mathbb{L}}^{\alpha,\beta}: \alpha \neq \beta\}$ of such concavo-convex lenses associated with the arcs $\tilde{\gamma}^{\alpha,\beta}$. We then look at their preimages $\mathbb{U}^{\alpha,\beta} = h_2^{-1}(\tilde{\mathbb{L}}^{\alpha,\beta})$ and the \mathscr{C}^{∞} -smooth arcs $\Upsilon^{\alpha,\beta} = h_2^{-1}(\tilde{\gamma}^{\alpha,\beta})$. The endpoints of $\Upsilon^{\tilde{\alpha},\beta}$ lie in $\partial \mathbb{U}^{\alpha,\beta}$. Moreover, $\Upsilon^{\alpha,\beta}$ splits $\mathbb{U}^{\alpha,\beta}$ into two disjoint subdomains $\mathbb{U}^{\alpha,\beta}_+$ and $\mathbb{U}_{-}^{\alpha,\beta}$ such that $\mathbb{U}^{\alpha,\beta} \setminus \Upsilon^{\alpha,\beta} = \mathbb{U}_{+}^{\alpha,\beta} \cup \mathbb{U}_{-}^{\alpha,\beta}$. Here we have a homeomorphism $h_2 \colon \mathbb{U}^{\alpha,\beta} \xrightarrow{\text{onto}} \tilde{\mathbb{L}}^{\alpha,\beta}$ which is \mathscr{C}^{∞} -diffeomorphism on $\overline{\mathbb{U}}^{\alpha,\beta}_+$ and \mathscr{C}^{∞} diffeomorphism on $\overline{\mathbb{U}}_{-}^{\alpha,\beta}$. Therefore, for some positive number $M_{\alpha,\beta}$, we have pointwise inequlities $|Dh_2| \leq M_{\alpha,\beta}$ and $\det Dh_2 \geq \frac{1}{M_{\alpha,\beta}}$ in both $\overline{\mathbb{U}}_+^{\alpha,\beta}$ and $\overline{\mathbb{U}}_{-}^{\alpha,\beta}$. Having established such a deformation of lenses and their preimages under h_2 , we apply Corollary 5.4. We infer that there is also a constant $M'_{\alpha,\beta} > 0$ with the following property: to every neighborhood of $\Upsilon^{\alpha,\beta}$, say an open connected set $\mathbb{U}^{\alpha,\beta}_{\circ} \subset \mathbb{U}^{\alpha,\beta}$ that contains $\Upsilon^{\alpha,\beta}$, there corresponds a \mathscr{C}^{∞} -diffeomorphism, denoted by $h_3: \mathbb{U}^{\alpha,\beta} \xrightarrow{\text{onto}} \tilde{\mathbb{L}}^{\alpha,\beta}$, such that

(3.12)
$$\begin{cases} h_3(z) = h_2(z) & \text{for } z \in \mathbb{U}^{\alpha,\beta} \setminus \mathbb{U}^{\alpha,\beta}_{\circ} \\ |Dh_3| \leqslant M'_{\alpha,\beta} & \text{and} & \det Dh_3 \geqslant \frac{1}{M'_{\alpha,\beta}} & \text{in } \mathbb{U}^{\alpha,\beta} \end{cases}$$

We emphasize that $M'_{\alpha,\beta}$ is independent of the neighborhood $\mathbb{U}^{\alpha,\beta}_{\circ}$. We choose and fix $\mathbb{U}^{\alpha,\beta}_{\circ}$ thin enough to satisfy

- $\bullet \ \overline{\mathbb{U}}_{\circ}^{\alpha,\beta} \subset \mathbb{U}^{\alpha,\beta} \cup \overline{\Upsilon}^{\alpha,\beta}$
- $|\mathbb{U}_{\circ}^{\alpha,\beta}| \leq [M_{\alpha,\beta} + M'_{\alpha,\beta}]^{-2} \epsilon^2 2^{-\alpha-\beta}$
- $\sup_{\mathbb{U}_{\alpha}^{\alpha,\beta}} |Dh_2| \leqslant M_{\alpha,\beta}$
- in the finite energy case, we also assume that $|\mathbb{U}_{\circ}^{\alpha,\beta}| \leq [M'_{\alpha,\beta}]^{-2}\delta^2 4^{-\alpha-\beta-1}$

Recall that δ was defined by (3.7) and later appeared in (3.9). This is certainly possible; for instance, take $\mathbb{U}_{\circ}^{\alpha,\beta}$ to be the preimage under h_2 of a sufficiently thin concavo-convex lens containing $\tilde{\gamma}^{\alpha,\beta}$. We call $h_3: \mathbb{U}^{\alpha,\beta} \xrightarrow{\text{onto}} \tilde{\mathbb{L}}^{\alpha,\beta}$ a smoothing of $h_2: \mathbb{U}^{\alpha,\beta} \xrightarrow{\text{onto}} \tilde{\mathbb{L}}^{\alpha,\beta}$ associated with a given arc $\Upsilon^{\alpha,\beta} = h_2^{-1}(\tilde{\gamma}^{\alpha,\beta})$. We now define a homeomorphism $h_3: \Omega \xrightarrow{\text{onto}} \Omega^*$ by the rule

$$h_3 = \begin{cases} \text{smoothing of } h_2 & \text{ in } \mathbb{U}^{\alpha,\beta} \\ h_2 & \text{ in } \Omega \setminus \bigcup_{\alpha,\beta} \mathbb{U}^{\alpha,\beta} \end{cases}$$

It belongs to $h_2 + \mathscr{A}_{\circ}(\Omega)$. Obviously h_3 is a \mathscr{C}^{∞} -diffeomorphism in $\widetilde{\Omega}$. We have for every $z \in \Omega$

$$|h_3(z) - h_2(z)| \leqslant \begin{cases} \operatorname{diam} \widetilde{\mathbb{L}}^{\alpha,\beta} & \text{for } z \in \mathbb{U}^{\alpha,\beta} \\ 0 & \text{otherwise} \end{cases}$$
$$\leqslant \operatorname{diam} \mathbb{Q}^{\alpha} \leqslant \epsilon$$

see (3.6). Hence $||h_3 - h_2||_{\mathscr{C}(\Omega)} \leq \epsilon$. As regards the energy of $h_3 - h_2$ we find that

These estimates sum up to

$$\|h_3 - h_2\|_{\mathscr{A}(\Omega)} \leqslant \epsilon + \epsilon = 2\epsilon$$

Let us record for subsequent use the following estimate, obtained from (3.11) and (3.13).

