Syracuse University

SURFACE

College of Engineering and Computer Science -
Former Departments, Centers, Institutes and College of Engineering and Computer Science
Projects

1997

Integer Sorting Algorithms for Coarse-Grained Parallel Machines

Khaled Alsabti
Syracuse University, School of Computer and Information Science, kaalsabt@top.cis.syr.edu

Sanjay Ranka
University of Florida, School of CISE, ranka@cise.ufl.edu

Follow this and additional works at: https://surface.syr.edu/lcsmith_other

b Part of the Computer Sciences Commons

Recommended Citation

Alsabti, Khaled and Ranka, Sanjay, "Integer Sorting Algorithms for Coarse-Grained Parallel Machines"
(1997). College of Engineering and Computer Science - Former Departments, Centers, Institutes and
Projects. 44.

https://surface.syr.edu/lcsmith_other/44

This Article is brought to you for free and open access by the College of Engineering and Computer Science at
SURFACE. It has been accepted for inclusion in College of Engineering and Computer Science - Former
Departments, Centers, Institutes and Projects by an authorized administrator of SURFACE. For more information,
please contact surface@syr.edu.

https://surface.syr.edu/
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith_other
https://surface.syr.edu/lcsmith
https://surface.syr.edu/lcsmith_other?utm_source=surface.syr.edu%2Flcsmith_other%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=surface.syr.edu%2Flcsmith_other%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
https://surface.syr.edu/lcsmith_other/44?utm_source=surface.syr.edu%2Flcsmith_other%2F44&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:surface@syr.edu

Integer Sorting Algorithms for Coarse-Grained Parallel Machines

Khaled Alsabti
School of CIS
Syracuse University
kaalsabt@top.cis.syr.edu

Abstract

Integer sorting is a subclass of the sorting problem
where the elements have integer values and the largest
element is polynomially bounded in the number of el-
ements to be sorted. It is useful for applications in
which the size of the mazimum value of element to be
sorted is bounded. In this paper, we present a new dis-
tributed radix-sort algorithm for integer sorting. The
structure of our algorithm is similar to radiz sort ex-
cept that it typically requires less number of communi-
cation phases.

We present experimental results for our algorithm
on two distributed memory multiprocessors, the Intel
Paragon and the Thinking machine CM-5. These re-
sults are compared with two other well known practi-
cal parallel sorting algorithms based on radix sort and
sample sort. The experimental results show that the
distributed radiz-sort is competitive with the other two
algorithms.

1 Introduction

Sorting has been a widely studied problem for par-
allel machines [8, 9, 12, 14, 13, 10, 1, 4, 7, 6, 11]. Inte-
ger sorting is a subclass of the sorting problem where
the elements have integer values such that the value
of the maximum element is polynomially bounded in
the number of elements to be sorted. The work re-
quirements of integer sorting is O(n), where n is the
number of elements, and the values are drawn from
[1..0(n%)], where « is a positive constant.

In this paper, we present a new integer sorting algo-
rithm, which we call distributed radiz-sort. We com-
pare our algorithm to two other well known sorting
algorithms: sample sort and radiz sort. A compara-
tive study of these two algorithms for fine and coarse
grained machines has been presented in [4, 6].

*The work of this author was supported in part by AFMC
and ARPA under Contracts F19628-94-C-0057 and WM-82738-
K-19 and a subcontract from Syracuse University. The content
of the information does not necessarily reflect the position or the
policy of the Government and no official endorsement should be
inferred.

Sanjay Ranka *
Department of CISE
University of Florida

ranka@cise.ufl.edu

The sample sort has a single permutation step,
while the radix sort requires multiple communication
steps. Thus, radix sort incurs higher communication
cost as compared to sample sorting. However, the
computational cost of radix sort is better or compa-
rable to the sample sort. The proposed algorithm,
distributed radiz-sort has the same structure as radix
sort except that it requires less permutation steps in
most cases. This makes it a competitive algorithm
with sample sort especially for large number of pro-
cessors for which the load imbalances generated by
sample sort are higher.

We have implemented these algorithms on two dis-
tributed memory multiprocessors: the Intel Paragon
and the Thinking machine CM-5. Our results, on both
machines, show that our algorithm is very efficient and
competitive to the other two algorithms. For 16-bit
integers, our algorithm outperforms the other two al-
gorithms. For 32-bit integers, it outperforms radix
sort and is comparable to or better than sample based
integer sort . However, it is inferior to sample based
integer sort for 64-bit integers.

