
Syracuse University Syracuse University

SURFACE SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and
Projects

College of Engineering and Computer Science

1997

Integer Sorting Algorithms for Coarse-Grained Parallel Machines Integer Sorting Algorithms for Coarse-Grained Parallel Machines

Khaled Alsabti
Syracuse University, School of Computer and Information Science, kaalsabt@top.cis.syr.edu

Sanjay Ranka
University of Florida, School of CISE, ranka@cise.ufl.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Alsabti, Khaled and Ranka, Sanjay, "Integer Sorting Algorithms for Coarse-Grained Parallel Machines"
(1997). College of Engineering and Computer Science - Former Departments, Centers, Institutes and
Projects. 44.
https://surface.syr.edu/lcsmith_other/44

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/44?utm_source=surface.syr.edu%2Flcsmith_other%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Integer Sorting Algorithms for Coarse-Grained Parallel MachinesKhaled Alsabti Sanjay Ranka �School of CIS Department of CISESyracuse University University of Floridakaalsabt@top.cis.syr.edu ranka@cise.u.eduAbstractInteger sorting is a subclass of the sorting problemwhere the elements have integer values and the largestelement is polynomially bounded in the number of el-ements to be sorted. It is useful for applications inwhich the size of the maximum value of element to besorted is bounded. In this paper, we present a new dis-tributed radix-sort algorithm for integer sorting. Thestructure of our algorithm is similar to radix sort ex-cept that it typically requires less number of communi-cation phases.We present experimental results for our algorithmon two distributed memory multiprocessors, the IntelParagon and the Thinking machine CM-5. These re-sults are compared with two other well known practi-cal parallel sorting algorithms based on radix sort andsample sort. The experimental results show that thedistributed radix-sort is competitive with the other twoalgorithms.1 IntroductionSorting has been a widely studied problem for par-allel machines [8, 9, 12, 14, 13, 10, 1, 4, 7, 6, 11]. Inte-ger sorting is a subclass of the sorting problem wherethe elements have integer values such that the valueof the maximum element is polynomially bounded inthe number of elements to be sorted. The work re-quirements of integer sorting is O(n), where n is thenumber of elements, and the values are drawn from[1::O(n�)], where � is a positive constant.In this paper, we present a new integer sorting algo-rithm, which we call distributed radix-sort. We com-pare our algorithm to two other well known sortingalgorithms: sample sort and radix sort. A compara-tive study of these two algorithms for �ne and coarsegrained machines has been presented in [4, 6].�The work of this author was supported in part by AFMCand ARPA under Contracts F19628-94-C-0057 and WM-82738-K-19 and a subcontract from Syracuse University. The contentof the information does not necessarily reect the position or thepolicy of the Government and no o�cial endorsement should beinferred.

The sample sort has a single permutation step,while the radix sort requires multiple communicationsteps. Thus, radix sort incurs higher communicationcost as compared to sample sorting. However, thecomputational cost of radix sort is better or compa-rable to the sample sort. The proposed algorithm,distributed radix-sort has the same structure as radixsort except that it requires less permutation steps inmost cases. This makes it a competitive algorithmwith sample sort especially for large number of pro-cessors for which the load imbalances generated bysample sort are higher.We have implemented these algorithms on two dis-tributed memory multiprocessors: the Intel Paragonand the Thinking machine CM-5. Our results, on bothmachines, show that our algorithm is very e�cient andcompetitive to the other two algorithms. For 16-bitintegers, our algorithm outperforms the other two al-gorithms. For 32-bit integers, it outperforms radixsort and is comparable to or better than sample basedinteger sort . However, it is inferior to sample basedinteger sort for 64-bit integers.The rest of the paper is organized as follows. Wedescribe the machine model in section 2. In sections3 through 5, we describe and analyze the radix sort,sample sort and distributed radix-sort, respectively.Experimental results are presented in section 6. Theconclusion is drawn in section 7.2 Coarse-grained Parallel MachineCoarse Grained Machines (CGMs) consist of a setof processors (tens to a few thousand) connectedthrough an interconnection network. The memoryis physically distributed across the processors. Inter-action between processors is either through messagepassing or through a shared address space.CGMs have cut-through routed networks which willbe the primary thrust of this paper and will be used formodeling the communication cost of three algorithms.Our analysis will be done for the following intercon-nection networks: hypercubes and two dimensional