Finite energy case. For the energy of h_3 , we observe that

$$\begin{split} \|Dh_3\|_{\mathscr{L}^2(\Omega)} &\leqslant \|Dh_3\|_{\mathscr{L}^2(\Omega\setminus\cup\mathbb{U}^{\alpha,\beta}_{\circ})} + \sum_{\alpha,\beta} \|Dh_3\|_{\mathscr{L}^2(\mathbb{U}^{\alpha,\beta}_{\circ})} \\ &= \|Dh_2\|_{\mathscr{L}^2(\Omega\setminus\cup\mathbb{U}^{\alpha,\beta}_{\circ})} + \sum_{\alpha,\beta} \|Dh_3\|_{\mathscr{L}^2(\mathbb{U}^{\alpha,\beta}_{\circ})} \\ &\leqslant \|Dh_2\|_{\mathscr{L}^2(\Omega)} + \sum_{\alpha,\beta} |\mathbb{U}^{\alpha,\beta}_{\circ}|^{1/2} \sup_{\mathbb{U}^{\alpha,\beta}_{\circ}} |Dh_3| \\ &\leqslant \|Dh\|_{\mathscr{L}^2(\Omega)} - \delta + \frac{\delta}{2} \end{split}$$

Thus

(3.15)
$$\|Dh_3\|_{\mathscr{L}^2(\Omega)} \leq \|Dh\|_{\mathscr{L}^2(\Omega)} - \frac{\delta}{2}$$

10

Step 4. We have already upgraded the mapping h to a homeomorphism $h_3: \Omega \to \Omega^*$ such that $h_3 \in h + \mathscr{A}_{\circ}(\Omega)$ and

(3.16)
$$\begin{aligned} \|h_3 - h\|_{\mathscr{A}(\Omega)} &\leq \|h_3 - h_2\|_{\mathscr{A}(\Omega)} + \|h_2 - h_1\|_{\mathscr{A}(\Omega)} + \|h_1 - h\|_{\mathscr{A}(\Omega)} \\ &\leq 2\epsilon + 3\epsilon + 2\epsilon = 7\epsilon \end{aligned}$$

Moreover, h_3 is a \mathscr{C}^{∞} -diffeomorphism on $\Omega \setminus \bigcup_{v \in \mathcal{V}} h_2^{-1}(\overline{\mathbb{D}}_v)$. We now define a homeomorphism $h_4 \colon \Omega \xrightarrow{\text{onto}} \Omega^*$ by performing harmonic replacement of h_3 on each set $h_3^{-1}(2\mathbb{D}_v)$. This gives us a \mathscr{C}^{∞} -diffeomorphism $h_4 \colon h_3^{-1}(2\overline{\mathbb{D}}_v) \to 2\overline{\mathbb{D}}_v$, see Step 2 for details. For each $z \in \Omega$

$$|h_4(z) - h_3(z)| \leqslant \begin{cases} 2 \operatorname{diam} \mathbb{D}_v & \text{if } z \in h_3^{-1}(2\mathbb{D}_v) \\ 0 & \text{otherwise} \end{cases} \leqslant 2\epsilon$$

Hence $||h_4 - h_3||_{\mathscr{C}(\Omega)} \leq 2\epsilon$. Using (3.14) we estimate the energy as follows.

$$\begin{aligned} \mathcal{E}_{\Omega}[h_4 - h_3] &= \sum_{v \in \mathcal{V}} \mathcal{E}_{h_3^{-1}(2\mathbb{D}_v)}[h_4 - h_3] \\ &\leqslant 2 \sum_{v \in \mathcal{V}} \left(\mathcal{E}_{h_3^{-1}(2\mathbb{D}_v)}[h_4] + \mathcal{E}_{h_3^{-1}(2\mathbb{D}_v)}[h_3] \right) \\ &\leqslant 4 \sum_{v \in \mathcal{V}} \mathcal{E}_{h_3^{-1}(2\mathbb{D}_v)}[h_3] \leqslant 20\epsilon^2 \end{aligned}$$

Thus, by (3.14)

(3.17)
$$\|h_4 - h_3\|_{\mathscr{A}(\Omega)} \leqslant \epsilon + \sqrt{20}\epsilon \leqslant 6\epsilon$$

Finite energy case. By virtue of Dirichlet's principle and (3.15) we have

$$(3.18) ||Dh_4||_{\mathscr{L}^2(\Omega)} \leq ||Dh_3||_{\mathscr{L}^2(\Omega)} \leq ||Dh||_{\mathscr{L}^2(\Omega)} - \frac{\delta}{2}$$

Step 5. The final step consists of smoothing h_4 in a neighborhood of each smooth Jordan curves $C_v = \partial h_3^{-1}(2\mathbb{D}_v)$. We proceed in much the same way as in Step 3, but we appeal to Corollary 5.5 instead of Corollary 5.4. By smoothing h_4 in a sufficiently thin neighborhood of each C_v we obtain a \mathscr{C}^{∞} -diffeomorphism $h_5: \Omega \xrightarrow{\text{onto}} \Omega^*, h_5 \in h_4 + \mathscr{A}_{\circ}(\Omega)$ such that

$$(3.19) ||h_5 - h_4||_{\mathscr{A}(\Omega)} \leqslant \epsilon$$

We now recapitulate the estimates (3.16), (3.17) and (3.19) to obtain a \mathscr{C}^{∞} -diffeomorphism in Ω

$$H := h_5 \in h + \mathscr{A}(\Omega)$$

such that

$$\begin{aligned} \|H - h\|_{\mathscr{A}(\Omega)} &\leq \|h_5 - h_4\|_{\mathscr{A}(\Omega)} + \|h_4 - h_3\|_{\mathscr{A}(\Omega)} + \|h_3 - h\|_{\mathscr{A}(\Omega)} \\ &\leq \epsilon + 6\epsilon + 7\epsilon = 14\epsilon \end{aligned}$$

which is as strong as (ii) in Theorem 1.2.

Finite energy case. To obtain the desired energy estimate $\mathcal{E}_{\Omega}[h_5] \leq \mathcal{E}_{\Omega}[h]$, we need to sharpen the energy part in (3.19). By narrowing further the

neighborhoods of C_v we can be make the energy $\mathcal{E}_{\Omega}[h_5 - h_4]$ as small as we wish; for example to obtain

$$\|Dh_5 - Dh_4\|_{\mathscr{L}^2(\Omega)} < \frac{\delta}{2}$$

This is enough to conclude that

$$\|DH\|_{\mathscr{L}^2(\Omega)} \leqslant \|Dh\|_{\mathscr{L}^2(\Omega)}$$

because of (3.18).