The rest of the paper is organized as follows. We
describe the machine model in section 2. In sections
3 through 5, we describe and analyze the radix sort,
sample sort and distributed radix-sort, respectively.
Experimental results are presented in section 6. The
conclusion is drawn in section 7.

2 Coarse-grained Parallel Machine

Coarse Grained Machines (CGMs) consist of a set
of processors (tens to a few thousand) connected
through an interconnection network. The memory
is physically distributed across the processors. Inter-
action between processors is either through message
passing or through a shared address space.

CGMs have cut-through routed networks which will
be the primary thrust of this paper and will be used for
modeling the communication cost of three algorithms.

Our analysis will be done for the following intercon-
nection networks: hypercubes and two dimensional

meshes. The analysis for permutation networks and
hypercubes is the same in most cases. These cover
nearly all commercially available machines. Although
the three algorithms are analyzed for two types of
interconnection networks, they are architecture inde-
pendent and can be efficiently implemented on other
interconnection networks.

Parallelization of applications requires distributing
some or all of the data structures among the proces-
sors. Each processor needs to access all the non-local
data required for its local computation. This gener-
ates aggregate or collective communication structures.
Several algorithms have been described in the litera-
ture for these primitives and are part of standard text-
books [8, 9]. In what follows, p refers to the number
of processors. We model the cost of sending a mes-
sage from one node to another as O(r + um), where
m is the size of the message. A brief description of the
primitives is as follows:

1. All-to-All Broadcasting: This collective com-
munication operation requires every node to send
the same message of size m to all other processors.

2. Global Combine and Prefix Scans: Assume
that each processor contains a vector V;[0...m].
Let p be the number of processors. The global
combine operation computes an element-wise sum
of the local vectors in each processor. The re-
sultant vector is stored an all processors. The
global vector prefix-sum performs an element-
wise prefix-scan of the local vectors in each pro-
Cessor.

3. Transportation Primitive: This operation
performs many-to-many personalized communi-
cation with possibly high variance in message size.
Let m be the maximum of outgoing or incoming
traffic at any processor. If m > p?, the running
time of this operation can be shown to be equal
to two all-to-all communication operations with a
maximum message size of O(7}) [3].

4. Order Maintaining Data Movement: Con-
sider the following data movement problem : Ini-
tially, processor P; has two integers s; and r; and
s; elements of data such that Zf;ol S; = Zf;ol ;.
Let spmaz = mamf;(]lsi and 70 = mamf;olri.

The objective is to redistribute the data such that

processor P; contains r; elements. Suppose that

each processor has its set of elements stored in
an array. We can view the 25:01 s; elements as
if they were globally sorted based on processor
and array indices. For any i < j, any element in

processor P; appears earlier in this sorted order
than any element in processor P;. In the order
maintaining data movement problem, this global
order should be preserved after the distribution
of the data.

For detailed description and analysis of the above
primitives the reader is referred to [9, 3, §].

3 Radix Sort

Radix sort is a count-based sort that relies on the
binary representation of the elements to be sorted
[5]. The parallel radix sort has the same structure as
the sequential radix sort. It performs [%] iterations,
where b is the number of bits in the binary represen-
tation of the elements and r is the number of bits
examined at a time. We assume that each processor
initially has 2 elements, where n is the total number
of elements and p is the number of processors. In each
iteration of the algorithm , the rank of each element
is computed using the current r-block. Then, the el-
ements are permuted to their new destinations. The
new destination of each element is determined using
its rank.

The core step of each iteration of the algorithm is to
compute the ranks of the elements. This can be done
in parallel by finding the rank of the first element of
each the 2" count array for each processor. The rank
of the first element of each entry of the count array
is sufficient to find the rank of all the elements lo-
cally. After this step, the elements are redistributed
among the processors using the transportation prim-
itive. The destination processor of an element with
rank i is the processor with address |+ |. The struc-
ture of communication is balanced because each pro-
cessor will send/receive 2 elements and it is irregular
because the individual messages may have different
sizes. The final step, of each iteration, locally reorders
the elements based on their ranks.

The total time ! for performing the radix sort on
hypercube and mesh is O([g]5(2r+%)+rlogp+p2r+

o+ p2) and O([216(2" + 2) +7(/p— 1) + u2"(p —
1) + (7 + pm),/p), respectively *.