meshes. The analysis for permutation networks andhypercubes is the same in most cases. These covernearly all commercially available machines. Althoughthe three algorithms are analyzed for two types ofinterconnection networks, they are architecture inde-pendent and can be e�ciently implemented on otherinterconnection networks.Parallelization of applications requires distributingsome or all of the data structures among the proces-sors. Each processor needs to access all the non-localdata required for its local computation. This gener-ates aggregate or collective communication structures.Several algorithms have been described in the litera-ture for these primitives and are part of standard text-books [8, 9]. In what follows, p refers to the numberof processors. We model the cost of sending a mes-sage from one node to another as O(� + �m), wherem is the size of the message. A brief description of theprimitives is as follows:1. All-to-All Broadcasting: This collective com-munication operation requires every node to sendthe same message of sizem to all other processors.2. Global Combine and Pre�x Scans: Assumethat each processor contains a vector Vi[0:::m].Let p be the number of processors. The globalcombine operation computes an element-wise sumof the local vectors in each processor. The re-sultant vector is stored an all processors. Theglobal vector pre�x-sum performs an element-wise pre�x-scan of the local vectors in each pro-cessor.3. Transportation Primitive: This operationperforms many-to-many personalized communi-cation with possibly high variance in message size.Let m be the maximum of outgoing or incomingtra�c at any processor. If m � p2, the runningtime of this operation can be shown to be equalto two all-to-all communication operations with amaximum message size of O(mp) [3].4. Order Maintaining Data Movement: Con-sider the following data movement problem : Ini-tially, processor Pi has two integers si and ri andsi elements of data such thatPp�1i=0 si =Pp�1i=0 ri.Let smax = maxp�1i=0 si and rmax = maxp�1i=0 ri.The objective is to redistribute the data such thatprocessor Pi contains ri elements. Suppose thateach processor has its set of elements stored inan array. We can view the Pp�1i=0 si elements asif they were globally sorted based on processorand array indices. For any i < j, any element in

processor Pi appears earlier in this sorted orderthan any element in processor Pj . In the ordermaintaining data movement problem, this globalorder should be preserved after the distributionof the data.For detailed description and analysis of the aboveprimitives the reader is referred to [9, 3, 8].3 Radix SortRadix sort is a count-based sort that relies on thebinary representation of the elements to be sorted[5]. The parallel radix sort has the same structure asthe sequential radix sort. It performs d br e iterations,where b is the number of bits in the binary represen-tation of the elements and r is the number of bitsexamined at a time. We assume that each processorinitially has np elements, where n is the total numberof elements and p is the number of processors. In eachiteration of the algorithm , the rank of each elementis computed using the current r-block. Then, the el-ements are permuted to their new destinations. Thenew destination of each element is determined usingits rank.The core step of each iteration of the algorithm is tocompute the ranks of the elements. This can be donein parallel by �nding the rank of the �rst element ofeach the 2r count array for each processor. The rankof the �rst element of each entry of the count arrayis su�cient to �nd the rank of all the elements lo-cally. After this step, the elements are redistributedamong the processors using the transportation prim-itive. The destination processor of an element withrank i is the processor with address b inp c. The struc-ture of communication is balanced because each pro-cessor will send/receive np elements and it is irregularbecause the individual messages may have di�erentsizes. The �nal step, of each iteration, locally reordersthe elements based on their ranks.The total time 1 for performing the radix sort onhypercube and mesh is O(d bre�(2r+ np)+� log p+�2r+�p+ �np) and O(d br e�(2r + np) + �(pp� 1) + �2r(p�1) + (� + �m)pp), respectively 2.4 Sample SortSample sort partitions the list into m intervals suchthat the elements of each interval are smaller thanthe elements of the next interval. These intervals canthen be independently sorted to sort the overall list.1Many of the details have been omitted because of the spacelimitations.2� is the time to perform a unit computation on data avail-able in the local memory