4. HOPF DIFFERENTIALS, THEOREM 1.3

A quadratic differential on a domain Ω in the complex plane \mathbb{C} takes the form $Q = F(z) dz \otimes dz$, where F is a complex function on Ω . Given a conformal change of the variable $z, z = \varphi(\xi)$, where $\varphi: \Omega' \to \Omega$, the pull back

$$\varphi^{\sharp}(Q) = F(\varphi(\xi)) \,\mathrm{d}\varphi \otimes \mathrm{d}\varphi = F(\varphi(\xi)) \dot{\varphi}^{2}(\xi) \,\mathrm{d}\xi \otimes \mathrm{d}\xi$$

defines a quadratic differential on Ω' . It is plain that for a complex harmonic function $h: \Omega \to \mathbb{C}$ the associated Hopf differential

$$Q_h = h_z \overline{h_{\bar{z}}} \, \mathrm{d}z \otimes \mathrm{d}z$$

is holomorphic, meaning that

(4.1)
$$\frac{\partial}{\partial \bar{z}} \left(h_z \overline{h_{\bar{z}}} \right) = 0$$

Conversely, if a Hopf differential $Q_h = h_z \overline{h_{\bar{z}}} \, dz \otimes dz$ is holomorphic for some \mathscr{C}^1 -mapping h, then h is harmonic at the points where the Jacobian determinant $J(z,h) := \det Dh = |h_z|^2 - |h_{\bar{z}}|^2 \neq 0$, see [10, 10.5] and our Remark 4.3. Here the assumption that $J(z,h) \neq 0$ is critical. Let us illustrate it by the following.

Example 4.1. Consider a mapping $h \in \mathscr{C}^{1,1}(\mathbb{C}_{\circ})$ defined on the punctured plane $\mathbb{C}_{\circ} = \mathbb{C} \setminus \{0\}$ by the rule

(4.2)
$$h(z) = \begin{cases} \frac{z}{|z|} & \text{for } 0 < |z| \le 1\\ \frac{1}{2} \left(z + \frac{1}{z} \right) & \text{for } 1 \le |z| < \infty \end{cases}$$

Direct computation shows that

$$h_z(z) = \begin{cases} \frac{1}{2}|z|^{-1} & \text{ for } 0 < |z| \le 1\\ \frac{1}{2} & \text{ for } 1 \le |z| < \infty \end{cases}$$

and

$$h_{\bar{z}}(z) = \begin{cases} -\frac{1}{2}|z|\bar{z}^{-2} & \text{for } 0 < |z| \le 1\\ -\frac{1}{2}\bar{z}^{-2} & \text{for } 1 \le |z| < \infty \end{cases}$$

Thus

(4.3)
$$Q_h = -\frac{\mathrm{d}z \otimes \mathrm{d}z}{4z^2} \qquad \text{in } \mathbb{C}_{\circ}$$

It may be worth mentioning that the mapping h in (4.2) is the unique (up to rotation of z) minimizer of the Dirichlet energy

$$\mathcal{E}[H] = \int_{\mathbb{A}} |DH|^2$$

over the annulus $\mathbb{A} = A(r, R) = \{z : r < |z| < R\}, 0 < r < 1 < R,$ subject to all weak limits of homeomorphisms $H : \mathbb{A} \xrightarrow{\text{onto}} A(1, R_*)$, where $R_* = \frac{1}{2} \left(R + \frac{1}{R}\right)$, see [1]. Note that the Hopf differential of (4.3) is real along the boundary circles of \mathbb{A} . The concentric circles are horizontal trajectories of Q_h . In fact this is a general property of minimizers [21, Lemma 1.2.5]. The general pattern is that with the loss of injectivity comes the loss of the Lagrange-Euler equation for the extremal mapping.

Properties of the function h with holomorphic Hopf differential $Q = h_z \overline{h_z} \, dz \otimes dz$ are of interest in the studies of harmonic mappings [11, 12, 21, 30, 31], minimal surfaces [8, 34] and Teichmüller theory [15]. In this section we prove Theorem 1.3 which imposes fairly minimal assumptions that imply harmonicity of $\mathcal{W}^{1,2}$ -solution to the equation (4.1). Some elements of the proof go back to [28, 29].

Proof of Theorem 1.3. As a consequence of the Stoilow factorization theorem [1, p. 56] the branch set of h is discrete, hence removable for continuous harmonic functions. Thus we assume that $h: \Omega \xrightarrow{\text{onto}} \Omega^*$ is a homeomorphism of Sobolev class $\mathscr{W}^{1,2}_{\text{loc}}(\Omega, \Omega^*)$ such that

(4.4)
$$h_z \overline{h_{\bar{z}}} = F(z)$$
 is holomorphic in Ω

By virtue of Theorem 1.2, there exists a sequence of diffeomorphisms $h^j \colon \Omega \xrightarrow{\text{onto}} \Omega^*$ converging *c*-uniformly and strongly in $\mathscr{W}^{1,2}_{\text{loc}}(\Omega, \Omega^*)$ to *h*. Denote by

(4.5)
$$h_z^j h_{\bar{z}}^j =: F^j \in \mathscr{L}^1_{\text{loc}}(\Omega)$$

Thus $F^j \to F$ strongly in $\mathscr{L}^1_{\text{loc}}(\Omega)$. Let us first dispose of an easy case. **Case 0.** The homogeneous equation $F \equiv 0$. Since h^j are diffeomorphisms the Jacobian determinant $J(z, h^j) = |h_z^j|^2 - |h_{\bar{z}}^j|^2$ is either positive everywhere in Ω or negative everywhere in Ω . Let us settle the case when $J(z, h^j) > 0$ for infinitely many indices $j = 1, 2, \ldots$. For such j we have $|h_z^j| > |h_{\bar{z}}^j|$, which yields $|h_{\bar{z}}^j|^2 \leq |h_z^j h_{\bar{z}}^j|$. Passing to the \mathscr{L}^1 -limit we obtain

$$h_{\bar{z}}|^2 \leqslant |h_z h_{\bar{z}}| = |F(z)| \equiv 0.$$

Thus h is holomorphic, by Weyl's lemma. Similarly, in case $J(z, h^j) < 0$ for infinitely many indices j = 1, 2, ..., we find that h is antiholomorphic.