4 Sample Sort

Sample sort partitions the list into m intervals such
that the elements of each interval are smaller than
the elements of the next interval. These intervals can
then be independently sorted to sort the overall list.

I'Many of the details have been omitted because of the space
limitations.

2§ is the time to perform a unit computation on data avail-
able in the local memory

A sample of size s is selected from the n elements,
and the range of the intervals is determined by sorting
the sample and choosing m — 1 elements called split-
ters. They represent the interval boundaries. The
element values within an interval are between these
boundaries. Many variations of sample sort have been
studied [6, 11, 12, 4]. They differ in the method used
for sampling, the method for sorting the sample, the
size of the sample chosen and the number of splitters.
Our sample based integer sort is very similar to the
algorithm proposed by [12]. It uses regular sampling
method to derive the splitters.

First, each processor sorts its local list using a se-
quential sorting algorithm. From the experiments we
have performed, the local radix sort with radix 2'!
outperformed the quick sort for 32-bit integers and
large data set on both Intel Paragon as well as the
CM-5. We have chosen the radix sort to perform the
local sorting step.

There is a tradeoff in determining the sample size
s. A large sample size leads to better load balance
but results in higher time requirements in finding the
splitters. The sample points are selected using regular
sampling [12], i.e. it selects the elements at relative
indices 1, d + 1, ..., (s — 1)d + 1, where d = = 3

The sample points are globally sorted using Bitonic
sort. Each processor i (except the last processor) picks
the last number as splitter ¢ in its sublist and performs
All-to-All Broadcast with unit message size.

Then, each processor divides its list into p sublists
using the p — 1 splitters. This is done by performing
binary search on the local list of size 2 for the p — 1
splitters. After forming the sublists, the elements are
redistributed using the transportation primitive. The
communication phase is irregular since the messages
may have different sizes and is unbalanced since some
processors may receive more than %. The p sublists
are sorted to obtain the final sorted list. We use a
sequential radix sort to carry out this step. %.

Bucket expansion (3 is a measure of the degree of the
load- balance achieved and is defined as the maximum
number of elements assigned to a given processor di-
vided by the average number of elements assigned to
each processor. Assuming that the data set does not
have any duplicates °, the upper bound on the maxi-

3For the sake of simplicity, we assume that n is divisible by
p and % is divisible by s.

4Since the p sublists are sorted, we can merge them together
instead of sorting the whole list. Although, this is asymptot-
ically inferior, our experimental results suggest that this ap-
proach achieve better results.

5This can be easily generalized for presence of duplicate ele-
ments by concatenating the element index. However, this may

mum number of elements assigned to any processor is
given by 32 — L 41 [12)].

For comparing different algorithms, we require that
the number of elements assigned to each processor
after sorting are equal. To achieve this a Order-
Maintaining data movement primitive is used in the
final step of the algorithm.

The total time requirement of the sample sort
on the hypercube and the mesh interconnection net-
works is O(8([27(2" + 22)+s+(p—1)log2) + (1 +
log p) log p(7 + ps) + (Tp + pB2)) and O(5([2](2" +
2)+s+(p—1)log)+ 7D+ psy/p+(7+uB3)/D),
respectively. This excludes the time of the Order-
Maintaining Data Movement primitive. From the ex-
periments, the time taken by this primitive is minis-
cule compared to the total running time of the algo-
rithm.

5 Distributed Radix-Sort

The structure of the new proposed algorithm, dis-
tributed radix-sort, is similar to the structure of the
radix sort. It requires [1] iterations, where b is the
number of bits in the binary representation and r is
the number of bits examined at a time, of permuting
the elements across the processors. Each iteration has
eight steps.

The distributed radix-sort assumes that the count
array (used in the radix sort) is distributed across all
the processors. This has several advantages over radix
sort:

1. The value of radix used in the distributed radix-

sort 2™ is larger than the value used in radix sort
2m2 6,

2. The size of the prefix calculation required for dis-
tributed radix-sort is much smaller than the radix
sort.

However unlike the radix sort, in each iteration the
distributed radix-sort sends the elements to their des-
tination processor using an intermediate phase. Each
processor participates as source, intermediate as well
as destination processor. The processing of these steps
are much more complicated than the radix sort and are
described in the following.