A sample of size s is selected from the n elements,and the range of the intervals is determined by sortingthe sample and choosing m� 1 elements called split-ters. They represent the interval boundaries. Theelement values within an interval are between theseboundaries. Many variations of sample sort have beenstudied [6, 11, 12, 4]. They di�er in the method usedfor sampling, the method for sorting the sample, thesize of the sample chosen and the number of splitters.Our sample based integer sort is very similar to thealgorithm proposed by [12]. It uses regular samplingmethod to derive the splitters.First, each processor sorts its local list using a se-quential sorting algorithm. From the experiments wehave performed, the local radix sort with radix 211outperformed the quick sort for 32-bit integers andlarge data set on both Intel Paragon as well as theCM-5. We have chosen the radix sort to perform thelocal sorting step.There is a tradeo� in determining the sample sizes. A large sample size leads to better load balancebut results in higher time requirements in �nding thesplitters. The sample points are selected using regularsampling [12], i.e. it selects the elements at relativeindices 1, d+ 1, ..., (s� 1)d+ 1, where d = nps .3The sample points are globally sorted using Bitonicsort. Each processor i (except the last processor) picksthe last number as splitter i in its sublist and performsAll-to-All Broadcast with unit message size.Then, each processor divides its list into p sublistsusing the p � 1 splitters. This is done by performingbinary search on the local list of size np for the p � 1splitters. After forming the sublists, the elements areredistributed using the transportation primitive. Thecommunication phase is irregular since the messagesmay have di�erent sizes and is unbalanced since someprocessors may receive more than np . The p sublistsare sorted to obtain the �nal sorted list. We use asequential radix sort to carry out this step. 4.Bucket expansion � is a measure of the degree of theload- balance achieved and is de�ned as the maximumnumber of elements assigned to a given processor di-vided by the average number of elements assigned toeach processor. Assuming that the data set does nothave any duplicates 5, the upper bound on the maxi-3For the sake of simplicity, we assume that n is divisible byp and np is divisible by s.4Since the p sublists are sorted, we can merge them togetherinstead of sorting the whole list. Although, this is asymptot-ically inferior, our experimental results suggest that this ap-proach achieve better results.5This can be easily generalized for presence of duplicate ele-ments by concatenating the element index. However, this may

mum number of elements assigned to any processor isgiven by 32 np � nps + 1 [12].For comparing di�erent algorithms, we require thatthe number of elements assigned to each processorafter sorting are equal. To achieve this a Order-Maintaining data movement primitive is used in the�nal step of the algorithm.The total time requirement of the sample sorton the hypercube and the mesh interconnection net-works is O(�(d br e(2r + 2np) + s+ (p� 1) log np) + (1 +log p) log p(� + �s) + (�p + �� np)) and O(�(d br e(2r +np)+ s+(p� 1) log np)+ �pp+�spp+(� +�� np)pp),respectively. This excludes the time of the Order-Maintaining Data Movement primitive. From the ex-periments, the time taken by this primitive is minis-cule compared to the total running time of the algo-rithm.5 Distributed Radix-SortThe structure of the new proposed algorithm, dis-tributed radix-sort, is similar to the structure of theradix sort. It requires d bre iterations, where b is thenumber of bits in the binary representation and r isthe number of bits examined at a time, of permutingthe elements across the processors. Each iteration haseight steps.The distributed radix-sort assumes that the countarray (used in the radix sort) is distributed across allthe processors. This has several advantages over radixsort:1. The value of radix used in the distributed radix-sort 2r1 is larger than the value used in radix sort2r2 6.2. The size of the pre�x calculation required for dis-tributed radix-sort is much smaller than the radixsort.However unlike the radix sort, in each iteration thedistributed radix-sort sends the elements to their des-tination processor using an intermediate phase. Eachprocessor participates as source, intermediate as wellas destination processor. The processing of these stepsare much more complicated than the radix sort and aredescribed in the following.We assume that the count array (range) of thedistributed radix sort is partitioned into pk buckets,where p is the number of processors and k is somepositive constant. In every source processor, an arrayof size kp is created to record the number of the hitsincrease the communication time.6Typically r1 = r2 + log(kp).