Remark 4.2. We observe, based on the above arguments, that for this homogeneous equation $h_z \overline{h_{\overline{z}}} \equiv 0$ every solution $h \in \mathscr{W}_{\text{loc}}^{1,2}(\Omega)$ obtained as the weak $\mathscr{W}^{1,2}$ -limit of homeomorphisms is either holomorphic or antiholomorphic. The situation is dramatically different if $h_z \overline{h_{\overline{z}}} \neq 0$; some topological assumption on h are necessary, as illustrated in Example 4.1. **Case 1.** Nonhomogeneous equation $F \neq 0$. The function F, being holomorphic, may vanish only at isolated points. Since isolated points are removable for bounded harmonic functions, it suffices to consider the set where $F \neq 0$. Proceeding further in this direction, we may and do assume that $F(z) \equiv 1$ (by a conformal change of the z-variable) and h is a $\mathscr{W}^{1,2}$ -homeomorphism in the closure of the unit square $\mathbb{Q} = \{x + iy \colon 0 < x < 1, 0 < y < 1\}$. The problem now reduces to establishing that the equation

$$(4.6) h_z h_{\bar{z}} \equiv 1$$

implies $\Delta h = 0$. This will be proved indirectly by means of the energyminimizing property

$$\mathcal{E}_{\mathbb{Q}}[h] \leqslant \mathcal{E}_{\mathbb{Q}}[H]$$

where $H: \mathbb{Q} \to h(\mathbb{Q})$ is any homeomorphism in $h + \mathscr{A}_{\circ}(\mathbb{Q})$; in particular, H = h on $\partial \mathbb{Q}$. Indeed, if h were not harmonic, we would be able to decrease its energy by harmonic replacement (Propositions 2.1 and 2.3), contradicting (4.7).

4.1. **Proof of the inequality** (4.7). With the aid of the approximation theorem we need only prove (4.7) for mappings $H \in h + \mathscr{A}_{\circ}(\mathbb{Q})$ that are diffeomorphisms on \mathbb{Q} . From now on we assume that this is the case. Denote $\mathbb{Q}^* = h(\mathbb{Q}) = H(\mathbb{Q})$. We consider a sequence $h^j \in h + \mathscr{A}_{\circ}(\mathbb{Q})$ of diffeomorphisms $h^j : \mathbb{Q} \xrightarrow{\text{onto}} \mathbb{Q}^*$ converging in $\mathscr{A}(\mathbb{Q})$ to h. Moreover we may also assume that $Dh^j \to Dh$ almost everywhere in \mathbb{Q} by passing to a subsequence if necessary. Now the sequence $\chi^j : \overline{\mathbb{Q}} \to \overline{\mathbb{Q}}$ of self-homeomorphisms of the closed unit disk given by $\chi^j = H^{-1} \circ h^j$, where $\chi^j = \text{id on } \partial\mathbb{Q}$, is converging uniformly on $\overline{\mathbb{Q}}$ to $\chi = H^{-1} \circ h$. It is important to observe that $\chi \in \mathscr{W}_{\text{loc}}^{1,2}(\mathbb{Q})$ and χ^j converges to χ in $\mathscr{W}^{1,2}(\mathbb{Q}')$ on any compactly contained subdomain $\mathbb{Q}' \Subset \mathbb{Q}$. Since h^j and $(\chi^j)^{-1}$ are diffeomorphisms on \mathbb{Q}' and $\chi^j(\mathbb{Q}')$, respectively, the chain rule can be applied to the composition $H = h^j \circ (\chi^j)^{-1}$. For $w \in \chi^j(\mathbb{Q}')$ we have

$$\frac{\partial H(w)}{\partial w} = h_z^j(z)\frac{\partial(\chi^j)^{-1}}{\partial w} + h_{\bar{z}}^j(z)\frac{\partial(\chi^j)^{-1}}{\partial \bar{w}}$$
$$\frac{\partial H(w)}{\partial \bar{w}} = h_z^j(z)\frac{\partial(\chi^j)^{-1}}{\partial \bar{w}} + h_{\bar{z}}^j(z)\frac{\overline{\partial(\chi^j)^{-1}}}{\partial w}$$

where $z = (\chi^{j})^{-1}(w)$.

The partial derivatives of $(\chi^j)^{-1}$ at w can be expressed in terms of $\chi^j_z(z)$ and $\chi^j_{\overline{z}}(z)$ by the rules

$$\frac{\partial(\chi^j)^{-1}}{\partial w} = \frac{\chi_z^j(z)}{J(z,\chi^j)}$$
$$\frac{\partial(\chi^j)^{-1}}{\partial \bar{w}} = -\frac{\chi_z^j(z)}{J(z,\chi^j)}$$

where the Jacobian determinant $J(z,\chi^j)$ is strictly positive. This yields

$$\begin{split} \frac{\partial H}{\partial w} &= \frac{h_z^j \overline{\chi_z^j} - h_{\overline{z}}^j \overline{\chi_{\overline{z}}^j}}{J(z,\chi^j)} \\ \frac{\partial H}{\partial \overline{w}} &= \frac{h_{\overline{z}}^j \chi_z^j - h_{\overline{z}}^j \chi_{\overline{z}}^j}{J(z,\chi^j)} \end{split}$$

We compute the energy integral of H over the set $\chi^j(\mathbb{Q}')$ by substitution $w = \chi^j(z)$,

$$\mathcal{E}_{\chi^{j}(\mathbb{Q}')}[H] = 2 \int_{\chi^{j}(\mathbb{Q}')} \left(|H_{w}|^{2} + |H_{\bar{w}}|^{2} \right) dw$$
$$= 2 \int_{\mathbb{Q}'} \frac{|h_{z}^{j} \overline{\chi_{z}^{j}} - h_{\bar{z}}^{j} \overline{\chi_{\bar{z}}^{j}}|^{2} + |h_{\bar{z}}^{j} \chi_{z}^{j} - h_{z}^{j} \chi_{z}^{j}|^{2}}{|\chi_{z}^{j}|^{2} - |\chi_{\bar{z}}^{j}|^{2}} dz$$

On the other hand, the energy of h^j over the set \mathbb{Q}' is

$$\mathcal{E}_{\mathbb{Q}'}[h^j] = 2 \int_{\mathbb{Q}'} \left(|h_z^j|^2 + |h_{\bar{z}}^j|^2 \right) \,\mathrm{d}z$$