We assume that the count array (range) of the
distributed radix sort is partitioned into pk buckets,
where p is the number of processors and k is some
positive constant. In every source processor, an array
of size kp is created to record the number of the hits

increase the communication time.
8Typically r1 = ra + log(kp).

to each bucket. Thus, each bucket corresponds to an
interval of size z—r

In Step 1, we count the number of local hits to
each of these buckets (element i belongs to bucket j
where 7 — |_the current szbloclc of ZJ) This vector
is referred to as local-Bucket-Hits.

In Step 2, a global vector sum-combine is performed
on local- Bucket-Hits which results in an identical vec-
tor in every processor. This vector Bucket-Hits gives
the total number of hits to each bucket. The rank of
the first of element for each bucket is obtained by per-
forming a local sequential prefix-sum-scan on Buckets-
Hits. These kp entries give the contention for every
bucket. A bucket is classified as being sparse if it has
< % hits , and as dense otherwise. The intermediate

(3

processor for sparse bucket i is processor |]. Sparse

buckets, by definition, do not have more than % hits.

Each intermediate processor has k buckets initially,
n

and therefore will not receive more than 2 elements
for its sparse buckets. After assigning sparse buckets
to intermediate processors, we stretch the dense buck-
ets to intermediate processors in such that no pro-

cessor will receive more than - elements (from both

)

sparse and dense buckets). Further, each dense bucket
is stretched across consecutive numbered 7 processors.
This is done as follows:

For dense bucket ¢ with b; hits: look for the
first intermediate processor j which is as-
signed less than 2 elements , say n;, and
make it the first intermediate processor for
bucket . If n; +0b; < %, then assign bucket i
to processor j entirely and increment n; by b;
; otherwise, assign % —n; elements of bucket
i to processor j, set n; to % , decrement b;
by 7 —n; and examine the next intermediate

processor for potential assignment.

The above process is repeated until all the elements of
bucket ¢ have been assigned.

Thus, a dense bucket can be split across several in-
termediate processors. Several source processors may
have local data corresponding to a given dense bucket.
One can allocate appropriate portions of the dense
bucket to each of these source processors by perform-
ing a global vector prefix-sum-scan on local-Buckets-
Hits. At the end of this step each processor can deter-
mine the exact portions (and corresponding interme-
diate processors) of each of the kp buckets it needs to
communicate the data items.

"Note that some of these processors may be assigned zero el-
ements. This might happen in case that they have been already
assigned % elements from the sparse buckets.

The communication between the source and inter-
mediate processors (Step 3) can be shown to be a bal-
anced transportation primitive since each intermedi-
ate processor will receive exactly & elements.

Step 4 processes the data elements on intermediate
processors. Finding the rank for elements belonging
to the sparse bucket bucket is done by using a direct-
address table of size %. We calculate the count for the
number of elements of each entry in this table. This
can then be easily used to compute the global rank
as rank of the first element of each bucket is locally
available. This rank can be used to determine the
destination processor for a given element. Element i

with rank j is assigned to processor |4 |.
P

For dense buckets, the processing is more compli-
cated. We distinguish between two types of dense
buckets: a full bucket and a partial bucket. The buck-
ets that are contained entirely in a processor are called
full buckets, while those that stretch across processors’
boundaries are called partial buckets. Of the buckets
in each processor, only the first and last buckets could
be partial. If they exist, they are called a preceding
partial bucket and a succeeding partial bucket, respec-
tively. Processing of full dense buckets is the same as
processing sparse buckets. The only difference is that
the number of elements received for sparse buckets is
smaller.

For partial dense buckets (Step 5), a global
segmented-sum-scan and segmented-sum with a vec-
tor size of % is required to calculate the global rank
of each of the elements. Each segment corresponds to
a stretched bucket. If a processor has a succeeding as
well as preceding partial bucket, we ignore the preced-
ing partial buckets in such a processor for executing
the segmented scan. These results are then augmented
by having each processor with ignored preceding par-
tial buckets send its contents to the first processor
corresponding to a dense bucket. This step requires a
simple one-to-one communication vector of size %.

Step 6 assigns elements into destination processors
as follows. An element with rank i is assigned to pro-
cessor |+ |.

Step 1% transfers data from intermediate to desti-
nation processors. It can be shown to be a balanced
personalized communication since each intermediate
processor has exactly 2 and each destination proces-
sor will receive exactly %.

Step 8 reorders the the elements received based on
their ranks.

The total time requirement of the distributed radix-
sort is the time required by a single iteration times
the number of iterations, [2]. The total computation

time of a single iteration of the algorithm is 6O (kp +
% + % logp + £). The total communication cost of
a single iteration of the algorithm for the hypercube
and mesh interconnection networks is given in table 1.