to each bucket. Thus, each bucket corresponds to aninterval of size 2rkp .In Step 1, we count the number of local hits toeach of these buckets (element i belongs to bucket jwhere j = b the current r�block of ikp c). This vectoris referred to as local-Bucket-Hits.In Step 2, a global vector sum-combine is performedon local-Bucket-Hits which results in an identical vec-tor in every processor. This vector Bucket-Hits givesthe total number of hits to each bucket. The rank ofthe �rst of element for each bucket is obtained by per-forming a local sequential pre�x-sum-scan on Buckets-Hits. These kp entries give the contention for everybucket. A bucket is classi�ed as being sparse if it has� nkp hits , and as dense otherwise. The intermediateprocessor for sparse bucket i is processor b ik c. Sparsebuckets, by de�nition, do not have more than nkp hits.Each intermediate processor has k buckets initially,and therefore will not receive more than np elementsfor its sparse buckets. After assigning sparse bucketsto intermediate processors, we stretch the dense buck-ets to intermediate processors in such that no pro-cessor will receive more than np elements (from bothsparse and dense buckets). Further, each dense bucketis stretched across consecutive numbered 7 processors.This is done as follows:For dense bucket i with bi hits: look for the�rst intermediate processor j which is as-signed less than np elements , say nj , andmake it the �rst intermediate processor forbucket i. If nj + bi � np , then assign bucket ito processor j entirely and increment nj by bi; otherwise, assign np �nj elements of bucketi to processor j, set nj to np , decrement biby np �nj and examine the next intermediateprocessor for potential assignment.The above process is repeated until all the elements ofbucket i have been assigned.Thus, a dense bucket can be split across several in-termediate processors. Several source processors mayhave local data corresponding to a given dense bucket.One can allocate appropriate portions of the densebucket to each of these source processors by perform-ing a global vector pre�x-sum-scan on local-Buckets-Hits. At the end of this step each processor can deter-mine the exact portions (and corresponding interme-diate processors) of each of the kp buckets it needs tocommunicate the data items.7Note that some of these processors may be assigned zero el-ements. This might happen in case that they have been alreadyassigned np elements from the sparse buckets.

The communication between the source and inter-mediate processors (Step 3) can be shown to be a bal-anced transportation primitive since each intermedi-ate processor will receive exactly np elements.Step 4 processes the data elements on intermediateprocessors. Finding the rank for elements belongingto the sparse bucket bucket is done by using a direct-address table of size 2rkp . We calculate the count for thenumber of elements of each entry in this table. Thiscan then be easily used to compute the global rankas rank of the �rst element of each bucket is locallyavailable. This rank can be used to determine thedestination processor for a given element. Element iwith rank j is assigned to processor b jnp c.For dense buckets, the processing is more compli-cated. We distinguish between two types of densebuckets: a full bucket and a partial bucket. The buck-ets that are contained entirely in a processor are calledfull buckets, while those that stretch across processors'boundaries are called partial buckets. Of the bucketsin each processor, only the �rst and last buckets couldbe partial. If they exist, they are called a precedingpartial bucket and a succeeding partial bucket, respec-tively. Processing of full dense buckets is the same asprocessing sparse buckets. The only di�erence is thatthe number of elements received for sparse buckets issmaller.For partial dense buckets (Step 5), a globalsegmented-sum-scan and segmented-sum with a vec-tor size of 2rkp is required to calculate the global rankof each of the elements. Each segment corresponds toa stretched bucket. If a processor has a succeeding aswell as preceding partial bucket, we ignore the preced-ing partial buckets in such a processor for executingthe segmented scan. These results are then augmentedby having each processor with ignored preceding par-tial buckets send its contents to the �rst processorcorresponding to a dense bucket. This step requires asimple one-to-one communication vector of size 2rkp .Step 6 assigns elements into destination processorsas follows. An element with rank i is assigned to pro-cessor b inp c.Step 7 transfers data from intermediate to desti-nation processors. It can be shown to be a balancedpersonalized communication since each intermediateprocessor has exactly np and each destination proces-sor will receive exactly np .Step 8 reorders the the elements received based ontheir ranks.The total time requirement of the distributed radix-sort is the time required by a single iteration timesthe number of iterations, d bre. The total computation