Subtract these two integrals to obtain

$$\begin{aligned} \mathcal{E}_{\mathbb{Q}}[H] - \mathcal{E}_{\mathbb{Q}'}[h^{j}] &\geq \mathcal{E}_{\chi^{j}(\mathbb{Q}')}[H] - \mathcal{E}_{\mathbb{Q}'}[h^{j}] \\ &= 4 \int_{\mathbb{Q}'} \frac{\left(|h_{z}^{j}|^{2} + |h_{\overline{z}}^{j}|^{2} \right) \cdot |\chi_{\overline{z}}^{j}|^{2} - 2\operatorname{Re}\left[h_{z}^{j}\overline{h_{\overline{z}}^{j}}\chi_{\overline{z}}^{j}\chi_{\overline{z}}^{j} \right]}{|\chi_{z}^{j}|^{2} - |\chi_{\overline{z}}^{j}|^{2}} \, \mathrm{d}z \end{aligned}$$

$$(4.8) \qquad \geq 4 \int_{\mathbb{Q}'} \frac{2|h_{z}^{j}h_{\overline{z}}^{j}||\chi_{\overline{z}}^{j}|^{2} - 2\operatorname{Re}\left[h_{\overline{z}}^{j}\overline{h_{\overline{z}}^{j}}\chi_{\overline{z}}^{j}\chi_{\overline{z}}^{j} \right]}{|\chi_{z}^{j}|^{2} - |\chi_{\overline{z}}^{j}|^{2}} \, \mathrm{d}z \end{aligned}$$

$$= 4 \int_{\mathbb{Q}'} \left[\frac{|\chi_{z}^{j} - \sigma^{j}(z)\chi_{\overline{z}}^{j}|^{2}}{|\chi_{z}^{j}|^{2} - |\chi_{\overline{z}}^{j}|^{2}} - 1 \right] \, |h_{z}^{j}h_{\overline{z}}^{j}| \, \mathrm{d}z \end{aligned}$$

where we have introduced the notation

$$\sigma^{j} = \sigma^{j}(z) = \begin{cases} h_{z}^{j} \overline{h_{\overline{z}}^{j}} |h_{z}^{j} h_{\overline{z}}^{j}|^{-1} & \text{if } h_{z}^{j} h_{\overline{z}}^{j} \neq 0\\ 1 & \text{otherwise.} \end{cases}$$

Note that $|\sigma^j| = 1$ and $\sigma^j \to 1$ almost everywhere.

Upon using Hölder's inequality we continue the chain (4.8) as follows.

(4.9)
$$\geq 4 \frac{\left[\int_{\mathbb{Q}'} \left|\chi_z^j - \sigma^j \chi_{\overline{z}}^j\right| \sqrt{|h_z^j h_{\overline{z}}^j|} \, \mathrm{d}z\right]^2}{\int_{\mathbb{Q}'} J(z, h^j) \, \mathrm{d}z} - 4 \int_{\mathbb{Q}'} |h_z^j h_{\overline{z}}^j|.$$

The denominator in (4.9) is at most 1 because

$$\int_{\mathbb{Q}'} J(z, h^j) \, \mathrm{d}z = |\chi^j(\mathbb{Q}')| \leqslant |\mathbb{Q}| = 1.$$

Therefore,

$$\mathcal{E}_{\mathbb{Q}}[H] - \mathcal{E}_{\mathbb{Q}'}[h^j] \ge 4 \left[\int_{\mathbb{Q}'} \left| \chi_z^j - \sigma^j \chi_{\overline{z}}^j \right| \sqrt{|h_z^j h_{\overline{z}}^j|} \, \mathrm{d}z \right]^2 - 4 \int_{\mathbb{Q}'} |h_z^j h_{\overline{z}}^j| \, \mathrm{d}z.$$

It is at this point that we can pass to the limit as $j \to \infty$, to obtain

(4.10)
$$\mathcal{E}_{\mathbb{Q}}[H] - \mathcal{E}_{\mathbb{Q}'}[h] \ge 4 \left[\int_{\mathbb{Q}'} |\chi_z - \chi_{\bar{z}}| \, \mathrm{d}z \right]^2 - 4 |\mathbb{Q}'|.$$

Since \mathbb{Q}' was an arbitrary compactly contained subdomain of \mathbb{Q} , the estimate (4.10) remains valid with \mathbb{Q}' replaced by \mathbb{Q} .

$$\mathcal{E}_{\mathbb{Q}}[H] - \mathcal{E}_{\mathbb{Q}}[h] \ge 4 \left[\int_{\mathbb{Q}} \left| \frac{\partial \chi}{\partial y} \right| \, \mathrm{d}x \, \mathrm{d}y \right]^2 - 4$$

$$(4.11) \qquad \ge 4 \int_0^1 \left| \int_0^1 \frac{\partial \chi(x,y)}{\partial y} \, \mathrm{d}y \right| \, \mathrm{d}x - 4$$

$$= 4 \int_0^1 |\chi(x,1) - \chi(x,0)| \, \mathrm{d}x - 4 = 4 - 4 = 0$$

as desired.

Remark 4.3. When specialized to the case $h \in \mathscr{C}^1$, Theorem 1.3 shows that h is harmonic outside of the zero set of its Jacobian.

5. AUXILIARY SMOOTHING RESULTS

Here we present some results concerning smoothing of piecewise differentiable planar homeomorphisms. They can be found in [25] in greater generality, but since we require quantitative control of derivatives, a self-contained proof is in order. Here it is more convenient to use the operator norm of a matrix, denoted by $\|\cdot\|$. Note that $\|A\| \leq |A| \leq 2\|A\|$ for 2×2 -matrices.

Proposition 5.1. Let $\mathbb{U} \subset \mathbb{R}^2$ be a domain containing an open segment I with endpoints on the boundary $\partial \mathbb{U}$ which splits \mathbb{U} into two subdomains \mathbb{U}_1 and \mathbb{U}_2 such that $\mathbb{U} \setminus I = \mathbb{U}_1 \cup \mathbb{U}_2$. Suppose that $f: \overline{\mathbb{U}} \xrightarrow{\text{onto}} \overline{\mathbb{U}^*} \subset \mathbb{R}^2$ is a homeomorphism with the following properties:

- (i) For j = 1, 2, ... the restriction of f to $\overline{\mathbb{U}_j}$ is \mathscr{C}^{∞} -smooth, equals the identity on I;
- (ii) There is a constant M > 0 such that for j = 1, 2 the restriction of f to $\overline{\mathbb{U}_j}$ satisfies $\|Df\| \leq M$ and det $Df \geq M^{-1}$.

Then for any open set \mathbb{U}_{\circ} with $I \subset \mathbb{U}_{\circ} \subset \mathbb{U}$ there is a \mathscr{C}^{∞} -diffeomorphism $g \colon \mathbb{U} \to \mathbb{U}^*$ such that

- g agrees with f on $\mathbb{U} \setminus \mathbb{U}_{\circ}$ (and also on I);
- $||Dg|| \leq 20M$ and det $Dg \geq (20M)^{-1}$ on \mathbb{U} .