We choose the number of buckets & per processor to
satisfy % > O(kp). There is a great deal of flexibility
in choosing the value of k. k being close to 1 reduces
the time for the prefix-scan/combine with the array
of size kp, but increases the time for the segmented-
sum-scan /segmented-sum with the array of size %. k
being close to p does the opposite.

Network The time requirement
Hypercube O(Tlogp+ukp+7'logp+u%logp+Tp+u%)
Mesh O(r(vp—1) + u(kp + 5(p = 1)) + (7 + 12)\/p)

Table 1: The time requirement of the communication
cost for a single iteration of the distributed radix-sort
on different interconnection networks

The distributed radix-sort allows us to choose a
larger radix per iteration as compared to radix sort.
This is because the count array is distributed across
all the processors and the the parallel prefixes required
are of size pk (as compared to 2" for radix sort). How-
ever, an extra stage of communication and processing
is required.

6 Experimental Results

We implemented the three algorithms on the In-
tel Paragon and the Thinking Machine’s CM-5. We
conducted extensive performance evaluation of these
algorithms for a variety of parameters. In this section
we briefly summarize our experimental results due to
space limitations. For a detailed description and dis-
cussion of the experimental results the reader is re-
ferred to [2]. For each algorithm, we have assumed
16K, 32K, 64K, 128 K and 256K elements per pro-
cessor using 32, 64, 128 and 256 processors. Two sets
of element values have been generated for each of the
above parameters assuming that b bits are used for
representation of the elements:

1. Alpha0: The elements are uniformly distributed
in the range [0..2°].

2. Alphal: The elements are uniformly distributed
b b

from [z%(z + 1)2? — 1] where 4 is an arbitrary
processor number.

The above two data sets represents uniform and
skewed distributions for the target algorithms. For
each of the algorithms, we have compared the total

running time for the Alpha0 and Alphal data sets. All
the algorithms are only marginally affected by data
skew. The results in the rest of this section are for
Alpha0 data set.

For each data point, we ran the algorithm several
times; the median of the running times is reported.
The performance of the two radix sort algorithms de-
pends on the radix while the sample sort depends on
the size of the sample. We also studied, the effect of
these parameters on the overall performance.

The optimal radix 2" for radix sort depends on the
cost of the prefix-sum/combine, the cost of the trans-
portation primitive and the cache size. A large value
of r results in less iterations needed to sort the ele-
ments, more time spent in prefix-sum/combine, and
more time spent in counting and computing the ranks
due to the cache misses, while smaller radix results
in the opposite. We empirically determined this to
be 2''. Thus three iterations are required to sort the
32-bit integers.

The performance of the sample sort depends on the
bucket expansion 3. We ran the sample sort using
different sample sizes s and found that choosing s =
n%3 gives a good overall performance for sample sort
in most of the cases. For sorting local data, we used a
local radix sort (radix 2'!). This resulted in a slightly
better performance than quick-sort for 32-bit integers.

The performance of the distributed radix-sort de-
pends on the number of the buckets per processor
(k) and the radix (2"). A small value of k reduces
the time for the prefix-scan/combine with the array
of size kp, but increases the time for the segmented-
sum-scan /segmented-sum of size %. A small value of
r results in a larger number of iterations needed to
sort the elements and a smaller value of the bucket
size. We empirically determined the value of k to be
16. The overall radix of the distributed radix-sort de-
pends on the number of processors. We have deter-
mined the radix for each machine size empirically and
used a value of 2!8, 218 219 and 22! for 32, 64, 128
and 256 processors, respectively. Thus, the distributed
radix-sort needs two iterations to sort the 32-bit inte-
gers. When using a radix 22!, we switch to radix sort
for the second iteration since only sort on 11 bits are
required.

Figure 1 shows the communication and the compu-
tation times on 64 and 256 processors for each of the
three algorithms for 32-bit integers. The radix sort
spends almost equal time on the communication and
computation. The sample sort on the other hand has
large computation cost as compared to the communi-
cation cost. The time taken by order-maintaining data

Time in Seconds

8.0

6.0

2.0

0.0

movement in sample sort is very small compared to the
overall time. The computational requirements of the
distributed radix-sort is smaller than the sample sort
and the communication requirements are significantly
lower than the radix sort. The overall time require-
ments of the radix sort is larger than the other two al-
gorithms for all cases. The performance of distributed
radix-sort is better or comparable to the sample sort.
It outperforms sample sort for larger data sets and
higher number of processors.