time of a single iteration of the algorithm is �O(kp +np + 2rkp log p + 2rp). The total communication cost ofa single iteration of the algorithm for the hypercubeand mesh interconnection networks is given in table 1.We choose the number of buckets k per processor tosatisfy np > O(kp). There is a great deal of exibilityin choosing the value of k. k being close to 1 reducesthe time for the pre�x-scan/combine with the arrayof size kp, but increases the time for the segmented-sum-scan/segmented-sum with the array of size 2rkp . kbeing close to p does the opposite.Network The time requirementHypercube O(� log p+ �kp+ � log p+ � 2rkp log p+ �p+ �np)Mesh O(�(pp� 1) + �(kp+ 2rkp (p� 1)) + (� + �np)pp)Table 1: The time requirement of the communicationcost for a single iteration of the distributed radix-sorton di�erent interconnection networksThe distributed radix-sort allows us to choose alarger radix per iteration as compared to radix sort.This is because the count array is distributed acrossall the processors and the the parallel pre�xes requiredare of size pk (as compared to 2r for radix sort). How-ever, an extra stage of communication and processingis required.6 Experimental ResultsWe implemented the three algorithms on the In-tel Paragon and the Thinking Machine's CM-5. Weconducted extensive performance evaluation of thesealgorithms for a variety of parameters. In this sectionwe briey summarize our experimental results due tospace limitations. For a detailed description and dis-cussion of the experimental results the reader is re-ferred to [2]. For each algorithm, we have assumed16K, 32K, 64K, 128K and 256K elements per pro-cessor using 32, 64, 128 and 256 processors. Two setsof element values have been generated for each of theabove parameters assuming that b bits are used forrepresentation of the elements:1. Alpha0: The elements are uniformly distributedin the range [0::2b].2. Alpha1: The elements are uniformly distributedfrom [i 2bp ::(i + 1) 2bp � 1] where i is an arbitraryprocessor number.The above two data sets represents uniform andskewed distributions for the target algorithms. Foreach of the algorithms, we have compared the total

running time for the Alpha0 and Alpha1 data sets. Allthe algorithms are only marginally a�ected by dataskew. The results in the rest of this section are forAlpha0 data set.For each data point, we ran the algorithm severaltimes; the median of the running times is reported.The performance of the two radix sort algorithms de-pends on the radix while the sample sort depends onthe size of the sample. We also studied, the e�ect ofthese parameters on the overall performance.The optimal radix 2r for radix sort depends on thecost of the pre�x-sum/combine, the cost of the trans-portation primitive and the cache size. A large valueof r results in less iterations needed to sort the ele-ments, more time spent in pre�x-sum/combine, andmore time spent in counting and computing the ranksdue to the cache misses, while smaller radix resultsin the opposite. We empirically determined this tobe 211. Thus three iterations are required to sort the32-bit integers.The performance of the sample sort depends on thebucket expansion �. We ran the sample sort usingdi�erent sample sizes s and found that choosing s =n0:3 gives a good overall performance for sample sortin most of the cases. For sorting local data, we used alocal radix sort (radix 211). This resulted in a slightlybetter performance than quick-sort for 32-bit integers.The performance of the distributed radix-sort de-pends on the number of the buckets per processor(k) and the radix (2r). A small value of k reducesthe time for the pre�x-scan/combine with the arrayof size kp, but increases the time for the segmented-sum-scan/segmented-sum of size 2rkp . A small value ofr results in a larger number of iterations needed tosort the elements and a smaller value of the bucketsize. We empirically determined the value of k to be16. The overall radix of the distributed radix-sort de-pends on the number of processors. We have deter-mined the radix for each machine size empirically andused a value of 218, 218, 219 and 221 for 32, 64, 128and 256 processors, respectively. Thus, the distributedradix-sort needs two iterations to sort the 32-bit inte-gers. When using a radix 221, we switch to radix sortfor the second iteration since only sort on 11 bits arerequired.Figure 1 shows the communication and the compu-tation times on 64 and 256 processors for each of thethree algorithms for 32-bit integers. The radix sortspends almost equal time on the communication andcomputation. The sample sort on the other hand haslarge computation cost as compared to the communi-cation cost. The time taken by order-maintaining data

movement in sample sort is very small compared to theoverall time. The computational requirements of thedistributed radix-sort is smaller than the sample sortand the communication requirements are signi�cantlylower than the radix sort. The overall time require-ments of the radix sort is larger than the other two al-gorithms for all cases. The performance of distributedradix-sort is better or comparable to the sample sort.It outperforms sample sort for larger data sets andhigher number of processors.We also ran the three algorithms using 16-bit and64-bit integers on the CM-5. For 16-bit integers, thedistributed radix-sort outperforms the other two algo-rithms for all the data set sizes. This is because thedistributed radix-sort requires only one iteration. For64-bit integers, the sample sort outperforms the othertwo algorithms 8.
16K 32K 64K 128K 256K