Proof. Without loss of generality $I \subset \mathbb{R} = \{(x, y) : y = 0\}$. We write f in components as (u, v) where u and v are functions of x and y. Let us introduce a notation; given any \mathscr{C}^{∞} -smooth function $\beta \colon \mathbb{R} \to [0, \infty)$, denote

16

 $V(\beta) = \{(x, y) \in \mathbb{R}^2 : |y| < \beta(x)\}$. We can and do choose β so that $I \subset V(\beta) \subset \mathbb{U}_0$, and further scale it down until the following holds.

(5.1)
$$\begin{aligned} |\beta'(x)| &\leq \frac{1}{40M} \quad \text{for all } x \in \mathbb{R}; \\ |v_x| &\leq \frac{1}{50M^2} \quad \text{in } V(\beta) \setminus I, \quad \text{because } v(x,0) = 0; \\ |u_x - 1| &\leq \frac{1}{10} \quad \text{in } V(\beta) \setminus I, \quad \text{because } u(x,0) = x. \end{aligned}$$

As a consequence of (ii) and (5.1),

(5.2)
$$v_y \geqslant \frac{M^{-1} - |u_y v_x|}{u_x} \geqslant \frac{1}{2M}.$$

Since v is also M-Lipschitz by (ii), the following double inequality holds in $V(\beta) \setminus I$.

(5.3)
$$\frac{1}{2M} \leqslant \frac{v}{y} \leqslant M.$$

Let us fix be a nondecreasing \mathscr{C}^{∞} function $\alpha \colon \mathbb{R} \to \mathbb{R}$ such that $\alpha(t) = 0$ for $t \leq 1/3$. Let $\alpha(t) = 1$ for $t \geq 2/3$. Moreover, $\alpha'(t) \leq 4$ for all $t \in \mathbb{R}$ and $\alpha(\infty) = 1$, by convention. Now we introduce a modification of u on \mathbb{U} by setting

$$\tilde{u} := \alpha(t)u + (1 - \alpha(t))x$$
 where $t = \begin{cases} \frac{|y|}{\beta(x)} & \text{if } \beta(x) \neq 0\\ \infty & \text{otherwise} \end{cases}$

.

Note that $\tilde{u} = u$ outside of $V(\beta)$. In $V(\beta) \setminus I$ we compute the derivatives as follows.

(5.4)

$$\tilde{u}_x = -t^2 \alpha'(t) \beta'(x) \frac{u-x}{|y|} + \alpha(t) u_x + 1 - \alpha(t)$$

$$\tilde{u}_y = t \alpha'(t) \frac{u-x}{y} + \alpha(t) u_y$$

Since u is M-Lipschitz by (ii), we have $|u - x| \leq M|y|$. From this, (5.1) and (5.4) we obtain

(5.5)
$$\frac{8}{10} \leqslant \tilde{u}_x \leqslant \frac{12}{10}, \quad \text{and} \quad |\tilde{u}_y| \leqslant 5M,$$

which combined with (5.2) yields

(5.6)
$$\tilde{u}_x v_y - \tilde{u}_y v_x \ge \frac{8}{10} \frac{1}{2M} - \frac{5M}{50M^2} = \frac{3}{10M}$$

Next we modify v on \mathbb{U} . Specifically,

$$\tilde{v} := \alpha(s)v + (1 - \alpha(s))\frac{y}{2M}$$
 where $s = \begin{cases} \frac{3|y|}{\beta(x)} & \text{if } \beta(x) \neq 0\\ \infty & \text{otherwise} \end{cases}$

Note that $\tilde{v} = v$ outside of $V(\beta/3)$, and on the set $V(\beta/3)$ we already have $\tilde{u} \equiv x$.

Computations similar to (5.4) yield (on the set $V(\beta/3) \setminus I$)

(5.7)

$$\widetilde{v}_x = -\frac{1}{3}\alpha'(s)s^2\frac{v-y}{|y|} + \alpha(s)v_x;$$

$$\widetilde{v}_y = \frac{s\alpha'(s)}{y}\left(v - \frac{y}{2M}\right) + \alpha(s)v_y + \frac{1-\alpha(s)}{2M}$$

Straightforward estimates based on (5.1), (5.2) and (5.3) comply

(5.8)
$$\begin{aligned} |\tilde{v}_x| \leqslant \frac{4M}{3} + \frac{1}{50M^2} < \frac{3M}{2}, \\ \frac{1}{2M} \leqslant \tilde{v}_y \leqslant 5M. \end{aligned}$$

It remains to check that the mapping $g := (\tilde{u}, \tilde{v})$, which agrees with f outside of $V(\beta)$, satisfies all the requirements. As regards \mathscr{C}^{∞} -smoothness we need only check it on $V(\beta/9)$. But in this neighborhood of I we have a linear mapping, $g(x, y) = (x, \frac{y}{2M})$, so \mathscr{C}^{∞} -smooth. By virtue of (5.5) and (5.8) we have $||Dg|| \leq 20M$. The desired lower bound for det Dg follows from (5.6) and (5.8). Consequently, g is a local diffeomorphism, and since it agrees with f on $\partial V(\beta)$, it is in fact a diffeomorphism, by a topological result: a local homeomorphism which shares boundary values with a homeomorphism is injective [25, Lemma 8.2].

We also need a polar version of Proposition 5.1.

Corollary 5.2. Let $\mathbb{U} \subset \mathbb{R}^2$ be a domain containing a circle \mathbb{T} . Suppose that $f: \mathbb{U} \xrightarrow{\text{onto}} \mathbb{U}^* \subset \mathbb{R}^2$ is a homeomorphism with the following properties:

- (i) The restriction of f to \mathbb{T} is the identity mapping;
- (ii) There is a constant M > 0 such that the restriction of f to either component of $\mathbb{U} \setminus \mathbb{T}$ is \mathscr{C}^{∞} -smooth with $\|Df\| \leq M$ and $\det Df \geq M^{-1}$.

Then for any open set W with $\mathbb{T} \subset W \subset \mathbb{U}$ there is a \mathscr{C}^{∞} -diffeomorphism $g \colon \mathbb{U} \to \mathbb{U}^*$ such that

- g agrees with f on $\mathbb{U} \setminus W$ and on \mathbb{T} ;
- $||Dg|| \leq 80M$ and det $Dg \geq (80M)^{-1}$ on \mathbb{U} .

Proof. It is convenient to identify \mathbb{R}^2 with \mathbb{C} . Without loss of generality $\mathbb{T} = \{z \in \mathbb{C} : |z| = 1\}$. Let $\psi(\zeta) = \exp(i\zeta)$. The mapping $F = \psi^{-1} \circ f \circ \psi$ is well-defined in some open horizontal strip $S_h = \{z \in \mathbb{C} : |\text{Im } z| < \epsilon\}$ which we choose thin enough so that $\psi(S_{\epsilon}) \subset W$ and $|\psi'|^2 < e^{2\epsilon} \leq 2$. Note that F is 2π -periodic and satisfies

$$||DF|| \leq 2M$$
 and $\det DF \geq (2M)^{-1}$.