We also ran the three algorithms using 16-bit and
64-bit integers on the CM-5. For 16-bit integers, the
distributed radix-sort outperforms the other two algo-
rithms for all the data set sizes. This is because the
distributed radix-sort requires only one iteration. For
64-bit integers, the sample sort outperforms the other
two algorithms 8

For 64-node CM5 For 256-node CM5

8.0

6.0

H |
00

Time in Seconds
N
°

°

=

mem B® !H

b m

N ot Elements per Processor N of Elements per Processor

)

Figure 1: The Communication and computation times
of the three algorithms on 64-node and 256-node CM-5

The CM-5 machine has relatively low unit com-
putation to unit communication ratio. We also exe-
cuted the three algorithms for 32-bit integers on Intel
Paragon for 64 and 256 processors, which has higher
unit computation to communication ratio than the
CM-5. The distributed radix-sort outperforms radix
sort in almost all the cases. Its performance is compa-
rable or better than sample sort especially for larger
number of processors. For 16-bit integers, the dis-
tributed radix-sort outperforms the other two algo-
rithms for all the data set sizes on 64 and 256 proces-
SOrs.

7 Conclusion

In this paper, we have developed a new integer sort-
ing algorithm called distributed radix-sort. Our ex-
perimental on the CM-5 and Intel Paragon suggest
that it has superior performance than radix sort for
the practical integer sizes used in practice. Further

8We have used a quick sort to perform the local sorting in
the sample sort which gives a better performance than a local
radix sort for 64-bit elements.

the performance of our algorithm is comparable or su-
perior to the sample based integer sort for small sized
integers (16-bit or 32-bit) especially for large data sets
or number of processors.

References
[1] S. G. Akl. Parallel Sorting Algorithms.
Press, Toronto, 1985.

[2] K. Alsabti and S. Ranka. Integer Sorting Algorithms
for Coarse-Grained Parallel Machines. Technical Re-
port, Department of CISE, University of Florida,
1997.

[3] K. Alsabti, S. Ranka, and R. Shankar. The Trans-
portation Primitives. Proceedings of the Fifth Sympo-
stum on the Frontiers of Massively Parallel Compu-
tation, February 1995.

[4] G. E. Blelloch et al. A Comparison of Sorting Algo-
rithms for the Connection Machine CM-2. In Proc. of
Symposium on Parallel Algorithms and Architectures,
pages 3 16, July 1991.

[6] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. In-
troduction to Algorithms. McGraw-Hill Book Com-
pany, 1990.

[6] D. Culler et al. Fast Parallel Sorting under LogP:
From Theory to Practice. Proc. of the Workshop on
Portability and Performance for Parallel Processing,

(Wiley), England, 1993.

Academic

[7] Leonardo Dagum. Parallel Integer Sorting with
Medium and Fine-Scale Parallelism.
Journal of High-Speed Computing.

[8] G. Fox et al. Solving Problems on Concurrent Pro-
cessors: Vol. 1. Prentice-Hall, Englewood Cliffs, NJ,
1988.

[9] V. Kumar et al. Introduction to Parallel Comput-
ing: Design and Analysis of Algorithms. The Ben-
jamin/Cummings Publishing Company, Inc, 1994.

F. T. Leighton. Tight Bounds on the Complexity of
Parallel Sorting. IEEE Transactions on Computers,
C-34(4):344 354, April 1985.

Hui Li and Kenneth C. Sevcik. Parallel Sorting by
Overpartitioning. Technical Report CSRI-295, Febru-
ary 1994.

X. Li et al. On the Versatility of Parallel Sorting
by Regular Sampling. Parallel Computing, 19(10),
October 1993.

S. Rajasekaran and J. H. Reif. Optimal and
Sublogrithmic Time Randomized Parallel Sorting Al-
gorithms. SIAM Journal on Computing, 18(3):594

607, June 1989.

Y. Won and S. Sahni. A Balanced Bin Sort for Hy-
percube Multicomputers. Journal of Supercomputing,
2:435 448, 1988.

International

[10]

[11]

[12]

[13]

[14]

	Integer Sorting Algorithms for Coarse-Grained Parallel Machines
	Recommended Citation

	tmp.1286816405.pdf.K4BZS