No. of Elements per Processor

0.0

2.0

4.0

6.0

8.0

Ti
m

e
in

Se
co

nd
s

For 64−node CM5

Sample Sort

Distributed Radix−sort

Radix Sort

The Computation Time

The Total Communication Time

, 16K 32K 64K 128K 256K
No. of Elements per Processor

0.0

2.0

4.0

6.0

8.0

Ti
m

e
in

Se
co

nd
s

For 256−node CM5

Sample sort

Distributed radix−sort

Radix sort

The Computation Time

Order−Maintaining Data Movement

The Communication Time

Figure 1: The Communication and computation timesof the three algorithms on 64-node and 256-node CM-5The CM-5 machine has relatively low unit com-putation to unit communication ratio. We also exe-cuted the three algorithms for 32-bit integers on IntelParagon for 64 and 256 processors, which has higherunit computation to communication ratio than theCM-5. The distributed radix-sort outperforms radixsort in almost all the cases. Its performance is compa-rable or better than sample sort especially for largernumber of processors. For 16-bit integers, the dis-tributed radix-sort outperforms the other two algo-rithms for all the data set sizes on 64 and 256 proces-sors.7 ConclusionIn this paper, we have developed a new integer sort-ing algorithm called distributed radix-sort. Our ex-perimental on the CM-5 and Intel Paragon suggestthat it has superior performance than radix sort forthe practical integer sizes used in practice. Further8We have used a quick sort to perform the local sorting inthe sample sort which gives a better performance than a localradix sort for 64-bit elements.

the performance of our algorithm is comparable or su-perior to the sample based integer sort for small sizedintegers (16-bit or 32-bit) especially for large data setsor number of processors.References[1] S. G. Akl. Parallel Sorting Algorithms. AcademicPress, Toronto, 1985.[2] K. Alsabti and S. Ranka. Integer Sorting Algorithmsfor Coarse-Grained Parallel Machines. Technical Re-port, Department of CISE, University of Florida,1997.[3] K. Alsabti, S. Ranka, and R. Shankar. The Trans-portation Primitives. Proceedings of the Fifth Sympo-sium on the Frontiers of Massively Parallel Compu-tation, February 1995.[4] G. E. Blelloch et al. A Comparison of Sorting Algo-rithms for the Connection Machine CM-2. In Proc. ofSymposium on Parallel Algorithms and Architectures,pages 3{16, July 1991.[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-troduction to Algorithms. McGraw-Hill Book Com-pany, 1990.[6] D. Culler et al. Fast Parallel Sorting under LogP:From Theory to Practice. Proc. of the Workshop onPortability and Performance for Parallel Processing,(Wiley), England, 1993.[7] Leonardo Dagum. Parallel Integer Sorting withMedium and Fine-Scale Parallelism. InternationalJournal of High-Speed Computing.[8] G. Fox et al. Solving Problems on Concurrent Pro-cessors: Vol. 1. Prentice-Hall, Englewood Cli�s, NJ,1988.[9] V. Kumar et al. Introduction to Parallel Comput-ing: Design and Analysis of Algorithms. The Ben-jamin/Cummings Publishing Company, Inc, 1994.[10] F. T. Leighton. Tight Bounds on the Complexity ofParallel Sorting. IEEE Transactions on Computers,C-34(4):344{354, April 1985.[11] Hui Li and Kenneth C. Sevcik. Parallel Sorting byOverpartitioning. Technical Report CSRI-295, Febru-ary 1994.[12] X. Li et al. On the Versatility of Parallel Sortingby Regular Sampling. Parallel Computing, 19(10),October 1993.[13] S. Rajasekaran and J. H. Reif. Optimal andSublogrithmic Time Randomized Parallel Sorting Al-gorithms. SIAM Journal on Computing, 18(3):594{607, June 1989.[14] Y. Won and S. Sahni. A Balanced Bin Sort for Hy-percube Multicomputers. Journal of Supercomputing,2:435{448, 1988.

	Integer Sorting Algorithms for Coarse-Grained Parallel Machines
	Recommended Citation

	tmp.1286816405.pdf.K4BZS