The proof of Proposition 5.1 applies to F with no changes other than one simplification: $\beta > 0$ is now a small positive constant rather than a function. Thus we obtain a diffeomorphism G which agrees with F on $\mathbb{R} \cup (S \setminus V(\beta))$ and satisfies $\|DG\| \leq 40$ and $\det DG \geq (40M)^{-1}$. Since F was 2π -periodic, so is G. Thus, $g := \psi \circ G \circ \psi^{-1}$ is the desired diffeomorphism. \Box Our applications require slightly more general versions of Proposition 5.1 and Corollary 5.2, where the separating curve is allowed to have other shapes and f is not required to agree with the identity on the curve.

Definition 5.3. A parametric curve $\Gamma: (0,1) \to \mathbb{R}^2$ is *regular* if Γ extends to a bigger interval $(a,b) \supset [0,1]$ so that the extended mapping is a \mathscr{C}^{∞} -diffeomorphism onto its image.

Note that a regular curve Γ has well-defined endpoints $\Gamma(0)$ and $\Gamma(1)$. Also, Γ extends to an injective \mathscr{C}^{∞} -mapping $\Phi: (0,1) \times (-1,1) \to \mathbb{R}^2$ such that $\|D\Phi\|$ and $\|(D\Phi)^{-1}\|$ are bounded. This follows from the existence of a tubular neighborhood of the image of Γ [23, Theorem 4.26].

Corollaries 5.4 and 5.5, given below, generalize Proposition 5.1 and Corollary 5.2 respectively.

Corollary 5.4. Let $\mathbb{U} \subset \mathbb{R}^2$ be a domain containing the image of a regular arc Γ with endpoints on the boundary $\partial \mathbb{U}$ which divides \mathbb{U} into two subdomains \mathbb{U}_1 and \mathbb{U}_2 such that $\mathbb{U} \setminus \Gamma = \mathbb{U}_1 \cup \mathbb{U}_2$. Suppose $f: \overline{\mathbb{U}} \to \overline{\mathbb{U}^*} \subset \mathbb{R}^2$ is a homeomorphism such that $f \circ \Gamma$ is also regular and the restriction of f to each $\overline{\mathbb{U}_i}$ is \mathscr{C}^{∞} -smooth and satisfies

$$|Df(z)| \leq M, \quad \det Df(z) \geq \frac{1}{M} \quad for \ z \in \mathbb{U}_i$$

where M is a positive constant. Then there is a constant M' > 0 such that to every open set $\mathbb{U}' \subset \mathbb{U}$ with $\Gamma \subset \mathbb{U}'$ there corresponds a \mathscr{C}^{∞} -diffeomorphism $q: \mathbb{U} \xrightarrow{\text{onto}} \mathbb{U}^*$ with the following properties

- g(z) = f(z) for $z \in \mathbb{U} \setminus \mathbb{U}'$ (and also on Γ)
- $|Dg(z)| \leq M'$ and $\det Dg(z) \geq \frac{1}{M'}$ on \mathbb{U} .

Proof. Let $\mathbb{Q} = (0,1) \times (-1,1)$. Let Φ and Ψ be the extensions of Γ and $f \circ \Gamma$ to \mathbb{Q} as in Definition 5.3. There is a domain $\widetilde{\mathbb{U}}$ such that $(0,1) \times \{0\} \subset \widetilde{\mathbb{U}} \subset \mathbb{Q}$, $\Phi(\widetilde{\mathbb{U}}) \Subset \mathbb{U}'$, and the composition $F := \Psi^{-1} \circ f \circ \Phi$ is defined in $\widetilde{\mathbb{U}}$. Note that $F = \mathrm{id}$ on $(0,1) \times \{0\}$. We apply Proposition 5.1 (with $\widetilde{\mathbb{U}}$ in place of \mathbb{U} and with F in place of f) and obtain a \mathscr{C}^{∞} -diffeomorphism $G : \widetilde{\mathbb{U}} \to F(\widetilde{\mathbb{U}})$. Finally, replace F within $\widetilde{\mathbb{U}}$ with the diffeomorphism $q = \Psi \circ G \circ \Phi^{-1}$. \Box

Corollary 5.5. Let $\mathbb{U} \subset \mathbb{R}^2$ be a domain containing the image of a \mathscr{C}^{∞} smooth Jordan curve Γ which divides \mathbb{U} into two subdomains \mathbb{U}_1 and \mathbb{U}_2 such that $\mathbb{U} \setminus \Gamma = \mathbb{U}_1 \cup \mathbb{U}_2$. Suppose $f: \overline{\mathbb{U}} \to \overline{\mathbb{U}^*} \subset \mathbb{R}^2$ is a homeomorphism such that the restriction of f to each $\overline{\mathbb{U}_i}$ is \mathscr{C}^{∞} -smooth and satisfies

$$|Df(z)| \leq M, \quad \det Df(z) \geq \frac{1}{M} \quad for \ z \in \mathbb{U}_i$$

where M is a positive constant. Then there is a constant M' > 0 such that to every open set $\mathbb{U}' \subset \mathbb{U}$ with $\Gamma \subset \mathbb{U}'$ there corresponds a \mathscr{C}^{∞} -diffeomorphism $g: \mathbb{U} \xrightarrow{\text{onto}} \mathbb{U}^*$ with the following properties

• g(z) = f(z) for $z \in \mathbb{U} \setminus \mathbb{U}'$ (and also on Γ)

• $|Dg(z)| \leq M'$ and $\det Dg(z) \geq \frac{1}{M'}$ on \mathbb{U} .

Proof. The proof of Corollary 5.4 is easily adapted to this case.

6. Concluding Remarks

One may wonder whether the proof of Theorem 1.2 can be extended to the spaces $\mathscr{W}^{1,p}$, 1 , by means of the*p*-harmonic replacement inplace of Proposition 2.3. Indeed,*p* $-harmonic mappings are <math>\mathscr{C}^{1,\alpha}$ -smooth [36]. However, the injectivity of *p*-harmonic replacement of a homeomorphism is unclear.

Question 6.1. Is there a version of the Radó-Kneser-Choquet theorem for *p*-harmonic mappings? That is, does the *p*-harmonic extension of a homeo-morphism onto a convex Jordan curve enjoy the injectivity property?

An attempt to extend Theorem 1.2 to higher dimensions faces another obstacle: the Radó-Kneser-Choquet theorem fails in dimensions $n \ge 3$ as was proved by Laugesen [22].

References

- 1. K. Astala, T. Iwaniec, and G. Martin, *Elliptic partial differential equations and quasiconformal mappings in the plane*, Princeton University Press, Princeton, NJ, 2009.
- J. M. Ball, Global invertibility of Sobolev functions and the interpenetration of matter, Proc. Roy. Soc. Edinburgh Sect. A, 88 (1981), 315–328.
- J. M. Ball, Discontinuous equilibrium solutions and cavitation in nonlinear elasticity, Philos. Trans. R. Soc. Lond. A 306 (1982) 557–611.
- J. M. Ball, Singularities and computation of minimizers for variational problems, Foundations of computational mathematics (Oxford, 1999), 1–20, London Math. Soc. Lecture Note Ser., 284, Cambridge Univ. Press, Cambridge, 2001.
- P. Bauman, D. Phillips, and N. Owen, Maximum principles and a priori estimates for an incompressible material in nonlinear elasticity, Comm. Partial Differential Equations 17 (1992), no. 7-8, 1185–1212.
- 6. J. C. Bellido and C. Mora-Corral, Approximation of Hölder continuous homeomorphisms by piecewise affine homeomorphisms, Houston J. Math., to appear.
- S. Conti and C. De Lellis, Some remarks on the theory of elasticity for compressible Neohookean materials, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 2 (2003) 521–549.
- U. Dierkes, S. Hildebrandt, A. Küster, and O. Wohlrab, *Minimal surfaces. I. Boundary value problems*, Springer-Verlag, Berlin, 1992.
- 9. P. Duren, *Harmonic mappings in the plane*, Cambridge Tracts in Mathematics, 156. Cambridge University Press, Cambridge, 2004.
- J. Eells and L. Lemaire, A report on harmonic maps, Bull. London Math. Soc. 10 (1978), no. 1, 1–68.
- J. Eells and L. Lemaire, *Selected topics in harmonic maps*, CBMS Regional Conference Series in Mathematics, 50. American Mathematical Society, Providence, RI, 1983.
- J. Eells and L. Lemaire, Another report on harmonic maps, Bull. London Math. Soc. 20 (1988), no. 5, 385–524.
- L. C. Evans, Quasiconvexity and partial regularity in the calculus of variations, Arch. Rational Mech. Anal. 95 (1986), no. 3, 227–252.
- I. Fonseca and W. Gangbo, Local invertibility of Sobolev functions, SIAM J. Math. Anal. 26 (1995), no. 2, 280–304.

20

- L. Gardiner and N. Lakic, *Quasiconformal Teichmüller theory*, American Mathematical Society, Providence, RI, 2000.
- D. Gilbarg and N. S. Trudinger, *Elliptic partial differential equations of second order*, Springer-Verlag, Berlin-New York, 1977.
- F. Hélein, Homéomorphismes quasi conformes entre surfaces riemanniennes, C. R. Acad. Sci. Paris Sr. I Math. 307 (1988), no. 13, 725–730.
- S. Hencl and P. Koskela, Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Ration. Mech. Anal. 180 (2006), no. 1, 75–95.
- H. Hopf, *Differential geometry in the large*, Notes taken by Peter Lax and John Gray. With a preface by S. S. Chern. Lecture Notes in Mathematics, 1000. Springer-Verlag, Berlin, 1983.
- J. Jost, A note on harmonic maps between surfaces, Ann. Inst. H. Poincaré Anal. Non Linéaire 2 (1985), no. 6, 397–405.
- J. Jost, Two-dimensional geometric variational problems, John Wiley & Sons, Ltd., Chichester, 1991.
- R. S. Laugesen, Injectivity can fail for higher-dimensional harmonic extensions Complex Variables Theory Appl. 28 (1996), no. 4, 357–369.
- S. Montiel and A. Ros, *Curves and surfaces*, American Mathematical Society, Providence, RI, 2005.
- C. Mora-Corral, Approximation by piecewise affine homeomorphisms of Sobolev homeomorphisms that are smooth outside a point, Houston J. Math. 35 (2009), no. 2, 515–539.
- J. Munkres, Obstructions to the smoothing of piecewise-differentiable homeomorphisms, Ann. of Math. (2) 72 (1960), 521–554.
- S. Müller, S. J. Spector, and Q. Tang, Invertibility and a topological property of Sobolev maps, SIAM J. Math. Anal. 27 (1996), no. 4, 959–976.
- 27. Ch. Pommerenke, Boundary behaviour of conformal maps, Springer-Verlag, Berlin, 1992.
- 28. E. Reich and K. Strebel, On quasiconformal mappings which keep the boundary points fixed, Trans. Amer. Math. Soc. **138** (1969), 211–222.
- 29. E. Reich and H. R. Walczak, On the behavior of quasiconformal mappings at a point, Trans. Amer. Math. Soc. 117 (1965), 338–351.
- R. Schoen, Analytic aspects of the harmonic map problem, in "Seminar on nonlinear partial differential equations" (Berkeley, Calif., 1983), 321–358, Math. Sci. Res. Inst. Publ., 2, Springer, New York, 1984.
- H. C. J. Sealey, *Harmonic diffeomorphisms of surfaces*, in "Harmonic Maps", Lecture Notes in Mathematics vol. 949, 140–145, Springer, New York, 1982.
- G. A. Seregin and T. N. Shilkin, Some remarks on the mollification of piecewise-linear homeomorphisms. J. Math. Sci. (New York) 87 (1997), no. 2, 3428–3433.
- J. Sivaloganathan and S. J. Spector, Necessary conditions for a minimum at a radial cavitating singularity in nonlinear elasticity, Ann. Inst. H. Poincaré Anal. Non Linéaire 25 (2008), no. 1, 201–213.
- 34. M. Struwe, *Plateau's problem and the calculus of variations*, Princeton University Press, Princeton, NJ, 1988.
- V. Šverák, Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal. 100 (1988), no. 2, 105–127.
- N. N. Ural'ceva, Degenerate quasilinear elliptic systems, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 7 (1968) 184–222.

22 TADEUSZ IWANIEC, LEONID V. KOVALEV, AND JANI ONNINEN

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA and Department of Mathematics and Statistics, University of Helsinki, Finland

E-mail address: tiwaniec@syr.edu

 $\label{eq:linear} \begin{array}{l} \text{Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA} \\ \textit{E-mail address: lvkovale@syr.edu} \end{array}$

Department of Mathematics, Syracuse University, Syracuse, NY 13244, USA E-mail address: jkonnine@syr.edu